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Mendelian randomization while jointly modeling cis
genetics identifies causal relationships between
gene expression and lipids
Adriaan van der Graaf 1, Annique Claringbould 1,2, Antoine Rimbert 3,4, BIOS Consortium*,

Harm-Jan Westra 1,2, Yang Li1,5,6,12, Cisca Wijmenga 1,12 & Serena Sanna 1,7,12✉

Inference of causality between gene expression and complex traits using Mendelian rando-

mization (MR) is confounded by pleiotropy and linkage disequilibrium (LD) of gene-

expression quantitative trait loci (eQTL). Here, we propose an MR method, MR-link, that

accounts for unobserved pleiotropy and LD by leveraging information from individual-level

data, even when only one eQTL variant is present. In simulations, MR-link shows false-

positive rates close to expectation (median 0.05) and high power (up to 0.89), out-

performing all other tested MR methods and coloc. Application of MR-link to low-density

lipoprotein cholesterol (LDL-C) measurements in 12,449 individuals with expression and

protein QTL summary statistics from blood and liver identifies 25 genes causally linked to

LDL-C. These include the known SORT1 and ApoE genes as well as PVRL2, located in the

APOE locus, for which a causal role in liver was not known. Our results showcase the strength

of MR-link for transcriptome-wide causal inferences.
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Mendelian randomization (MR) is a method that can
infer causal relationships between two heritable com-
plex traits from observational studies1,2. In recent years,

MR has gained popularity in the epidemiological field and its
application has provided valuable insights into the risk factors
that cause diseases and complex traits1–3. MR studies have, for
example, successfully identified causal relationships between low-
density lipoprotein cholesterol (LDL-C) and coronary artery
disease, in turn informing therapeutic strategies4,5. MR studies
have also shown that a causal relationship between high-density
lipoprotein cholesterol (HDL-C) and coronary artery disease is
unlikely, which is in contrast to previous epidemiological asso-
ciations6. The same approach has been applied to identify
molecular marks that are causal to disease7–10. Since gene
expression is one of these marks, investigating its causal role in
complex traits is of particular interest given that complex trait loci
are enriched for expression quantitative trait loci (eQTLs)11.

MR infers a causal relationship between an exposure (e.g., a
risk factor) and an outcome (e.g., a complex trait) by leveraging
QTL variants of the exposure as instrumental variables (IVs). The
mathematical model behind MR relies on three main assump-
tions to correctly infer causality: the IVs have to be (i) associated
with the exposure, (ii) independent of any confounder of the
exposure-outcome association, and (iii) conditionally indepen-
dent of the outcome given the exposure and confounders. One
major challenge of applying MR to gene expression is correcting
for deviations from the third assumption, which can occur in the
presence of linkage disequilibrium (LD) between the eQTL var-
iants used as IVs, or in the presence of pleiotropy, i.e., when IVs
affect the outcome through pathways other than the exposure of
interest. Accounting for LD is necessary when gene expression is

the exposure trait in MR because, in contrast to the majority of
complex traits, the genetic architecture of gene expression is
characterized by the presence of strong-acting eQTLs located
proximal to their transcript (in cis), which are often correlated
through LD12,13. On top of this, the presence of pleiotropy cannot
be excluded a priori given that the majority of variants in our
genome are likely to affect one or multiple phenotypes14–16.
There are MR methods7,17–21 that extend standard MR analysis
to correct for LD and pleiotropy, however, the application of
these methods is not optimal because they require either the
removal of pleiotropic IVs from the statistical model7,19,20, that
all sources of pleiotropy are measured and incorporated into the
model22,23, or that both the exposure and the outcome are
measured in the same cohort21. These constraints limit robust
inference of gene-expression traits as there are often only a lim-
ited number of IVs (i.e., eQTL variants) available, and subsequent
removal of outliers will substantially reduce power. Likewise, it is
not always possible to measure all sources of pleiotropy because it
could come from expression of a gene in a different tissue or even
from other unobserved molecular marks or phenotypes.

Here we introduce MR-link, an MR method that allows for
causal inference in the presence of LD and an unobserved
pleiotropic effect, without requiring the removal of pleiotropic
IVs or measuring all sources of pleiotropy. MR-link uses sum-
mary statistics of an exposure combined with individual-level
data on the outcome to estimate the causal effect of an exposure
from IVs (i.e., eQTLs if the exposure is gene expression), while at
the same time correcting for pleiotropic effects using genetic
variants that are in LD with these IVs (cis-genetics) (Fig. 1).

We assess the performance of MR-link using simulated data in
100 different scenarios that mimic the genetic architecture of gene
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Fig. 1 Graphical representation of the study. The Biobank Integrative Omics Study (BIOS) cohort was used to identify expression quantitative trait loci
(eQTLs) and characterize the genetic architecture of gene expression. Dashed outbox: Knowledge used in a simulation scheme that mimicked gene-
expression traits, including linkage disequilibrium (LD) between eQTL single nucleotide polymorphism (SNPs). We used this simulation to assess the false
positive rates and power for widely used Mendelian randomization (MR) methods. We applied our MR method, MR-link, to both the simulations and to
individual-level data of low-density lipoprotein cholesterol (LDL-C) in 12,449 individuals (Lifelines) combined with BIOS and GTEx eQTL as well as protein
quantitative trait loci (pQTL) summary statistics to identify gene-expression changes and protein level changes that are causally linked to LDL-C within or
outside a genome-wide association study (GWAS) locus.
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expression. We derive this information from eQTL association
patterns in a large cohort of samples with genetic and tran-
scriptomics data13. Subsequently, we apply MR-link to
individual-level data for LDL-C measurements in 12,449 indivi-
duals with four different eQTL summary statistic datasets: blood
eQTLs identified in the BIOS cohort (Fig. 1) and eQTLs from
blood, liver, and cerebellum from the GTEx Consortium24

(Fig. 1). We further explore the performance of MR-link on
another molecular layer, protein levels, through the application of
MR-link on protein quantitative trait loci (pQTL) summary sta-
tistics from Sun et al. combined with our LDL-C measurements25.
Our results in simulated and real data show that MR-link can
robustly identify causal relationships between molecular traits—
such as gene expression and protein levels—and an outcome (e.g.,
a complex trait), even when the information for causal inference
is very limited.

Results
eQTL variants between different genes are often in LD. In a
standard MR analysis, IVs need to be independent (not in LD)
and have to affect the outcome only through the exposure
(absence of pleiotropy). Even in absence of pleiotropy, correlated
IVs in the cis locus may negatively influence an MR analysis
(Fig. 2a). In the presence of pleiotropy, we distinguish two sce-
narios: (i) pleiotropic variants that are in LD with an IV (pleio-
tropy through LD, Fig. 2b) and (ii) when the IV and the
pleiotropic variant are the same and affect the outcome through
two distinct mechanisms (pleiotropy through overlap Fig. 2c). If
pleiotropy through LD is prevalent, genetic variants in the cis-
region other than those selected as IVs can be used to explain the
pleiotropic effects. Incorporating these variants in an MR model
can then account for this pleiotropy through LD (Fig. 2b).

We investigated how often pleiotropy through LD occurs in
gene expression by looking at how frequently eQTL variants are
shared between genes in cis. Using data from the BIOS
Consortium, a cohort of 3503 Dutch individuals whose genome
and whole-blood transcriptome has been characterized (Fig. 1),
we searched for eQTLs located 1.5 megabases (Mb) on both sides

of the translated region of 19,960 genes (see “Methods”)13. We
then applied a summary statistics-based stepwise linear regression
approach (GCTA-COJO) to identify jointly significant variants,
e.g., one or more variants that jointly associate significantly with
expression changes of a gene26 (“Methods”). We observed that
54% of the genes with an eQTL at p < 5 × 10−8 (13,778 genes) had
two or more jointly significant eQTL variants at p < 5 × 10−8

(“Methods”) (Fig. 1 and Fig. 2a). These genetic effects were
mostly non-overlapping: only 13.4% of the genes have over-
lapping (r2 > 0.99) top eQTL variants. In contrast, genetic variants
regulating gene expression of a gene were very often in LD with
other eQTLs: 40.6% of top variants are in LD (r2 > 0.5) between
genes, and this percentage increased to 60.3% if all jointly
significant eQTL variants were considered (“Methods”).

