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Chapter 1

Ever since scientists were first able to read a DNA sequence, techniques to do so have
developed explosively. The transcription of DNA to mRNA and subsequent translation
into protein determines to what extent a gene plays a role in the functioning of the cell.
For this reason, techniques to measure gene expression (i.e. the abundance of the
mRNA of a certain gene in a sample) were developed. The first description of a
microarray approach to measure gene expression on a genome wide level, rather than
in individual genes, was described in 1995 (Schena et al. 1995). From this point onwards,
progress was rapid and with more data available, ever more correlations between gene
expression and disease progress could be discovered. A research area in which the

application of gene expression measurements particularly exploded is cancer research.

Cancer

Broadly defined, cancer is the malignant proliferation of cells. In other words, cancer
arises when cells start dividing when they should not. A fully developed human body
consists of an estimated 37.2 trillion cells (Bianconi et al. 2013). From the moment the
ovum is fertilized and starts dividing to form a foetus, the division of each cell is tightly
regulated. Whether a cell divides or not is influenced by many factors, arising from both
within the cell as well as its environment. A host of mechanisms are involved in this
complicated process: mechanical factors, hormones, signalling molecules and nutrient

receptors, among other things.

When all signals align and a cell starts to divide to form a new cell, the roughly 3 billion
DNA bases in our genome need to be copied in order to provide the new cell with an
identical copy of the genetic material. This process is not error free. It has been
estimated that per 100,000 bases one error occurs (Arana and Kunkel 2010). If these
errors would persist and be passed on to the new cell (and then to subsequent progeny),
they could lead to dysregulated activity within these cells and eventually disease. There
are therefore many safeguards against passing on aberrant DNA; fidelity of the copy is
checked both during transcription and before the final cell division. When errors are

detected that cannot be corrected a cell can induce apoptosis, a controlled cell death.

Nevertheless, with 37.2 trillion cells and 3 billion bases per cell, sometimes errors will

slip through and be passed on to the next generation of cells. However, most often, in
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order to disturb the function of a certain gene, both alleles of the genes need to contain
an error. This is known as Knudsons “two hit-hypothesis” (Knudson 1971). Even if this
happens and leads to a cancerous cell it will not necessarily cause disease; the cell can

be destroyed by the immune system before proliferating and forming a tumor.

Then what does need to happen before cancer develops, given all the safeguards? In
2000 Hanahan and Weinberg defined 6 hallmarks of cancer that can be used to
understand and categorize the steps that are required for carcinogenesis to be initiated
(Hanahan and Weinberg 2000). Two hallmarks are about taking the brakes off
proliferation: resisting cell death and evading growth suppressors. This for example
means disrupting the checks for accurate DNA replication before cell division. Two
more hallmarks are about accelerating proliferation: enabling replicative immortality
and sustaining proliferative signalling. A normal, healthy cell has a finite number of
divisions it is able to perform, while a cancer cell needs to be able to divide indefinitely.
Moreover, a cell is usually dependent on signals from its environment to kickstart the
division; a cancer cell needs to sustain its own signals to achieve ongoing proliferation.
Lastly, cancer is characterized by its ability to leave the site of origin and spread through
the body. It therefore needs to activate invasion and metastasis. To have access to
nutrients and oxygen a cancer cell needs to activate angiogenesis in order to form new
blood vessels. The follow up paper in 2011 introduced four other hallmarks and also
described the need for cancer cells to evade the immune system (Hanahan and

Weinberg 2011).

According to the hallmarks of cancer each cancer cell needs to exhibit all of these
hallmarks to develop into disease. However, there are many different ways a cell can
acquire one or more hallmarks since dysregulating different parts of the control system
can have the same downstream effect. This dysregulation is usually caused by changes
in the DNA of key genes regulating the cell behavior. Some genes controlling the cell
cycle need to be under-expressed, i.e less present than in a healthy cell. On the other
hand, cells driving cell division can be over-expressed. The fact that there are different
roads a cell can take to become a cancer cell, means that the same type of cancer can

exhibit different behavior and response to treatment in different patients.
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When reading out the DNA sequence and measuring mRNA became easier and cheaper,
tumors that were always considered to be the same disease, started to be subtyped and
were shown to have a vastly different genetic architecture. Breast cancer was the first
type of cancer where this was extensively shown. Perou et al. already described 6

different intrinsic subtypes in 2000 based on gene expression measurements (Perou et
al. 2000).

Not long after Perou et al., Van ‘t Veer et al. took the next step and described how gene
expression measurements could be used to predict survival in breast cancer at the
moment of diagnosis (Veer et al. 2002). This 70-gene model could predict if a breast
cancer patient had a high or low risk of experiencing a metastasis of the primary tumor
within 5 years. This proved that the different genetic background of tumour influences
the progression of disease. Many different gene expression signatures in many different
cancer types would follow (Raponi et al. 2006; Barrier et al. 2006; Bullinger and Valk
2005; Kuiper et al. 2012).

Machine learning

These growing datasets also called for new analysis methods and machine learning
started to play a bigger part in biological and medical research. The term “machine
learning” was coined by computer scientist Arthur Samuel. His 1959 paper on an
algorithm that can play checkers starts with describing his studies on machine learning
as “concerned with the programming of a digital computer to behave in a way which, if
done by human beings or animals, would be described as involving the process of
learning” (Samuel 1959).

Samuels checker-playing program is seen as the first machine learning program
(Schaeffer 2006). It clearly demonstrates an aspect of machine learning that is often
explicitly included in later definitions: they can build models based on available data to
perform a certain task on new data - without being explicitly programmed to do so. That
is, the algorithm is told what its ultimate goal is (winning at checkers, in the case of
Samuel) and the boundaries of the problem (the rules of checkers). However, how it
should behave within these boundaries to achieve its goals is something it has to learn,
as this behaviour is not explicitly programmed. Moreover, the program has to learn this

in a way that makes its solutions applicable to situations on the board it has never seen
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before. What goes for checkers, goes for all machine learning problems. A model that
learns to predict cancer progression in an available dataset is useless if it cannot also
predict this in a newly diagnosed patient with gene expression patterns it has never seen

before.

Machine learning approaches can generally be divided into three categories: supervised
learning, unsupervised learning and reinforcement learning. Unsupervised learning
aims to learn a structure in the data, without being guided by labels or classifications.
Clustering algorithms are a good example in this category; they attempt to group data
points that are similar to each other within a cluster and separate data points that are
very dissimilar into different clusters. The different subtypes that were discovered in
breast cancer are an example of unsupervised learning. Figure la shows a gene
expression matrix, figure 1b shows the same gene expression matrix when clustered
through unsupervised learning. As can be seen in the clusters marked by the two blue
rectangles, clusters can be formed through finding genes that are all highly expressed,
but also through a combination of under-expression (green) and over-expression (red).
In reinforcement learning, the algorithm takes a sequence of decisions and gets
rewarded (or punished) for the outcome of this decision. It learns by updating its model
and amending its decision in response to this reward. Samuels checker player is an
example of reinforcement learning; certain moves (decisions) lead to better game
outcomes (rewards) than others. Unsupervised and reinforcement learning will not be
considered further here; most approaches to predict survival or progression in cancer

and all algorithms presented in this thesis use supervised learning.

Supervised learning uses labelled data as input and learns a model that can accurately
predict something about this label on unseen data; we use labels to define what the
model should learn. The 70-gene breast cancer signature, for instance, labels patients
as ‘poor prognosis’ if their survival was shorter than 5 years and ‘good prognosis’
otherwise. Labels that indicate class membership (like poor or good prognosis) are
categorical, but labels can also be continuous; for example, reduction in tumor size.
Approaches differ for both types of labels, but in all supervised methods the model
combines certain features (i.e. what was measured) to predict the label of interest (i.e.
what we cannot measure and want to know). Figure 1c shows supervised learning with

a continuous label; the red line is the regression line that described the relation between
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gene expression for a certain gene and the tumor size. This model can be extended to
incorporate many variables. Often, we have measured more about the sample than is
relevant. For example, we have measured expression for all genes, but the majority is
not informative for survival time. Most approaches therefore include a feature selection
step, to select the most relevant features. Feature selection can precede training or be

incorporated in the training procedure.

High dimensional data and overtraining

An important challenge in machine learning, which is particularly salient in the analysis
of gene expression data, is the curse of dimensionality. This challenge stems from the
fact that we, in general, have many more features (genes) than samples (patients). When
considering high dimensional datasets, it is likely to find untrue correlations: when you
consider thousands of features, some will by chance correlate with the label even if no
true signal is present in the data. It is important to take this into account when selecting
features and training the model. In a high dimensional setting a machine learning model
can easily overtrain, which means the model is not fitting an actual relationship
between the gene expression patterns and the outcome, but starts to accommodate
noise in the data. As a result, overtrained classifiers will not work on new and unseen
data. Figure 1d shows how this can happen with categorical labels; the grey line
represents an overtrained classifier. Instead of learning a general distinction between
good and poor prognosis (the red line), it has fitted the specific datapoints present in
this dataset. To assess whether a true pattern is found (i.e. a pattern that generalized to
new and unseen data) an important concept is the separation of training and test data,
where one dataset is used to fit a model and other, unseen data is used to assess the
performance of the model. Of course, we usually do not have unlimited data available.
To guard against overtraining we can use cross-validation. In cross-validation we split
the training data in equal parts, for example three, also called folds (Figure le). We then
train a model on the first two folds and test the model on the remaining third to obtain
a better estimate of the expected performance on external data. We repeat this until all
three folds have been used as test data once. When we do multiple repeats of this, the
variables or models that perform well over all folds are most likely to be true and can be

tested on true external data.
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Figure 1. a. Unclustered gene expression. b. Unsupervised learning: clustering of gene
expression. c¢. Supervised learning with continuous label: regression. d. Supervised
learning with categorical label: classification. The grey line represents an overtrained
classifier, the red dotted line a more generalizable classifier. e. Three-fold cross
validation.
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One can also try to directly prevent overtraining in the training of the model itself; one
way is regularization. When applying regularization, the model contains parameters
that penalize complicated models. If a model is allowed to incorporate enough features,
it can fit any pattern. Imagine the model would incorporate each feature that was
measured; it could describe the training data perfectly, while not learning general
patterns. While regularization may lead to choosing simpler models with a slightly

worse fit, such models are more likely to generalize to external data.

Another way of preventing overtraining is using ensemble classifiers and bootstrapping.
In an ensemble classifier many weak classifiers are trained: classifiers of which the
performance by

itself will not be satisfactory. The idea here is that a weak classifier will make many
mistakes in assigning a sample to a class, but when we combine many weak classifiers
that all make a different mistake, together they can still distinguish better between
classes than any classifier on its own. We can make it more likely that these classifiers
fit different effects in the data by bootstrapping. In bootstrapping we sample randomly
from the data (typically with replacement) to generate a training dataset which
encompasses a random subset of the variables and samples of the full dataset. Because
we do this for each classifier separately, all classifiers have access to a slightly different
part of the data. This simultaneously assures they cannot overfit on the dataset as a
whole and that each classifier will make different mistakes. Which approach to prevent
overtraining is best depends on the type of data and classification problem, though

many successful approaches use a combination of all mentioned techniques.

Personalized medicine

If tumors behave differently based on the differences in mutations and gene expression
patterns, a logical next step is to investigate whether these differences can be used to
inform treatment. In 2001, it was estimated that for treatment across cancer types only
one in four patients sees a beneficial effect (Spear, Heath-Chiozzi, and Huff 2001).
While these numbers have improved somewhat with the rise of targeted therapies, it is

clear that even today we treat patients with drugs that will not benefit them.
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The practice to tailor treatment to the individual patients is known as personalized
medicine. Broadly, we can differentiate between two approaches in personalized
medicine. The first approach entails looking for specific mutations or aberrations
present in the tumor that can be targeted with drugs. One of the first examples of such
an approach was applied in chronic myelogenous leukemia, a type of blood cancer. A
common aberration in CML creates a so-called fusion gene between the BCR gene and
the ABL gene. This fusion gene encodes a protein that drives the rapid division of
leukocytes. In the late 90’s a drug was developed - imatinib - that specifically inhibited
this fusion gene and enormously improved survival for patients whose tumor harbors
this particular fusion gene (Druker et al. 2001). By now more drugs that target cancer
specific mutations have been introduced, like vemurafenib for BRAF mutations and
crizotinib targeting ALK positive tumors (Chapman et al. 2011; Shaw et al 2013). While
this has led to great advances in cancer survival, there are many cancer patients for
whom the tumor is not characterized by a cancer-specific, targetable mutation

(Priestley et al. 2019) and that therefore do not benefit from this strategy.

The second approach in personalized medicine is based on the presence of patient or
tumor characteristics that can predict whether they will benefit from generic treatment,
i.e. treatment not targeted to a cancer-specific aberration. Sometimes this can be
achieved by simply associating known prognostic markers with treatment benefit. For
example, it was shown that patients identified as low-risk by the 70-gene breast cancer
signature could safely forego chemotherapy (Cardoso et al. 2016). There have also been
more specific machine learning approaches to predict a patient's response to a
treatment, both using mutational data and gene expression (Le et al. 2017; Tanoue 2012;
O'Connell et al. 2010). Response to treatment can also be determined by non-tumor
characteristics, like how the body metabolizes the drug before it reaches the tumor. The
field of pharmacogenomics has identified many germline variants - common DNA
variants inherited from your parents - that have an influence on how a drug is
metabolized. Certain variants known to influence treatment are already routinely used
to determine for example effective dose (van der Wouden et al. 2019). Of course, even
targeted treatments do not benefit every patient that receives them; here the two

approaches combine.
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Survival analysis

To investigate whether one treatment leads to a better patient outcome than another
treatment, survival analysis is often employed. This enables an assessment of whether a
patient is statistically significantly less likely to die from the disease when for example
being treated with a certain treatment. To perform survival analysis we need to define
an endpoint: this is the outcome we are interested in. This can be death, but also, for
example, metastasis of the cancer. A big challenge in analyzing survival data is the fact
that some patients will be censored. When patients are enrolled in a trial and follow up
is performed for 10 years some patients will die during this period and some will be
known to be alive at the end of trial. However, there will also be a group for whom no
information is available: they have left the trial or contact was lost for some reason. The
patients for whom we have not recorded a date of death will be censored; we record the
last date on which they were known to be alive. The challenge is using the data from
censored patients; even if follow-up was not completed, there is useful information in
the fact that a patient was still alive after a certain time. The most commonly used model
is Cox proportional hazard model (Cox 1972). Here the partial log likelihood is
optimized over the £ by:

UB)= 2, (X;=log Y, 6;)

i-Cj=1 JY;2Y,
Optimizing the likelihood means the model finds the § that is most likely to give rise to
the observed data. The i indicates the censoring status; if this is 1 a date of death was
recorded, if it is a O this was not the case. Simply put, the Cox model describes which g
best explains the observed sequence of deaths. This enables us to take censored patients
into account up to the point of censoring; if a patient is censored at 5 years, we know
for sure everyone with an event before 5 years died before them. The X in the formula
represents the variable under consideration; when evaluating treatment effect this is

the treatment variable. If a treatment had no effect at all, the 8 will be (near) zero.

When we use the Cox model to estimate treatment effect this is often captured in the

hazard ratio. The hazard ratio is the exponent of the §; when a treatment has no effect,
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Figure 2. a. An example Kaplan Meier plot of a treatment A that confers a survival
advantage. b. An example plot of a prognostic classifier. c. An example plot of a predictive
classifier.

the HR is 1 (i.e. the exponent of 0). Survival data is often visualized in Kaplan Meier
plots, an example of which is shown in Figure 2a. The 8 describes the difference between
the two treatment groups, here with treatment A as reference. The S is this example is
-1, which means that when a patient receives the treatment their hazard of dying is
lower. A 8 above O would signify the patient has a higher hazard when treated with
treatment A. Censored patients are represented with a vertical mark. The Cox model
makes several assumptions about the data, the most important of which are that a) the
hazards between the different groups are proportional over time and that b) the
censoring is uninformative. Proportional hazards mean that the difference in risk
between groups is the same at any point in time - i.e. if treatment A reduces risk two-
fold this should be true in year 1 but also in year 5, etc. When the lines in a Kaplan Meier
plot cross, this assumption is violated. Uninformative censoring means that the variable
under consideration should not influence whether a patient is censored. If one
treatment group has much more censoring and this is somehow due to the treatment
itself, this cannot be modelled accurately within the Cox model and it will bias the

estimate of treatment effect.

In this thesis we mostly employ Cox proportional hazards modeling to estimate
treatment effect, but it is not confined to treatment estimates. It can for example also
be used to estimate the effect of gene expression on survival; it can incorporate multiple
variables at once and a fitted Cox model can then also be used to predict outcome for a
new patient. Survival analysis has been combined with machine learning, where the
survival data functions as a label. For example, regularized cox models (i.e. models with

a penalty on model complexity) were developed that can be used to model survival on
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high dimensional data sets like gene expression data (Simon et al. 2011). Another
popular approach for high dimensional data is training a Random Survival Forest. A
random forest is a machine learning approach that can be used on both discrete and
continuous labels and trains an ensemble of decision trees (Breiman 2001). It is
particularly suitable for high dimensional datasets as it prevents overtraining both by
bootstrapping and forming an ensemble classifier (discussed in the Machine Learning
section). As the name suggests, Random Survival Forests extend this approach to
survival data with censoring present. Rather than predict a particular label, Random
Survival Forests aims to divide the samples in subsets with a maximum survival

difference (Ishwaran and Lu 2019).

The difficulties of treatment benefit

Due to the rapid developments in cancer treatment, there is an increasing number of
cancer treatments available to choose from and often it is not clear which will be the
best choice. The classifiers previously discussed either predicted prognosis (regardless
of treatment) or predicted response to a single treatment. Figure 2b shows a Kaplan
Meier plot for a prognostic classifier. While this classifier identifies patients with a
better survival, the benefit from treatment A is present in both classes. Had this
classifier been trained and validated on a population with solely patients who were
treated with treatment A it would be impossible to distinguish between a predictive
effect for treatment A specifically or a general prognostic effect. In this example the poor
prognosis group still survives better than the good prognosis group when treated with
treatment B; all patients should receive treatment B. When multiple treatments are
available and a choice has to be made between them, the current classifiers are not
sufficient. Arguably the most clinically relevant question is which treatment will benefit
a patient most; i.e. which treatment would lead to the longest survival. However,
patients who benefitted from a certain treatment cannot be identified straightforwardly,
since we can only observe the response to the treatment the patient actually received.
Even if a good response was achieved, it does not mean the patient benefited specifically
from this treatment. Possibly any other treatment would have achieved the same
results. Conversely, even if a patient had a short survival time, the given treatment could
still have been the best choice - maybe the response would have been even worse on

any other treatment. We can thus not label a patient as benefiting or not from the
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observed survival. Traditional supervised machine learning approaches cannot be

employed; these approaches rely on predefined labels.

We thus need to employ other approaches to predict treatment benefit. In all following
work we define treatment benefit as a patient surviving longer on the treatment of
interest than they would have done on a comparator treatment. Figure 2c visualizes
treatment benefit in a Kaplan Meier plot: we identify a ‘benefit’ class with a larger
benefit than the population as a whole and a ‘no benefit’ class where treatment A does

not lead to a better survival.

