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Abstract

Objective: To advance the prediction of the neurocognitive development in

MPS II patients by jointly analyzing MRI and neurocognitive data in muco-

polysaccharidosis (MPS) II patients.

Methods: Cognitive ability scores (CAS) were obtained by neuropsychological

testing. Cerebral MRIs were quantified using a disease-specific protocol. MRI

sumscores were calculated for atrophy, white-matter abnormalities (WMA)

and Virchow-Robin spaces (VRS). To distinguish between atrophy and hydro-

cephalus the Evans' index and the callosal angle (CA) were measured. A ran-

dom effects repeated measurement model was used to correlate CAS with the

three MRI sumscores.

Results: MRI (n = 47) and CAS scores (n = 78) of 19 male patients were ana-

lyzed. Ten patients were classified as neuronopathic and nine as non-

neuronopathic. Neuronopathic patients had normal cognitive development

until age 3 years. Mental age plateaued between ages 3 and 6, and subse-

quently declined with loss of skills at a maximum developmental age of

4 years. MRIs of neuronopathic patients showed abnormal atrophy sumscores

before CAS dropped below the threshold for intellectual disability (<70).

White-matter abnormalities (WMA) and brain atrophy progressed. The calcu-

lated sumscores were inversely correlated with CAS (r = −.90 for atrophy and
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−.69 for WMA). This was not biased by the influence of hydrocephalus as

shown by measurement of the Evans' and callosal angle. Changes over time in

the Virchow-Robin spaces (VRS) on MRI were minimal.

Conclusion: In our cohort, brain atrophy showed a stronger correlation to a

decline in CAS when compared to WMA. Atrophy-scores were higher in young

neuronopathic patients than in non-neuronopathic patients and atrophy was

an important early sign for the development of the neuronopathic phenotype,

especially when observed jointly with white-matter abnormalities.
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1 | INTRODUCTION

Mucopolysaccharidosis type II (MPS II, OMIM
#309900) is an X-linked, lysosomal storage disorder
caused by a deficiency of iduronate-2-sulphatase; it is
characterized by storage of heparan and dermatan sul-
phate.1 Patients with MPS II represent a broad clinical
spectrum. At the severe end are the neuronopathic
patients who experience progressive cognitive decline
and behavioral problems and generally do not survive
into adulthood.2,3 At the milder end are patients with
the non-neuronopathic phenotype, who survive into
adulthood and whose cognitive development is close to
normal.4

Since 2007, intravenously administered enzyme replace-
ment therapy (ERT) with recombinant human iduronidate-
2-sulfatase (EC 3.1.6.13; Elaprase, Shire, Cambridge, Massa-
chusetts) has been available for MPS II patients. As these
enzymes cannot pass the blood-brain barrier, ERT does not
halt disease progression in the brain.2,4,5

Especially in children with MPS II, very little
information is available about the development of cog-
nitive skills, in particular related to magnetic reso-
nance imaging (MRI) analysis. Attempts have been
made to identify early clinical markers in prospective
follow up studies of cognitive development or in cross
sectional or follow-up brain MRI studies, but so far
these studies did not analyze the relation of both
parameters over time.6-10 It was further indicated that
longer prospective follow up studies were needed in
young MPS II patients starting before they develop
cognitive impairment.

Currently, no accurate distinction can be made
between the neuronopathic and non-neuronopathic
phenotypes in very young children. Early markers such
as baseline GAG levels and iduronate-2-sulphatase activ-
ity are not fully distinctive.1,11 The genotype-phenotype
correlation in MPS II is also poor. While the phenotype

appears to be relatively consistent for some genetic vari-
ants, such as deletion and rearrangements, the large
number of de novo missense mutations makes early pre-
diction impossible in most patients.11 Due to the current
development of new therapies which are intended to tar-
get the brain, such as intrathecal ERT and gene therapy,
it is even more important to diagnose patients at an
early stage, and to predict the neuronopathic phenotype
as accurate and early as possible. Not only would early
prediction give parents a clearer perspective on their
children's future, an early and accurate prediction of the
course of disease is essential to selecting suitable
patients for clinical trials and to interpreting the effects
of future therapies. We therefore jointly analyzed MRI
and neurocognitive data in neuronopathic and non-
neuronopathic children and adults with MPS II in order
to identify early MRI changes specific to the neu-
ronopathic phenotype.

