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Abstract
Purpose Pharmacokinetic (PK) differences between the extended half-life (EHL) factor IX (FIX) concentrates for hemophilia B
exist, which may influence hemostatic efficacy of replacement therapy in patients. Therefore, we aimed to evaluate the PK
properties of three EHL-FIX concentrates and compare them to a standard half-life (SHL) recombinant FIX (rFIX) concentrate.
Methods Activity-time profiles of PEGylated FIX (N9-GP), FIX linked with human albumin (rIX-FP), FIX coupled to human
IgG1 Fc-domain (rFIXFc), and SHL rFIXwere simulated for 10,000 patients during steady-state dosing of 40 IU/kg once weekly
(EHL-FIX) and biweekly (rFIX) using published concentrate specific population PK models.
Results Half-lives were respectively 80, 104, and 82 h for N9-GP, rIX-FP, and rFIXFc versus 22 h for rFIX. Between the EHL
concentrates, exposure was different with area under the curve (AUC) values of 78.5, 49.6, and 12.1 IU/h/mL and time above
FIX target values of 0.10 IU/mL of 168, 168, and 36 h for N9-GP, rIX-FP, and rFIXFc, respectively. N9-GP produced the highest
median in vivo recovery value (1.70 IU/dL per IU/kg) compared with 1.18, 1.00, and 1.05 IU/dL per IU/kg for rIX-FP, rFIXFc,
and rFIX, respectively.
Conclusions When comparing EHL products, not only half-life but also exposure must be considered. In addition, variation in
extravascular distribution of the FIX concentrates must be taken into account. This study provides insight into the different PK
properties of these concentrates and may aid in determination of dosing regimens of EHL-FIX concentrates in real-life.
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Introduction

Hemophilia B patients are characterized by a deficiency of
coagulation factor IX (FIX) resulting in bleeding, typically
in joints and muscles [1]. It has been demonstrated that pa-
tients with moderate and mild hemophilia—defined as a base-
line FIX level of >0.01 IU/mL and >0.05 IU/mL,

respectively—experience spontaneous bleeding less frequent-
ly and demonstrate delayed development of arthropathy when
compared with severe hemophilia patients (<0.01 IU/mL) [2].
Therefore, traditionally severe hemophilia B patients admin-
istrate FIX concentrate prophylactically to maintain FIX
trough levels of at least >0.01 IU/mL [3]. However, due to
inter-individual variation in bleeding tendency the sufficient
FIX target level during prophylaxis to prevent bleeding can
vary between patients. Some patients do not experience bleed-
ing when trough levels are <0.01 IU/mL while others require
higher factor trough levels [4, 5]. In spite of these findings, it
has been demonstrated in hemophilia A patients that longer
time intervals spent with factor VIII activity levels >0.01 IU/
mL resulted in lower annualized bleeding rates [6]. Some
studies even suggested to aim for higher trough activity levels
to prevent bleeds [7]. Therefore, higher FIX trough activity
levels may be required for some patients, depending on bleed-
ing tendency, level of physical activity, and joint status [8]. As
a result, not only trough FIX activity levels but also area under
the activity level versus time curve (AUC) and time spent with
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FIX activity levels above 0.03 IU/mL, 0.05 IU/mL, and 0.10
IU/mL are expected to be important determinants to predict
bleeding risk.

Efforts have been made to modify the pharmacological
properties of FIX concentrates in order to extend its terminal
half-life and/or augment its in vivo hemostatic function [9,
10]. Currently, three extended half-life (EHL) FIX concen-
trates are widely available: PEGylated FIX (N9-GP), recom-
binant FIX linked with recombinant human albumin (rIX-FP),
and FIX coupled to the human IgG1 Fc domain (rFIXFc) [11,
12]. Whereas standard half-life (SHL) FIX concentrates are
generally administered twice weekly to maintain target FIX
trough levels, EHL-FIX concentrates can be administered
once weekly or possible even less frequently [13]. One of
the greatest advantage of these EHL-FIX concentrates is the
reduction in frequency of infusion, especially in patients with
difficult venous access. On the contrary, less frequent admin-
istration of EHL-FIX concentrates may also result in longer
time intervals at relatively low FIX activity levels, which may
actually lead to lower hemostatic efficacy especially for pa-
tients requiring higher trough levels. For this reason, it is also
important to examine the time patients spent above a specified
FIX activity level.