One approach is to investigate if known prognostic markers are also linked to treatment
benefit, as was done in the case of the 70-gene breast cancer signature. However, these
associations can only be investigated after the genes or markers were identified using
survival information only (or possibly an unsupervised approach). It is to be expected
that methods taking treatment specific survival into account in the discovery will be

superior to after the fact analysis.

Another approach is to model on two treatments separately, but to only retain variables
that have an opposite effect in both treatment arms. The drawback here is that the
model does not get an opportunity to specifically look for a combination of variables
that achieve this. It is not necessarily expected that there will be one single marker that
can separate these groups. Of course, a good response to one treatment would not
automatically mean a bad response to another treatment and markers would be difficult

to find in separate analyses.

We show in Chapter 2 that we cannot successfully train a model on labels derived
directly from survival and treatment information. In this thesis we will present multiple
approaches to predict treatment benefit using survival outcome and treatment

annotation without having to define training labels.

Counterfactual reasoning

When we talk about treatment benefit, we are trying to answer the question “what

would have happened had we given this specific patient a different treatment?”. The
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answer to this type of what-if question is known as a counterfactual. Counterfactual
reasoning has mostly been used in establishing causality, i.e. which variable is causal for

the difference in events when the “if” is changed. It should be noted that establishing

causality is not necessarily the goal of machine learning; accurate prediction is. These

two things can and perhaps ideally do occur together, but it is not necessary.

Counterfactual approaches can explain models or important variables by investigating
what would have changed the prediction of an already existing model (Mothilal,
Sharma, and Tan 2020). This is visualized in Figure 3a; would a different treatment have
led to the same poor outcome? The problem with these approaches is that a model
needs to exist already or that at the very least candidate variables need to be known.
With a defined model it can be investigated what the change in predicted outcome is
when the value of a variable (like the treatment variable) is changed. In a gene
expression setting tens of thousands of variables are available and it is likely only a small
part of those are relevant to benefit from the treatment under investigation.

We thus need a method to answer the what-if question without already having a model.
An example of attempting this is an approach using so-called ‘virtual twins’ (Foster,
Taylor, and Ruberg 2011). In the context of a clinical trial a ‘virtual twin’ can be modelled

for each clinical trial participant, where the twin undergoes the counterfactual

patient 1 patient 2
a. b. drug A drug B
drug --------
B/ 7 i
"",," ....\“ qc) Match
(]
' g
= |
potential
“. benefit
. d
Survival

Figure 3. a. Example of a counterfactual model. We have observed a poor outcome when
a patient with a certain gene expression profile (GEP) was exposed to drug A. The model
now needs to predict whether drug B would have led to the same outcome. b. Example of
how matched patients can be used; patient 2 has a similar gene expression profile as patient
1, but was exposed to a different drug and experienced a longer survival. This represent the
potential benefit for patient 1, had they been treated with drug B.
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condition of the real participant (Vittinghoff et al. 2010). Here again, the assumption is
that the estimation of both responses arises from the same (linear) model and that the
measured variables are independent of the alternative option you are modelling. Figure
3b shows this matching of patients based on gene expression profiling, where patient 1
and 2 are very similar, but received a different treatment. However, the virtual twin
approach was proposed in a setting of low dimensionality, considering less than 100
variables. It has been shown since that the assumptions made in this approach do not
hold in high dimensional settings (Lu et al. 2018). Other imputation-like approaches,
where the outcome on the treatment not received is regarded as a missing data point,
have mostly been applied in a setting with a limited number of variables that are all
likely to be of influence. In a high dimensional setting like gene expression - or even
more difficult, germline variation - we are dealing with many irrelevant variables, but
no way of determining which are irrelevant before building the model. We do not know
which genes should be used to identify matched patients. We thus need new methods

to be able to apply counterfactual reasoning in high dimensional datasets.

Multiple Myeloma

Chapter 2 and Chapter 3 deal with predicting treatment benefit in multiple myeloma.
Multiple myeloma is a cancer of the plasma cells that develops in the bone marrow
(Rajkumar 2018). Plasma cells are a fully differentiated white blood cell and play an
important role in the immune defense by producing immunoglobulins, i.e. the
antibodies that enable the immune system to recognize pathogens. Multiple myeloma
can develop slowly, sometimes being present as smouldering multiple myeloma over
the course of decades, to suddenly spike and cause symptoms (Kyle et al. 2007).
Multiple myeloma is also a very heterogeneous disease. A few chromosomal aberrations
are often found in multiple myeloma, but most only occur in a minority of the patients
(Nahi et al. 2011). Mutations in DNA are also sparse and there is no clear mutational
event to define multiple myeloma (Walker et al. 2018). A lot of effort has gone into
distinguishing patients with high or low risk variants of the disease and most of these
are defined by gene expression (Szalat, Avet-Loiseau, and Munshi 2016). It is still an
incurable disease, though survival expectancy at the moment of diagnosis has increased
significantly in the past two decades due to novel treatment being introduced in the

clinic (Rajkumar 2018).
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Two major treatment classes now used in the clinic are proteasome inhibitors (PI) and
immunomodulatory drugs (IMIDs) and in this thesis we focus on predicting benefit to
PIs. The rationale behind PIs is that MM cells overproduce immunoglobulins, which are
proteins. The proteasome is the main way a cell has to get rid of unwanted proteins and
this system is overburdened in MM cells. When the proteasome is inhibited, proteins
start to accumulate in the cell, eventually triggering apoptosis when this situation
cannot be resolved. MM cells are more reliant on the proteasome than other, healthy

cells, providing a therapeutic window for PI treatment (Moreau et al. 2012).

An open problem is whether the risk profiles and different gene expression patterns
across MM patients can also be informative for which treatment is ideal. Currently these
markers are not used to decide on an ideal treatment and we thus have to look beyond
the known markers. Multiple myeloma represents a good test case for the prediction of
alternative treatment response from gene expression data; clinical trials are available
and it is known gene expression is of influence on disease trajectory and there is an
unmet need for tools to aid in treatment decisions. A clinical trial setting is ideal for
training a model like this, since treatment assignment is random. As discussed, in
counterfactual reasoning it is assumed that the variables in the model are independent

of the condition to be modelled; this can be safely assumed in a clinical trial.

Understanding treatment benefit

Predicting treatment specific survival is one part of the challenge and very important in
clinical decision making. The next question that inevitably presents itself is why certain
patients respond better than others to a certain treatment. Could a well-performing
model shed some light on this?

A usual step to gain insight in the mechanism behind the predicted benefit is to
investigate the genes included in the model that can predict treatment response, but
more often than not these do not present a clear picture of mechanisms of treatment
response. Classifiers trained for the same purpose, with similar performances, show very
little overlap in genes used (Tang et al. 2017). For the 70-gene breast cancer classifier
mentioned earlier, it was shown that a similar classifier can be built when these 70 genes
are excluded from the analysis (Ein-Dor et al. 2005). The fact that a good prediction

performance can be achieved by many different genes is at least partly caused by the
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great redundancy in gene expression information. This in turn is due to the fact genes
act in pathways and regulate each other giving rise to highly (inversely) correlated gene
expression patterns. For classification purposes, it can be irrelevant which of these genes
are included in the model, since they provide the same information - as shown by Ein-
Dor et al. Substituting one for the other will not change the model performance.
However, for the biological interpretation and understanding the role of these genes in

determining patient benefit to treatment these genes are not equal.

Some classification approaches take this aspect into account, and include pathways and
known relationships between genes in the model. However, it has been shown these
methods can achieve similar performances when using random networks as when true
biological networks are used (Staiger et al. 2012), rendering the importance of the
biological links doubtful. These networks can also be biased towards well-studied genes;
if a gene is known to be important in cancer development, more research will study it
and more relationships will be discovered. Thus there are a few well known genes, that
are annotated in many different contexts, while other genes are not annotated at all
(Haynes, Tomczak, and Khatri 2018). This limits the new mechanisms that can be
discovered to what is already known. Moreover, disease can also change how genes
interact with each other; interactions in healthy tissue can be very different to
interactions in cancerous tissue and interactions can differ between cancer types. A
possible approach is to learn new gene networks that are specific to the disease or even
the treatment. This can be done in a data-driven manner, so it is not biased by gene
annotation of pathways in health cells. In this thesis we use both known biological
annotation (Chapter 2 and Chapter 4) and present a method to learn new networks,

specific to treatment benefit (Chapter 3).

Contribution of this thesis

There is a gap between the machine learning approaches available to predict treatment
response and the clinical reality, where we are interested in answering the question:
which drug is the best choice for this patient? There have been several approaches
developed in the field of counterfactual reasoning, but none that can handle the high
dimensional nature of gene expression data. In this thesis we present several different

approaches to model what the outcome would have been for a patient had they received
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a different treatment. With these we can predict treatment benefit in a clinically
relevant way. Much of the work rests on our concept Simulated Treatment Learning,
which uses the idea that genetically similar patients who received a different treatment
can be used to model response to the alternative treatment. In Chapter 2 we present
GESTURE (Gene Expression-based Simulated Treatment Using similaRity between
patiEnts), an algorithm that evaluates which gene sets (here formed by Gene Ontology
annotation) are most relevant to treatment benefit and combines them in an ensemble
classifier to predict treatment benefit for new patients. We show its performance in a
multiple myeloma dataset, predicting benefit to both bortezomib (a PI) and
lenalidomide (an IMID), representing two major treatment classes in multiple
myeloma. In Chapter 3 we present STLsig, which uses Simulated Treatment Learning
to form disease and treatment specific gene networks that can predict treatment
benefit. We demonstrate its utility in predicting treatment benefit to PI treatment in
multiple myeloma and moreover showing that the genes in the signature are unique
(i.e. a new, similar performing signature cannot be found with the same method when
the genes are removed). This offers perspective for biological interpretation. In Chapter
4 we adapt GESTURE to predict chemotherapy benefit in breast cancer. This offers
additional challenges, as we do not have access to randomized trial data and the event
rate is much lower. Here we also find the limitations of such a setting, as we can build
a classifier that validates in cross validation, but not in external data. In Chapters 2 - 4
we use tumour gene expression data to predict treatment benefit, but in Chapter 5 we
use SNP data (i.e. germline variation) to predict treatment benefit. We introduce
RAINFOREST (tReAtment beneflt prediction using raNdom FOREST) and use it to
predict benefit to cetuximab in metastatic colorectal cancer. This method is based on
random forests, but does not need predefined labels and can identify a subset of patients

who benefit from the addition of cetuximab, while the population as a whole.
Together, we provide an array of tools that can be used to predict treatment benefit in

high dimensional settings and we show their utility in a variety of settings. This can help

make personalized medicine a reality in cancer treatment.
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Chapter 2

Abstract

Many cancer treatments are associated with serious side effects, while they often
only benefit a subset of the patients. Therefore, there is an urgent clinical need for
tools that can aid in selecting the right treatment at diagnosis. Here we introduce
Simulated Treatment Learning (STL), which enables prediction of a patient's
treatment benefit. STL uses the idea that patients who received different
treatments, but have similar genetic tumor profiles, can be used to model their

response to the alternative treatment.

We applied STL to two Multiple Myeloma gene expression datasets, containing
different treatments (bortezomib and lenalidomide). We find that STL can predict
treatment benefit for both; a two-fold progression free survival (PFS) benefit was
observed for bortezomib for 19.8% and a three-fold PFS benefit for lenalidomide for
31.1% of the patients. This demonstrates that STL can derive clinically actionable

gene expression signatures that enable a more personalized approach to treatment.
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Introduction

The successful treatment of cancer is hampered by genetic heterogeneity of the disease.
Differences in the genetic makeup between tumors can result in a different response to
treatment (Burrell et al. 2013). As a result, despite the existence of a wide range of
efficient cancer treatments, many therapies only benefit a minority of the patients that
receive them (Block et al. 2015). Because many therapies may be associated with serious
adverse effects, there is a great clinical need for tools to predict - at the moment of

diagnosis - which patient will benefit most from a certain treatment.

To address this, substantial efforts have been made to identify clinical and molecular
markers, such as gene expression signatures, that can predict a favorable or adverse
prognosis (Santos et al. 2015). Traditionally, this is achieved by defining subtypes (e.g.
through unsupervised learning approaches) based on molecular markers such as
genotype or gene expression. For many of these subtypes an association has been
determined to survival or drug response (Liévre et al. 2006; Bernard et al. 2009;

Walther 2009).

More direct approaches use supervised learning, such as (logistic) regression, to identify
markers associated with survival. In this setting, a class label is defined for each patient
based on their survival or some other outcome measure, such as the risk of experiencing
a relapse. The training procedure then focuses on predicting these labels as accurately
as possible to ultimately produce a classifier that can predict outcome for a new patient.
One of the first successful examples of such approach resulted in a 70-gene prognostic
expression signature for breast cancer (Van ‘t Veer et al. 2002). A phase III clinical trial
recently revealed that patients predicted to have good survival based on this signature
can safely forego chemotherapy without compromising outcome (Cardoso et al. 2016),
thus preventing overtreatment of these patients. These examples demonstrate that

prognostic predictors can have value in predicting benefit to treatment.

Despite these successes, prognostic signatures are fundamentally limited in their ability
to predict treatment benefit. This is because prognostic signatures are determined
without taking treatment into account, i.e. they are not trained to distinguish patients

that survive long as a result of the treatment. For this reason, patients classified in the
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Figure 1. lllustration of the difference between prognostic and predictive classifiers
and an overview of the approach a. Example of the Kaplan Meier curve for a
prognostic classifier. b. Example of the Kaplan Meier curve for a predictive classifier.
c. Division of dataset into training and test sets. D1, D2 and D3 are all used once to
validate the classifier trained on the remaining two thirds of data. d. Flow of the
GESTURE algorithm. In step 1 the prototypes with a longer than expected survival
difference are identified on fold A. In step 2 the number of prototypes and
corresponding decision boundary used in the classifier are optimized on fold B. In
step 3 the performance of the classifier on fold C across all repeats is used to select
the combination of gene sets to be used in the final classifier. In step 4 a classifier
for these gene sets is defined on all training data. This classifier will be validated on
the fold D not included in the training data.
'long survival' class may in fact survive just as long on any treatment available.
Conversely, patients in the 'short survival' class could actually have benefit from
treatment because they would have had an even shorter survival on another treatment.
In Figure la and 1b we illustrate this in the setting of a randomized trial with two
treatment arms. Figure la shows the result for a prognostic classifier which results in a
survival difference between the two classes that is similar in both treatment arms.
However, to achieve treatment benefit prediction we should identify a subset of patients
that specifically benefit from one of the two treatments, that is, where the difference in
survival between the two treatments is larger than in the population as a whole (Figure
1b). It should be noted that it is possible that a prognostic classifier happens to identify
a difference between treatment arms as well, but this is not an aim in the training

procedure. We hypothesized that a method that is specifically geared towards
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optimizing the identification of a subset of patients with a greater treatment benefit will

achieve better results.

Treatment benefit is commonly measured by the Hazard Ratio (HR), which describes a
patient’s hazard to experience an event, for example death or progression of disease,
relative to another set of patients who received a different treatment. Some recently
published predictive classifiers have only shown to find a difference in response or
survival between two groups of patients who all received the same treatment (Bhutani
et al. 2017; Vansted et al. 2018; Ting et al. 2017). These signatures are not constructed
to be predictive, since they do not necessarily provide a treatment decision; the
prognosis may well be the same in every treatment group. To be truly predictive, a
subgroup with a difference in survival between two treatment arms needs to be

identified.

Constructing classifiers that can achieve true treatment benefit prediction thus poses a
unique challenge, as it is impossible to know how a patient would have responded to
the alternative treatment. As a result, class labels based which can be used to train a
classifier are not available and existing classification schemes are not applicable (as

demonstrated in the Results and discussion section).

To address the lack of suitable training labels, we introduce the concept of Simulated
Treatment Learning (STL), a method to derive classifiers that can predict treatment
benefit. STL can be applied to gene expression datasets with two treatment arms and
survival data. STL uses genetic similarity, defined based on gene expression in the
tumor, between patients from different treatment groups to model how a particular

patient would have responded to the alternative treatment.

In this work we focus on predicting treatment benefit for Multiple Myeloma (MM), a
clonal B-cell malignancy that is characterized by abnormal proliferation of plasma cells
in the bone marrow. Median survival of MM patients is 5 years (Howlader et al. 2016).
In the last two decades many novel therapies have been introduced for MM, resulting
in an improved survival (Kumar et al. 2008; Munshi and Anderson 2013). Bortezomib
and lenalidomide were crucial in achieving these improved survival rates. However,

despite these advances, not all patients benefit from these novel agents and there are
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insufficient tools to predict treatment response or survival. Between MM patients
heterogeneity in gene expression profiles is observed (Lohr et al 2014; Keats et al. 2012).
For these reasons, genetic signatures that can predict treatment benefit for MM patients

are of high clinical value, making it an ideal test case for STL.

There are some preliminary indications that predictive signatures may exist for MM.
Some of the various prognostic factors known in MM were later found to be predictive
as well. For instance, it was shown that patients with the chromosomal aberration
dell7p, known to be prognostic, benefitted more from the proteasome inhibitor
bortezomib than patients without dell7p (Neben et al. 2012). Furthermore, expression
levels of tumor suppressor RPL5, located on chromosome 1, were also found to correlate
with bortezomib response (Hofman et al. 2017). Both these abnormalities have been
found to be recurrently present in MM plasma cells and were later found to be
prognostic and predictive. STL enables us to directly discover predictive markers,

without relying on previously discovered (prognostic) markers.

We implement the STL concept in the algorithm GESTURE (Gene Expression-based
Simulated Treatment Using similaRity between patiEnts), which makes it possible to
derive a gene expression signature that is able to distinguish a subset of patients with
improved treatment outcome from the treatment of interest, but not from the
comparator treatment.

We show that GESTURE can predict treatment benefit for two major treatments in
multiple myeloma, bortezomib and lenalidomide. The final classifier finds a subgroup
containing 19.8% of the patients that have a two-fold progression free survival (PFS)
benefit when treated with bortezomib and a three-fold PFS benefit for lenalidomide for
31.1% of the patients. Our results demonstrate that GESTURE can be used to robustly
derive clinically actionable gene expression signatures that enable a more personalized

approach to cancer treatment.

Results

Definition of treatment benefit class
We combined data from three randomized phase III clinical trials comprising of 910

patients with MM (see methods), who either received the proteasome inhibitor
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bortezomib (n = 407) or not (n = 503). For each patient gene expression profiles were
generated from purified myeloma plasma cells at diagnosis. An overall HR of 0.74 (95%
CI 0.61 - 0.90, p = 0.0029, n = 910) is observed between the two treatment arms, in
favor of the bortezomib arm. While this HR indicates significant treatment benefit for
bortezomib, we asked whether this was driven by a small benefit for all patients, or if a
subgroup of patients can be identified showing a large benefit from treatment with
bortezomib, while the remainder of patients show a smaller or no benefit from
bortezomib. With this research we aim to identify a subset of patients, the ‘benefit’ class,
who benefit from the treatment of interest (bortezomib) relative to a comparator
treatment arm which does not contain bortezomib. The patients not included in the
‘benefit’ class belong to the class ‘no benefit’ and would not benefit from receiving
bortezomib. The classifier identifying this ‘benefit’ class could serve as a valuable
diagnostic to determine which newly diagnosed patients would benefit from

bortezomib (based) treatment.