2 | METHODS

The participants in this study were all the MPS II patients
who had been referred before February 1, 2016 to the
Dutch national reference center for MPS II, that is, the
Center for Lysosomal and Metabolic Diseases at Erasmus
MC in Rotterdam. All diagnoses had been established on
the basis of mutation analysis, elevated urinary glycos-
aminoglycans (uGAG), and decreased iduronate-

SYNOPSIS

The combined analysis of MRI and neuropsycho-
logical data improves the management and
understanding of MPS II and improves the pre-
diction of early cognitive decline.
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2-sulphatase levels in leukocytes and/or fibroblasts. The
study protocol was approved by the Medical Ethical
Committee at Erasmus MC, and written informed con-
sent was obtained from patients and/or their legal
guardians.

2.1 | Neuropsychological testing

Annual neuropsychological testing was performed in
patients younger than 21 years. Neuropsychological tests
were conducted by two experienced neuropsychologists
at our center (B.J.E. and F.K.A.). The following test were
used: the Griffiths Mental Developmental Scales
(Griffiths) for patients with an estimated cognitive devel-
opmental age under 6 years; the Dutch third edition of
the Wechsler Intelligence Scales for Children (WISC-III-
NL) for patients with an estimated developmental age of
6 to 16 years; and the Wechsler Adult Intelligence Scales
(WAIS-VI-NL) for patients with an estimated develop-
mental age of 16 years or higher. The Snijders-Oomen
Nonverbal Intelligence test-Revised (SON-R 2 ½ -7) was
used for patients with uncompensated hearing loss. In
rare cases, developmental testing was performed by
licensed local psychologists associated with the children's
educational environment (Figure S1). In preschool chil-
dren, or children with an intellectual developmental
equivalent of preschool children, the term developmental
quotient (DQ) is used instead of IQ. For convenience, the
term Cognitive ability scores (CAS) was used for the

outcome of all standardized tests evaluating cognitive
skills. Patients were classified as neuronopathic if their
CAS at the latest assessment had been below 70. Adult
patients for whom no neuropsychological data was avail-
able were classified for the statistical analysis as neu-
ronopathic or non-neuronopathic on the basis of their
educational level and functioning in society.

2.2 | Imaging

MRI of the brain was scheduled annually (Figure 1). No
MRI was performed if (a) patients did not give their con-
sent, or (b) their clinical condition (eg, narrowing of the
upper airway) gave a contra-indication for the sedation
needed for optimal neuroimaging. Patients were scanned
on a 1.5T system with a dedicated 8-channel head
coil (EchoSpeed; GE Healthcare, Milwaukee, Wis.).
T1-weighted, T2-weighted and FLAIR sequences were
included in the scanning protocol. All available brain
MRIs were reviewed using a scoring system specifically
designed for this study, which combined information
derived from four articles on brain abnormalities in MPS
II patients.2,12-14 The MRIs were scored independently by
two observers (A.A.M.V and J.M.v.d.H) trained specifi-
cally for this study by an experienced pediatric neuroradi-
ologist (M.H.L). Normal scans provided by the radiology
department served as a reference. If scores differed, the
two observers reevaluated the MRIs in order to reach
consensus. The following items were evaluated: (a) size