Although the EHL-FIX products have been designed to
have altered elongating PK properties when compared
with SHL-rFIX products, these have not yet been simul-
taneously compared in a clinical study. A simultaneous
comparison between PK properties of the EHL-FIX prod-
ucts can be useful, as the PK properties described in clin-
ical trials are obtained with different dosing regimens
making comparison of several PK properties difficult.
Furthermore, in the reports of these clinical trials, clini-
cally interesting PK properties such as time spent above a
certain factor level are often not presented. Nevertheless,
population PK models have been published for the exam-
ined concentrates, making evaluation using Monte Carlo
simulations possible. Monte Carlo simulations not only
allow the comparison of PK parameters in a typical or
average patient but also illustrate the associated inter-
patient variability observed in a patient population.
Application of Monte Carlo simulations can be beneficial
as costs and exposure of the patient to an intervention are
minimized while maximizing similarity with clinical prac-
tice. Therefore, the objective of this study was to compare
the PK properties of three currently available EHL-FIX
concentrates to a widely used SHL-rFIX concentrate
using Monte Carlo simulations.

Methods

Monte Carlo simulations were performed to produce FIX ac-
tivity levels versus time profiles of three EHL-FIX

concentrates N9-GP (Refixia®, Novo Nordisk A/S,
Denmark), rIX-FP (Idelvion®, CSL Behring GmbH,
Germany), and rFIXFc (Alprolix®, Swedish Orphan
Biovitrum AB, Sweden) and one SHL-rFIX concentrate
(BeneFIX®, Pfizer, UK) in 10,000 virtual patients [14]. In a
Monte Carlo simulation, a population PK model is used to
generate individual PK parameters and subsequent FIX levels
for each desired time-point. Residual error was not included in
the simulated FIX levels. The simulations were performed
with NONMEM v7.4.1. using population PKmodels reported
in literature (Table 1) [15–17]. For N9-GP, only a population
PK model based on phase 1 trial data was available in litera-
ture [18, 19]. In the phase 1 N9-GP trial, FIX levels were
measured using a modified aPTT-based assay with a Trinity
auto aPTT reagent (silica-based), while in the phase 3 trials,
FIX levels were measured using an aPTT-based one-stage
assay with a SynthAFax reagent [20, 21]. The activity of
N9-GP is generally overestimated when a silica-based reagent
is used, as applied in the phase 1 trial [22, 23]. Therefore,
updated population PK parameters of N9-GP were generously
provided by Novo Nordisk based on data from the phase 3
trials.

R software (v3.4.3) was used to create the population of
10,000 virtual severe hemophilia B patients [24].

Different age and bodyweight characteristics were assigned
to the virtual patients. The ranges of these simulated charac-
teristics were based on the combined age and bodyweight
ranges from the studied populations of the population PK
models available in literature to avoid extrapolation.
Therefore, simulated age and bodyweight ranged from 21 to
65 years and from 57.3 to 90 kg, respectively. The relation
between age and weight and distribution of these characteris-
tics was simulated using the tmvtnorm package in R. For
reasons of simplicity, PK of the EHL-FIX was only evaluated
in severe hemophilia B patients (endogenous baseline level
<0.01 IU/mL). Consequently, no endogenous baseline FIX
level was simulated for the virtual patients. The population
PK model for rIX-FP contained a structural parameter to de-
scribe the baseline FIX levels of hemophilia B patients. This
parameter was, however, subsequently discarded during the
Monte Carlo simulations, as baseline FIX levels were <0.01
IU/mL.

In the simulations, steady-state PK was present in all pa-
tients, receiving 40 IU/kg of EHL-FIX once weekly and 40
IU/kg SHL-rFIX twice-weekly. For each virtual patient, the
following PK parameters were calculated: terminal elimina-
tion half-life, AUC (from 0 to 168 h), maximum FIX activity
level, in vivo recovery, and FIX trough activity level.
Moreover, the time below and above 0.01, 0.03, 0.05, and
0.10 IU/mL was calculated. Furthermore, individual PK pa-
rameters were used to calculate the dose of FIX concentrate
needed to achieve a steady-state FIX trough activity level of
0.01, 0.03, 0.05, and 0.10 IU/mL.
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Results

The distributions of age and bodyweight of the 10,000 virtual
patients with severe hemophilia B are depicted in Figure 1.
Figure 2 show that the FIX activity level versus time profiles
vary between concentrates, demonstrating different PK prop-
erties such as exposure and half-life.