Regular classifiers cannot predict treatment benefit

We first aimed to evaluate how well a regular (prognostic) classification approach is
able to reach treatment benefit prediction. According to our definition of treatment
benefit, a classifier should identify a subset of patients (class ‘benefit’) with a
significantly better survival on the treatment of interest than the population as a whole.
In a regular binary classification setting, training such classifier requires a labeled
dataset, where the label indicates if the patient will or will not benefit from treatment.
As discussed in the introduction, such labels are not available, since we cannot know
how a patient would have responded to a different treatment. However, one reasonable
assumption could be that patients who survive long in the treatment arm of interest do
so because they benefited from the treatment, and, conversely, patients who survive
short in the other treatment arm do so because they should have received the treatment
of interest. Following this line of reasoning, we define the ‘benefit’ class as the 25%
longest surviving patients in the bortezomib arm and the 25% shortest surviving non-
bortezomib patients. Together, these two groups form the class ‘benefit’ (25% of all

patients). All other patients from the two arms (75%) are labeled as class ‘no benefit’.

Table 1 demonstrates that with some classifiers class ‘benefit’ can be predicted from the

gene expression data reasonably well, with a cross-validation accuracy ranging from
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0.58 for the random forest classifier to 0.81 for the support vector machine classifier.
However, using an independent validation fold, we find that prediction of treatment
benefit fails as no improvement in HR is found over the whole population. A similar
absence of performance is observed when other percentages than 25% were chosen to

define the class ‘benefit’ (Supplementary Table 2, 3 and 4).

The approach to derive labels directly from survival information is essentially similar to
prognostic classification, and our results thus cast doubt on the utility of prognostic
approaches in a predictive setting. However, this lack of performance may not be
surprising, since the training labels already lead to unrealistically large HRs (<0.1),
indicating that the labels are often wrong. Classifiers trained on such noisy labels are
indeed unlikely to have predictive performance in independent validation data. It
should moreover be noted that this approach does not take censoring of the patients
into account.

As an alternative approach, we therefore also generated a large number (1000) of
random labelings and evaluated the HR in the ‘benefit’ class of these randomly labeled
datasets. Those labelings that resulted in a significant (p<0.05) HR below 0.5 were
subsequently used to train a classifier. This greedy random search procedure enables
taking into account censoring of patients (through the calculation of the HR) and leads
to less extreme HRs in the training data. However, this approach also did not yield
classifiers with a significant HR when applied to the validation fold (Table 2). This
demonstrates that it is not straightforward to derive labels for treatment benefit that

can be accurately predicted from the gene expression dataset.

Overview of simulated treatment learning

The key idea of STL is that a patient’s treatment benefit can be estimated by comparing
its survival to a set of genetically similar patients that received the comparator
treatment (Figure 1d, step 1). Patients with a large survival difference compared to
genetically similar patients can then act as prototype patients; new patients with a
similar gene expression profile are expected to also benefit from receiving the treatment
of interest. Since similarity in gene expression profile is greatly influenced by the choice
of input genes, we define this similarity according to a large number of gene sets.
Training the prototype-based classifier requires optimizing two parameters per gene

set: the number of prototypes to use and the decision boundary, defined in terms of the
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Table 1. Classification accuracy in cross validation and HR in independent validation
for the classifiers trained on labels based on the top 25% surviving bortezomib patients
and the bottom 25% non-bortezomib patients.

Classification

accuracy

Validation HR

p-value

Nearest mean

Random forest

SVM

0.58 (sd: 0.07)

0.68 (sd: 0.03)

0.81 (sd: 0.06)

0.96 (95% CI: 0.57 -
1.60)

0.95 (95% CI: 0.54 -
1.68)

0.81 (95% CI: 0.31 -
2.13)

0.86

0.87

0.67

Table 2. Classification accuracy in cross validation and HR in independent validation
for the classifiers trained on labels selected from randomly generated classifications
with a significant HR under 0.5

Classification

accuracy

Validation HR

p-value

Nearest mean

Random forest

SVM

0.50 (sd: 0.02)

0.66 (sd: 0.02)

0.83 (sd: 0.06)

0.81 (95% CI: 0.49 -
1.35)

0.81 (95% CI: 0.50 -
1.41)

110 (95% CI: 0.52 -
2.34)

0.42

0.51

0.80
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Euclidean distance to the prototype (Figure 1d, step 2). The STL classifier also needs to
select the optimal gene sets to ultimately classify a patient. Importantly, the labels are
now defined using the prototypes identified for the various gene sets, which means that
in the STL approach there is no need to define labels before training the classifier. To
train the classifier and select the best performing gene sets, the training data are split
in three folds (A, B and C). Fold A is used to identify prototypes, fold B to optimize the

decision boundary and fold C to estimate classifier performance.

To obtain unbiased estimates of the overall prediction performance, the entire dataset
is divided in three equal folds, D1, D2 and D3, ensuring a similar HR between the
treatment arms in all three folds. Training is performed on two folds, while the
remaining fold is kept separate to serve as an independent validation set. This is rotated
to obtain an unbiased prediction for each fold. The division of the data in D1, D2 and

D3, and subsequently in folds A, B and C is shown in Figure lc.

It is a priori unknown which genes will be relevant to defining patient similarity and
predicting treatment response. We used 10,581 functionally coherent gene sets based
on Gene Ontology annotation. Each gene set is used to train a separate classifier. The
top-performing classifiers are subsequently combined into an ensemble classifier to
determine the optimal number of gene sets to be used in the final classifier (Figure 1d,
step 3, for details see Methods). For the gene sets included in this optimal number a
single classifier is trained using all the training data. These classifiers are combined into
the final ensemble classifier that is used to classify the patients in the validation set

(Figure 1d, step 4).

STL finds a predictive classifier for bortezomib benefit

Figure 2a shows the cumulative progression free survival curves for two treatment
arms, with an HR of 0.74 (95% CI 0.61 - 0.90, p = 0.0029, n = 910) between the
treatment arms. Figure 2b shows the treatment arms and classes as identified by the
STL classifier, when combining the class ‘benefit’ from the three validation folds. These
three validation folds together comprise the whole dataset; the classification of each
validation fold is predicted by separately trained classifiers. This enables us to show a
validation performance for the whole dataset. The validation HRs for the ‘benefit’ and

‘no benefit’ class are 0.50 (95% CI 0.32 - 0.76, p = 0.0012, n = 180) and 0.78 (95% CI
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0.63 - 0.98, p = 0.03, n = 730), respectively. In the entire population an HR of 0.74 (p
= 0.0029, n = 910) is observed. These results show that a subgroup, comprising 19.8%
of the population (n=I80 out of 910), is identified by our method that benefits

substantially more from bortezomib treatment than the population as a whole.

More importantly, the STL approach is able to discover and predict this subgroup using
the gene expression data at diagnosis. In the bortezomib arm, the ‘benefit’ and ‘no
benefit’ class exhibit similar survival curves. This is expected, since our classifier is
trained to predict benefit with respect to the patient group not receiving bortezomib.
As the Kaplan Meier in Figure 2b shows, the other treatment arm in the ‘no benefit’
class also has a similar survival, which means we expect these patients would have had
a similar survival had they not received bortezomib. The ability to determine that a
patient would not benefit from bortezomib is of equal importance as predicting benefit;

preventing unnecessary treatment is an important aim of personalized medicine.

The HRs observed within each of the individual validation folds are similar to the HR
obtained when combining all folds (0.51 (95% CI 0.28 - 0.92, p = 0.03, n = 89,), 0.39
(95% C10.14 - 1.08, p = 0.07, n = 30,) and 0.46 (95% CI 0.21 - 1.02, p = 0.06, n = 61) in
folds D1, D2 and D3 respectively). We note that the HR is comparable in all folds,
demonstrating a stable performance, although not statistically significant for fold D2
and D3 at p < 0.05 due to the fact that in D2 9.9% of patients and in D3 20.1% are

included in the ‘benefit’ class and versus 29.4% in DI.

Traditionally, the performance of a classifier is assessed by computing its accuracy,
which is done by comparing the labels predicted by the classifier with ground truth
labels. Ground truth labels are labels that are known to be accurate because they can be
directly observed, e.g. if a patient survives longer than 5 years or not. Since we do not
know beforehand which patients benefited from bortezomib, we have no ground truth
labels available and cannot compute the accuracy of our classifier. However, we can
compare the class labels obtained with the three separate classifiers when applied to all
910 patients. We find that these three class assignments agree between the classifiers
significantly more than expected by chance (i.e. 0/3 classifiers or 3/3 classifiers predict
benefit; Supplementary Figure 1). A similar conclusion is reached by comparing the

classification scores directly, which significantly correlate (all p-values < 1*10°%).

37




Chapter 2

a o b.
E E:
2 2
@ o] @
8 8
[ [
©
5 o s
o < =)
S S o
a ° a
2 2
S o 5 o
g o g [=} Bortezomib, benefit (n = 97)
=1 . _ =1 Bortezomib, no benefit (n = 310)
o Bortezomib, n =407 o —— Other, benefit (n = 83)
g 1 — No bortezomib, n = 503 g | —— Other, no benefit (n = 420)
T T T T T T T T T T 1
0 10 20 30 40 50 0 10 20 30 40 50
Time (months) time (months)
HR = 0.74, p = 0.0029 HR 'benefit' class = 0.50, p = 0.0012
HR 'no benefit' class = 0.78, p = 0.03
0.4 0.5 0.6 0.7 0.8 0.9
C . o L | | | | ] d .
o] Confidence STL classifier
[s0)
2 . CNGB1
- et GATRG TACR1
o ga'm79q34 SFRP2 ”YA\“ o ‘ PTEN
2 © 1"del13q14 MS-e INPPSD
© . VEGFA
¥ o cD1 ga‘mquZI PKLR. SFRP1
E . KIF1B 77,8
©
& 3 ENPP1 .
I SPTLC2 SPTLC1
< .
o PHKA2 PKM NFTIA EZR ooy A
ADM:
© HMOX1 TLR9
o o PRKACA CALCA .
Not significant (p > 0.05) " o o
o | e Significant (p < 0.05)
e T T T T T 1 L6
50 40 30 20 10 0
Percentage class 'benefit' TMOD2

Figure 2. Overview of the bortezomib classifier results and comparison to known markers. a.
Kaplan Meier of the entire bortezomib dataset, showing a HR of 0.74 (95% CI 0.61 — 0.90, p
= 0.0029, n = 910,) between the treatment arms. b. Kaplan Meier of the combined
classifications into a ‘benefit’ and ‘no benefit’ class of D1, D2 and D3. A HR of 0.50 (95% CiI
0.32 - 0.76, p = 0.0012, n = 180,) is found between the treatment arms in the ‘benefit’ class
and a HR of 0.78 (95% CI 0.63 — 0.98, p = 0.03, n = 730) in the ‘no benefit’ class. These results
show that a subgroup, comprising 19.8% of the population (n=180 out of 910 total), is identified
by our method that benefits substantially more from bortezomib treatment than the population
as a whole; in the entire population an HR of 0.74 (95% CI 0.61 — 0.90, p = 0.0029, n = 910)
is found. ¢. The HR found in the ‘benefit’ class (y-axis) when different operating points (x-axis)
are used, compared with known predictive and prognostic markers. The gray dotted line
indicated the HR found in the entire dataset, without classification. d. Relationships between
the 31 genes in common between the D1, D2 and D3 classifiers. Node size corresponds to
how much more a gene was observed in the selected gene sets than expected. Green nodes
indicate that the gene is associated with a p-value < 0.05. Relationships are inferred from
literature with the GeneMANIA algorithm (Warde-Farley et al. 2010). A purple edge indicates
the genes are co-expressed, a green edge indicates a genetic interaction, a red edge a
physical interaction, an orange edge a shared protein domain, a dark blue edge indicates co-
localization and a light blue edge shows that both genes are annotated to the same pathway.
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When considering the cases for which the three classifiers agree, we find that 503
patients are consistently classified as ‘no benefit’ and 57 patients as ‘benefit’. Together,
this demonstrates that, even though the classifiers do not agree on the class assignment
for all patients (which is expected in practice for classifiers with less than 100%

accuracy), they capture the same gene expression patterns.

The decision boundary of the classifiers are defined by the parameters k and gamma
and a threshold T. We optimize the combination of k and gamma by an exhaustive grid
search. We verified that the performance of our classifier is robust to small changes in
these parameters (Supplementary Note 1). The operating point of the classier is
determined by the number of individual classifiers in the ensemble that agree on the
class label, and is thus directly related to the confidence of the ensemble classifier about
the label ‘benefit’. To ensure sufficient power and provide a treatment decision for a
substantial group of patients, the operating point of the classifier was set to 20% in
training (see methods). At this operating point, 19.8% of patients in the validation folds
were actually assigned to the ‘benefit’ class. Figure 2c depicts the HR as a function of
the confidence level of the classifier. We observe that, for higher confidence levels
(yielding smaller sizes of the ‘benefit’ class) more extreme validation HRs are observed,
demonstrating that there is a direct relation between classifier score and treatment
benefit. This is consistent with the fact that the highest HR and largest class ‘benefit’
are found in fold D1 in validation, while the lowest HR and the smallest class ‘benefit’

are found in D2.

As a control experiment, we also ran the algorithm with shuffled treatment labels,
destroying the relationship between the gene expression and the treatment specific
survival. As expected, the classifier trained on this data shows no performance in the
validation data, achieving an HR of 1.09 (95% CI 0.71 - 1.67, p = 0.69, n = 167) in the
class ‘benefit’ and an HR of 0.95 (95% CI 0.77 - 1.18, p = 0.65, n = 743) in the class ‘no
benefit’ (Supplementary Figure 3). This reinforces our observation that STL identifies

a true effect, since the classifier shows no performance in random data.
STL classifier outperforms known markers

We compared the HRs found using the STL classifier with several known prognostic

markers in MM, some of which also show predictive value (Figure 2c). The STL
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classifier has a superior performance for operating points that result in assignment of
up to 30% of the patients to the class ‘benefit’. The markers that slightly outperform the
STL classifier do so only for operating points that results in much larger sizes of the class
‘benefit’ and lead to smaller effect sizes. The grey line indicates the baseline HR found
in the entire dataset. A clinically actionable classifier should reach a substantially larger
benefit than this baseline, which is only attained by the STL classifier and the MF cluster

for operating points <30%, where the STL classifier outperforms the MF biomarker.

Biological information is important for performance

To investigate if the biological knowledge contained in the Gene Ontology, used to
define gene sets, truly aids classification performance, we also tested random gene sets
with the same set size distribution. Using the random gene sets, final classification
results in a significant HR of 0.56 (95% CI 0.34 - 0.90, p = 0.02, n = 148) when all three
validation folds are combined (Supplementary Figure 2). This is not unexpected as
combining random feature sets in an ensemble classifier is known to achieve good
classification performance (Breiman 2001). Moreover, it has been shown previously that
random gene signatures can perform on par in a prognostic setting (Venet et al. 2011).
Nonetheless, the STL classifier trained using the GO gene sets outperforms the random
gene set approach in both HR and p-value. Moreover, in contrast to the relatively stable
performance across validation folds when using the GO gene sets, the performance of
the random set approach varies greatly between the folds, ranging from an HR of 0.76
(95% CI1 032 - 1.85, p = 0.55, n = 41) in DI to an HR of 0.44 (95% CI 0.21 - 0.93, p =
0.03, n = 67) in D3.

Together, this demonstrates that the biological information contained in the Gene

Ontology gene sets is important to the performance of the STL classifier.

Genes used to predict treatment benefit bortezomib

The classifiers built for D1, D2 and D3 use respectively 113, 218 and 111 GO gene sets to
predict bortezomib benefit, encompassing a total of 1913 unique genes. There are 31
genes used in all three classifiers (Figure 2d). There are GO categories that include a
large subset of these 31 genes, including “positive regulation of transcription from RNA
polymerase II promoter”, “cellular response to hypoxia” and “negative regulation of the
apoptotic process”. All these GO categories are associated with the pathogenesis of

cancer. Both increased proliferation and the ability to evade apoptosis are hallmarks of
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cancer (Hanahan and Weinberg 2011). It has also been established that cancer cells can
adapt their metabolism to thrive in hypoxic conditions (Eales et al. 2016). For the 31
genes, we calculated they are selected more than expected by chance. GO sets are
hierarchical (i.e. there is a larger parent category that can include several children
categories) and genes can be annotated to multiple GO categories. Therefore, we have
taken into account how many GO categories include a certain gene to establish if we
observe a gene more often than expected in our classifiers. The expected count for a
gene is based on the number of GO categories that include that gene, e.g. PTEN is
included in 123 of the 10,581 gene sets, so in the 442 gene sets used across D1, D2 and
D3 we would expect to observe PTEN approximately 5 times if it would occur at the
same frequency as within our selected gene sets. Most genes in common between the
three classifiers are observed more often than expected (degree of overrepresentation
indicated by node size in Figure 2d), with 11 of 31 significantly overrepresented (p <
0.05). The most overrepresented genes are TMODZ2, PHKA2, SPTCLI and SPTCL2. None
of these genes are known to be associated with MM or response to bortezomib.
However, investigation of the proteome of a cell line carrying a SPTCLI mutation
showed an increased presence of Ig kappa chain C (Stimpson et al. 20I15).
Immunoglobulin light chain presence is used as a biomarker for MM and has been
identified as a risk factor for progression (Dispenzieri et al 2008). PTEN is also found to
be significantly overrepresented. PTEN is a known tumor suppressor and was found to
be mutated in a various cancers (Yamada and Araki 2001). In MM, PTEN mutations are

relatively uncommon and associated with advanced disease (Chang et al. 2006).

Impact of dataset of origin on validation performance

Our training dataset is a combination of three different datasets: Total Therapy 2, Total
Therapy 3 (together forming the TT dataset) and HOVON65/GMMG-HD4 (H65). Both
the bortezomib and the no bortezomib arm contain more than one treatment regimen
(Supplementary Table 1). We trained and validated on a combination of the datasets
(see Methods). To investigate the contribution of the different datasets to the final
validation performance, we calculated the HR in class ‘benefit’ for the TT and H65
patients separately. Reassuringly, we observe a similar effect in class ‘benefit’ in both
datasets, albeit not significant due to small sample size in the H65 dataset (HR = 0.69
(95% C10.36 -132), p = 0.26, n = 49, for H65 and HR = 0.38 (95% CI 0.21 - 0.69), p =
0.002, n =131 for TT, Supplementary Figures 4 and 5). Also, the observed HR is much
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smaller in the TT dataset. This may be expected, since the HR in the overall population
is also smaller in TT than in H65 (the overall HR in TT is 0.62 (95% CI = 0.46 - 0.84),
p =0.002, n =583 vs. an HR of 0.86 (95% CI = 0.66 - 1.13), p = 0.28, n = 327 in H65).
We hypothesized that heterogeneity helps to prevent overfitting to one specific dataset
or treatment regimen. To test this, we also performed a cross validation within the two
TT datasets only (the H65 dataset is too small for this with n = 327). Subsequently, we
trained a classifier on the entire TT dataset (combining Total Therapy 2 and Total
Therapy 3) and validated on H65. Cross validation within the TT dataset leads to an HR
of 0.28 (95% CI 0.13 - 0.60, p = 0.00098, n = 86) in class ‘benefit’ and an HR of 0.71
(95% CI 0.51 - 0.98, p = 0.038, n = 497) in class ‘no benefit’ (Supplementary Figure
6), which is a substantial improvement over the classifier trained on the combined
dataset. In contrast, when the classifier is trained on the entire TT dataset, no
performance is observed in the H65 dataset (an HR of 113 (95% CI 0.63 - 2.04), p =
0.68, n = 66 in class ‘benefit’ and 0.81 (95% CI 0.60 - 1.1), p = 0.18, n = 261 in class ‘no
benefit’), indicating that some dataset specific fitting has occurred. Importantly, dataset
specific fitting does not necessarily indicate overtraining; the classifiers still validate on
the completely independent hold out validation fold. These results do suggest that it is
very important to match the training population with the population one intends to use
the classifier in. If the population in which the classifier is intended to be applied is
heterogeneous, the training dataset also needs to reflect this heterogeneity.