FIGURE 1 Overview of the frequency of MRI and neuropsychological assessment. The numbers on the y-axis correspond to the patient

numbers shown in Table 1. A red star represents a single MRI and a blue diamond represents a neuropsychological test. Neuropsychological

tests are further defined in Figure S1
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and number of Virchow-Robin spaces (VRS) in multiple
areas of the brain; (b) size and location of white-matter
abnormalities (WMA) in two areas (occipital and frontal);
(c) cerebral atrophy (diameters of the lateral, third and
fourth ventricles, widths of the fissure and sulci and
Evans Index15; and (d) corpus-callosum size, diameters of
the optic nerve sheaths, hyperostosis of the skull, sella
turcica enlargement and shape, skull shape, mega cis-
terna magna, and Chiari malformation. To distinguish
between atrophy and hydrocephalus the callosal angle
(CA) was measured. For the measurement of both the
Evans' Index and the callosal angle scans were re-
aligned according to AC-PC plane. The CA was mea-
sured through the posterior commissure, perpendicular
to the anterior commissure plane. Multiplanar recon-
struction was performed interactively in the Picture
Archiving and Communication System (PACS) for
patients to obtain such a coronal image. The Evans
Index was calculated as the ratio between the maximal
width of the frontal horns and the maximal width of the
inner diameter of the skull, which were measured on
the individual T1-weighted axial images. Hydrocephalus
was defined as a callosal angle of less than 90� and atro-
phy as a callosal angle of over 90�.16 For statistical analy-
sis, sumscores were calculated for Virchow-Robin spaces
(range: 0-20); white-matter abnormality (range 0-12);
and cerebral atrophy (range 0-7). Table S1 provides full
details of the scoring system used and calculation of the
composite sumscores.

2.3 | Statistical analysis

Statistical analysis was performed using R (version 3.2.1)
with nlme (linear and nonlinear mixed-effects
models).17 With this model we were able to analyze the
repeated measurements of all individual patients for the
following variables: VRS over time, WMA over time,
Atrophy over time and CAS over time. To analyze the
change in CAS and MRI sumscores, while also account-
ing for the correlations in the repeated measurements of
each patient, we used the framework of linear mixed-
effects models. MRI and CAS were analyzed at group
level by generating a linear mixed-effect model based on
all individual linear models. Time was expressed as age
in months. Since our main goal was statistical substanti-
ation of the relation between mental development and
MRI characteristics we analyzed the interaction between
CAS and each separate sumscore. The following three
bivariate mixed models were used in which CAS over
time were analyzed jointly with (a) VRS sumscore over
time, (b) WMA sumscore over time; and (c) atrophy
sumscore over time. The relationship between these

outcomes was measured with the random effects vari-
ance covariance matrix.

3 | RESULTS

3.1 | Patients

Nineteen male MPS II patients were enrolled in this
study (Table 1). Figure 1 shows the timepoints at which
MRI and neuropsychological tests were performed. Eigh-
teen patients received ERT; unless indicated otherwise,
they continued to receive it until their latest evaluation.
Three patients died during the course of the study, at the
ages of 15, 16 and 20 years. Two patients received a
ventriculo-peritoneal (VP) shunt for the treatment of
their hydrocephalus: patient 9 at the age of 2 years, and
patient 10 at the age of 7 years.

3.2 | Cognitive ability score

Fifteen patients underwent neuropsychological testing. A
total of 78 neuropsychological tests were performed, 51 of
them in patients aged under 6 years (Figure S1). The
patients' age range at first assessment was 0.6 to 45 years
(Figure 1). The time span between the first and last
assessment ranged from 1 to 13.3 years (median
4.3 years). Ten patients were classified as neuronopathic
(patients 2, 5, 6, 7, and 9-14; age range at latest assess-
ment 5-20 years; CAS range 2-50). Nine were classified as
non-neuronopathic (patients 1, 3, 4, 8 and 15-19; age
range at latest assessment 5-50 years; CAS range 73-112)
(Table 1).

Figure 2A shows the mental age expressed against
chronological age and Figure 2B shows the trajectory of
CAS. Before the age of 3, all patients had a mental age
close to normal (Figure 2A). In the neuronopathic
patients, cognitive development slowed or halted
between 3 and 6 years of age. Thereafter, mental age
gradually declined, reflecting loss of skills. Of patients
whom mental age scores were available, the maximum
mental age achieved in neuronopathic patients was
4 years. In terms of chronological age, the plateauing of
mental age shown in Figure 2A actually represented a
strong decline in CAS.