For rIX-FP, the longest elimination half-life was obtained
(104 h), while the elimination half-lives of N9-GP and rFIXFc
were comparable (80 and 82 h). As expected, these parameters
were 4- to 5-fold longer than for the SHL-rFIX concentrate
with a value of 22 h (Table 2). The increase in half-life of the

various EHL-FIX concentrates did not result in comparable
increases in exposure (AUC). The median AUC of N9-GP
(78.5 IU/h/mL) was six times higher than the AUC of
rFIXFc (12.1 IU/h/mL), while the AUC of rIX-FP was four
times higher (49.6 IU/h/mL) than rFIXFc. This is also
reflected in both the calculated trough FIX activity levels
which are respectively 0.21, 0.14, and 0.02 IU/mL for N9-
GP, rIX-FP, and rFIXFc, and in the time above and below 1,
3, 5, and 10 IU/mL (Table 2).

Although a weekly dose of 40 IU/kg produces median FIX
activity levels above 0.01 IU/mL during the complete dosing
period of 168 h (1week) for each of the EHL-FIX concentrate,

Table 1 Pharmacokinetic parameters of the population pharmacokinetic models used for simulation

Parameters N9-GP†,* rFIXFc‡ [15] rIX-FP§ [16] rFIX§ [17]

CL (mL/h) 0.5101 239 57 560

V1 (mL) 58.9213 7140 6480 6090

Q2 (mL/h) - 167 29 22400

V2 (mL) - 8700 1580 4160

Q3 (ml/h) - 3930 - 430

V3 (ml) - 3990 - 3900

Covariates

Bodyweight effect on CL - 0.436 0.53 0.66

Bodyweight effect on Q2 and Q3 - - - 0.66

Bodyweight effect on V1 - 0.396 0.79 0.64

Bodyweight effect on V2 - - 0.79 0.64

Bodyweight effect on V3 - - - 0.64

Weight adjusted dose on V1 - - 0.38 -

Age effect on V2 (% change with age different from 23 years) - - - 1.6

Inter-individual variability (IIV)

IIV on CL (%) 16.79¶ 17.7 22.6 19.0

IIV on V1 (%) 14.06 21.7 26.9 46.0

IIV on Q2 (%) - 35.8 - -

IIV on V2 (%) - 46.2 - 37.0

IIV on V3 (%) - 37.7 - 28.0

Correlation between IIV Cl and V1 (%) - 75.6 - -

Inter-individual variability (IOV)

IOV on CL (%) - 15.1 - -

IOV on V1 (%) - 17.4 - -

Residual variability

Additive error (IU/ml) 0.01003 0.0024 0.0066 0.0064

Proportional error (%) - 10.6 18.0 8.7

CL clearance, V1 central volume of distribution, Q2 inter-compartmental clearance of compartment 2, V2 volume of compartment 2, Q3 inter-
compartmental clearance of compartment 3, V3 volume of compartment 3

*Population pharmacokinetic parameters of N9-GP were provided by Novo Nordisk (personal communication)
† Parameters scaled to 1 kg
‡ Parameters CL and V1 scaled to 73 kg by allometric scaling
§ Parameters scaled to 70 kg by allometric scaling
¶ IIV of clearance of N9-GP was taken from Collins [18]
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significant differences were observed for a target trough activ-
ity level of 0.10 IU/mL. In the latter case, median values for

the time above a target activity level of 10 IU/mL were re-
spectively 168, 168, and 36 h for N9-GP, rIX-FP, and rFIXFc.

Fig. 1 Distribution of age and
bodyweight for the simulated
population of 10,000 severe
hemophilia B patients

Fig. 2 Simulated FIX activity levels for the examined FIX concentrates.
IU, international units. SHL, standard half-life. EHL, extended half-life. a
Median FIX activity levels versus time from N9-GP (orange), rIX-FP
(green), rFIXFc (blue), and rFIX (purple) for 10,000 patients during
steady-state dosing of 40 IU/kg once weekly (EHL-concentrates) and