To strengthen our inferences on the genetic regulation of gene
expression in cis, we performed statistical fine-mapping using
FINEMAP v1.3.127 on 13,276 genes (“Methods”). Only 373
(2.8%) genes have full eQTL overlap (all variants in the top
configuration of a gene are identical or in high LD (r2 > 0.99)),
while 33.2% of the genes have at least one variant in r2 > 0.5 LD
with a variant in the top configuration of another gene. These
percentages are higher for configurations with larger posterior
inclusion probabilities (“Methods”) (Supplementary Data 1), but
overall the results are similar to our observations from the
GCTA-COJO analysis, i.e., the genetics of gene expression in
whole blood is mostly regulated by variants that do not overlap
but are in moderate LD with variants associated with gene
expression changes of another gene. Based on these results, it
seems likely that pleiotropy through LD is more common than
pleiotropy through overlap in gene-expression traits.

MR-link outperforms other methods in discriminative ability.
We have developed an MR method, MR-link, that uses the
genetic region surrounding IVs as a covariate to correct for
pleiotropic effects (“Methods”, Fig. 2 and Supplementary Note 1).
The model underlying MR-link is informed by the observation
that the genetic regulation of gene expression is characterized
mostly by eQTLs that are in LD, but not overlapping, between
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Fig. 2 Typical scenarios of pleiotropy in causal inference of gene expression changes as an exposure. Typical scenarios to consider when performing
causal inference in gene expression: a expression quantitative trait locus (eQTL) single nucleotide polymorphisms (SNPs) used as instrumental variables
(IVs) for the same gene (exposure) are in linkage disequilibrium (LD) and pleiotropic effects are absent, b pleiotropy is present through LD between IVs for
different exposures (pleiotropy through LD), and c pleiotropy is present through overlap of the IVs (pleiotropy through overlap). In each panel, the left
image shows the genomic context while the right image is a schematic diagram of the corresponding causal effects. Please note that the unobserved
exposure trait does not necessarily need to be a protein product: it could be any measured or unmeasured phenotype that is regulated by the genetic locus.
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genes. This suggests that the variants in the genetic vicinity of the
IVs can be used to correct for pleiotropic effects.

MR-link gathers information from all genetic variants in LD
with an IV to jointly model the outcome through the IVs and
their genetic vicinity (“Methods”). Compared to other MR
methods that require summary statistics of both the exposure
and the outcome (two-sample MR), our approach adds a
requirement of individual-level data for the outcome, but has
the advantage that it can perform causal inference even when
only a single IV is available. Strictly speaking, MR-link corrects
for pleiotropy under the assumption that pleiotropy can be better
explained by variants in LD with the IV (pleiotropy through LD)
(Fig. 2b) and that pleiotropy through overlap is absent (Fig. 2c).
In the case of a single IV, this assumption needs to be fully
accounted for, but when multiple IVs are available, this
assumption can be relaxed somewhat. Differences in effect sizes
between IVs can be used to distinguish the causal effect of interest
from a pleiotropic effect in the same way that multivariable MR
corrects for pleiotropy22. Of note, MR-link does not require the
source of pleiotropy to be specified in the model; MR-link can
account for pleiotropic effects arising from, for instance, gene
expression in other tissues or from other molecular layers or
phenotypes.

We assessed the performance of MR-link under different
scenarios and compared it to four other MR methods: Inverse
variance weighting (IVW), which assumes the absence of LD
and pleiotropy, and the pleiotropy-robust methods MR-Egger,

LDA-MR-Egger, and MR-PRESSO (Table 1)17–19,28. In addition,
we compared MR-link to the widely used Bayesian colocalization
method coloc29, although this is not a formal test for assessing
causal relationships, but rather a way to evaluate if two traits
share the same causal variant(s) in a locus29.

We simulated causal relationships between an exposure and an
outcome in a 5Mb region, based on LD structure estimated for
403 European samples from the 1000 Genomes project30

(“Methods”). All tested MR methods were assessed in 1500 simu-
lated datasets for 100 different scenarios that varied with respect
to the absence or presence of causality, the absence or presence of
pleiotropy, and the number of causal eQTL variants. We initially
evaluated two approaches to select QTL variants as IVs: GCTA-
COJO (v1.26.0) and p value clumping (“Methods”)26,31. We
observed that GCTA-COJO was best suited for IV selection
because: (i) the median number of IVs identified by GCTA-COJO
better represented the number of simulated causal variants
(Supplementary Data 2) and (ii) the false-positive rates (FPRs) in
the MR analysis using the IVW method were lower (median FPR
was 0.057 using GCTA-COJO versus 0.115 using clumping)
(Supplementary Fig. 1 and Supplementary Data 2). We therefore
selected IVs for the exposure using the GTCA-COJO approach in
subsequent analyses.

When we simulated pleiotropy through LD with no causal
effect of the known exposure on the outcome (Figs. 2b, 3a,
Supplementary Data 3 and “Methods”), all existing MR-methods
showed inflated FPRs (up to 0.71, 0.15, 0.13, and 0.27 for IVW,

Table 1 MR methods assessed in this study.

MR method Data required Pleiotropy correction LD correction Minimum no. of IVs required

MR-link Sumstats: E; ILD: O Yes Yes 1
Inverse variance weighted (IVW)28 Sumstats: O, E No No 1
LDA-MR-Egger17 Sumstats: O, E, LDR Yes Yes 3
MR-Egger18 Sumstats: O, E Yes No 3
MR-PRESSOa,19 Sumstats: O, E Yes No 3a

MR methods assessed in our simulation with information about the type of data needed to make a causal estimate, the ability to correct for pleiotropy or linkage disequilibrium, and the minimum number
of instrumental variables required.
IVW inverse variance weighting, Sumstats summary statistics, ILD individual-level data, O outcome, E exposure, LDR linkage disequilibrium reference panel. For more details, see “Methods”.
aWe refer here to the MR-PRESSO test that reports estimates after identifying and removing outliers, as the test without outliers generalizes to IVW estimates.
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Fig. 3 Relative performance of different MR methods. The figure shows performance of MR methods on simulations representing the pleiotropy through
linkage disequilibrium (LD) scenario (depicted in Fig. 2b) when 1, 3, 5, or 10 causal expression quantitative trait locus (eQTL) single nucleotide
polymorphisms (SNPs) were simulated (“Methods”). a False positive rates (at alpha= 0.05) in scenarios where no causal relationship is simulated.
b Power to detect a small causal effect (at alpha= 0.05). c Power to detect a large causal effect (at alpha= 0.05). Note that MR-link is the only MR
method that can adjust for pleiotropy when only one or two instrumental variables are available. MR methods that had fewer than 100 out of 1500
estimates in a scenario are not shown (“Methods”). Extended results, including those that are not shown in the figure, can be found in Supplementary
Data 3.
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MR-Egger, LDA-MR-Egger, and MR-PRESSO, respectively),
whereas MR-link presented an FPR close to expectation (median:
0.05, maximum: 0.058). In addition, for LDA-MR-Egger, MR-
Egger, and MR-PRESSO, the FPR was undesirably dependent on
the number of causal SNPs simulated (Fig. 3a).

In the scenarios of pleiotropy through LD and non-null causal
effects (bE= 0.05, bE= 0.1, bE= 0.2, and bE= 0.4), MR-link has
high detection power (up to 0.89) and strongly outperforms all
other pleiotropy-robust methods (maximum detected power was
0.28 for MR-Egger, 0.26 for LDA-MR-Egger and 0.65 for MR-
PRESSO) (Fig. 3b, c, Supplementary Data 3 and “Methods”).
Among all the methods tested, including MR-link, and for all
scenarios, IVW had the greatest detection power but also an
inflated FPR (minimum FPR: 0.63), making this MR method
unreliable in such pleiotropic scenarios (“Methods”).