Figure 2B shows the trajectory of CAS. The decline in
CAS in neuronopathic patients was initially rapid,
slowing later due to a floor effect (Figure 2B). In contrast,
all but one patient, who had been classified as non-
neuronopathic had a CAS above 96 and remained stable
throughout the study. The exception, patient 8, declined
by 9 CAS points in 3.5 years to a borderline non-
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neuronopathic patient, CAS of 73 at the age of 8 years,
the last time point in this study.

3.3 | MRI

In total, 47 cerebral MRIs were performed in 16 patients
(age range 1.7-47.5 years). In 12 patients, more than one
MRI was performed, ranging from 2 to 7 MRIs per indi-
vidual. The intervals between the first and last MRI
ranged from 0.8 to 7.9 years (median 2.9 years).

The following cerebral abnormalities were observed:
VRS (in 87% of patients); enlargement of the lateral ven-
tricle (73%) and of the third ventricle (60%); widening of
the fissures (67%); white-matter lesions (67%); mega cis-
terna magna (60%); and enlarged optic-nerve sheath
(53%). No Chiari malformation was observed. In addi-
tion, the following bone abnormalities were found:
hyperostosis (in 73% of patients); abnormal skull shape
(in 60%); and abnormally shaped sella turcica (in 40%).

Serial MRIs in individual patients showed that Virchow-
Robin spaces barely changed over time (Figure 3A-C). Most

VRS were periventricular (in 87% of patients); subcortical
(in 87%); in the corpus callosum (in 80%); and/or in the
basal ganglia (in 60%). White-matter abnormalities did pro-
gress over time (Figure 3D-F): initially, small lesions were
observed mainly around the occipital horn of the lateral ven-
tricles; later, they also appeared around the frontal horns. A
clear pattern was observed: small solitary white-matter
lesions that expanded slowly. Eventually these large areas of
abnormal white matter—which were present mainly in the
occipital, lateral and frontal periventricular horn—merged
and extended to the subcortical u-fibers. As for WMA, brain
atrophy also progressed over time (Figure 3G-I). The
presence of atrophy was generalized and not restricted
to specific areas of the brain. An Evans' index > 0.3 was
present in 30/47 MRIs of 12/16 patients (all 10 neuro-
npathic children and the 2 oldest non-neuronopathic
adults; Figure S2). In 20/30 MRIs in which the Evans'
Index > 0.3, the callosal angle was more than 90� indica-
tive for atrophy16, this included the non-neuronopathic
patients. In 2 of the 12 patients (7/30 MRIs) the coronal
image could not be reconstructed. In one of these
patients the volume of the corpus callosum and the

TABLE 1 Patient characteristics

Patient
no.

Age at start
of ERT (y)

Age at latest
visit (y)