In the MM dataset under study here, one possible explanation for the lack of validation
of the TT- based classifier on the H65 data is that the TT trials were conducted in the
USA and included more additional treatment than the European H65 trial (see
Supplementary Table 1 for treatment details). When the STL classifier is trained
exclusively on the TT datasets, it could become specifically predictive for the TT
regimen, rather than bortezomib, explaining why this classifier does not show a
satisfactory performance in H65. When trained on the mixed dataset, the classifier does
show performance in the H65 dataset, but still performs better within the TT dataset,

which makes up a bigger part of the training data.

STL finds a predictive classifier for lenalidomide benefit
The STL method was developed based on the bortezomib dataset. Even though a strict
separation of training and validation has been made, we cannot exclude the possibility

of ‘experimenter bias’ (Holman et al. 2015), which is the result of making experimental
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Figure 3. Overview of the lenalidomide classifier results a. Kaplan Meier curves for
the entire lenalidomide dataset, showing an HR of 0.59 (95% CI 0.41 — 0.84, p =
0.0042, n = 662) between the treatment arms. b. Kaplan Meier curve of the combined
classifications into a ‘benefit’ and ‘no benefit’ class of D1, D2 and D3. An HR of 0.36
(95% C1 0.18 - 0.71, p = 0.0031, n = 206) is found between the treatment arms in the
‘benefit’ class and an HR of 0.71 (95% CI1 0.46 — 1.10, p = 0.13, n = 456) in the ‘no
benefit’ class

choices based on the results on the training dataset and which can lead to a classifier

that will only perform well on the specific dataset at hand.

To demonstrate that the STL method is not biased to just one dataset we applied it to a
completely independent dataset obtained from the CoMMpass database
(https://research.themmrf.org/). CoMMpass contains data from an observational MM
study, meaning the trial did not interfere with the treating physician’s choice of
treatment. This is a good model for the setting in which an eventual predictive
biomarker would be applied. Moreover, instead of microarrays, RNA-seq was used to
obtain gene expression measurements, thus providing an additional axis of variation
compared to microarray data. Overall, gene expression data and annotation was
available for 662 patients, 447 of which received lenalidomide in the first line and 215
did not. An overall HR of 0.59 (p = 0.004) in favor of lenalidomide was observed, as

seen in the Kaplan Meier in Figure 3a.

Similar as before, the dataset was divided into three equal folds and STL obtains

classifiers that successfully predict benefit in all folds. Since the CoMMpass dataset is
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smaller than the bortezomib dataset used before, we required the ‘benefit’ class to
contain at least 30% of the patients, to ensure sufficient power. This results in a
combined HR of 0.36 (95% CI 0.18 - 0.71, p = 0.0031, n = 206) over the entire dataset,
as shown in Figure 3b. In total 31.1% of patients were classified as class ‘benefit’. Again,
the STL classifier was able to distinguish a subset of patients with significant treatment
benefit in each fold with HRs of 0.27 (95% CI 0.07 - 1.06, p = 0.06, n = 72), 0.39 (95%
CI0.11 - 1.41, p = 0.15, n = 66) and 0.40 (0.14 - 115, p = 0.09, n = 68) in DI, D2 and D3,
respectively. This demonstrates that STL also successfully identified a predictor for

lenalidomide benefit.

Genes used to predict treatment benefit lenalidomide

The predictive classifiers for lenalidomide use 47, 5 and 119 gene sets in D1, D2 and D3
respectively, encompassing 3723 unique genes. Out of these, 5 genes are used in all three
classifiers: CYPIIB2, SHH, HGNC, CAVI and SMO, all of which are observed more
frequently than expected. SHH and CYPIIB2 are significantly overrepresented (p <
0.05). SHH is a crucial part of the hedgehog signaling pathway, which has been
previously found to play an important role in the pathogenesis of MM (Blotta et al.
2012). Neither of these genes has previously been associated with lenalidomide
response, possibly representing an undiscovered mechanism influencing lenalidomide

response in MM patients.

Discussion

Simulated Treatment Learning addresses an urgent clinical need because response rates
to current cancer therapies are often poor and moreover frequently accompanied with
serious side effects. STL offers an important step towards realistic personalization of
cancer medicine administration by identifying gene expression markers that can be
used to determine the most effective treatment for a cancer patient at the moment of

diagnosis.

The STL classifier was successfully tested across different gene expression platforms,
different treatments and different study types, demonstrating that STL is more
generically applicable than one particular dataset. Since our work has focused on MM,

an important next step is to investigate if STL is also successful in unraveling treatment
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benefit for other diseases. If so, STL can play an important role in rescuing treatments
that do not achieve a significant effect in the entire patient population but may still
benefit a subset of the patients. For instance, STL can be an important post-hoc analysis
for phase III clinical trials of novel treatments that have missed their endpoint, such as,
for instance, nivolumab in the CheckMate-026 trial (Socinki et al. 2016). We do note
that STL requires a relatively large number of samples to build the classifier, which may
not always be available when a novel treatment first enters clinical trials. The generic
concept of STL can be readily extended to include patient similarity definitions based
on e.g. germline or somatic genomic profiles and other types of outcome measure such

as categorical or binary measures.

Methods

Data and processing

We pooled gene expression and survival data from three phase IlI trials: Total Therapy
2 (TT2, GSE2658) Total Therapy 3 (TT3, GSE2658) and HOVON-65/GMMG-HD4 (H65,
GSE19784). The TT2 dataset included 345 newly diagnosed multiple myeloma (NDMM)
samples, treated either with thalidomide and melphalan (n = 173) or melphalan alone
(n =172). Average age is 56.3 (range: 24 - 76) and 57.1% of the patients is male. The TT3
dataset included 238 NDMM samples treated with bortezomib, thalidomide,
dexamethasone, cyclophosphamide, cisplatin and etoposide (VTDPACE). Average age
is 58.7 (range: 32 - 75) and 67.6% is male. The H65 dataset included 327 NDMM
samples, treated either with vincristine, doxorubicin and dexamethasone (VAD, n =158)
or bortezomib, doxorubicin and dexamethasone (PAD, n = 169). Average age is 54.7
(range: 27 - 65) and 56.4% percent is male. In our analyses of the pooled data two
treatment arms were considered: a bortezomib arm, which comprises the PAD arm from
H65 and TT3, and a non-bortezomib arm, which comprises the VAD arm from H65 and
TT2. Combined, these datasets include 910 patients, of which 407 received bortezomib
and 503 did not.

All samples were profiled with the Affymetrix Human Genome U133 plus 2.0 array. Gene
expression was MAS5 and log2 normalized. Batch effects resulting from pooling

different datasets were corrected with ComBat (Johnson et al. 2007). Data was scaled
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to mean O and variance 1 per probeset. Probesets with a variance of < 1 before scaling

were discarded.

The data was split in fold D1 (303 samples), fold D2 (303 samples) and fold D3 (304
samples), stratifying for treatment arm and survival. Fold D1 is not used at any point in
the training and serves as validation data, while Fold D2 and fold D3 are combined to
serve as training data. After the STL classifier is successfully validated on fold DI, the
folds are rotated to serve as additional validation folds to assess robustness. The training
data for fold D2 consists of D1 and D3 and the training data for D3 consists of D1 and
D2 (specification of which samples were used in which folds is available with the code

in the GitHub repository).

After developing the STL method on the microarray dataset, we also applied it to the
CoMMpass trial (NCT0145429) dataset generated by the Multiple Myeloma Research
Foundation (MMRF). For 662 patients both RNAseq, survival data, and treatment
information was available. Sequencing data is processed with the Cufflinks pipeline
(researcher.themmrf.org). The dataset was split into a treatment arm where patients
received lenalidomide as first line treatment (n = 447) and an arm where patients did
not (n = 215). This data was also split into folds D1 (220 samples), D2 (221 samples) and
D3 (221 samples), specification of which samples were used in which folds is available

with the code in the GitHub repository.

Endpoint and survival analysis

Progression Free Survival (PFS) was used as endpoint, as this is the most direct readout
of first line treatment related survival and therefore considered to be more relevant
compared to overall survival. PFS times in the TT2 and H65 datasets were truncated to

52.53 months, corresponding to the longest follow-up time in the TT3 dataset.

Survival analyses were done using the Cox Proportional Hazards model (survival
package, version 2.38.4)(Therneau 2015). For the microarray data, the survival analysis
included a stratification for dataset of origin. This means the base hazard was estimated
separately for the TT2/TT3 dataset and the H65 dataset. This is necessary to correct for
the significant survival difference found between these datasets. Hazard Ratios (HR)

and associated 2-sided p-values were calculated. P-values below 0.05 were considered
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statistically significant. All HRs are computed as bortezomib vs no bortezomib and
lenalidomide vs no lenalidomide, which means an HR below 1 signifies a benefit when
receiving bortezomib or lenalidomide. All calculations were performed in R version

3.1.2.

Gene sets

For the bortezomib classifier we tested all Gene Ontology (GO) categories, as defined
by the R Bioconductor package hgul33plus2.db (Carlson 2016)(accessed: 27 October
2015), with two or more probesets associated to them. This resulted in 10,581 gene sets.
To test whether the biological information, contained in the GO annotation, aids the
performance of the algorithm, 10,581 random gene sets matching the size of the actual
selected GO categories were also tested.

For the lenalidomide classifier we tested all the GO categories with two or more genes
associated to them, as defined by Bioconductor package biomaRt (Durinck et al

2009)(accessed: 19 June 2017). This resulted in 9,121 gene sets.

Algorithm

The STL classifier aims to predict if a patient does or does not benefit from a certain
treatment of interest based on the gene expression profile of the patient. In order to
train this classifier, a gene expression dataset is required that consists of two treatment
arms and a continuous outcome measure. These data are first split into training and
validation folds. The training data comprises of two thirds of the data, while one third
(fold D) is kept apart to function as validation data. We define three separate folds D
(D1, D2 and D3), such that each patient is included in the validation set once. The

training data is subsequently split further into folds A, B and C for training.

We first define a ranked list of prototype patients on fold A (Step 1) that exhibit a better
than expected prognosis on the treatment of interest compared to a set of genetically
similar patients that received an alternative treatment. In Step 2, a decision boundary
around a selection of prototype patients is determined on fold B. Patients that lie within
this decision boundary are expected to show a favorable outcome when receiving the
treatment of interest and are classified as benefitting (class ‘benefit’). All other patients
are considered class ‘no benefit’ and are not expected to benefit from receiving the

treatment of interest. Because it is a priori unknown based on which genes patient
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similarity should be defined, step 1 and 2 are performed for a large number of
functionally coherent gene sets obtained from the Gene Ontology annotation, yielding
one classifier per gene set. Step 1 and 2 are repeated 12 times to obtain a robust estimate
of the performance per gene set. In each repeat, the training data is split into a different
fold A, B and C. The performance is defined as the Hazard Ratio (HR) between
treatments in class ‘benefit’, found in a fold C, which contains samples that were not
used in step 1and 2. All gene sets are ranked by their mean performance in fold C across
repeats. In Step 3 we determine the optimal number of gene sets to combine into a final
classifier. We found that defining performance and selecting the optimal number of
gene sets on the same folds C leads to overtraining. Therefore, we run the entire
algorithm a second time (Run 2), using 12 new repeats with different splits into fold A,
B and C. The first run of 12 repeats is used to rank the gene sets. The combined
performance of these ranked gene sets on the folds C from Run 2 is used to determine
the optimal number s of gene sets. Similar to the boosting principle (Schapire 1999), the
individual classifiers are combined into an ensemble to construct a more robust final
classifier. The performance of this combined classifier is measured on fold C of Run 2.
The gene sets are added to the classifier in order of their ranking, until an optimal
performance is reached across all the repeats from Run 2. Since there are 12 repeats,
each combination results in 12 HRs as measured on the folds C from run 12. To
determine the optimal number of gene sets, we fit a local polynomial regression line on
the median HRs for each combination of gene sets. The optimal number of gene sets s
is reached when adding a gene set does not result in a lower HR. We then rank the gene
sets based on their individual performance across the folds C of Run 2 and select the
top s for inclusion in the final ensemble classifier. Finally, in Step 4, one final classifier
is trained using the entire training dataset for these selected gene sets.

These steps are visualized in Figure 1d and are described in more detail below.

In Step 1, we perform prototype ranking on Fold A. For each patient receiving the

treatment of interest, the treatment benefit is defined as

1
APFS; = =Y,co(PFS; — PFS)), (1)
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where O is the set of the n most similar patients (based on Euclidean distance) that did
not receive the treatment of interest. We use n = 10. In an approach similar to Harrell’s
C-statistic (Harrell et al. 1996), APFS is only calculated for neighbor pairs where it is
clear which patient experienced an event first; if both are censored or one patient is
censored before the neighbor experienced an event, APFS is not computed. When n =
10 is used, this on average leads to 7 neighbours being used in the calculation of APFS.
To correct for the fact that a patient with a long survival time will, on average, have a
large APFS irrespective of its relative treatment benefit compared to genetically similar

patients, we define the z- normalized zPFS score as:

APFS; — L(RPFS;)

ZPFS; = o (RPFS;)

, (2)

where RPFS is a distribution of 1000 random APFS scores, obtained by calculating APFS
for randomly chosen sets O, i.e. determining treatment benefit with respect to random
patients instead of genetically similar patients. Based on the zPFS score all patients in

fold A that were given the treatment of interest can be ranked.

In Step 2, we define the classifier on fold B. The classifier is defined by a subset of k top-
ranked prototypes along with a decision boundary defined in terms of the Euclidean
distance y around a prototype. A patient is classified as class ‘benefit’ when it lies within
y of any of the top k prototypes. The optimal values for k and y are those resulting in
the lowest Hazard Ratio (HR) in class ‘benefit’ (the patient group in which the treatment
of interest should have a better survival). We set an operating point that additionally
constrains k and y, such that class ‘benefit’ comprises at least a certain percentage of the
dataset. This ensures sufficient statistical power to compute the significance of the HR
in the ‘benefit’ class. The number of prototypes was restricted to 10 to prevent defining
an extremely complicated classifier. The search grid for parameter y was made
dependent on the local density of the neighbors, and consisted of the sorted list of
Euclidean distances between the prototype and its neighbors. The optimal k and y
combination is chosen so that the HR in class ‘benefit’ is minimal, while still associated
with a p-value below 0.05. If no combination results in a p-value below 0.05, the

minimal non-significant HR that results in a class ‘benefit’ of sufficient size is chosen.
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In step 3, we rank and select the gene sets. First, the gene sets are ranked by their mean
performance in fold C over all repeats from Run 1. After ranking, we run the algorithm
a second time, with different divisions into fold A, B and C. We add gene sets to an
ensemble classifier one by one based on this ranking. The performance of the combined
gene sets is measured on each fold C of this second run. We find that defining the
ranking on different folds than we use to measure combined performance prevents
overtraining, although some bias is still expected to occur. Since the found HR can
fluctuate between folds and gene set numbers, a regression line is fit through the
median HRs found on folds C in the second run and the optimal number of gene sets is
determined: the first combination of gene sets for which adding another gene set does

not lead to an improvement of the HR larger than 1*10*.

After the optimal number of gene sets is determined in Step 3, the final classifier is
defined in Step 4. The gene sets are ranked based on their mean performance in fold C
in the second run. The top scoring gene sets are selected and for these gene sets a final
classifier is trained. To this end, the complete training dataset is split into only two folds,
since the third fold is no longer required. The classifiers defined by different gene sets
are combined into an ensemble classifier by an equally weighted voting procedure,
which means each classifier has an equal influence on the final classification. For an
ensemble classifier containing s gene sets, this defines a classification score between O
and s per patient. This score is thresholded by threshold T, which determines whether
a patient is to benefit from the treatment of interest, where a patient with a score below
the threshold is classified as not benefitting from treatment (‘no benefit’ class). The
optimal threshold T is the one for which the HR between treatments is minimal in class
‘benefit’. This combination of classifiers and threshold can be used to classify new and

unseen patients and is validated on fold D.

Calculating overrepresentation of genes in the classifier

The same gene can be used multiple times in a single classifier and/or multiple times
across the classifiers obtained for fold DI, D2 and D3. Both cases provide evidence of
the importance of the gene for the treatment benefit prediction. To assess whether
genes are selected more frequently than expected by chance across all three classifiers,
we determine the degree of overrepresentation by dividing the observed count by the

expected count. The expected count is calculated by p * W where p is the fraction of the
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gene sets containing the gene and W the total number of gene sets selected across all

three classifiers. A p-value is determined using the binomial test.

Training regular classifiers

We defined the labels that were used to train the regular classifiers in two ways. First,
labels were defined by assigning the 25% longest surviving bortezomib patients and the
25% shortest surviving non-bortezomib patients to the ‘benefit’ class and all others to
the ‘no benefit’ class. A classifier was trained using folds A-C to predict these labels,
using the HR in validation fold D1 as performance measure of the predictive power. For
the nearest mean classifier, a double-loop cross-validation was used to optimize the
number of genes (ranked based on t-score), using balanced accuracy as the performance

measure.

A random forest classifier (R package randomForest, version 4.6.12)(Liaw and Wiener
2002) and a support vector machine (R package el071, version 1.6.7)(Meyer et al. 2015)
were also trained. For both these classifiers, the number of genes was optimized in cross
validation. For the random forest classifier 2000 trees were trained per classifier and
the bootstrap sample was sampled equally from both classes, to prevent the classifier
being affected by the class imbalance. For the support vector machine, C-values from 1
to 100 were tested, in steps of 1. The gamma used is 1/P, where P is the number of input
variables, i.e. the number of genes.

For all classifiers, the accuracy reported is the mean accuracy in cross validation for the

optimal number of input genes.

Comparison with known prognostic markers

To the best of our knowledge, RPL5 is the only published gene expression based marker
that predicts bortezomib benefit by comparing to another treatment group (Hofman et
al. 2017). We tested RPL5 on the data from the Total Therapy studies, since it was
trained on the HOVON-65 data. Since some predictive markers are discovered by
testing markers previously known to be prognostic, we also compare with prognostic
markers. FISH markers were called on the gene expression data, using previously
developed classifiers (Van Vliet et al. 2013), since FISH data was not available for all

patients. Unfortunately, there is no reliable gene expression classifier for dell7p. We
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tested if any predictive information was available in previously defined molecular
subtypes in MM (Zhan et al. 2006) and in the prognostic gene signature EMC-92
(Kuiper et al. 2012).