40 IU/kg twice weekly (rFIX). The dashed red lines depict the FIX target
trough levels. b Median simulated FIX activity levels from N9-GP (or-
ange), rIX-FP (green), rFIXFc (blue), and rFIX (purple) versus time with
the 2.5th and 97.5th percentiles (gray dashed lines) of the FIX activity
levels. Note the logarithmically transformed y-axis
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Interestingly, once weekly dosing of 40 IU/kg rFIXFc pro-
duced similar values for AUC and time above 10 IU/mL as
compared with dosing of rFIX twice weekly. In Table 2, doses
to maintain specific target trough activities levels are present-
ed. In comparison with rFIX, the required weekly dose for a
target trough activity level of 0.01 IU/mL was 40-, 27-, and
4.1-fold lower for N9-GP, rIX-FP, and rFIXFc, respectively.
In our study, simulated trough activity level of the EHL-FIX
concentrates at 168 h were in agreement with those clinically
observed and reported in literature [15, 16, 18, 25].

In general, after administration of 40 IU/kg, higher peak
FIX activity levels were observed for N9-GP and rIX-FP in
comparison with rFIXFc. This is also reflected in the calculat-
ed in vivo recovery (IVR) values, with N9-GP showing the
highest median IVR of 1.70 IU/dL per IU/kg. rIX-FP, rFIXFc,
and rFIX produced lower median IVR values of 1.18, 1.00,
and 1.05 IU/dL per IU/kg, respectively.

Discussion

UsingMonte Carlo simulations, individual PK parameters and
subsequent FIX activity levels over time curves were obtain-
ed. The observed terminal half-life values of the EHL-FIX
concentrates were comparable, with rIX-FP showing a slightly
longer terminal half-life. On the other hand, N9-GP and rIX-
FP clearly demonstrated higher exposure, higher trough FIX

activity levels, longer time above a target level (0.03, 0.05, or
0.10 IU/mL) than rFIXFc. These results are comparable to the
PK comparison between N9-GP and rFIX-Fc performed by
Escuriola Ettingshausen et al. demonstrating favorable PK for
N9-GP [26].

The lower exposure and shorter time above a certain
target level of rFIXFc compared with the other EHL-FIX
concentrates could indicate that higher rFIXFc doses or
shorter dosing intervals are necessary with this concentrate
especially for patients that require higher FIX trough levels
or patients that require higher FIX activity levels for phys-
ical activities. However, it must be taken into account that
the characteristic FIX activity level versus time profile of
rFIXFc—with a rapid decreasing FIX activity level during
the distribution phase and a slower decrease during the
elimination phase—is possibly a result of extravascular
FIX binding with collagen IV [27]. Just as for rFIX,
rFIXFc distribution is not limited to the plasma, and the
PK curve displays a rapid distribution to the extravascular
compartment [15, 26]. In comparison, studies have ob-
served that N9-GP mostly remains in plasma compartment,
as the PEG moiety of N9-GP possibly reduces distribution
to extravascular space [21, 28]. These differences in distri-
bution are also illustrated by the fact that rFIX and rFIXFc
are both described by three compartment models, while the
PK of N9-GP and rIX-FP are described by one and two
compartment models [15–17]. Several non-clinical studies

Table 2 Simulated pharmacokinetic parameters for steady-state dosing of 40 IU/kg

Parameter N9-GP rIX-FP rFIXFc rFIX

Median Range 90% Median Range 90% Median Range 90% Median Range 90%

Terminal elimination half-life (h) 79.9 (56.0–115.1) 104.2 (73.6–158.8) 82.2 (47.5–158.9) 21.8 (14.1–34.5)

AUC (IU/h/mL) 78.5 (59.3–103.9) 49.6 (34.9–71.3) 12.1 (8.1–18.2) 10.1† (7.27–14.0)

Maximum FIX activity level (IU/mL) 0.89 (0.74–1.08) 0.62 (0.46–0.86) 0.42 (0.27–0.66) 0.43 (0.23–0.80)

In vivo recovery (IU/dL per IU/kg) 1.70 (1.35–2.15) 1.18 (0.78–1.83) 1.00 (0.62–1.58) 1.05 (0.54–1.99)

Trough FIX activity level (IU/mL) 0.21 (0.11–0.35) 0.14 (0.06–0.26) 0.021 (0.009–0.045) 0.010 (0.002–0.027)

Time above 0.01 IU/mL (h) 168.0 (168.0–168.0) 168.0 (168.0–168.0) 168.0 (156.1–168.0) 168.0† (112.2–168.0)