IDS variant
coding DNA

IDS variant
protein

Latest
CAS*

Number
of MRIs

1 4.4 4.9 c.673T>G p.Tyr225Asp 96 1

2 2.8 4.8 c.998C>T p.Ser333Leu 50 3

3 3.6 6.1 c.410T>C p.Phe137Ser 107 2

4 3.6 6.1 c.410T>C p.Phe137Ser 116 2

5 4.1 7.5 Total IDS deletion No protein 25 3

6 $ 8.0 Total IDS deletion No protein 13 4

7 2.3 8.2 c.544del p.Leu182Cysfs*31 32 4

8 5.2 8.2 c.1511delG p.Gly504Valfs*8 73 2

9 1.0 9.7 c.349_c.351delTCC p.Ser117del 17 5

10 5.5 14.0 c.998C>T p.Ser333Leu 11 7

11 8.6 15.7# c.1375G>T p.Glu459* 15 0

12 10.9 16.7# c.1561G>A p.Glu521Lys 2 0

13 9.7 18.3 c.257C>T p.Pro86Leu 9 3

14 5.2 20.5# c.1047C>A p.Ser349Arg 14 4

15 25.4 30.0 c.1122C>T p.Gly373Gly N/A Δ 1

16 24.5 32.9 c.1265G>A p.Cys422Tyr N/A Δ 4

17 36.9α 44.7 c.182C>A p.Ser61Tyr N/A Δ 1

18 44.6 45.7 c.1024C>T p.His342Tyr 112 0

19 47.3β 50.3 c.806A>T p.Asp269Val N/A Δ 1

Note: Patients are ordered according to their age at latest visit defined by the endpoint of the study regardless of ERT or when marked with a # defined by age
at death. ERT = enzyme replacement therapy; CAS = Cognitive ability scores; N/A Not applicable; $ Did not start ERT; α ERT stopped after 24 months; β ERT
stopped after 19 months; * For convenience reasons, the term Cognitive Ability Score (CAS) was used for the outcome of all standardized tests evaluating

cognitive skills; Δ classified as non-neuronopathic for statistical analysis.
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limited amount of white matter in the centrum semi-
ovalis suggested atrophy while in the other patient a cal-
losal angle could not be measured at the age of 86, 98,
and 109 months, but was over 90� at the age of 104 and
124 months compatible with atrophy. Only one patient
(patient 5) had signs of a hydrocephalus with an Evans'
Index exceeding 0.3 in three MRIs while the callosal
angle measured < 90�. Overall this indicates that the
atrophy as measured by the atrophy score was indeed

atrophy and not widening of the lateral ventricles due to
hydrocephalus.

3.4 | Combined CAS and MRI results

We studied the development of atrophy, white matter
abnormality and VRS over time to investigate if any of
these MRI characteristics was correlated to the develop-
ment of CAS over time. To visualize this Figure 4A-C

(A)

(B)

FIGURE 2
Neuropsychological follow-up.

The numbers in the legends

correspond to the patient

numbers shown in Table 1. A,

Mental age as determined by

the Griffiths mental-

developmental scales; this

graph does not include

neuropsychological tests other

than the Griffiths mental

developmental scales. B,

Cognitive ability scores (CAS)

determined by all

neuropsychological tests used;

for convenience reasons, the

term CAS was used for the

outcome of all standardized

tests evaluating cognitive skills;

no neuropsychological data

was available for patients

15, 16, 17, and 19
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show 3D charts, which combine information on the fol-
lowing three variables: chronological age (x-axis); CAS
(y-axis); and the MRI sumscores (bubble size) for brain
atrophy (Figure 4A), for white-matter abnormalities
(Figure 4B), and in Virchow-Robin spaces (Figure 4C).

The larger the bubble, the more abnormal the MRI
sumscore. MRI and CAS were obtained at approximately
the same time, with a median time difference between
MRI scan and neuropsychological testing of 3.1 months
(SD of time difference = 2.4 months). Abnormal atrophy

FIGURE 3 Magnetic resonance images of MPS II patients. Examples of MRI images ordered from mild (left) to severe (right). A-C show

atrophy, D-F show white-matter abnormalities (WMA), and G-I show Virchow-Robin spaces (VRS). A, T1 image of a non-neuronopathic

patient at 2.3 years; B, T1 image of a neuronopathic patient at 4.2 years; C, T1 image of a neuronopathic patient at 14.2 years; D, T2-FLAIR

image of a non-neuronopathic patient at 4.1 years; E, T2-FLAIR image of a neuronopathic patient at 7.2 years; F, T2-FLAIR image of a

neuronopathic patient at 8.0 years; G, T2-FLAIR image of a neuronopathic patient at the age of 10.2 years; H, processed image of a non-

neuronopathic patient at 4.1 years; I, processed image of a non-neuronopathic patient at 46.9 years