When we simulated increasing levels of pleiotropy through
overlap (Fig. 2c and “Methods”), a situation we expect to be rare
in real-world scenarios based on our observation in the BIOS
cohort, we observed that all methods including MR-link have
increased FPRs (up to 0.22 for MR-link, 0.77 for IVW, 0.10 for
LDA-MR-Egger, 0.13 for MR-Egger, and 0.30 for MR-PRESSO)
(Supplementary Data 4). Nonetheless, MR-link remains a
powerful method when a causal effect is simulated: maximum
power was 0.79 for MR-link, 0.98 for IVW, 0.29 for MR-Egger,
0.28 for LDA-MR-Egger, and 0.65 for MR-PRESSO (Supplemen-
tary Data 4). Although IVW again had the highest power (0.98)
here, the FPR was likewise highly inflated (0.77).

Finally, we compared MR-link to the coloc package using the
area under the receiver operator characteristic curve (AUC)
metric as well as FPRs and power (calculated using coloc PP4 >
0.9 as a threshold) (“Methods”). We used the AUC metric
because coloc provides posterior probabilities of causal variant
sharing and not p values (“Methods”). As coloc assumes that the
exposure and the outcome share only one causal variant, we also
included the recently implemented coloc variations (coloc-cond
and coloc-masked) in our comparison. These variations are
expected to perform better in scenarios with multiple causal
variants32. When comparing MR-link to the coloc variations
through the AUC metric, we find that MR-link consistently
outperforms coloc and coloc-masked in all scenarios, and coloc-
cond in pleiotropic scenarios. In non-pleiotropic scenarios, MR-
link and coloc-cond have approximately the same performance
(Supplementary Fig. 2 and Supplementary Data 5). As expected,
coloc-cond has better discriminative performance compared to the
original coloc when multiple causal variants are simulated
(Supplementary Fig. 2 and Supplementary Data 5).

To illustrate detection rates in standard coloc settings as they
may be used in a real-world analysis, we determined power and
FPR for all coloc variations at a PP4 threshold of > 0.9
(Supplementary Fig. 3 and Supplementary Data 6). In the non-
pleiotropic case, coloc and coloc-cond have the best detection
power (up to 0.79 for coloc and 0.76 for coloc-cond), combined
with near zero FPRs (max: 0 for coloc and 0.0006 for coloc-cond)
while coloc-masked has lower power (up to 0.40) with a zero FPR
(Supplementary Fig. 3a–c) (Supplementary Data 6). In simula-
tions of pleiotropy through LD, all coloc methods have increased
FPRs (medians: 0.026 for coloc, 0.142 for coloc-cond, and 0.0037
for coloc-masked) with a decrease in power relative to the non-
pleiotropic simulations (max: 0.37 for coloc, 0.43 for coloc-cond,
and 0.14 for coloc-masked) (Supplementary Fig. 3d–f and
Supplementary Data 6). These patterns were even more apparent
in cases of pleiotropy through overlap (Supplementary Fig. 3g–i
and Supplementary Data 6). This comparison through FPRs and
power indicates again that MR-link has superior discriminative
ability over coloc variations, especially in the presence of
pleiotropy.

MR-link identifies gene expression causal to LDL-C levels. We
applied MR-link to four separate summary statistics-based eQTL
datasets combined with individual-level genotype data and LDL-
C measurements in 12,449 individuals from the Lifelines cohort33

(Fig. 1). We assessed the causal effect of gene expression changes
in (i) whole blood (using eQTLs from BIOS (n= 3503) and GTEx
(n= 369)), (ii) liver as the main tissue important for cholesterol
metabolism (using eQTLs from GTEx, n= 153), and (iii) cere-
bellum tissue (using eQTLs from GTEx, n= 154) as a tissue not
involved in cholesterol metabolism but with similar sample size
(and thus power) to liver tissue24,34.

Transcriptome-wide application of MR-link to these eQTL
datasets identified 24 significant genes whose variation in blood
(18 using BIOS eQTLs, 2 using GTEx eQTLs) or liver (4 genes)
was causally related to LDL-C (Tables 2, 3, Supplementary
Tables 1 and 2). No significant genes were found in the
cerebellum (Supplementary Table 2).

MR analysis that used whole-blood eQTLs from GTEx was, as
expected, underpowered compared to the analysis using BIOS
eQTLs. Only two genes were found to be significant here, but they
were not significant in the analysis that used BIOS eQTLs, where
a more robust estimate could be made thanks to higher number
of IVs identified (Supplementary Fig. 4a). Despite the limited
power, we observed high concordance between effect sizes from
the two analyses for all genes that showed nominal significance (p
< 0.05) in the analysis that used BIOS eQTLs, with 94.8% of genes
showing the same effect direction (Supplementary Fig. 4b).

Several genes located in genome-wide association study
(GWAS) loci for cholesterol metabolism were found significant
in the MR analysis that used blood eQTLs from BIOS, using a
Bonferroni threshold that accounted for 13,778 genes being tested
(0.05/13778= 3.6 × 10−6). These include ABO, located in a LDL-
C locus, AOC1, TMEM176A, and TMEM176B, which are all
located in the same HDL-C-associated locus35,36, and SYCP2L,
which is located in a GWAS locus for polyunsaturated fatty acids
and related to LDL-C levels37,38. For the other genes identified,
there was no evidence in the literature for a direct role in
cholesterol metabolism, although some interesting patterns were
evident. For example, we observed multiple genes involved in
immunoglobulin production (IGLC5, IGLC6, IGLV4-69, and
IGLVI-70) and insulin metabolism (UNC5B, DEPP1), mechan-
isms that are consistent with the role of cholesterol in
inflammation and insulin resistance39,40. For all 18 genes, the
effect direction estimated by MR-link was concordant with the
direction estimated by other MR-methods when they were
available, except in the case of MSLN, where only LDA-MR-
Egger gave discordant results compared to all other methods
(Table 1, Supplementary Fig. 5, and Supplementary Table 3).
Interestingly, 17 of the 18 genes did not pass significance after
multiple testing correction using the other tested methods: only
ABO passed Bonferroni significance and only when using the
IVW method (Table 1, Supplementary Fig. 5, and Supplementary
Table 3). In 13 genes, a causal effect could not be estimated by
MR-Egger, LDA-MR-Egger, and MR-PRESSO because there were
too few IVs. Furthermore, MR-PRESSO did not make a causal
estimate in the remaining 5 genes as it identified too many
outliers (Table 1, Supplementary Fig. 5, and Supplementary
Table 3).

In the MR analysis using eQTLs from liver, all the genes
identified at the Bonferroni significance level of 3.2 × 10−5 (0.05/
1557) fall within LDL-C GWAS loci. Among these, we found a
negative causal effect for the well-known SORT1 gene (MR-link
calibrated two-sided p= 5.9 × 10−9). Multiple functional studies
have shown that this gene encodes the protein Sortilin (encoded
by SORT1) and that it affects plasma LDL-C levels by acting on
clearance of LDL-C and on secretion of very-LDL (VLDL) by the
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liver41–43 (Table 3 and Supplementary Table 2). We also found
two other genes in the same GWAS locus, PSRC1, and CELSR2,
but the IV (only one was found) for these genes was identical to
that of SORT1 due to the high correlation between expression
levels of these genes. Full overlap of a single IV in this locus
makes it is impossible to discern causal from pleiotropic genes
using MR-methods, including MR-link. The fourth gene found to
be significant using liver eQTLs is PVRL2 (MR-link calibrated
two-sided p= 3 × 10−14), which is located in the APOE locus
associated to LDL-C (Table 3)35,36. For PVRL2, we estimated a
positive causal effect; higher expression of PVRL2 is causally
related to higher LDL-C (Table 3). PVRL2 is 17.5 kb downstream
of the APOE gene, and two common missense polymorphisms in
APOE account for a large fraction of the association signal36,44.
Interestingly, in the most recent GWAS meta-analysis for lipids,
19 jointly significant LDL-C variants were found spanning a 162
kb region that encompasses PVRL236. This indicates that, while
missense mutations in APOE play a major role, other genes in this
locus are also likely involved in LDL-C regulation and that
pleiotropic effects are to be expected. Our analyses indicate that
PVRL2 is one of the causal genes at this locus. The positive effect

of PVRL2 on LDL-C was also seen in the analysis that used blood
eQTLs from BIOS (MR-link calibrated two-sided p= 4.3 × 10−5),
although it did not pass our significance threshold in that
analysis. Likewise, variation in gene expression of PVRL2 in blood
has been found to be associated with LDL-C in a transcriptome-
wide association analysis carried out in a very large genetic
association study36. Of note, since the LD between IVs used in the
analysis of blood and liver eQTLs was low (r2 < 0.2), the results
potentially indicate a dual causal role for PVRL2 across these two
tissues.