Time above 0.03 IU/mL (h) 168.0 [168.0–168.0) 168.0 (168.0–168.0) 129.6 (74.5–168) 100.1† (65.9–157.3)

Time above 0.05 IU/mL (h) 168.0 (168.0–168.0) 168.0 (168.0–168.0) 80.8 (48.0–149.5) 68.8† (44.8–108.5)

Time above 0.10 IU/mL (h) 168.0 (168.0–168.0) 168.0 (118.7–168.0) 36.1 (21.1–64.6) 30.4† (19.7–48.6)

Dose to achieve target activity

Target trough 0.01 IU/mL (IU/kg) 1.93 (1.16–3.68) 2.88 (1.55–6.20) 18.9 (9.0–46.0) 78.7† (29.7–33.7)

Target trough 0.03 IU/mL (IU/kg) 5.80 (3.48–11.0) 8.63 (4.66–18.6) 56.7 (26.9–138.0) 236.1† (89.0–911.2 )

Target trough 0.05 IU/mL (IU/kg) 9.66 (5.80–18.4) 14.4 (7.76–31.0) 94.6 (44.9–229.8) 393.6† (148.3–1518)

Target trough 0.10 IU/mL (IU/kg) 19.32 (11.6–36.8) 28.8 (15.5–62.0) 189.1 (89.8–459.7) 787.1† (296.7–3037)

The steady-state FIX activity levels of the EHL-FIX concentrates were achieved by dosing 40 IU/kg every 168 h, whereas steady-state FIX activity levels
for rFIX were achieved by dosing 40 IU/kg every 84 h

IU international units, AUC area under the curve
†As rFIX doses were administrated twice weekly; the calculated value depicts the sum of the two doses administered per week
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have indicated that extravascular FIX plays a clinically
relevant role in hemostasis, but the full extent of this phar-
macodynamic effect is yet to be discovered [27, 29, 30].
Although annual bleeding rates (ABR) are not directly
comparable, similar median and interquartile ranges of
ABR were observed in clinical studies for rFIXFc in adult
hemophilia B patients after weekly prophylaxis with simi-
lar doses (2.3, IQR 0.44–3.76; median dose 49.5 IU/kg)
compared with rIX-FP (1.58, IQR: 0.00–4.06; median dose
40.3 IU/kg) and N9-GP (1.04, IQR 0.00–4.00; median
dose 40 IU/kg) [31–33]. This may indicate that the hemo-
static efficacy of rFIXFc is more or less similar despite
lower FIX activity levels. As a result, the pharmacodynam-
ic properties (“intrinsic efficacy”) of rFIXFc may be dif-
ferent from N9-GP and rIX-FP.

Since this study was performed in silico and used the
published population PK models, the results can only be
interpreted for a study population similar to the population
on which the PK models were originally built. Therefore,
the presented results reflect PK parameters for patients
from 21 to 65 years and from 57.3 to 90 kg. Furthermore,
the blood sampling schemes used for data collection of the
population PK models may have influenced the PK prop-
erties, as prolonged FIX sampling increases the obtained
terminal half-life [34, 35]. Additionally, it is important to
realize that varying one-stage assays with varying activa-
tors have been applied in population PK studies performed
by pharmaceutical companies and in clinical reports, which
may additionally contribute to the found differences.
Finally, it is important that the presented study results are
based on simulations and should be interpreted with cau-
tion. Collection of real-world clinical data from patients is
still essential, as for instance inter-patient (PK) variability
may deviate in the clinical setting. Therefore, it is recom-
mended to perform follow up clinical studies in which
concentrates are compared using for instance a cross-over
design.

Conclusion

The simulations in this study show that PK properties of
the novel EHL-FIX concentrates differ. Despite the com-
parable terminal half-lives that were obtained for the inves-
tigated EHL-FIX concentrates, different AUCs and differ-
ent time intervals above a specific FIX activity level were
obtained. This study gives insight into specific PK proper-
ties of the EHL-FIX concentrates and may therefore sup-
port FIX concentrate selection and determination of dosing
regimens in the real-life setting of daily hemophilia care.
However, to fully unravel the effect of the EHL-FIX con-
centrates on hemostatic efficacy in hemophilia B, further

research exploring the dose and PK-pharmacodynamic re-
lationship is warranted.
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