VOLLEBREGT ET AL. 7



sumscores were observed before CAS dropped below the
threshold for intellectual disability (<70). When we stud-
ied CAS and atrophy score at the first MRI we found that
4 patients (5, 6, 10, 13) already had a CAS <70 at first
MRI. 8 patients had a CAS >70 at their first MRI. Of
these 4 patients (2, 8, 9, 14) had a high atrophy score (>3)

and an Evans' Index >0.3 (average age 5.5 years, range
age 2.1 to 9.7 years). In 3 of these patients (2, 9, 14) the
CAS declined thereafter, whereas CAS was just above the
threshold for patient 8 (73). In the other 4 patients the
atrophy score was <3 and the Evans' Index normal
(<0.3). The CAS of 3 of these patients (1, 3, and 4)

FIGURE 4 3D charts with combine information of the repeated measurements of cognitive ability scores, and MRI sumscores in

individual patients. Each 3D chart combines the data derived from age- and patient-specific Cognitive ability scores (CAS) and MRI results

showing three variables: chronological age (x-axis); CAS (y-axis); and the MRI sumscores (bubble size). The size of the bubbles represents the

level of the MRI sumscores for brain atrophy (Figure 4A), for white-matter abnormalities (Figure 4B), and in Virchow-Robin spaces

(Figure 4C). The larger the bubble, the more abnormal the MRI sumscore. Since no combined CAS and MRI sumscores were available for

patients 15, 16, 17, and 19, the combined data of chronological age (x-axis) and the MRI sumscores (bubble size) are the presented in charts

below the x-axis of Figure 4A-C. No MRIs were available for patients 11, 12, and 18. MRI and CAS were obtained at approximately the same

time, with a median time difference between MRI scan and neuropsychological testing of 3.1 months (SD of time difference = 2.4 months).

A, 3D chart of the sumscore for cerebral atrophy. The size of a bubble reflects the MRI sumscores, ranging from 0 (smallest bubble) to

7 (largest bubble). The arrows indicate the age at ventricluloperitoneal (VP) shunt placement of patients 9 (blue) and 10 (red). B, 3D chart of

white-matter abnormalities. The size of the bubble reflects the MRI sumscores, ranging from 0 (smallest bubble) to 10 (largest bubble). C, 3D

chart of the sumscore of Virchow-Robin spaces. The size of the bubble reflects the MRI sumscores, ranging from 0 (smallest bubble) to

10 (largest bubble). No patient had a VRS sumscore above 14

8 VOLLEBREGT ET AL.



remained normal. In the last patient (7) the CAS declined
parallel to an increase of both the atrophy score and the
Evans' Index in the subsequent MRIs. Notably in 2 of the
4 adult non-neuronopathic patients (patient 17 and 19)
the Evans' Index was elevated with a callosal angle > 90�

while the atrophy scores were 3 and 2 respectively, poten-
tially indicating atrophy. The other patients did not show
signs of atrophy on their MRIs.

At group level, the MRI sumscores for atrophy is
strongly correlated with CAS (correlation = −0.90), indi-
cating that brain atrophy is an early sign for the neu-
ronopathic phenotype. WMA sumscores also progressed
over time (Figure 3B), and although they were also corre-
lated with CAS at group level (correlation = −0.69), this
correlation was not as strong as for atrophy. This indi-
cates that white-matter abnormalities alone do not serve
as an early indicator for the neuronopathic phenotype.
This is illustrated by the difference between patient
14 (one of the neuronopathic patients), who showed no
white-matter lesions at the age of 17 years (Figure 4B),
while some adult non-neuronopathic patients clearly
showed white-matter lesions (Figure 4B).

Irrespective of CAS, Virchow-Robin spaces were seen
in neuronopathic and non-neuronopathic patients alike
(Figure 4C), and, at group level, did not seem to progress
over time. As a consequence, the wide range of MRI
sumscores and the lack of change meant that no statisti-
cally significant model could be fitted, and no correlation
could be calculated between VRS sumscores and CAS.