PVRL2 has mostly been studied in the context of athero-
sclerosis, where it has been shown to act as cholesterol-responsive
gene involved in trans-endothelial migration of leukocytes in
vascular endothelial cells, a key feature in atherosclerosis
development45–47. Our results indicate a role for PVRL2 in
modulating plasma levels of LDL-C via its expression variation in
the liver. Biologically the role in liver could be explained by
increased production of very-LDL or decreased LDL-C uptake
(Fig. 4). In line with this hypothesis, a siRNA screen in hepatic
cell lines of genes in the APOE locus showed that downregulation
of PVRL2 gene expression promotes LDL-C uptake48 (Fig. 4).

Table 2 MR-link results using BIOS blood eQTLs.

Gene name Causal effect p Value #IVs Biological function and link to LDL-C

IGLC5 −0.05313 2.08E−09 1 Immunoglobulin lambda constant 5 (IGLC5) is a pseudogene; three other genes in the same locus and
belonging to the same family appear in this table (IGLV-70, IGLV4-69, and IGLC6). IGLC5 does not have
a known function in LDL-C metabolism

KB-1460A1.5 0.15354 1.35E−08 1 KB-1460A1.5 is an RNA gene with unknown function in LDL-C metabolism
ABO −0.08224 4.84E−08 4 Alpha 1-3-N-Acetylgalactosaminyltransferase And Alpha 1-3-Galactosyltransferase (ABO) is a protein-

coding blood group gene. ABO is located in LDL-C GWAS locus35,36,72. ABO is part of the KEGG
pathway Glycosphingolipid biosynthesis although the direct link between ABO and LDL-C remains unclear.

UNC5B −0.01235 4.87E−08 1 Unc-5 Netrin Receptor B (UNC5B) is a protein-coding gene and a receptor for the NETRIN1 protein. It is
associated to the disease Hyperinsulinemic Hypoglycemia familial 3. UNC5B is localized in lipid rafts,
membrane compartments that contain high levels of cholesterol and lipids73. The direct link of this gene
to LDL-C remains unclear.

TMEM176B −0.0287 1.11E−07 4 Transmembrane protein 176B (TMEM176B) is a protein-coding gene located in the TMEM176B-
TMEM176A-AOC1 GWAS locus for HDL-C35. Two IVs for TMEM176B are overlapping with IVs for
TMEM176A.

REEP1 −0.02183 1.25E−07 1 Receptor Accessory Protein 1 (REEP1) is a protein-coding gene. Mutations of the N-terminal of REEP1
lead to accumulation in lipid droplets in the endoplasmic reticulum74. REEP1 does not have a known
function in LDL-C metabolism.

KRT79 −0.05904 1.54E−07 2 Keratin 79 (KRT79) is a protein-coding gene, that promotes sebaceous gland maintenance in mice hair
follicles75. The sebaceous gland produces up to 90% of the lipids present in the epidermis. Although a
direct link to LDL-C levels remains unclear.

IGLC6 −0.07662 2.21E−07 3 Immunoglobulin lambda constant 6 (IGLC6) is a pseudogene; three other genes in the same locus
belonging to the same family appear in this table (IGLV-70, IGLV4-69, and IGLC5). IGLC6 does not have
a known function in LDL-C metabolism.

MAP1LC3A 0.037236 2.32E−07 1 Microtubule Associated Protein 1 Light Chain 3 Alpha (MAP1LC3A) is a protein-coding gene. MAP1LC3A
has no known function in cholesterol metabolism.

AOC1 −0.00861 2.48E−07 1 Amine Oxidase, Copper Containing 1 (AOC1) is a protein-coding gene located in the TMEM176A-
TMEM176B-AOC1 GWAS locus for HDL-C35.

IGLV4-69 0.08767 3.1E−07 1 Immunoglobulin Lambda Variable 4-69 (IGLV4-69) is a protein-coding gene; three other genes in the
same locus and belonging to the same family appear in this table (IGLV-70, IGLC5, and IGLC6). IGLV4-69
does not have a known function in cholesterol metabolism

SYCP2L −0.01941 4.09E−07 2 Synaptonemal Complex Protein 2 Like (SYCP2L) is a protein-coding gene, located in a GWAS locus for
antiphospholipid syndrome and fatty acid measurements. SYCP2L does not have a known function in
LDL-C metabolism38,76.

C10orf10/DEPP1 −0.06893 4.74E−07 1 DEPP1 (also known as C10orf10) is an autophagy regulator highly expressed in adipose tissue. DEPP1
overexpression in mice reduces glucose and triglyceride levels77, although a direct link of this gene to
LDL-C metabolism remains unclear.

TMEM176A −0.02242 4.77E−07 3 Transmembrane protein 176A (TMEM176A) is a protein-coding gene located in the TMEM176B-
TMEM176A-AOC1 GWAS locus for HDL-C35. Two IVs for TMEM176A are overlapping with TMEM176B.

RP11-18H21.1 0.029575 5.02E−07 2 RP11-18H21.1 is a non-coding RNA gene without a known function in LDL-C metabolism.
TACSTD2 −0.01865 8.65E−07 2 Tumor Associated Calcium Signal Transducer 2 (TACSTD2) is a protein-coding gene located on the cell

membrane involved in the superpathway Ca, cAMP, and Lipid Signaling. The function of TACSTD2 in LDL-
C metabolism is unclear.

MSLN −0.02566 1.39E−06 4 Mesothelin (MSLN) is a protein-coding gene, its link to LDL-C is unclear.
IGLVI-70 0.112435 3.49E−06 2 Immunoglobulin Lambda Variable (I)-70 (IGLVI-70) is a pseudogene; three other genes in the same

locus and belonging to the same family appear in this table (IGLV4-69, IGLC5, and IGLC6). IGLVI-70 does
not have a known function in cholesterol metabolism

This table shows 18 Bonferroni-significant genes identified by MR-link as causal for LDL-C levels in the analysis that included eQTLs from the BIOS cohort. Gene names are according to ENSEMBL GENES
96 database (human Genome build 37). The causal effect estimate represents the changes in LDL-C (mg per dL) per standard deviation increase in gene expression. p values listed in this table are not
adjusted for multiple testing (MR-link calibrated two-sided p value, see Supplementary Note 1). Full summary statistics of the genes are shown in Supplementary Table 1.
LDL-C low-density lipoprotein cholesterol, IV instrumental variable, HDL-C high-density lipoprotein cholesterol, GWAS genome-wide association study, siRNA small interfering RNA.
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Overall, our results and existing functional evidence support that
PVRL2 expression is correlated with LDL-C levels and show a
causal effect in liver (Fig. 4).