Data availability

All survival and treatment data included in the bortezomib dataset are supplied in
Supplement 1. The gene expression data from the Total Therapy II and Total Therapy
Il studies are accessible in the GEO database, accession number GSE2658. The gene
expression data from the HOVON-65/GMMG-HD4 study is accessible in the GEO
database, accession number GSE19784.

All survival, treatment and RNAseq data used for the lenalidomide dataset is accessible

at research.themmrf.org.

Code availability
All code needed to train and validate the classifier 1is available at

github.com/jubels/GESTURE.

Acknowledgements

This work has been supported by a grant from the Van Herk Fellowship. The
lenalidomide dataset was generated as part of the Multiple Myeloma Research
Foundation Personalized Medicine Initiatives (https://research.themmrf.org and
www.themmrf.org). We thank Rowan Kuiper for data aggregation and his advice on

combining the datasets.

52



Predicting treatment benefit in Multiple Myeloma

Supplementary material

53



Chapter 2

54

©  STL classifier

o
P o
n
]
o T
o - |
<t _;_ E.
L o
c O
L ™
'.(-6 -2
D'O
o_
N
_?_
S | s —
-~ ——
-]
o_ $
[ | I |
0 1 2 3

Classifiers that predict benefit

Supplementary Figure 1. We computed for how many patients the three classifiers
trained in the different folds of the cross validation agree on class assignment. The
values on the x-axis represent the number of classifiers that classified a patient as
benefitting from treatment. A value of 0 means that all three classifiers classified a
patient as ‘no benefit’ and the value of 3 (which is the maximum) means all
classifiers agreed on the assignment to class ‘benefit’. These are the red dots in the
plot. We also generated 10 000 random labelings per training fold, with the same
proportion of patients labeled ‘benefit’ and ‘no benefit’ as in the labelings found by
STL to obtain a background distribution of the expected overlap by random chance
(boxplot). Since the number of patients for which all three STL classifier agree (i.e.
the patients with either a value of 0 or 3) is larger than expected by random chance,
the concordance between the STL classifiers is significant.
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Supplementary Figure 2. Kaplan Meier of the classification of the bortezomib
dataset using random gene sets. In the class ‘benefit’ an HR of 0.56 (95% CI 0.34
—0.90, p =0.02, n = 148) is found and in the class ‘no benefit’ an HR of 0.77 (95%
Cl1 0.62-0.96, p =0.02, n = 762).
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Supplementary Figure 3. Kaplan Meier showing the survival curves in validation
when the treatment labels are shuffled, i.e. patients are in silico randomly assigned
to the either the bortezomib or no bortezomib arm. An HR of 1.09 (95% CI 0.71 —
1.67, p =0.69, n = 167) in the class ‘benefit’ and an HR of 0.95 (95% C10.77 — 1.18,
p = 0.65, n = 743) in the class ‘no benefit’ is observed. It is expected that no
performance is observed, since the relationship between the gene expression data
and the treatment specific survival is destroyed.
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Supplementary Figure 4. Validation performance of the STL classifier in the H65
dataset when the classifier is trained on the combined TT/H65 dataset. An HR of
0.69 (95% CI1 0.36 — 1.32, p = 0.26, n = 49) is observed in class ‘benefit’ and an HR
of 0.85 (95% CI1 0.63 - 1.14, p = 0.27, n = 278).
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Supplementary Figure 5. Validation performance of the STL classifier in the Total
Therapy dataset when the classifier is trained on the combined TT/H65 dataset. An
HR of 0.38 (95% CI 0.21 — 0.69, p = 0.002, n = 131) is observed in class ‘benefit’
and an HR of 0.71 (95% CI 0.50 — 1.00, p = 0.05, n = 452) in class ‘no benefit’.
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Supplementary Figure 6. Kaplan Meier showing the survival curves when the STL
classifier is trained within the Total Therapy (TT) datasets, excluding the data from
the HOVONG65 (H65) trial. An HR of 0.28 (95% CI 0.13 — 0.60, p = 0.00098, n = 86)
is observed in class ‘benefit’ and an HR of 0.71 (95% CI 0.51 —0.98, p = 0.038, n =
497) is class ‘no benefit’. The HR found in class ‘benefit’ is far lower than the HR
found in validation when TT and H65 are combined.

Supplementary Table 1. An X indicates a patient included in the study (rows)
received that drug (columns).

bortezomib  doxo- dexa- thalido- cyclophos- cisplatin etoposide vincristine
rubicin methasone  mide phamide

H65 -
PAD arm X X X

TT3 X X X X X X X

H65 -
VAD arm X X X X

TT2 X X X X X X X
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Supplementary Table 2. Performance of nearest mean classifier when different
percentages are used to define class ‘benefit’

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
HR 1.05 102 072 08 096 065 064 0.74 075 0.65
p-value 08 096 026 053 086 0.08 0.09 023 023 0.08
Size class 030 020 027 035 036 041 042 044 046 0.49
'benefit’
Mean 041 050 049 049 058 056 056 055 055 0.56
accuracy

Supplementary Table 3. Performance of random forest classifier when different
percentages are used to define class ‘benefit’

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

HR 06l 056 090 091 091 075 084 074 080 0.75

p-value 041 023 073 080 073 029 051 023 036 024

size class on o013 020 016 025 030 037 041 044 0.50
'benefit’

070 069 070 069 069 068 068 0.68 0.67 0.65

accuracy
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Supplementary Table 4. Performance of support vector machine when different
percentages are used to define class ‘benefit’. When using 5% no patients were
assigned to class ‘benefit’ in validation, making it impossible to compute an HR.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

HR NA 947E 041 096 08l 101 085 113 0.8 0.70
+08
p-value NA 1000 053 095 0.67 097 057 066 046 0.16

size class NA 0.03 002 005 010 023 030 034 040 0.50
'benefit’

accuracy 098 0963 093 092 081 078 0.72 071 0.79 0.71

Supplementary Note 1

The parameters k and y determine the classification boundary. For this reason, they are
optimized using an exhaustive grid search which chooses the optimal combination. To
investigate how sensitive this optimization is, we investigated how small changes to the
parameters affect the HR found in validation. In essence, a smaller y leads to a smaller
class benefit. We show the effect of changing the y parameter in two scenarios: leaving
all other parameters as is (Supplementary Figure 7) and when also retraining the
threshold T which determines how many classifiers need to agree on the ‘benefit’
classification (Supplementary figure 8). The classifier is robust to (small) changes in
these parameters, which is a desirable feature of a robust classifier. As can be seen in
Supplementary Figure 7, when y decreases, the HR also decreases since a smaller class
benefit is identified. This is consistent with our observation that a smaller class benefit
leads to a lower HR (Figure 2c). When threshold T is also reoptimized, the HR stays
relatively constant when y is changed, since the threshold T is chosen so at least 20% of
the patients are classified as class ‘benefit’. Supplementary Figure 9 shows the number
of patients who receive a different class assignment when y is changed, again without

reoptimizing threshold T (black line) and with reoptimization (red line). When
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threshold T is reoptimized, few patients change classification, showing different
settings for y would identify the same patients as benefitting from bortezomib. We also
investigated how sensitive the classifier is to changing the number of genesets in the
classifier (with reoptimization of threshold T, Supplementary figure 10). The red line
indicates the validation HR we originally found. As can be seen, there are many settings
which achieve a similar or better validation performance, indicating the classifier is also

not very sensitive to the exact number of gene sets included.

We also investigated the training HR found for all k and y combinations of three of our
top- performing genesets (Supplementary Figures 11 - 13). Note that these gene sets were
the best performing in one of the folds and are not necessarily overrepresented in the
final classifier. The y-axis show the different settings for k and the x-axis the different
settings for y. A yellow color indicates a low HR, a blue color a high HR and white
indicates too few or too many patients were included in class ‘benefit’ when this
combination was used. What can be seen is that a low setting for k (meaning few
prototypes) leads to the most favorable HRs. Also here can be seen that small changes

in k and y do not lead to large changes in HR.
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Supplementary Figure 7. The effect of changing y on the HR when threshold T is
not re-optimized. The y-axis shows the validation HR and the x-axis the change in

Y-
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Supplementary Figure 8. The effect of changing y on the HR when threshold T is
re-optimized. The y-axis shows the validation HR and the x-axis the change in y.
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Supplementary Figure 9. The number of patients who change from class ‘benefit’
to class ‘no benefit’ or vice versa when y is changed. The red line shows the
difference when we re-optimize the threshold T, the black line when we do not.
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Supplementary Figure 10. The validation HR found when a different number of
genesets is included in the final classifier. The red line indicates the validation HR
found with the original classifier.
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Supplementary Figure 11. Training performance for different combination of k and
v, using GO category olfactory bulb axon guidance. The y-axis show the different
settings for k and the x-axis the different settings for y. A yellow color indicates a low
HR, a blue color a high HR and white indicates too few or too many patients were
included in class ‘benefit’ when this combination was used.
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Supplementary Figure 12. Training performance for different combination of k and
v, using GO category peptidoglycan receptor activity. The y-axis show the different
settings for k and the x-axis the different settings for y. A yellow color indicates a low
HR, a blue color a high HR and white indicates too few or too many patients were
included in class ‘benefit’ when this combination was used.
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Supplementary Figure 13. Training performance for different combination of k and
v, using GO category IgG binding. The y-axis show the different settings for k and
the x-axis the different settings for y. A yellow color indicates a low HR, a blue color
a high HR and white indicates too few or too many patients were included.
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Chapter 3

Abstract

Proteasome inhibitors are widely used in treating Multiple Myeloma, but can cause
serious side effects and response varies between patients. It is therefore important to

gain more insight into which patients will benefit from proteasome inhibitors.

We introduce Simulated Treatment Learned signatures (STLsig), a machine learning
method to identify predictive gene expression signatures. STLsig uses genetically similar
patients who received an alternative treatment to model which patients will benefit
more from proteasome inhibitors than from an alternative. STLsig constructs gene

networks by linking genes that are synergistic in their ability to predict benefit.

In a dataset of 910 MM patients STLsig identifies two gene networks that together can
predict benefit to the proteasome inhibitor bortezomib. In class ‘benefit’ we find a
hazard ratio of 0.47 (p = 0.04) in favor of bortezomib, while in class ‘no benefit’ the
hazard ratio is 0.91 (p = 0.68). Importantly, we observe a similar performance (HR class
benefit = 0.46, p = 0.04) in an independent patient cohort. Moreover, this signature
also predicts benefit for the proteasome inhibitor carfilzomib, indicating it is not
specific to bortezomib. No equivalent signature can be found when the genes in the
signature are excluded from the analysis, indicating they are essential. Multiple genes
in the signature are linked to working mechanisms of proteasome inhibitors or MM
disease progression.

STLsig can identify gene signatures that could aid in treatment decisions for MM

patients and provide insight into the biological mechanism behind treatment benefit.
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Introduction

For many anti-cancer drugs the response varies widely across patients. As many of these
drugs are associated with serious side effects, it is essential to identify which drug will
maximally benefit the patient. Tools that aid in such decisions, e.g. based on patient-
derived genetic or transcriptomic profiles have only been developed for a few
treatments and diseases. Most efforts in this direction focus on detecting specific
mutations for which it is known that a targeted therapy exists (Syn et al. 2016). However,
many patients do not carry any mutations that are known to be actionable and in
practice only 7% of patients can be matched to a targeted therapy with the highest level
of evidence (Zehir et al. 2017). Moreover, a range of efficacious therapies exist that are
non-targeted. Consequently, there is a clear clinical utility for methods that can more
generically predict - at the time of diagnosis - if a patient will benefit from a certain

treatment or not.

Multiple myeloma (MM) is characterized by a malignant proliferation of plasma cells,
both in the bone marrow and extramedullary sites. MM is considered incurable with a
median survival of approximately 6 years (Rajkumar and Vincent Rajkumar 2018).
Several driver mutations have been identified in MM (Walker et al. 2018), but in most
patients no actionable mutations are observed and targeted therapies are therefore not
commonly used in MM. Currently, proteasome inhibitors (PIs) are one of the most
important components of treatment in MM and since their introduction in the clinic
survival has significantly improved (Moreau et al. 2012). Due to higher immunoglobulin
production, MM cells are thought to be more reliant on proteasomal degradation of
proteins, making them vulnerable to proteasome inhibition (Laubach, Richardson, and
Anderson 2011). After bortezomib, which was the first PI to be introduced in the clinic
for MM, second generation proteasome inhibitors like carfilzomib and ixazomib have

recently been approved.

Despite the success of Pls, there is still wide variability in response across patients.
Substantial efforts have been made to discover what distinguishes responders from non-
responders. For instance, several studies have implicated differential expression of
genes involved in the unfolded protein response (Dong et al. 2009). Other studies

describe complex changes in the entire energy metabolism as a potential discriminating
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factor (Soriano et al. 2016). Several chromosomal aberrations have also been found to
influence bortezomib response, although this effect is not fully understood (Smetana et
al. 2013; Avet-Loiseau et al. 2010). Despite all efforts, there is currently no biomarker

capable of determining which patients will benefit most from receiving a PI.

Most studies investigating PI response compare gene expression patterns of patients
responding well or poor to a certain treatment (Laubach, Richardson, and Anderson
2011; Hofman et al. 2017; Yoshida et al. 2018; Narita et al. 2015). The identified genes
can then be combined in a classifier to predict good or poor response in new patients.
However, a clinically more interesting question is whether a patient will benefit more
from a PI than from another treatment. This is a markedly different question than
identifying good and poor responders within one homogeneous treatment group. After
all, even patients with poor survival may have benefited from their treatment; their
outcome could have been even worse on another treatment. Conversely, a patient with
a good survival outcome could have experienced an equivalently good or better
response on another treatment. It is therefore impossible to assign patients to class
‘benefit’ or ‘no benefit’ a priori, since response to another treatment cannot be observed.
Standard methods. which rely on the existence of such class labels, are thus unsuitable

for predicting treatment benefit.

Here we propose a novel method, Simulated Treatment Learning signatures (STLsig),
to infer gene signatures that can predict treatment benefit for patients at the moment
of diagnosis. We apply STLsig to find a gene expression signature capable of identifying
patients for whom treatment with Pls results in better survival than an alternative
treatment. Firstly, the gene signature should be capable of predicting PI benefit in an
independent patient cohort, which has been shown challenging for prognostic
classifiers (Bernau et al. 2014). A second important objective of STLsig is to identify a
simple, interpretable model which contains genes that have biological relevance to the
molecular mechanism underlying PI efficacy. To enable this, we leverage the core
concept of Simulated Treatment Learning (STL), which we proposed previously (Ubels
et al. 2018), that allows training classifiers without having a predefined labelling of
patients. While our previous method was successful in identifying a model that can
predict treatment benefit, these models rely on large numbers of Gene Ontology sets,

making interpretation complex.
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We propose a different approach which identifies small gene networks that can be used
to predict PI benefit. To obtain a signature for treatment benefit, we form networks of
genes that are complementary in their ability to predict benefit. STLsig is fully data
driven and does not rely on any biological knowledge or predefined gene networks as

input.

We demonstrate the utility of STLsig on a 910 sample dataset combining three different
Phase III clinical trials with MM patients receiving either a treatment with or without
the PI bortezomib (the HTT cohort). STLsig enables discovery of a 14-gene signature
that can accurately identify a subset of patients benefiting from bortezomib. We
validate this gene expression signature in independent data (the CoMMpass cohort)
where we predict benefit for bortezomib or an alternative PI, carfilzomib,
demonstrating that the signature is robust and generalizes to other data. Moreover, we
show that no gene expression signature with a similar performance can be found when
the signature genes are removed from the dataset. The genes included in the signature
are thus essential for predicting PI benefit. Several of the genes in the signature are
related to MM or the working mechanisms of PIs. To our knowledge, this is the first
approach capable of discovering treatment benefit specific gene signatures without

predefined labels.

Methods

Data

To develop the gene network and train the bortezomib benefit signature, we pool gene
expression and survival data from three phase III trials (referred to as the HTT cohort):
Total Therapy 2 (TT2, GSE2658), Total Therapy 3 (TT3, GSE2658) and HOVON-
65/GMMG-HD4 (H65, GSE19784). The TT2 dataset includes 345 newly diagnosed
multiple myeloma (NDMM) samples, treated either with thalidomide and melphalan (n
= 173) or melphalan alone (n = 172). The TT3 dataset includes 238 NDMM samples
treated with bortezomib, thalidomide, dexamethasone, cyclophosphamide, cisplatin
and etoposide (VTDPACE). The H65 dataset includes 327 NDMM samples, treated
either with vincristine, doxorubicin and dexamethasone (VAD, n = 158) or bortezomib,

doxorubicin and dexamethasone (PAD, n = 169). In the HTT cohort we define a

71




Chapter 3

bortezomib arm (n = 407), which comprises the PAD arm from H65 and TT3, and a
non-bortezomib arm (n = 503), which comprises the VAD arm from H65 and TT2. We
divide the HTT cohort in a train set (n = 606) and a test set (n = 304). We ensured the
two treatment arms were distributed evenly between training and test data and that the

HR between the treatments was similar.

All samples have been profiled with the Affymetrix Human Genome U133 plus 2.0 array.
Gene expression is MAS5 and log2 normalized. Batch effects resulting from pooling
different datasets are corrected with ComBat(Johnson, Li, and Rabinovic 2007). Data is

scaled to mean O and variance 1 per probeset.

For validation of both the bortezomib model and carfilzomib model, we use the
CoMMpass trial (NCT0145429) dataset generated by the Multiple Myeloma Research
Foundation (MMRF). For 747 patients both RNAseq, survival data, and treatment
information is available (CoMMpass Interim Analysis 13). Of these patients, 61 did not
receive any PI in first line treatment, 530 received bortezomib and 156 received
carfilzomib. Sequencing data is processed with the Cufflinks pipeline (for details see
researcher.themmrf.org). For validation we combine the log2 normalized values from
the HTT data and the FPKM values from CoMMpass. We scale the combined data to
mean 0 and variance 1 and then perform ComBat batch correction, as performing mean-
variance scaling before ComBat leads to better overlap between the datasets in the tSNE.
In ComBat batch correction H65, TT2, TT3 and CoMMpass are defined as four separate
batches.

For training the signature, we use Progression Free Survival (PFS) as an endpoint as we
consider PFS a more direct measurement of treatment effect than overall survival. Cox

proportional hazard models were fitted using the R package ‘survival’ (version 2.44).

Constructing and evaluating gene pairs

We select only probe sets that meet the following requirements: (i) variance across the
samples > 2 in the training dataset before mean variance scaling, (ii) unambiguous
mapping to one gene and (iii) matching gene in the CoMMpass dataset. This yields n =
3319 genes. We then construct all possible gene pairs from these 3319 genes, resulting

in 5,506,221 gene pairs.
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To train the gene signature we divide the HTT cohort (n = 910) into four folds, Fold A
(n =202), Fold B (n = 202), Fold C (n = 202) and Fold D (n = 304), fold assignment is
provided in the supplementary information. Fold A, B and C are used to train the
signature as described below, while fold D acts as hold out data to validate the signature

and optimize a threshold to use in independent validation data.