In other words, VRS were not an indicator for the neu-
ronopathic phenotype, but brain atrophy is an important
early sign for the neuronopathic phenotype, especially
when observed jointly with white-matter abnormalities.

4 | DISCUSSION

For this analysis of prospectively obtained, longitudinal
data, we quantified brain atrophy, white-matter abnor-
malities, and the number and size of Virchow-Robin
spaces, and related them to CAS. Our results are based
on the data of neuronopathic and non-neuronopathic
patients of all ages who had undergone a large number of
assessments (47 MRIs and 78 neuropsychological tests)
over a maximum time span of 13.3 years. The large
amount of young patients partly fills the knowledge gap
in literature. This enabled us to study the relationship
between neuropsychological development and early MRI
changes. Our findings provided insight into early neuro-
psychological development and early cerebral MRI
changes. These MRI findings can be used to improve the
identification of the neuronopathic phenotype and for
accelerating early detection. The inclusion of both

children and adults with the neuronopathic and non-
neuronopathic forms helped us to discern which MRI
changes are most relevant over time.

4.1 | Cognitive ability scores

At the chronological age of 4 to 4.5 years, cognitive devel-
opment in neuronopathic MPS II patients has been
reported to diverge from that in their peers.3,7,8 While the
current literature contains little data on young MPS II
patients, the relatively large amount of data in young
MPS II patients we present reveals a greater variation in
the (a) initiation and/or (b) duration of the plateauing
phase than previously reported. At ages between 3 and
10 years, the CAS of neuronopathic patients in our cohort
dropped below the threshold of 70.

This greater variation is particularly illustrated by two
patients in our cohort. Based on a CAS of 73, the first,
patient 8, was classified as non-neuronopathic at the age
of 7 years. Unlike the other non-neuronopathic patients,
he declined 9 points in the last 3.5 years and is now
expected to decline even further. As a result, he will cross
the threshold for intellectual disability in the near future.
Based on a CAS of 14, the second patient, patient 14, was
classified as neuronopathic at the age of 19. Unlike the
other neuronopathic patients, he still had a CAS above
70 at the age of 9 years. This was followed by a strong
decline in CAS over consecutive years, leading to a CAS
of 14 at study endpoint.

The wide variations in (a) the duration of the mental
age plateauing phase, and (b) the variations in CAS
decline, indicated that the classification of MPS II
patients may need to be revised. Either the disease spec-
trum is a continuum rather than a dichotomy, or an
intermediate group should be defined. Our youngest
non-neuronopathic patients, who were aged 5 to 6 years
(IQ 96-116), performed notably better than their neu-
ronopathic peers—although, in view of the relatively
short follow-up, future neurocognitive decline cannot be
ruled out. This indicates the importance of longitudinal
neurocognitive follow-up and the inclusion of other
markers besides CAS that may predict the neu-
ronopathic phenotype. The marker we used in our study
was MRI.

4.2 | MRI

Our findings indicate that atrophy and white-matter
changes are important hallmarks of the neuronopathic
phenotype. This is in agreement with earlier stud-
ies.2,6,9,10,13,18 We developed a scoring system based on

VOLLEBREGT ET AL. 9



findings in earlier studies. Using this system we calcu-
lated sumscores. It should be noted that high MRI atro-
phy sumscores—which, we assume, reflect a reduced
amount of brain tissue—can be biased by the presence of
hydrocephalus, a common co-morbidity in MPS
II. Although all patients with an atrophy sumscore of
3 or more also had wide fissures and sulci, making a
hydrocephalus less likely at that stage, it remains difficult
to discriminate between atrophy and hydrocephalus.
Therefor we assessed the Evans' Index as wel as the cal-
losal angle. An Evans' Index > 0.3 combined with a cal-
losal angle > 90� indicates atrophy; an Evans' Index > 0.3
combined with a callosal angle < 90� corresponds to
hydrocephalus.16 In this way we found that we indeed
measured atrophy. The atrophy sumscore had the stron-
gest correlation with CAS and, importantly, at no point
did our neuronopathic patients have normal atrophy
sumscores (sumscore 0). Two non-neuronopathic
patients showed atrophy; patient 8 whose CAS decreased
below 70 after the study termination and one of the
oldest patients (16) at the age of 37 years. Importantly the
atrophyscores of young neuronopathic patients generally
were higher than the atrophy scores of young and old
non-neuronopathic patients, even at CAS > 70. On the
basis of our results we can conclude that a high atrophy
sumscore in young MPS II patients is a sign that the
development of a neuropathic phenotype is emerging.