MR-link confirms ApoE changes affect LDL-C levels. To assess
the effectiveness of MR-link in proteomics measurements, we
combined the aforementioned LDL-C measurements in the
Lifelines cohort with cis-pQTL summary statistics of 471 plasma
protein measurements (measured using the SOMAscan platform
in a cohort of 3301 individuals) (“Methods”)25,49. One protein
passes the Bonferroni multiple testing threshold (p < 1.05 × 10−4):

ApoE3, an isoform of ApoE (causal effect: 0.40 (+/−0.13 s.e.),
MR-link calibrated two-sided p= 4.65 × 10−5, SOMAmer ID:
APOE.2937.10.2). pQTLs were also available for ApoE2
(SOMAmer ID: APOE.5312.49.3), another isoform of ApoE but
the causal effect was weaker and did not pass the Bonferroni
threshold (causal effect= 0.56 (+/−0.24 s.e.), MR-link calibrated
two-sided p= 0.002)44. These results are in line with the well-
known causal relationship between increased ApoE plasma levels
and LDL-C, and the widely described stronger impact of the E3
isoform compared to the E2 isoform44. Interestingly, MR-link did
not estimate BGAT, the protein product of ABO, to be significant
in this dataset (SOMAmer ID: ABO.9253.52.3, MR-link calibrated
two-sided p= 0.18) We compared the IVs identified for BGAT
(rs9411463 and rs72775494) with those used in the ABO blood
eQTL analysis and found that only one IV for the BGAT protein
was in LD (rs9411463) with any of the four IVs for ABO
expression in BIOS. This scenario is in line with the overall
patterns observed in the proteomics study—only a small fraction
of eQTLs in blood also affect protein levels, but our results could
also reflect targeting of the SOMAmer to a specific ABO protein
isoform25. Unfortunately, further isoform information for BGAT
was not available in the original study.

Discussion
Identification of genes whose changes in expression are causally
linked to a phenotype is crucial for understanding the mechan-
isms behind complex traits. While several methods exist that infer
causal relationships between two phenotypes, these rely on a set
of assumptions that are often violated when gene expression is the
exposure. Specifically, the presence of LD and pleiotropy between
the genetic variants chosen as IVs are the main cause of violations
of such assumptions17–19,28. Here we interrogated a large gene-
expression dataset and showed that the eQTLs of a gene, which
can be used as IVs, are very likely to be in LD, but not over-
lapping, with eQTLs of other genes, indicating that potential
sources of pleiotropy in transcriptome-wide MR analyses are
likely to come from variants in LD with the IVs.

We therefore developed MR-link, a causal inference method
that is robust to unobserved pleiotropy. Our in silico results show
that MR-link has the best discriminative ability compared to all
other MR methods we tested, as well as to the Bayesian coloca-
lization method coloc. MR-link jointly models the outcome using
jointly significant eQTLs as IVs, combined with variants in LD, to

Table 3 MR-link results using GTEx liver eQTLs.

Gene name Causal effect p Value #IVs Biological function and link to LDL-C

PVRL2 0.3177 3.0E−14 1 Poliovirus receptor-related 2 (PVRL2) is a protein-coding gene also known as NECTIN2. It is a cell-
membrane protein located in the LDL-C GWAS locus APOE. siRNA experiments show that LDL-C
uptake is increased in cells upon its downregulation48. PVRL2 knockout mice also had less
atherosclerosis46. Both studies indicate a reduction in LDL-C upon downregulation of PVRL2.

PSRC1 −0.0847 3.99E−09 1 Proline and serine rich coiled-coil 1 (PSRC1) is a protein-coding gene located in an LDL-C GWAS
locus35. PSRC1 has not been found to have an effect on cholesterol despite being targeted in a specific
functional study43. The IV for PSRC1 is overlapping with the IV for CELSR2 and SORT1.

SORT1 −0.0865 5.89E−09 1 Sortilin (SORT1) is a protein-coding gene located in an LDL-C GWAS locus35. siRNA and knockdown
experiments have functionally validated that SORT1 has a negative effect on LDL-C levels41,42. The IV
for SORT1 is overlapping with the IV for PSRC1 and CELSR2.

CELSR2 −0.0993 6.8E−08 1 Cadherin EGF LAG Seven-Pass G-Type Receptor 2 (CELSR2) is a protein-coding gene located in an
LDL-C GWAS locus35. CELSR2 has not been found to have an effect on cholesterol despite being
targeted by a specific functional study43. The IV for CELSR2 is overlapping with the IV for PSRC1 and
SORT1.

This table lists four Bonferroni-significant genes that were identified using GTEx liver eQTLs. Gene names are according to ENSEMBL GENES 96 database (human Genome build 37). The causal effect
estimate represents changes in LDL-C (mg per dL) per standard deviation increase in gene expression. p Values listed in this table are not adjusted for multiple testing (MR-link calibrated two-sided p
values, see Supplementary Note 1). Full summary statistics of these genes are shown in Supplementary Table 2. LDL-C low-density lipoprotein cholesterol, GWAS genome-wide association study, siRNA
small interfering RNA, IV instrumental variable.

Hepatic cell

Blood vessel 
(sinusoid)

H

HH
HO

H

LDL-C Hepatic cell 
LDL-C uptake

H

HH
HO

H

LDL-C

H

HH
HO

H

LDL-C

H

HH
HO

H

LDL-C

H

HH
HO

H

LDL-C

H

HH
HO

H

LDL-C

H

HH
HO

H

LDL-C

H

HH
HO

H

LDL-C
H

HH
HO

H

LDL-C

Liver

PVRL2 

Increased expression 
of hepatic PVRL2 

Increased LDL-C 
in blood

Decreased 
LDL-C uptake

H

HH
HO

H

LDL-C

Fig. 4 Biological interpretation of PVRL2. Functional and statistical
evidence for the causal effect of PVRL2 on low-density lipoprotein
cholesterol (LDL-C) levels. The teal arrow indicates a positive causal
relationship between PVRL2 expression in liver and LDL-C levels in plasma
—this relationship was detected in our MR analysis. The red arrow
indicates a negative causal relationship between PVRL2 expression and
LDL-C uptake in hepatic cells—this relationship was detected in small
interfering RNA (si) experiments described in Blattman et al.48.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18716-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4930 | https://doi.org/10.1038/s41467-020-18716-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


correct for all potential sources of pleiotropy. To our knowledge,
this approach has never been used in a causal inference method.

We applied MR-link to real data by applying it to LDL-C
cholesterol measurements and eQTLs derived from blood, cere-
bellum and liver. This identified known and previously unknown
causal genes within and outside GWAS loci. For example, in liver
we identified the well-known negative causal relationship between
expression of SORT1 in liver and LDL-C41–43. In liver, and sug-
gestively in blood, we detected a causal effect for PVRL2, a gene
located in the APOE locus. While a role for this gene is mostly
known for immune and endothelial cells and in the context of
atherosclerosis45,47, our results indicate that regulation of
expression of this gene in both blood and liver causally affects
LDL-C levels. Given its established role in atherogenesis, PVRL2
has been proposed as a potential therapeutic target for athero-
sclerosis. Our study indicates that such strategies should not only
take into account the effect on atherosclerotic plaques, but also
consider the hepatic function of PVRL2 in regulating plasma
LDL-C levels in humans.

All the genes identified in the analyses that used eQTLs from
blood were different from those identified using eQTLs from
liver. While this is partly due to statistical power, as the BIOS
cohort is more than 20 times larger than the GTEx cohort used to
derive eQTLs in liver, this may also be related to tissue-specific
mechanisms. We expect that causal genes found in whole blood
will affect LDL-C through pathways that signal for lipid changes
or regulate lipid binding to erythrocytes, as hypothesized for the
ABO gene, whereas genes found in liver are more likely to be
involved in lipid metabolism50,51.

MR-link has several advantages over other recent MR methods
developed to overcome bias from LD and pleiotropy17,23. First,
MR-link can model unobserved pleiotropy, whereas sources of
pleiotropy need to be specified in multivariate MR methods. This
is particularly important because sources of pleiotropy may be
context-dependent and may arise from a phenotype other than
those being measured in a cohort14,34. Second, MR-link can
derive robust causal estimates even when only one or two IVs are
available. The majority of genes tested in our large eQTL dataset
have fewer than three IVs (68%), which makes it impossible for
MR-PRESSO, MR-Egger, and LDA-MR-Egger to make causal
estimates17–19.