To determine treatment benefit, we follow the core concept of STL laid out in our
previous work (Ubels et al. 2018), where for each patient a score zPFS is defined that
measures whether the patient survived longer than expected compared to patients with
similar gene expression that received another treatment. More specifically, for genepair

{n,m} and patient j we define:

where PFS;is the progression free survival time of patient j, I =1 if patient j received the
target treatment (a PI in this work) and I =-1, otherwise. Moreover, Il/ is the set of K
nearest neighbors to patient j defined in terms of euclidean distance in the expression
space spanned by genes n and m and only considering patients that received another
treatment than patient j. Throughout this manuscript K=10. In the set 1/, we discard
patients for whom we cannot be sure whether they survived longer or not (i.e. if both
patients are censored). This leads to an average of 7 patients being used in the
calculation of pPFS;. Subsequently, zPFS is normalized to a z-score by comparing PFS
to a background distribution resulting from repeating this procedure M=1000 times
with a random I1/. The zPFS score describes how much smaller (or larger) the survival
of patient j is compared to patients with similar gene expression but opposite treatment

than expected by random chance.

To score gene pairs, a 2-fold cross validation is employed using fold A (n = 202) and fold
B (n = 202). Within each fold, a kNN-regression model (k = 10) is trained, which is used
to predict zPFS on the other fold. The gene pair score is defined as the Spearman

correlation coefficient between the predicted zPFS and calculated zPFS across all
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patients. The score for each gene pair is the mean correlation of the 2 folds. We repeat

this procedure 5 times with a different split in folds.

Gene network construction

We construct gene networks separately for all 5 repeats and then construct a consensus
network, which only contains the genes and edges found in all 5 repeats. To construct
the gene networks, for each gene, we rank all gene pairs containing that gene on the
mean Spearman correlation coefficient found. We then connect genes that are mutually
synergistic. We achieve this by requiring that AB is among the top 5% of pairs including
A and among the top 5% of pairs including B. However, if a single gene is informative
for treatment benefit, gene pairs containing this gene could be highly ranked even if the
second gene is uninformative. Including these gene pairs in our network and
subsequent signature would introduce noise, which would both harm biological
interpretation of the signature and potentially decrease the predictive performance in
independent data. Therefore, we also require the mean correlation of the gene pair to
be above the median correlation of all selected gene pairs. We evaluate all gene
networks in the consensus network on their ability to predict benefit and select the best

performing combination to construct the signature.

Gene network selection and gene signature construction

After gene network construction, gene networks are selected using forward feature
selection. To rank gene networks, we determine the predictive performance for each
gene network. To this end, we calculate zPFS for each patient and each gene network
separately on fold A and B together (n = 404). The top 25% of patients (in terms of
zPFS) are assigned to class ‘benefit’, while the remaining patients are assigned to class
‘no benefit’. Subsequently, a Cox proportional hazards regression on the treatment
variable is performed within the ‘benefit’ patient group as well as in the ‘no benefit’
patients. The performance of a gene network is defined by the difference between the
Cox’ regression (s in class ‘benefit’ and class ‘no benefit’.

To select gene networks to use in the final model we perform forward feature selection
using fold C, which comprises 202 patients not used in fold A and B. Gene networks are
added sequentially based on their performance on fold A and B. Ranking of patients
across more than one gene network is done based on the sum of the zPFS scores of the

individual gene networks.
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Validation of gene networks

To validate the signature in independent data, we use all training data (n = 606) as a
reference set where zPFS is known. For each patient in the validation set we compute
the euclidean distance to all patients in the reference set per gene network. We then

use inverse distance weighting to calculate the estimated zPFS of a validation patient j
by

PFS — ZiETWi * ZPFSl'
= YieT Wi

where T comprises all patients in the reference dataset. Given a certain gene expression

vector x, weights w;are given by
1

W= ————
¢ d(x]', Xi)
where d is the Euclidean distance between the expression data of gene of patients i and

j.

Results

Overview of the algorithm

STLsig relies on the idea that patients exhibiting similar gene expression profiles who
received different treatments, can be used to model response to the treatment they did
not receive. Similarity between patients should be defined by genes relevant to
treatment benefit. STLsig therefore derives treatment specific gene networks, to form a
gene expression signature capable of predicting treatment benefit. To train this
signature we divide the HTT cohort in a test set (Fold D, n = 304) and a training set (n
= 606), which is further subdivided into three equal parts, fold A, B and C. We then
assess the ability to predict bortezomib benefit for all 5,506,221 gene pairs arising from
the high variance genes (n = 3319) in the HTT training set.

For each patient i in fold A, we determine a z-score (zPFS) per gene pair describing the
normalized mean survival difference of patient i with its genetically similar neighbours
that received a different treatment than patient i. We then test the ability of the
genepair to predict the zPFS score for patients in fold B. We also assess the performance
of each gene pair when calculation of zPFS is performed on Fold B and predicted on
Fold A. Performance of each gene pair is defined as the mean Spearman rank correlation

coefficient between predicted and calculated zPFS values in both folds. A gene pair is
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retained if it is synergistic, i.e. if the genes in the pair predict zPFS better together than
when they are paired with other genes.

We form a consensus network by repeating the two-fold cross validation five times.
Only gene pairs that are found to be synergistic in all repeats and that exceed the
median correlation across all gene pairs and all repeats are retained. From this

consensus network we extract gene networks, i.e. all connected components.

To evaluate each gene network, we recalculate zPFS for each patient using all genes in
the network and classify the top 25% of the patients as class ‘benefit’ and the rest as
class ‘no benefit’. Subsequently, gene networks are ranked based on the difference
between the Cox regression ’s found in class ‘benefit’ and class ‘no benefit’. To build
the signature, we sequentially add each network based on this ranking and evaluate the
performance of the combined networks on fold C. The steps of the algorithm are

summarized in Figure 1.

Gene networks yield a 14-gene signature that can predict bortezomib benefit

The consensus network formed as described above contains 617 genes connected by 451
edges and consists of 167 gene networks, which includes 104 individual gene pairs. The
largest gene network contains 42 genes; the mean number of genes per network is 3.7.
The optimal signature is formed by combining the top two ranked gene networks, which
are shown in Figure 2. With this signature we find a hazard ratio (HR) of 0.49 (p =
0.09, 95% CI 0.22 - 1.11) in class ‘benefit’ (n = 50) and an HR of 0.91 (p = 0.74, 95% CI
0.54 - 1.55) in class ‘no benefit’ (n =152), on fold C of the HTT cohort. In order to assign
a zPFS score to a new and unseen patient, for whom survival is unknown, we calculate
the distance in gene expression space between this patient and every patient in the
training data (the reference set). The predicted zPFS score of the new patient is the
weighted sum of the zPFS scores of the patients in the reference set. Weights are
determined by the inverse distance, i.e. the most similar patients in the reference set
contribute most to the predicted zPFS (see ‘Methods’). In this manner, we assess the
ability of the 14-gene signature to predict benefit for the 304 patients from the HTT
cohort not included in training (Fold D). The HR in favour of bortezomib found in fold

D is 0.75 (p = 0.11, 95% CI 0.53 - 1.06). Figure 3a shows the HR in class benefit found
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Calculate correlations per Construct network and extract Perform forward feature
gene pair connected components selection
Fold A + B (n = 404) Fold C (n=202)

Distribution correlation predicted and calculated zPFS

s Genepairs with A Genepairs with B
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o Predicted zPFS

5%
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0
f 4 Spearman correlation
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Patients 4

Gene networks

Figure 1. Overview of the construction and selection of the gene networks. First
each gene pair is scored on the correlation between predicted and calculated zPFS.
Gene networks are then formed by connecting synergistic genes, i.e. genes that are
amongst the top 5% partners for each other based on correlation coefficient. The
gene networks are then ranked based on difference between Cox regression B in
class ‘benefit’ and ‘no benefit’. The signature consists of the combination of gene

networks that results in the largest difference in Cox’ regression B between class
‘benefit’ and ‘no benefit’.

Figure 2. The constructed network with all gene networks. The highlighted networks are

those selected by the feature selection procedure and contain the 14 genes in the
signature.
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with different zPFS thresholds. A range of thresholds result in an HR below the HR
observed in the total dataset, indicating that the predicted zPFS is associated with
bortezomib benefit. The optimal class ‘benefit’, i.e. the class ‘benefit’ associated with the
lowest HR, comprises 30.6% of the patients which corresponds to a zPFS threshold of
0.3268. With this threshold we find an HR of 0.47 (p = 0.04, 95% CI 0.23 - 0.96) in
class ‘benefit’ and an HR of 0.91 (p = 0.68, 95% CI 0.60 - 1.39) in class ‘no benefit’
(Figure 3b). This establishes that our signature can predict bortezomib benefit in
unseen data from the same patient cohort, demonstrating that the signature can be used
prospectively to inform treatment choice. Our results indicate that, despite the fact that
nearly all MM patients receive a treatment regimen that includes a PI (Moreau et al.

2012), approximately 70% of patients do not see benefit.

The 14-gene signature achieves robust prediction performance in an independent
patient cohort

Gene expression signatures often suffer from cohort-specific fitting and cross-validation
within one dataset can thus lead to an overestimation of performance(Castaldi,
Dahabreh, and Ioannidis 2011). To obtain a more robust estimate of performance it is
essential to perform validation on an external and completely independent cohort.
Therefore, we validate its performance in the CoMMpass trial, which represents an
independent patient cohort which was profiled on a different platform (RNAseq). In
contrast to the HTT dataset, which is a randomized clinical trial, the CoMMpass dataset
is an observational study and thus represents clinical reality more closely. To bring the
CoMMpass RNAseq data in the same space as the microarray reference dataset, we
employ a ComBat batch correction (Supplementary Figure 1 and Methods). We
define a PI treatment arm (n = 686) and a no PI treatment arm (n = 61). The PI treatment
arm contains both bortezomib and carfilzomib. Using the threshold optimized on fold
D of the HTT cohort, we find an HR of 0.46 (p = 0.04, 95% CI 0.22 - 0.97) in class
‘benefit’ (n = 150) (Figure 3c). We also see a good performance when we use overall
survival (OS) as an endpoint (Table 1). Our signature is thus capable of predicting
benefit in a completely independent cohort and across platforms, indicating the signal
picked up by our classifier is robust and generalizes to the broader MM patient
population. We next assess the performance for each of the two Pls separately. When

we evaluate benefit for the bortezomib patients (excluding carfilzomib patients from

78



Gene networks can predict proteasome benefit in Multiple Myeloma

037 033 028 025 022 019 0.16
a. OF OoF o ox o2 oF °% b c.
& ZPFS 29 o, 2
— S —
E 0% g
4 4
© «© . ©
o | e \_“b“.\_\ 3 31
@ S, o
= g S e
° N Lo Sy Lo
c ™~ J c 94 — c @
o o S © i S ©
2 2 g g
8 8 8
s < g g 34
o © a° a °
I o o
2 2 .
0 | T o T o )
(<] g o Bortezomib, benefit (n = 34) E =1 PI, benefit (n = 138) L
S Bortezomib, no benefit (n = 102) S PI, no benefit (n = 548)
o @ Other, benefit (n = 59) o @ Other, benefit (n = 12)
< | S 1 —— Other, no benefit (n = 109) 9 1 —— Other, no benefit (n = 49)
° T T T T T T 1 ° r T T T T 1 ° r T T T T T 1
20 30 40 50 60 70 80 0 10 20 30 40 50 0 10 20 30 40 50 60
Size class ‘benefit’ (%) time (months) time (months)
d- 033 029 025 022 019 017 0.15 €. 031 028 025 023 0.2 017 0.15 f
L L L L L L ) L L L L L L |
S ZPFS ZPFS 81
I1ss1
31 z D ¢
D dellp
2 g4
S 3 cogt
= = g 4 2 1%
© 1] =
3 ] 5 81
] 8 @ Ecog 0
2 2 I s addh
s ° 8 3 o ¢
El G © o o
'3 o« g«
I I £ aeli7p
w o Ecogigbovﬂ
| @ 8_14
o S L 2 ° 1852
delts Si_ta
1416
< o o
S - S o
r T T T T T 1 T T T T T T 1 T T T T T 1
20 30 40 50 60 70 80 20 30 40 50 60 70 80 0 10 20 30 40 50
Size class ‘benefit’ (%) Size class ‘benefit’ (%) Percentage present benefit

Figure 3. a. HR found in class ‘benefit’ using different zPFS thresholds on the hold
out data. b. KM of bortezomib benefit prediction in the hold out data using the
optimal zPFS threshold. c. KM of Pl benefit prediction on CoMMpass using the
optimal zPFS threshold from the hold out data. d. HR found in class ‘benefit’ for
bortezomib in CoMMpass, using different zPFS thresholds. e. HR found in class
‘benefit’ for carfilzomib in CoMMpass, using different zPFS thresholds. f. the
prevalence of certain patient characteristics in class ‘benefit’ and ‘no benefit’.

the analysis), we find an HR of 0.49 (p = 0.06, 95% CI 0.23 - 1.03) in class ‘benefit’ (n =
124).

When predicting benefit for the carfilzomib patients we find an HR of 0.31 (p = 0.06,
95% CI 0.09 - 1.02) in class ‘benefit’ (n = 38). It should be noted the carfilzomib ‘no
benefit’ group should be considered a ‘less benefit’ group, as there is still a significant
HR in favor of carfilzomib in class ‘no benefit’, likely due to the low overall HR (0.42, p
= 0.0004, 95% CI 0.26 - 0.68). Nevertheless, the fact that our signature can identify a
patient group with substantially reduced HRs for carfilzomib treated patients indicates
that it is more broadly applicable to Pls in general and not only bortezomib. All HRs for
PFS and OS are shown in Table 1.
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Table 1. Summary of HRs found in all analyses using PFS and OS as an endpoint

HR whole HR HR no | HR whole HR HR no
population | benefit | benefit | population | Benefit | benefit
(PFS) (PFS) (PFS) (OS) (OS) (OS)
Bortezomib (HTT cohort) | 0.75(0.53 | 0.47 091 |[0.71(045-| 0.50 0.82
-1.06) (0.23- ] (0.60 - 1.11) (0.20 -] (0.47 -
p=0.1 0.96) 1.39) p=0.13 1.23) 1.40)
n =304 p= p= n =304 p=0.I3 p=
0.04 0.68 n=93 0.46
n=93 | n=211 n=211
PI 0.70 (0.51 0.46 0.79 0.55(0.34 0.18 0.74
-0.97) (0.22-1 (0.55 - -0.85) (0.08-| (0.44 -
p=0.04 0.97) 1.13) p =0.007 0.42) 1.23)
n =747 p= p=0.2 n =747 p= p=
0.04 n= 8*10” 0.25
n =150 597 n=150 | n=597
Bortezomib (no 0.75(0.54 | 0.49 0.84 | 0.60(0.39 0.20 0.79
Carfilzomib) -1.04) (0.23- ] (0.58 - -0.92) (0.09-| (0.48 -
p=0.09 1.03) 1.21) p=0.02 0.48) 1.33)
n =591 p= p= n =591 p= p=
0.06 0.35 0.0003 | 0.038
n=124 n= n=124 | n=467
467
Carfilzomib (no 0.42(0.26 | 0.25 047 [0.24(011-| Inf* 0.37
Bortezomib) -0.68) (0.06 - | (0.27 - 0.53) (0.16 -
p=0.0004| 0.93) 0.80) | p=0.0004 0.85)
n =217 p= p= n =217 p=
0.04 0.005 0.02
n=37 | n=180 n =180
Lenalidomide 0.72 (0.58 0.79 0.69 0.56 (0.41 0.74 0.51
-0.88) (050 - | (0.54 - -0.76) (036- | (037 -
p = 0.001 1.25) 0.86) | p=0.0001 | 152) 0.73)
n =747 p= p= n =747 p= p=
0.31 0.001 0.42 | 0.0002
n =149 n= n=149 | n=598
598
PI (excluding 0.69 (0.49 [ 0.50 0.75 0.52 (0.33 0.21 0.67
chemotherapy) -0.97) (0.23-] (0.51- -0.83) (0.08 -1 (0.39 -
p=0.03 1.13) 1.11) p = 0.006 0.53) 1.15)
n =515 p= p= n =515 p= p=0.15
0.10 0.15 0.001 | n=406
n =109 n= n =109
406
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PI (no PI/lenalidomide 0.91(0.64 | 0.65 1.02 0.82 (0.51 0.29 1.05
combination) -130) (0.27 - | (0.68 - -132) (010 - | (0.61-
p=0.60 1.57) 1.51) p=0.42 0.82) 1.81)
n =387 p= p= n =387 p= p=
0.33 0.93) 0.02 0.86
n=71 | n=316 n=71 [ n=316
Bortezomib (APEX) 0.74 (0.54 0.31 0.78 1.24 (0.82 0.42 1.42
-1.03) (0.11- | (0.55- -1.82) (0.15- | (0.93 -
p=0.07 0.87) 1.10) p=0.28 L.16) 2.16)
n=242 p= p= n =242 p= p=
0.03 0.15 0.09 0.10
n=25 | n=217 n=25 [ n=242
Bortezomib/Lenalidomide | 0.64 (0.51 | 0.84 0.59 | 0.46(0.32 0.63 0.42
vs Bortezomib -0.81) (0.51- | (0.45 - - 0.66) (0.28 - | (0.28 -
p=0.0002| 139) 0.76) p =1*10" 1.45) 0.63)
n =530 p= p= n =530 p= p=
0.50 | 7*10” 0.28 | 3*10”
n=112 | n=4I8 n=112 [ n=418

* No events in carfilzomib arm

The percentage of patients classified as ‘benefit’ in the CoMMpass dataset is lower than
on the HTT dataset. When we calculate the HR on the CoMMpass dataset using
different zPFS thresholds to define class ‘benefit’, we find that for both bortezomib and
carfilzomib the class ‘benefit’ associated with the lowest HR contains approximately
30% of the patients (Figure 3d,e), similar to what we observed in the HTT data. This
shows that also in CoMMpass, different zPFS thresholds are associated with benefit and
suggests approximately 30% of MM patients experience more benefit from PI treatment

than the population as a whole.

Finally, we confirm that our model is specific for PI treatment by testing it on the
immunomodulatory drug lenalidomide. We find an HR of 0.79 (95% CI 0.50 - 1.25) in

class ‘benefit’ (n = 149), clearly showing the signature is specific for PI treatment.

The predictive performance of the 14-gene signature holds in single agent Pl treatment
In clinical practice, the majority of patients receive a combination of treatments. To
ensure the signal captured in our signature is PI specific, and not dependent on a
specific treatment combination, we test the performance of our signature on data from

the APEX trial(Lee et al. 2008) (GSE9782). In this trial, a single agent bortezomib
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treatment was tested against high-dose dexamethasone in a relapse setting.
Unfortunately, two of the genes in our signature (CFAP53 and lincO0485) were not
measured in this study, but we can apply the signature with the remaining 12 genes.
With these genes, 10.3% of the patients are classified as benefit and we find an HR of
0.31 (95% CI 0.11-0.87, p = 0.03) in favor of bortezomib in class ‘benefit’, while in class
‘no benefit’ we find an HR of 0.78 (95% CI 0.55 - 1.10, p = 0.15)(Supplementary Figure
2). Secondly, while there are no single agent treated patients in CoMMpass, we find that
we can still predict benefit when we remove patients who received both a PI and
lenalidomide, albeit with a non-significant HR due to lower sample size (Table 1). The

signal of our signature is thus not dependent on a combination of treatments.