Various studies have concluded that neuronopathic
patients presented with more severe WMA than non-
neuronopathic patients.2,9,10,13,18 Our study is only in par-
tial agreement with this. Although, in our study, the pro-
gressive severity of WMA was also correlated to a decline
in CAS, this correlation was not as strong as for atrophy.
At the age of 46, for example, patient 19, a non-
neuronopathic patient, had extensive WMA but minimal
atrophy. In contrast, patient 14, a neuronopathic patient,
showed progressive atrophy, but no WMA were observed
during the full 10 years of follow-up. Our study shows
that also adult patients with relatively normal function in
society may show considerable WMA.

While we therefore conclude that atrophy may occur
without WMA, and that WMA are not inevitably related
to the development of severe intellectual disability, this
does not mean that MRI abnormalities such as WMA do
not cause subtle neurocognitive deficits.4 A study by Zalfa
et al identified three stages of WMA progression in MPS
II patients: neuro-inflammation, followed by glial degen-
eration and eventually neuronal degeneration.19

Although it has also been shown that abnormalities in
the brain at the cellular level may already occur during
fetal life,20,21 it is unclear whether they result in WMA,
and at which stage the sequence of events described
above eventually produces WMA visible on MRI.

VRS occurred in both neuronopathic and non-
neuronopathic patients as well, this is in agreement with
earlier studies in MPS II as well as in other MPS sub-
types.12,14 For example VRS occur in MPS VI patients,
patients without intellectual disability.22 It should be
noted that VRS surround the walls of vessels as a “sleeve”
connected to the subarachnoid space, and that their ana-
tomical location is outside the blood-brain barrier.23

Although ERT did not seem to dissolve the VRS during
the study period for our cohort, it is still unclear whether
the stabilization in the size and number of VRS can be
attributed to ERT treatment.

The protocol we used for our structural analysis of
cerebral MRIs was a qualitative method derived from four
protocols previously described.2,12-14 Lee et al, were the
first to demonstrate that a standardized MRI scoring sys-
tem could be useful to compare individuals with MPS.
Manara et al and Seto et al then showed that it was also
useful for objectifying individual MRI changes in serial
MRIs. In our study, we additionally calculated sumscores
for atrophy, WMA and VRS in order to correlate them
with the change in CAS at group level. In the near future,
it may be relevant to compare or combine our approach
with the computerized method published by Yund et al
for quantifying corpus callosum, gray-matter and white-
matter volumes in non-neuronopathic patients. Volumetry
has the advantage of being quantitative. A limitation of
our study is that we use a semi-quantitative method which
may be sensitive to bias. However the implementation of
volumetry would require further investigation,: as Yund
et al indicated that VRS interfere with volume quantifica-
tion, the presence of VRS might be a potential pitfall of
using a computerized method alone.

The inclusion of both children and adults with neu-
ronopathic and non-neuronopathic forms, enabled us to
learn that VRS were not an indicator for the neu-
ronopathic phenotype. WMA were correlated to a decline
in CAS, but were observed in both neuronopathic and
non-neuronopathic patients, adults and children. As
abnormal atrophy sumscores were present before CAS
dropped below the threshold for intellectual disability,
and as the progressive atrophy was strongly related to a
decline in CAS, we conclude that brain atrophy is an
important early sign for the neuronopathic phenotype,
especially when observed jointly with white-matter
abnormalities, and therefore can be used for early identi-
fication of the neuronopathic phenotype.
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