One of the MR-link assumptions is that the IVs affect the
outcome only through the exposure, conditional on the unmea-
sured pleiotropic effect. This assumption is violated when the IVs
of the exposure and of the pleiotropic effect are fully overlapping.
This assumption must not be violated when a single IV is avail-
able, but can be relaxed when multiple IVs are used in the model,
as the relative effects of the IVs help to discriminate between a
true causal effect and a pleiotropic effect, similar to multivariable
Mendelian randomization methods22. In the case of multiple IVs
that are fully overlapping, we have shown that MR-link has an
increased FPR, yet still maintains higher power compared to
other MR-methods and superior discriminative ability compared
to coloc.

The application of MR-link is not restricted to gene expression
or proteomics datasets; it can also be applied to other molecular
layers that are known to have a similar genetic architecture to
gene expression, such as metabolites. Given the increases in
sharing of summary statistics from functional genomics QTL
studies, coupled with the development of very large biobanks
such as the UK biobank, the Estonian Biobank, the Lifelines
cohort study, and the Million Veteran Program cohort33,52–54, we
foresee many opportunities for applications of MR-link to
individual-level data for the identification of the molecular
mechanisms underlying complex traits. Of note, while we have
limited our simulations to quantitative traits as an outcome in

this paper, MR-link could be applied to binary traits such as
human diseases. However, we have not investigated its perfor-
mance in detail for binary outcome phenotypes. Furthermore, as
for all MR studies, our method can be applied to populations of
any ethnicity, provided that the summary statistics of the expo-
sure are derived from a population that is ethnically-matched
with the outcome cohort.

We foresee that many causal relationships will be discovered if
highly powered causal inference methods such as MR-link are
applied to many human traits. This could make it possible to
build extensive causal networks similar in size and complexity to
metabolic networks of small molecules, which would provide
valuable insights into the mechanisms behind human traits and
diseases.

Methods
BIOS consortium cohort genotype and expression analysis. We used genotype
and expression measurements on 3746 Dutch individuals from the Biobank-based
Integrative Omics Study (BIOS; http://www.bbmri.nl/acquisition-use-analyze/bios/),
a collection of six different data cohorts: Lifelines DEEP55, Prospective ALS Study
Netherlands56, Leiden Longevity Study57, Netherlands Twin Registry58, The Cohort
on Diabetes and Atherosclerosis Maastricht59, and the Rotterdam Study60. All
cohorts from the BIOS consortium were approved by their ethical committees, as
follows: the LLDEEP was approved by the medical ethics committee of the Uni-
versity Medical Center Groningen; the Prospective ALS Study Netherlands was
conducted with the approval of the institutional review board of the University
Medical Centre Utrecht; the Leiden Longevity Study was approved by the Medical
Ethical Committee of the Leiden University Medical Center; the Netherlands Twin
Registry was approved by Central Ethics Committee on Research Involving Human
Subjects of the VU University Medical Center, Amsterdam, an Institutional Review
Board certified by the US Office of Human Research Protections (IRB number IRB-
2991 under Federal-wide Assurance-3703; IRB/institute codes, NTR 03-180); the
Rotterdam Study was approved by the institutional review board (Medical Ethics
Committee) of the Erasmus Medical Center and by the review board of The
Netherlands Ministry of Health, Welfare and Sports; the CODAM study was
approved by the medical ethics committee of Maastricht University. An informed
consent form was obtained from all the participants. Genotyping was performed
separately per cohort (see references). All combined genotypes were imputed to the
Haplotype reference consortium dataset61 using the Michigan imputation server62.
We retained only biallelic SNPs and confined our analyses to variants with minor
allele frequency (MAF) > 0.01, Hardy–Weinberg equilibrium (HWE) p value >10−6

and an imputation quality RSQR > 0.8. A genetic relationship matrix (GRM) was
derived based on LD-pruned genotypes using the Plink 1.9 command --indep 50 5 2,
and one individual was kept from all pairs of individuals that had a GRM value > 0.1
using the --rel-cutoff Plink 1.9 command31. Population outliers were identified using
a principal component analysis of the GRM, and individuals more distant than three
standard deviations from the mean of principal component 1 and principal com-
ponent 2 were removed.

RNA-seq gene-expression quality control and processing are the same as those
of Zhernakova et al.13. RNA extracted from whole blood was paired-end sequenced
using the Illumina HiSeq 2000 instrument. RNA-seq read alignment was
performed using STAR (version 2.3.0e)63. During alignment, variants with MAF <
0.01 from the Genome of the Netherlands were masked64. Gene expression was
quantified using HTSeq (version v0.6.1p1)65. Samples with < 80% of reads
mapping to exons were considered of low quality and removed. Samples were also
removed if they had < 85% of mapped reads, or if they had a median 3′ bias larger
than 70% or smaller than 45%. To further account for unobserved confounders, the
expression matrix was corrected for the first 25 principal components as well as 5′
bias, 3′ bias, GC content, intron base-pair percentage, and sex following the
procedure of Zhernakova et al.13. After genotype and expression quality control
filters, 3503 individuals with expression data of 19,960 transcripts and genotype
information of 7,838,327 SNPs were available for analyses. In this set, 57% were
female and the average age was 52.8 years (±16.0 Stand. Dev.). eQTL association
analysis was performed for SNPs located ±1.5 Mb of the transcript using Plink 1.9
and the --assoc command31. For 13,778 genes, at least one eQTL at p < 5 × 10−8

was identified, and those genes were used for all the analyses described in this
manuscript.

We quantified how many genetic variants are necessary to explain gene
expression using a conditional joint analysis approach. We identified jointly
significant eQTLs by applying GCTA-COJO (v1.26.0)26 to eQTL summary
statistics, using the BIOS cohort as LD reference panel, and selecting jointly
significant variants that showed a p < 5 × 10−8 in this analysis step. To infer how
often eQTLs are shared between genes, we assessed the percentage of genes with
top eQTLs (or jointly significant variants) that have LD r2 > 0.99. We used the r2 >
0.5 threshold to see how often eQTL variants were in LD with each other.

We performed statistical fine-mapping of all genes using the FINEMAP v1.3.1
program27. First, we searched for associated eQTL variants (p < 5 × 10−8) in the cis-
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associated region. We then padded the associated regions with 100 kb and only
looked for variants in this extended region. FINEMAP requires the same number of
individuals across all variants, therefore we analyzed only the genes with the
associated variants available in all subcohorts. We ran FINEMAP on these genes
with the --sss option, using LD computed with Plink v1.9, with the --r command.
Furthermore, genes were not run if they had less than 25 variants available in the
region, or if a combination of variants led to an invalid posterior probability,
leaving 13,276 genes which were successfully fine-mapped.

FINEMAP provides several configurations of statistically fine-mapped variants,
along with their posterior probability of being causal. Studies that identify causal
variants usually use a high posterior inclusion probability of multiple causal variant
configurations to make sure the causal variant is captured in analysis. In MR
studies it is not necessary to identify true causal variants, as the IV only needs to
explain the exposure signal the best. In our analysis of LD between FINEMAP
variants, we have therefore only considered the most likely configuration identified
by FINEMAP, as these variants better explain the exposure variation.

Lifelines cohort genotype data and LDL-C levels. Lifelines is a multi-generational
cohort study of 167,000 individuals from the north of The Netherlands. It was
approved by the medical ethics committee of the University Medical Center Gro-
ningen and conducted in accordance with Helsinki Declaration Guidelines. All
participants signed an informed consent form prior to enrollment. A subset of
13,436 Lifelines samples were genotyped with the cytoSNP array and underwent the
quality control steps described in Scholtens et al.33: Genotyped variants were
retained based on three criteria: MAF > 0.001, HWE p > 10−4, and a genotyping call
rate > 0.95. After genotype quality control, samples were imputed using the Genome
of the Netherlands reference panel64 and Minimac version 2012.10.366. Variants
were further excluded if they were of bad imputation quality (RSQR < 0.3), showed
deviation from HWE (p < 10−6), or if they were absent in the set of quality con-
trolled genotyped and imputed variants of the BIOS cohort.