The predictive performance of the 14-gene signature is relevant in current clinical
practice

Chemotherapy is not regularly used to treat MM in the clinic anymore, but is present in
the CoMMpass dataset. To test the performance of our model in a more clinically
representative setting and show the performance generalizes to a more modern
treatment regimen, we exclude all patients who received any type of chemotherapy
(vincristine, doxorubicin, cyclophosphamide or melphalan, n = 232, patient numbers
per treatment in Supplementary table 2). We find that, in this chemotherapy free
cohort, we can still predict benefit to PI treatment with a similar effect size (HR = 0.50
(95% CI 0.23 - 1.13, p = 0.10)), as found in the whole dataset (Supplementary Figure
3). However, due to the smaller sample size this HR is not significant at p =
0.05. Bortezomib and lenalidomide are two of the most used drugs and are often given
together. In the CoMMpass data many patients in the Pl arm also received lenalidomide
(see Table 2 for patient numbers per treatment). The combination of bortezomib and
lenalidomide is superior to both lenalidomide alone and to bortezomib alone. However,
in class ‘benefit’ this combination is not superior to bortezomib alone (HR = 0.95, 95%
CI 0.58 - 1.55, p = 0.84), suggesting the addition of lenalidomide is not beneficial if the
patient already benefits from bortezomib treatment. This shows our signature is also
relevant in treatment combinations and could guide when bortezomib alone is

sufficient, thus reducing the treatment burden on the patient.
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Table 2. Overview of the distribution of the combination of Pl and lenalidomide

treatment in the CoMMpass dataset

Class ‘benefit’

Class ‘no

benefit’

Total

Bor without Len

Car without Len

Len without Car/Bor

BorLen

CarLen

No Car/Bor/Len

53 (35.6%)
8 (5.4%)
10 (6.7%)

59 (39.6%)

219 (36.6%)
51 (8.5%)
46 (7.7%)

199 (33.3%)

272 (36.4%)
59 (7.9%)
56 (7.5%)

258 (34.5%)

17 (11.4%) 80 (13.4%) 97(13.0%)
2 (1.3%) 3 (0.5%) 5 (0.7%)
149 598 747

Bor= bortezomib (PI arm), Car = carfilzomib (PI arm), Len = lenalidomide

Class ‘benefit’ cannot be characterized by known markers or models

Next we assess whether class ‘benefit’ can be characterized by known markers. To this
end we first performed enrichment analysis of the routinely measured chromosomal
aberrations (FISH markers), ECOG performance status or revised International Staging
System (ISS) score in both classes. None of these were overrepresented in either class

‘benefit’ or ‘no benefit’ (Figure 3f).

Moreover, none of the markers have a predictive performance for PI benefit in the
CoMMpass study that outperforms our signature (Supplementary figure 4). There
have been extensive efforts to predict prognosis in MM using gene expression, for
example with the GEP70 signature (Chapman et al. 2018; Shaughnessy et al. 2007). We
find no correlation between our score and the GEP70 model (Supplementary figure
5). While we observe that the GEP70 low risk group in CoMMpass has more benefit
form PI treatment (HR = 0.56, 95% CI 0.38 - 0.84, p = 0.005), we do not see this effect
in the H65/GMMG-HD4 dataset (HR benefit = 0.90, 95% CI 0.67 - 1.20, p = 0.45). Our
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signature can also still distinguish a benefit group (n = 86) within this low risk group in
CoMMpass (HR benefit is 0.33, 95%CI 0.14 - 0.76, p = 0.009).

Recently, a 7-gene signature was published to distinguish standard and good response
to bortezomib in the PADIMAC study (Chapman et al. 2018); none of these genes
overlap with our signature genes. When we assess the ability of our signature to predict
bortezomib response in the PADIMAC study, we find an AUC of 0.86 (Supplementary
Figure 6), indicating that our signature is also capable of predicting response.
Moreover, the 7-gene signature is reported to only be applicable in a non-transplant

setting, while our signature does not have this limitation.

Selected genes and links between them are essential for performance

In prognostic classification it is known that many different signatures with similar
performance can be found (Ein-Dor et al. 2005). This casts doubt on the usefulness of
biologically interpreting the genes within a signature. We thus first investigate whether

the genes in our signature are essential for performance.

We first permute the expression vector for each gene in the signature 100 times (while
the other 13 genes remain unchanged) and apply this signature to fold D of the HTT
cohort. The largest effect is observed for DAB2IP, with a mean difference in validation
HR of 0.29 (se = 0.06). Correlation between genes influence the decrease in
performance: for instance, shuffling SHTNI has the smallest impact on validation
performance and its expression is significantly correlated with more genes than any
other gene (with TPD52LI, NES and ST6GAL2, Supplementary figure 7). Therefore,
losing its information has less impact. Nevertheless, we demonstrate all individual
genes are important for the validation performance, as none can be shuffled without

decreasing performance (Figure 4a).

Next, we assess the importance of the relationship between the genes by shuffling the
edges between all genes included in the network ten times, while ensuring every gene
remains linked to at least one other gene. We then infer a signature with STLsig,
meaning a new combination of gene networks is selected to form the predictive
signature. The mean HR found in the hold out data in class ‘benefit’ is 0.74 (se = 0.05),
which is approximately equal to the HR found in the dataset without classification. The

connection between genes is thus essential for the performance of the signature. Lastly,
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Figure 4. a. The decrease in performance (difference in HR) for i) shuffling of each
gene separately, ii) shuffling links in the network and iii) when the 14 signature genes
are excluded from the analysis. Error bars indicate standard error. b. Genes with a
significant change in expression before and 48 hours after bortezomib treatment in
only either class ‘benefit’ or ‘no benefit’. Bold genes have a significant difference in
response between class ‘benefit’ and ‘no benefit’, determined empirically by testing
the difference with 1000 random labellings.

we remove all 14 signature genes from the dataset and rerun STLsig. The new signature,

which contains 312 genes from 85 gene networks, results in an HR of 0.56 (p = 0.23,

95% CI = 0.23 - 1.41) in the training data, which is worse than the original signature. The
performance on the patients in fold D, which requires optimizing a new zPFS threshold,

also yields a worse performance (HR of 0.59; p = 0.06, 95% CI 0.34 - 1.01; n=130 in the

‘benefit’ class). Moreover, changing this threshold to yield a differently sized class
‘benefit’ does not yield performances that approach that of the original 14-gene
signature (Supplementary Figure 8). Together, these results establish that the 14

identified genes are essential to the performance of the model.

Multiple signature genes are associated with MM or proteasome inhibition

Having established the genes in the signature are essential to the performance, we
investigate how the genes in the signature may be involved in determining PI benefit.
Interestingly, in addition to having the largest impact when its information is lost,
DABZ2IP is also the only gene that is significantly differentially expressed between class
‘benefit’ and ‘no benefit’ (p = 0.002). DAB2IP plays an essential role in the IREI-
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mediated ER stress response and inducing apoptosis via the JNK pathway (Luo et al.
2008). Apoptosis induced by ER-stress is one of the main working mechanisms of

proteasome inhibitors (Moreau et al. 2012).

While none of the other signature genes are differentially expressed between class
benefit and no benefit, several genes do have a clear link to cancer or MM specifically.
For instance, NES is a stem cell marker that is not found in healthy plasma cells, but is
found specifically in MM (Svachova et al. 2014). Moreover, NES has been associated
with treatment response in MM. CLIPI is involved in microtubule-kinetochore
attachment and plays a role in proper chromosome alignment during mitosis (Amin et
al. 2014) and has been associated with cancer progression and chemotherapy resistance
(Sun et al. 2012), though not in relation to MM. SNX9 is described to play an important
role in trafficking ADAMO to the cell surface (Mygind et al. 2018). ADAM9 is expressed
in MM cells and induces IL6 production by osteoblasts, potentially creating a more
permissive bone marrow environment for MM cell proliferation (Karadag, Zhou, and
Croucher 2006). One of the described working mechanisms of bortezomib is the
downregulation of the production of IL-6 in the bone marrow environment (Karadag,
Zhou, and Croucher 2006; Roccaro et al. 2006). The gene TPD52LI is a negative
regulator of ATM (Chen et al. 2013), which is involved in the DNA damage response and
activated by bortezomib treatment (Hideshima et al. 2003). ST6GAL2 has been
described before to be significantly downregulated in carfilzomib-resistant cell lines

(Zheng et al. 2017).

Together, this indicates that our signature is not only capable of predicting benefit but

could also aid in understanding differential response to PI treatment.

Different cellular response to bortezomib in class benefit

For 142 patients in the HTT cohort tumor gene expression was measured again 48 hours
after receiving bortezomib. To investigate whether the cellular response to bortezomib
is different for patients classified as ‘benefit’, we performed a differential expression
analysis before and after treatment separately in class ‘benefit’ and class ‘no benefit’
using SAM (Tusher, Tibshirani, and Chu 2001). Because of the low number of patients
in class ‘benefit’ for whom a second measurement is available, we relax our definition of

benefit and classify patients as ‘benefit’ if the calculated zPFS>0 (n = 71). We find 12
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genes that are significantly differentially expressed before and after treatment in class
‘benefit’ but not in class ‘no benefit. We also find two genes that are significantly
differentially expressed only in class ‘no benefit’ (Figure 4b). To identify the genes that
truly represent a different cellular response in class ‘benefit’ and ‘no benefit’, we
compute the difference in fold change between both classes. To ensure that this is not
a random difference, we also compute this difference for all genes using 1000 random
class labellings. We find four genes - TNS3, PXN, C2CD4A and PSPCI - where the
difference between ‘benefit’ and ‘no benefit’ is larger than expected by random chance
(p <0.05 after Bonferroni correction for multiple testing). None of these genes have
been linked to MM, though all have been connected to disease progression in other
cancer types (Carter et al. 2013; Wu et al. 2010; Yao et al. 2015; Yeh et al. 2018).
Interestingly, TNS3, PXN and PSPC(I are all described to play a role in cell adhesion and
a migratory phenotype (Yeh et al. 2018; Mouneimne and Brugge 2007). Cell adhesion
mediated drug resistance (CAM-DR) has been described extensively in MM (Damiano
et al. 1999; Landowski et al. 2003; Damiano and Dalton 2000). Moreover, it has been
suggested that bortezomib can overcome CAM-DR (Hatano et al. 2009; Yanamandra
2006). A different regulation of cell adhesion in class ‘benefit’ could play a role in the
observed benefit to Pls.

Discussion

In this work we propose STLsig, a method to identify interpretable signatures that
robustly predict patient benefit to Pls from a gene expression measurement at time of
diagnosis. The 14 gene signature, derived with our method, validates on an independent
patient cohort which was moreover measured on a different platform, confirming the

robust nature of the signature.

A clinical trial setting is most suitable for training the STLsig model. Here treatment is
randomized and each treatment arm contains roughly the same number of patients.
This is important for calculating zPFS and training the signature, as it ensures each
patient has sufficiently similar neighbours in the gene expression space. Once the
signature is trained, it can be validated on a less balanced dataset. We therefore used
the HTT cohort as training data, rather than the newer CoMMpass dataset. It should be

noted that the treatment combinations used in the HTT cohort are no longer
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representative of clinical practice; since sufficiently long follow up is needed to train a
model, we necessarily train on older data. Recently, it was shown that daratumumab,
combined with bortezomib, thalidomide and dexamethasone (VTd), is superior to VTd
(Moreau et al. 2019). This will arguably be the new standard, but since daratumumab is
relatively new, suitable gene expression datasets are not available. It is clear that Pls
continue to play an important role in MM treatment. In the CoMMpass dataset, we
show that the performance of our signature remains stable in different treatment
combinations and that - while it was trained on bortezomib - also can predict benefit to
carfilzomib. Moreover, we show that the addition of lenalidomide to bortezomib based
treatment only leads to better survival in the ‘no benefit’ group. This establishes our
model is also relevant in a more modern, chemotherapy free setting. We also
demonstrate our signature can be applied to patients for which the expression profiling

was performed using RNAseq, demonstrating cross-platform robustness.

We have only considered gene expression patterns in this research since it has been
shown that for classifiers aimed at predicting cancer survival, gene expression captures
the majority of the signal (Aben et al., 2018). More specific to MM, Chapman et al found
bortezomib response could not be reliably predicted from mutation events (Chapman
et al. 2018). The mutational landscape in MM is quite sparse and we find no difference
in mutation burden or in the specific genes that are mutated between class ‘benefit’ and
‘no benefit’ (Supplementary Figure 9). We also do not see a difference between class
‘benefit’ and ‘no benefit’ in the 63 driver genes that were recently identified (Walker et
al. 2018) (Supplementary Figure 10). While MM is a very complex disease and this
complexity can most likely not be captured in only two groups differentiated by gene
expression patterns, the signature identified can aid in optimal treatment selection and

thus has direct clinical applicability.

Several of the genes in the signature are already described to be involved in the
proteasome system or disease progression in MM and we show these genes are essential
for the predictive performance, as no equivalent signature can be found without them.
These findings reinforce the importance of the selected genes and indicate the power of

STLsig to further elucidate proteasome inhibitor specific mechanisms.
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STLsig can readily be applied to other diseases and drugs. A very potent application
could be to perform post-hoc analysis of clinical trial data for drugs which missed their
endpoint. Such analysis could reveal a subset of patients who would still benefit from

the drug, thus potentially extracting valuable information from failed clinical trials.

Taken together, we provide a powerful machine learning approach to aid in treatment
decisions in the clinic, ensuring a more optimal treatment choice and ultimately

improve patient outcomes.
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Supplementary table 1 Log2 fold difference of signature genes between class
‘benefit’ and ‘no benefit’ in fold D of the HTT cohort

Mean log2 fold

difference p-value
NEXN 0.27 0.16
DAB2IP -0.65 0.002
CFAP53 -0.06 0.72
TPD52L1 0.20 0.34
SHTNI1 0.38 0.05
ZNF493 -0.015 0.95
NES 0.10 0.77
CLIP1 0.23 0.26
LINCO0485 | 015 0.49
ST6GAL2 0.26 0.14
EBF2 -0.14 0.44
LINC00992 | (15 0.44
FA2H 0.05 0.74
SNX9 -0.006 0.98
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Supplementary table 2. Overview of the number of patients who received a form of
chemotherapy

Class benefit Class no benefit Total
Doxorubicin 0 (0%) 4 (0.7%) 4 (0.5%)
Cyclophosphamide 28 (18.8%) 168 (28.1%) 196 (26.2%)
Melphalan 12 (8.1%) 20 (1.7%) 32 (4.2%)
Vincristine 0 0 0
Before ComBat correction After ComBat correction

°
L]
o T3
o

tSNE2
ISNE2
0
1

Supplementary figure 1. tSNE of the datasets before and after batch correction
with ComBat.
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Supplementary figure 2. Kaplan Meier plot of the performance of the signature in
the APEX study.
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Supplementary figure 3. Kaplan Meier plot of the performance of the signature
when patients who received chemotherapy are removed from the CoMMpass
validation set.
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Supplementary figure 4. Performance of several known markers in predicting
benefit to Pl treatment. The blue line represents the performance of our signature
at different size class ‘benefit’, the red dotted line represents the HR as found in the
dataset as a whole.
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Supplementary figure 5. Distribution of UAMS ratio in class ‘benefit’ and class ‘no
benefit’.
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Supplementary figure 6. ROC curve of the performance of our signature in the
PADIMAC dataset and boxplot of the benefit score for good and standard
responders. The red dotted line represents the cutoff for class ‘benefit’.
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zPFS, as predicted by the signature found when excluding the original 14 genes
from the analysis.
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Chapter 4

Abstract

Selecting the best treatment for each patient remains a challenge in cancer. We have
previously developed the GESTURE algorithm, which is designed to predict whether a
patient will benefit more from a treatment than an alternative using tumor gene
expression. We here adapt it to deal with survival data with few events, to predict
chemotherapy benefit in breast cancer. We show it can successfully identify a subgroup
of patients who benefit more from chemotherapy than the population as a whole.
Importantly we also identify a group who does not see a significant benefit from
chemotherapy and can thus be spared the side effects. The classifier does not validate
in other external data with a different patient composition and treatment regimen,
highlighting the importance of matching the patient population included in the training

and validation set, and by extension the intended use population.
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Background

Personalized medicine has received increasing attention in cancer. However, selecting
the best treatment for each patient remains a challenge in almost all cancer types,
especially when treatments targeting a specific mutation are not available.

We have previously developed GESTURE (Gene Expression-based Simulated Treatment
Using similaRity between patiEnts), an algorithm that can predict treatment benefit
using gene expression and survival data as input (Ubels et al. 2018). We define
treatment benefit as having a superior survival on the treatment of interest to the
survival had this patient been given an alternative treatment. This is a challenging
problem, as we can only observe the response to the treatment a patient actually
received. Even when a patient did not experience a good outcome on a certain
treatment, they may still have benefited, as their outcome may have been even worse
on another treatment. In GESTURE we therefore implement the concept of Simulated
Treatment Learning (STL). STL relies on the idea that a genetically similar patient who
received a different treatment can be used to model the response to a treatment the
patient did not receive. We need to define this similarity between patients with genes
that are relevant to treatment benefit. In GESTURE we use many different gene sets
based on Gene Ontology (GO) annotation to define similarity; we then build a classifier
out of the gene sets that are most successful at identifying so-called prototype patients.
These are patients who experience more benefit from the treatment than similar
patients who did not receive the treatment; new patients who are similar to such a

prototype are also expected to benefit from the treatment.

We developed GESTURE and demonstrated its performance in Multiple Myeloma
(MM), a type of plasma cell cancer. However, GESTURE is not specific to MM and can
be applied to any dataset where gene expression, survival data and two treatment

groups are available.

With roughly 1.7 new million cases per year, breast cancer is the most common cancer
for women and one of the leading causes of death in women worldwide (Sharma 2019).
Breast cancer was one of the first cancer types where gene expression was used to
predict disease progression (Veer et al. 2002). Moreover, it was later shown in a

prospective clinical trial that this 70 gene classifier (the MammaPrint) can predict
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which women can safely forego chemotherapy (Audeh et al. 2019; Cardoso et al. 2016).
Breast cancer represents a good test case for applying GESTURE in a new disease, as it
is known that information relevant to treatment choice is captured in the gene
expression. While the MammaPrint was developed to predict 5-year survival and was
later found to be relevant to treatment benefit, GESTURE can train classifiers that are

optimized to predict treatment benefit.

While GESTURE is not specific to MM, the algorithm as is does not achieve a satisfactory
performance on the breast cancer data. This may be expected, as there are certain key
differences between the clinical reality of both diseases. MM is an incurable disease,
with a median survival of 5-6 years (Rajkumar and Vincent Rajkumar 2018). For breast
cancer, the average 5-year survival rate is 90% (SEER statistic). Because of this higher
survival rate and thus lower number of events, we have to adapt the optimization
criterion GESTURE uses for training classifiers. For clarity, from here on we call the
adapted version GESTURE-BC. GESTURE defines the best classifier as the one that can
identify a subset of patients - class ‘benefit’ - with the largest difference in survival
between the two treatment arms, as defined by the hazard ratio (HR). However, in
breast cancer a subset without any events in the treated arm can easily be identified. A
better HR cannot be achieved, even if the other treatment arm also has very good
survival. Applying GESTURE to breast cancer thus leads to a class ‘benefit’ where
patients in both treatment arms survived well, and a class ‘no benefit’ (i.e. all patients
not in class ‘benefit’) where we also find a significant HR in favor of the treatment
(Supplementary figure 1). Such a classifier cannot be used to aid in clinical decisions.
We thus adjust the optimization criterion in GESTURE-BC to take both class ‘benefit’

and ‘no benefit’ into account, to arrive at a classifier that is clinically useful.