Low-density lipoprotein cholesterol (LDL-C) was estimated using the
Friedewald equation67, based on triglycerides, high-density lipoprotein, and total
cholesterol levels33. Total cholesterol levels of individuals who were prescribed
cholesterol-lowering medication were divided by 0.8 prior to calculating LDL-C.
Individuals with >4.52 mmol per liter total triglycerides were removed67. In
addition, LDL-C levels were corrected for age, age squared, and sex. After genotype
and LDL-C quality control, 12,449 individuals (of which 58.8% were female and the
average age was 48.7 years (±11.5 Stand. Dev.)) and 7,336,374 variants remained
for analyses. Association analysis for additive effects on LDL-C was performed
using linear regression on standardized genotypes, e.g., transforming genotypes
into a distribution with mean 0 and variance 1. Summary statistics of this analysis
were used to perform MR analyses using the existing MR methods listed in Table 1.

GTEx download and analysis. We downloaded GTEx version 7 eQTL summary
statistics, including non-significant results, from the GTEx website (https://
gtexportal.org/home/datasets/)24. For every gene with at least one eQTL at p < 5 ×
10−8, conditional analysis using GCTA-COJO was performed to select secondary
variants at the same threshold, using the BIOS cohort as an LD reference. This
resulted in 4028, 1557, and 1726 genes with at least one jointly significant eQTL for
whole blood, liver, and brain (cerebellum) tissues, respectively.

pQTL summary statistics download and analysis. We downloaded the pro-
teomics summary statistics of Sun et al.25 from the GWAS catalog (ftp.ebi.ac.uk/
pub/databases/gwas/summary_statistics/SunBB_29875488_GCST005806). We iso-
lated cis-regions by selecting variants within+/−1.5 Mb from each transcript.
These variants already passed the quality control steps of Sun et al.25: (i) INFO
score >= 0.7; (ii) minor allele count >= 8; (iii) Hardy–Weinberg equilibrium p >
= 5 × 10−6. For all these variants we used UK10K minor allele frequencies (ftp://
ngs.sanger.ac.uk/production/uk10k/UK10K_COHORT/REL-2012-06-02/UK10K_
COHORT.20160215.sites.vcf.gz) as this information was not provided in the
summary statistics but it is required for GCTA-COJO IV selection. We selected IVs
using Lifelines genotypes as an LD reference33. To run MR-link, we first selected
proteins with significantly (p < 5 × 10−8) associated variants that were shared
between the cis summary statistics and the Lifelines cohort. This resulted in 471
proteins with significantly associated variants (p < 5 × 10−8) that are overlapping
with the variants in the Lifelines cohort and for which GCTA-COJO was able to
identify IVs.

Simulation of genotypes. Four hundred and three non-Finnish European indi-
viduals were isolated from the 1000 Genomes phase 3 release and used as a starting
point for genotype simulation30. We simulated genotype data for 25,000 indivi-
duals in a chromosomal region (Chromosome 2, 100–105Mb, human genome
build 37) using the HAPGEN2 program (v.2.2.0), combined with interpolated
HAPMAP3 recombination rates68. The region was then reduced to 1Mb in length:
between 102Mbp and 103Mb. Only biallelic SNPs with MAF < 0.01 were retained
from simulated genotypes, leaving 3101 variants in this region. Simulated indivi-
duals were separated into an outcome cohort of 15,000 individuals, and into an
exposure cohort and an LD reference cohort of 5000 individuals each. These cohort
sizes were chosen to roughly represent the sizes of BIOS and Lifelines cohorts.

Simulation of phenotypes. We simulated quantitative phenotypes representing
the exposures by randomly selecting SNPs from the simulated genetic region, and
subsequently assigning these an effect. Causal SNPs were selected to represent both
pleiotropy through LD (Fig. 2b) and pleiotropy through overlap (Fig. 2c). For the
scenario of pleiotropy through LD (Fig. 2b), one to ten causal SNPs (subset sE) for
the exposure were randomly selected from the entire simulated genetic region, and
the same number of causal SNPs (subset sU) for the unobserved (pleiotropic)
exposure was randomly selected from all SNPs in moderate LD (0.25 < r2 < 0.95)
with SNPs in sE.

When pleiotropy through overlap was simulated (Fig. 2c), the causal SNPs for
the observed and unobserved exposure were selected to be identical: sE= sU. A
combination of pleiotropy through overlap and pleiotropy through linkage was
simulated by choosing some or all of the SNPs of the unobserved exposure (subset
sU) to be overlapping and some being in LD (0.25 < r2 < 0.95) with SNPs in sE.

The mathematical framework for the simulation of phenotypes is as follows. For
each selected causal SNP of the exposure (subset sE), we simulated an effect-size
from the uniform distribution U(−0.5,0.5) and then simulated the observed
exposure yE as:

yE ¼ XβE þ Cþ ϵE; ð1Þ
where X is a genotype matrix of size n ×m, with n being the number of individuals
(5000) and m the number of variants in the region (3101 in the simulated data), βE is
the vector of effects

βE;j ¼
� U �0:5; 0:5ð Þ if j 2 sE

0 otherwise

�
;8j 2 f1; ¼ ;mg, and C ~N(0,0.5)n is an

n-vector of independent scalar draws from N(0,0.5), representing a cohort-specific
confounder value per individual. Finally, ϵE � N 0; 1ð Þn is an n-vector of the
measurement error of the exposure. Similarly, the unobserved exposure yU was
simulated as:

yU ¼ XβU þ Cþ ϵU; ð2Þ

where βU is the vector of effects defined as: βU;j ¼
� U �0:5; 0:5ð Þ if j 2 sU

0 otherwise

�
;

8 j 2 f1; ¼ ;mg, sU is the selection of SNPs for the unobserved exposure and ϵU are
measurement errors distributed as ϵE. The outcome phenotype yo was then simulated
as a linear combination of the observed and unobserved exposures:

yO ¼ yEbE þ yUbU þ Cþ ϵO; ð3Þ
where the causal effect of interest is parameterized per simulation run as bE 2
f0; 0:05; 0:1; 0:2; 0:4g and the (unknown) pleiotropic effect is the parameter bU 2
0; 0:4f g reflecting absence and presence of a pleiotropic effect in a locus. Again, the

measurement error ϵO is drawn from N(0,1)n.
The genetic variants of the exposures (sE, sU) and their effect sizes βE, βU were

drawn and used in both cohorts (exposure and outcome), while the other random
variables C, ϵU; ϵE; ϵO were randomly drawn in a cohort-specific manner. Since our
model was built to account for unobserved pleiotropy, the observed and
unobserved exposure were used to generate the outcome phenotype as in Eq. (3),
but only the outcome phenotypes and the summary statistics of the (observed)
exposure phenotype were used in the causal inference analysis.

Simulation parameters and scenarios. We simulated 1500 runs per scenario,
each with a unique outcome (O) and two exposures (E and U). The scenarios
differed in the number of causal SNPs (which varied from one to ten for both the
observed and unobserved exposure), the strength of the causal relationship of
interest (varied from no causal effect up to a large effect
(bE 2 0; 0:05; 0:1; 0:2; 0:4f g) and the presence (bU= 0.4) or absence ((bU= 0.0) of
the pleiotropic effect. This resulted in 10 × 5 × 2= 100 different scenarios.

In certain cases, an estimate cannot be made by an MR method, for instance
when insufficient IVs are identified or a solution is not found in the estimation
method. As a result, there are sometimes fewer estimates than expected in the final
results. To ensure the stability of our FPR and power estimates, we have only
reported results for a MR method in a specific scenario if we had more than 100
estimates out of the 1500 simulated runs.

Instrumental variable selection. IV selection can be difficult when there is LD
between association signals. In simulations, we used two IV selection techniques:
GCTA-COJO26 and p value clumping, using standard settings of Plink 1.9 except
for the r2 threshold, which was set to 0.131. Both selection methods used a p value
threshold of p < 5 × 10−8. When selecting IVs for BIOS and GTEX, we only used
the GCTA-COJO technique.

MR-link. MR-link is a method for causal inference that is robust to the presence of
LD and unobserved pleiotropy. It is an MR approach that requires individual-level
data from the outcome cohort and summary statistics (effect sizes, standard errors
and MAFs) from an exposure. Conceptually, MR-link jointly models a known
exposure with SNPs that are in LD with the exposure IVs (tag-SNPs). Tag-SNPs are
used to account for the unobserved pleiotropic effect present in a locus.

We defined our model in the following manner. Let X be a genotype matrix of
n ×m where n is the number of individuals in the outcome study and m are all the
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SNPs in a cis-region around the transcript (±1.5 Mb of the transcript), in which
SNPs at indices sE are the causal genetic variants (IVs) for the exposure E. If we
define the exposure E and the unobserved (pleiotropic) exposure U as in Eqs. (1)
and (2), then the outcome phenotype yo from Eq. (3) can be represented as a
function of E and U with the following equation:

yO ¼ XβEbE þ XβUbU þ CO þ ϵO; ð4Þ
where bE is the causal effect of interest of the exposure on the outcome, bU is the
causal effect of the unobserved exposure, Co is a n-vector of independent scalars
representing specific confounder per individual and ϵO is the measurement error of
the outcome. In the hypothetical case that the genetic effects for both the exposure
E and the pleiotropic exposure U are known, we can estimate bE by solving Eq. (4)
in an analysis that is similar to multivariate MR22. In a real-world scenario, only
the IV(s) for the exposure are known, while the variants that contribute to the
unobserved (pleiotropic) exposure and their effect on the outcome are unknown.

Under Eq. (4), MR-link relies on the assumption that SNPs on sE influence the
outcome yO only through their effect on yE, when conditioning on sU.

MR-link uses the following procedure to estimate causal effects:

(1) A selection ŝE of IVs for the exposure and conditional effect sizes bβE for
these IVs are determined using the GCTA-COJO method26. A vector of

effect sizes bβE for all SNPs in the region is thus defined as:

bβE;j ¼ ≠0 if j 2 ŝE
0 otherwise

�
; 8j 2 f1; ¼ ;mg.

(2) All SNPs in LD 0.1 < r2 < 0.99 with the exposure IVs are potential tag-SNPs.
These variants are iteratively pruned for high LD so that tag-SNPs, sT, are
always r2 < 0.95 with each other in order to reduce collinearity and
computation time.

(3) The following equation is solved for bE using ridge regression:

yO ¼

..

. ..
.

XbβE
mE

XTpmT

..

. ..
.

0
BBBB@

1
CCCCA

bE

..

.

βUbU

..

.

0
BBBBB@

1
CCCCCAþ ϵ; ð5Þ

where XT is the genotype matrix of the outcome containing only tagging
variants as defined in step (2), mT is the number of tagging variants and is
used to normalize for the number of tags in the region, and mE represents
the number of IVs selected by the selection method and is a parameter used
to remove the dependency of the model on the number of IVs. The resulting
coefficient vector contains the causal effect of interest bE, and the vector
βUbU of length mT is a nuisance parameter that captures pleiotropic effects.
Because individual-level data of the outcome is modeled by MR-link, MR-
link does not use any summary statistics of the outcome.

We also considered solving the Eq. (5) using ordinary least squares (OLS).

However, due to the multicollinear nature of the

..

. ..
.

XbβE
mE

XTpmT

..

. ..
.

0
BBB@

1
CCCA matrix, this

approach leads to very low detection power (Supplementary Figs. 6–9;
Supplementary Data 2–4, 7, and Supplementary Note 1). We therefore applied
ridge regression to solve the equation and determined a T statistic and subsequent
Wald test two-sided p value for ridge regression69. Due to the over-conservative
nature of the resulting p value in simulations and real data (Supplementary Figs. 6–
8, 10; Supplementary Data 2–4, 7, and Supplementary Note 1), we calibrated the p
value distribution of each different scenario by fitting a beta distribution to null
estimates to derive the final p values (Supplementary Note 1). When we report
results for MR-link, it is these calibrated p values that we are referring to.

Mendelian randomization analyses. Causal relationships were estimated with
MR-link and four other existing methods: Inverse variance weighting (IVW)28,
LDA-MR-Egger regression17, MR-Egger regression18, and MR-PRESSO19. All
methods were (re-)implemented in Python and compared to present equal results
when compared with their original implementation. The corresponding code is
available at https://github.com/adriaan-vd-graaf/genome_integration.

The IVW method is a weighted meta-analysis of causal estimates from single

IVs. Specifically, a causal estimate bi for an IV i is estimated as b0i ¼
β0E;i
β0O;i

, where β′O,i

is the marginal effect of SNP i on the outcome and β′E,i is the marginal effect of the
exposure. For the estimation of the causal effect, single IV causal estimates are
combined using weights proportional to the inverse variance of such estimates

using the two-terms definition of standard error: se b0i
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se β0O;ið Þ2

β02E;i
þ β02O;i se β0E;ið Þ2

β02E;i

r
as

following Burgess and Thompson70.
MR-Egger regression adjusts for average pleiotropy by fitting a weighted linear

regression between the exposure SNP-effects and the outcome SNP-effects18. It
assumes that <50% of the variants have a pleiotropic effect. MR-Egger can be
applied when three or more instruments are available.

LDA-MR-Egger is similar to MR-Egger but also recognizes LD. LDA-MR-Egger
can only be used when LD information between the IVs is available17,18.

MR-PRESSO is a method of causal inference that implements an approach to
identify and remove outliers from the IVW framework19. It assumes that <50% of
the variants have a pleiotropic effect. MR-PRESSO is unable to adjust for the
presence of pleiotropy if fewer than three IVs are available, of if fewer than two IVs
are left after outlier correction.

We applied these four methods to both simulated and real data. For real data,
we used the LDL-C full GWAS summary statistics derived from the association
carried out in the Lifelines study, as described above.

Prior to MR analyses, for each IV, we select the allele with positive effect on the
exposure.

Colocalization analyses. We have run colocalization analyses on the simulated
data using the R package coloc v4, git commit 6f3cbb1e5e90f07de772339d6e4a-
f362140affc3, specifically its coloc.abf() function for the original coloc functionality
and the coloc.signals() function for the masked (coloc-masked) and conditional
(coloc-cond) estimates29,32. We used marginal effect sizes, standard errors and
the MAFs as input that were calculated separately for the exposure and outcome.
The LD for the conditional and masked coloc analysis was derived from the
simulated reference cohort. For original coloc, we used the H4 test statistic of the
coloc.abf() function as our result metric, which provides the posterior probability of
sharing of the causal variants between the two traits being tested. For the coloc-cond
and coloc-masked results, we have used the maximum PP4 reported by the coloc.
signals() function, as this represents the largest posterior probability that a causal
variant is shared between traits. We compared the discriminative ability of all
coloc variations with that of MR-link using (i) false-positive rate and power when
using a PP4 > 0.9 to declare colocalization and (ii) an area under the curve (AUC)
statistic of the receiver operator curve, where scenarios with bE= 0 (null causal
effect of the exposure) were considered true negative observations and bE≠0 were
considered the true positive observations. We determined the AUC using the
sklearn library71.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Individual-level data of Lifelines cohorts are available to all bona-fide researchers upon
request to the Lifelines biobank (https://www.lifelines.nl/researcher). Individual-level
data (genotypes and RNA-seq data) of the BIOS Consortium cohorts can be downloaded
by researchers of Dutch Institutes, or analyzed (but not downloaded) by any non-Dutch
researcher in a Cloud environment (https://www.bbmri.nl/acquisition-use-analyze/bios).
GTEx summary statistics can be downloaded from the GTEx website (https://gtexportal.
org/home/datasets). pQTLs summary statistics can be downloaded from GWAS Catalog
(ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/SunBB_29875488_GCST005806/).
Simulated data can be recreated using the code at the link provided in Code availability
statement. Imputation with the Haplotype Reference Consortium dataset can be done at
the following link: https://imputationserver.sph.umich.edu/index.html#!. Raw data used
to draw Fig. 3 can be found in Supplementary Data 3.

Code availability
An implementation of MR-link, the methods to recreate the simulated data, and
instructions on usage can be found at https://github.com/adriaan-vd-graaf/
genome_integration. This repository also includes implementation of the other MR
methods and the coloc method used in this paper.
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