Another consideration is that STL hinges on the idea that similar patients are present
in both treatment arms. The ideal setting for training a treatment benefit classifier is
thus a clinical trial, where treatment is randomized and similar patients are by
definition included in both treatment arms. However, in practice suitable clinical trials
data is rarely available and data from clinical practice has to be used. Breast cancer has
been well characterized both by gene expression and receptors present on the cell
surface. An important consideration in treating breast cancer is the presence or absence

of estrogen receptors (ER), progesterone receptor (PR) and human epidermal growth
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factor receptor 2 (HER2). There are specific treatments targeting these and triple
negative breast cancer (absence of all three receptors) carries the worst prognosis
(Kaplan and Malmgren 2008). There are also treatment guidelines taking tumor size,
lymph node status (i.e. whether cancer cells have infiltrated the lymph nodes) and cell
differentiation into account (Waks and Winer 2019). In breast cancer it is thus most
likely not true both treatment arms contain similar patients. When we train in such a
cohort, it is likely the signal captured in the classifier is then specific to the setting where
the data was gathered. For example, if only node positive patients received
chemotherapy, the classifier cannot train on chemotherapy benefit for node negative
patients. This classifier will then probably not generalize to a wider breast cancer patient

population, where patients with other characteristics did receive chemotherapy.

When clinical trials are impossible or simply not (yet) available, one could potentially
still leverage datasets with non-random treatment groups by computationally matching
the patients characteristics between the two groups. A possible approach is the
matching of patients to break the link between certain patient characteristics and the
treatment variable, so the model fitted is not influenced by these correlations (Ho et al.
2007). In this approach we use the relevant patient characteristics (i.e. age, tumor size
and node status) to calculate the probability a patient received chemo. We then match
patients from both treatment arms that have a similar probability. With perfect
matching, there is then no longer a correlation between these variables and the
treatment, so they will not bias the classifier. While perfect matching is often not

possible, this approach can still reduce the bias.

We here show GESTURE can be successfully adapted to fit the clinical reality of breast
cancer and find a classifier that can predict chemotherapy benefit in cross-validation.
We show its performance in 2273 ER positive and ER treated patients from the Sweden
Cancerome Analysis Network - Breast cancer cohort. Our classification cannot
characterized by factors currently in the treatment guidelines and we thus identify a
new group of patients with chemotherapy benefit. We also show that training a classifier
on matched data improves performance on unmatched data from the same population.
However, neither a classifier trained on unmatched nor on matched data could show
performance in an unrelated, older cohort, highlighting the importance of matching

training and validation datasets.
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Methods

Algorithm

GESTURE relies on the idea that patients who received different treatments, but have
similar tumor gene expression profiles, can be used to model the expected response to
an alternative treatment than the one received. Patients with a larger than expected
survival difference with similar patients who received a different treatment, can be used
as prototype patients. New patients who have a similar gene expression profile to a
prototype patient can then be expected to also benefit from that particular treatment.
The process of defining similarity and identifying prototype patients has been described
in detail before (Ubels et al. 2018). Briefly, to identify prototype patients we first need
to define similarity between all patients. Because it is unknown a priori which genes are
relevant to treatment benefit and thus should be used to define this similarity, we use
gene sets based on Gene Ontology (GO) annotation. We can then build a classifier based
on each GO set separately and assess which gene set leads to the best performance. To
build a classifier we divide the training data in three equal parts: fold A, fold B and fold

C. First we compute the mean survival difference for each treated patient through:

1
ASi = ;z(Sl - S])

j€o

where S; is the overall survival for the treated patient and O the set of the n nearest
patients (based on Euclidean distance) who did not receive the treatment of interest.
For all training we set the n to 30. We normalize this survival difference by also sampling
n random neighbours a 1000 times and calculating 4S;, to select patients with a larger
survival difference with their neighbours than expected randomly.

The classifier then optimizes two variables on fold B: how many prototypes are used (k)

and how close to a prototype a new patient should be to be considered class ‘benefit’

().

Previously, for the algorithm developed on MM data, the best classifier (representing
one gene set) was defined as the classifier that resulted in the largest hazard ratio (HR)
between the two treatment arms within class benefit. The HR in the class ‘no benefit’
(i.e. all patients not close to a prototype) was not taken into account. However, there

are far fewer patients who experienced an event in the breast cancer dataset (9.0%
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versus 48.2%). Furthermore, there is already a large HR between the chemotherapy and
no chemotherapy arm (HR = 0.45, p = 5.6 * 10-6). When GESTURE only takes the HR
in class ‘benefit’ into account when choosing the optimal values for k and y, it tends to
define a class benefit with no events at all in the chemotherapy arm in the training
procedure, since this leads to the best possible performance. However, this classifier is
not useful in clinical practice, as we also find a large, significant HR in favor of
chemotherapy in class ‘no benefit’ (Supplementary Figure 1 shows the cross-validated

performance of this classifier).

Therefore, we here define the best performance in GESTURE-BC as the minimum of
Boenefit — Pno veneritwhere the B is the coefficient for the treatment variable in each
class as calculated by Cox regression. We then test the optimal classifier on fold C. The
B’s found in fold C define the performance of this gene set in this repeat.

Since there can be large differences in performance of a gene set when a different
division in folds is used, we repeat the procedure 48 times. We take the median
performance over 6 repeats at a time and rank the gene sets, resulting in 8 separate
rankings (48/6). The final ranking of the geneset is determined by its mean rank over
these 8 rankings. We found that this method leads to a more robust ranking than either
taking the mean of the 48 separate rankings or calculating the median performance over
all repeats. Averaging the rankings, rather than the performance directly, reduces the
impact of having a few extremely low HRs, while not disregarding them entirely. The

whole algorithm is summarized in Figure 1.

This final ranking of gene sets is used to perform forward feature selection; gene sets
are added sequentially to form an ensemble classifier. For each repeat we evaluate the
performance of this ensemble classifier on fold C; the combination leading to the largest
median difference between class ‘benefit’ and ‘no benefit’ is selected. For these gene sets

a final classifier is trained on all training data to validate on hold-out data.

Data

We train GESTURE-BC on data from the Sweden Cancerome Analysis Network - Breast
cancer (SCAN-B) initiative (Saal et al. 2015) (GEO accession: GSE96058). This study
included women with breast cancer from centers around Sweden between 2010 and

2013 and measured tumor gene expression with RNAseq. This data is not from a
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Figure 1. Summary of the training procedure for GESTURE in breast cancer
(GESTURE-BC). First prototypes are identified and optimal parameters for the
classifier are determined per gene set. The performance of the gene set is then
defined on hold-out data by comparing the p’s found in class ‘benefit’ and ‘no
benefit’. The gene sets are then ranked by mean rank over 8 repeats. The rank for
each repeat is in turn determined over 6 repeats of cross validation.

randomized trial and this cohort thus represents current clinical practice. The publicly
available data includes RNAseq for 2969 patients, patient characteristics are
summarized in Table 1. The majority of patients are ER positive. Since survival and
treatment strategies differ significantly between these two groups, we exclude all ER
negative patients and ER positive patients who did not receive ER treatment from the

analysis, which results in 2273 patients.

The only other dataset available which includes the necessary patient information is
METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) (Curtis
et al. 2012). This dataset includes 1981 patients from the UK and Canada, diagnosed

between 1977 and 2005, for whom gene expression was measured with [llumina array.

Fold construction for cross validation

We divide the SCAN-B dataset into three equal folds, ensuring the balance between
chemotherapy and no chemotherapy is the same in each fold. Moreover, we ensure the
HR between the treatment arms does not differ more than 0.05 between the folds. The
two folds used for training each classifier are divided in fold A, B and C in the same

manner.
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Table 1. Overview of the patient characteristics in the SCAN-B data.

Chemothera No Overall
0% Chemotherapy (N=2969)
(N=1190) (N=1759)
Age (years)
Mean (SD) 55.2 (11.3) 67.8 (11.6) 62.8 (13.1)
Median [Min, 55.0 [24.0, 68.0 [34.0, 64.0 [24.0,
Max] 82.0] 96.0] 96.0]
Size (mm)
Mean (SD) 21.9 (12.6) 18.5 (11.4) 19.9 (12.3)
Median [Min, 20.0 [0, 125] 15.0 [1.00, 126] 17.0 [0, 126]
Max]
Missing 27 (2.3%) 5 (0.3%) 32 (1.1%)
Positive nodes
No 544 (45.7%) 1254 (71.3%) 1816 (61.2%)
Yes 612 (51.4%) 450 (25.6%) 1064 (35.8%)
Missing 34 (2.9%) 55 (3.1%) 89 (3.0%)
ER
Negative 167 (14.0%) 41 (2.3%) 214 (7.2%)
Positive 885 (74.4%) 1673 (95.1%) 2569 (86.5%)
Missing 138 (11.6%) 45 (2.6%) 186 (6.3%)
HER2
Negative 840 (70.6%) 1633 (92.8%) 2490 (83.9%)
Positive 309 (26.0%) 67 (3.8%) 378 (12.7%)
Missing 41 (3.4%) 59 (3.4%) 101 (3.4%)
PGR
Negative 217 (18.2%) 124 (7.0%) 347 (11.7%)
Positive 785 (66.0%) 1514 (86.1%) 2310 (77.8%)
Missing 188 (15.8%) 121 (6.9%) 312 (10.5%)
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Matching patients between treatment arms

We calculate a propensity score for receiving chemotherapy for each patient using
logistic regression with chemotherapy ~ age + node status + tumor size. All
patients with missing values for one of these variables are excluded. We also exclude all
patients older than 82, as there are no older patients in the chemotherapy arm. Based
on the propensity score, we match each chemotherapy treated patient to one untreated
patient. These pairs are chosen so total distance between all the pairs is minimized. This

is implemented in the R matchlt package, using the “optimal” setting (Ho et al. 2011)

Construction of gene sets

We only use genes measured in both the SCAN-B and the METABRIC dataset, which
results in 16,789 unique genes. We define GO sets with the R package goSTAG (Bennett
and Bushel 2017) and keep all sets which included more than one and less than a
thousand genes, which results in 9,578 gene sets. We use the FPKM values for SCAN-B
and the log2 normalized data from METABRIC. We then perform a batch correction
with ComBat (Johnson, Li, and Rabinovic 2007), with METABRIC and SCAN-B as the
batches. We then perform a quantile normalization, so measurements from both

datasets are directly comparable.

Results

Cross-validation on SCAN-B leads to a significant HR in class benefit

We perform 3-fold cross validation on the SCAN-B dataset. In the dataset as a whole an
HR of 0.45 (p = 6*10°) in favor of chemotherapy is found (Figure 2a). When we classify
the population with the GESTURE-BC classifier we find a class ‘benefit’ comprising
70.2% of the dataset with an HR of 0.31 (p = 6*107) in favor of chemotherapy (Figure
2b). The HR in class ‘no benefit’ (n =685) is 0.89 (p = 0.67). This performance is fairly
stable across the three cross validation folds. In Fold 1 74.3% of the patients are classified
as ‘benefit’, which results in an HR of 0.31 (p = 0.0005) in class ‘benefit’ and an HR of
1.46 (p = 0.50) in class ‘no benefit’. The classifier validated on Fold 2, classifies 55.2% of
the patients as ‘benefit’, which results in an HR of 0.27 (p = 0.007) in class ‘benefit’ and
an HR of 0.74 (p = 0.45) in class ‘no benefit’. The Fold 3 classifier classifies 81.0% of
patients as ‘benefit’, which results in an HR of 0.32 (p = 0.01) in class ‘benefit’ and an
HR of 0.74 (p = 0.54) in class ‘no benefit’. The Kaplan Meiers of these classifications are
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shown in Supplementary Figure 2. The classifiers validated on Fold 1, Fold 2 and Fold
3 use 10, 31 and 64 gene sets respectively.

The ensemble classifier is formed by classifying all patients with each gene set
separately. The benefit score of a patient is then defined by the number of gene sets that
classify the patient as ‘benefit’. To define the final class ‘benefit’ a threshold t is set,
where a patient is classified as class ‘benefit’ when their benefit score is above the
threshold. This threshold ¢ is optimized by the difference in  between the classes, with
the constraint that both classes contain at least 20% of the patients and the HR in class
‘benefit’ is significant at p < 0.05. There is a trade-off between class size and HR in

setting t.

When we vary the threshold determining class ‘benefit’ we find that a smaller class
‘benefit’ is associated with a lower HR (Figure 2c), since a higher threshold requires the
classifier to be more confident about the classification (i.e. more individual gene sets
need to classify the patient as ‘benefit’). This shows the performance is not dependent

on one specific threshold, but a high score also means more benefit.

GESTURE-BC classification is not characterized by known chemotherapy predictors
There are already many factors known to influence chemotherapy benefit. We first
compare our classification with that of the MammaPrint. It has been shown that
patients who are predicted to have a good prognosis by the MammaPrint can safely
forego chemotherapy, i.e. see no benefit from it. The MammaPrint signature included
70 probes that code for 56 unique genes, which we can all match to a gene measured in
the SCAN-B dataset. When we apply the MammaPrint to the SCAN-B dataset we do
find a prognostic effect (HR poor prognosis = 1.67, 95% CI 1.13 - 2.46, p = 0.01), but we
do not see a predictive effect (Supplementary Figure 2). This could be due to the fact
that the population in SCAN-B was in part already treated in accordance with this risk
classification: 42.8% of the poor prognosis group received chemotherapy, versus just
15.5% of the good prognosis group. For only 65.3% patients the classification of our
classifier and MammaPrint overlap, which is according to statistical expectation given
a class ‘benefit’ comprising 70.1% of the patients. Our classifier clearly identifies a

different signal, which is to be expected given that we trained specifically on
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Figure 2. a. Kaplan Meier of the SCAN-B dataset, only including ER positive and
ER treated patients. b. Kaplan Meier of the cross-validated performance of the
GESTURE classifiers. c. Performance of the GESTURE classifiers using varying
thresholds to define class ‘benefit’. The dotted line represents the HR found in the
dataset as a whole.
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performance of the classifiers trained on all data on the SCAN-B hold out data. c.
Kaplan Meier of the performance of the classifier trained on matched data on the
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chemotherapy benefit rather than prognosis and the fact that most patients were

already treated according to their MammaPrint classification.

Tumor characteristics like tumor grade, tumor size and lymph node status are also
included in treatment guidelines. Tumor grade information is not available for the
SCAN-B dataset, but tumor size and lymph node status is included. While tumor size is
significantly greater in the chemotherapy treated group (p = 4*107), this is not the case

between class ‘benefit’ and ‘no benefit’ (p = 0.97).

The same holds true for lymph node status, with the percentage of lymph node positive
patients similar in class ‘benefit’ and ‘no benefit’ (40.8% versus 36.5%). This shows our
classifier does not identify patients according to known risk factors and adds new

information that can be used clinically.

Classifier on matched data results in a better performance in unseen data

As seen in Table 1, patient characteristics vary between the treated and untreated
patients, which may impede GESTURE-BC from finding the right predictive signal for
predicting treatment benefit. To mitigate this issue, we created a matched population
where the difference between the treatment arms is minimized. To this end, we
calculate a propensity score per patient that describes the probability of receiving
chemotherapy given the age, tumor size and node status of the patient. We then match
each treated patient to an untreated patient minimizing the difference in this score over
all patients pairs. Figure 3a shows the distribution of the characteristics in the data
before and after matching. It can be observed that the difference in tumor
characteristics cannot be fully equalized with the matching procedure. However, the
difference in likelihood of receiving chemotherapy is much smaller in between the two
matched groups. The HR in favor of chemotherapy in the matched dataset is 0.85 (p =
0.49), which is much higher than in the dataset as whole. In total 803 patients are not
included in the matched dataset. These patient samples are used to compare the
performance of the cross validated classifiers and the matched classifier. These 803
patients are not matched on patient characteristics and thus represent a better test case
for performance in a clinical setting, where treatment is non-randomized. While the
classifiers trained on all data do find a class ‘benefit’ with a larger benefit from

chemotherapy than the population as a whole in these patients (Figure 3b), the
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matched classifier performs better (Figure 3c), particularly in identifying a class ‘no
benefit’. This shows matching a population to simulate a more randomized setting

could improve performance, even when validating in a non-matched setting.

GESTURE-BC classifier cannot identify a class ‘benefit’ in METABRIC data

We next assess the performance of the classifier trained on the matched dataset in the
ER positive en ER treated patients included in the METABRIC data. Most patients in
this dataset were diagnosed before 2000 and thus represent a different clinical reality.
Moreover, only 12.0% of patients received chemotherapy and we find an HR of 1.57 (95
% CI 1.16 - 2.13, p= 0.003) against giving chemotherapy. When we classify these patients
with the GESTURE classifier, we find an opposite effect, where class ‘no benefit’ in fact
sees a greater benefit than the population as a whole (Figure 4a). Since there are only
21 patients in the no benefit class who received chemotherapy this HR is, however, not
significant and could therefore be due to chance. Interestingly, when we train a classifier
on METABRIC - matched in a similar manner as with SCAN-B - we see the same effect,
with a lower HR in class ‘no benefit’ (Figure 4b). Unfortunately, the METABRIC dataset
does not include enough chemotherapy patients to perform a cross validation. It is clear
however that the SCAN-B classifier does not validate in the METABRIC dataset. While
this could be due to overfitting on the SCAN-B dataset, cross validation did show some
signal was captured in the classifier. It could also be that the METABRIC dataset, where
an HR not in favor of chemotherapy is found, represents a different population in part

due to the fact that these patients were included when clinical practise was different.

HAND?2 is present in all classifiers

Finally, we investigate which genes are included in all four classifiers trained on the
SCAN-B (three classifiers from cross validation and one trained on the matched data).
Of the selected GO categories none are selected in all four classifiers. Also, there is little
overlap among the genes within the GO categories selected (Figure 4c). The only gene
present in all three classifiers trained in cross validation and the classifier trained on the
matched data is HAND2. HAND?2 is also present in the classifier trained on the
METABRIC data. This gene plays an important role in limb development and is
associated with progression in endometrial cancer (Jones et al. 2013), but has not been
associated with breast cancer. It should be noted that the classifier validated on Fold 1

in the cross validation only included 10 gene sets and 35 genes in total, making overlap
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Figure 4. a. Kaplan Meier of the performance of the classifier trained on matched
SCAN-B in the METABRIC dataset. b. Kaplan Meier of the performance of the
classifier trained on the matched METABRIC dataset on the SCAN-B dataset. c.
Overlap of genes between the four classifiers trained on the SCAN-B dataset. d.
The overlapping genes in 3 out of 4 classifiers. The edges are inferred by
GeneMania. A purple edge indicates co-expression, a green edge a genetic
interaction, a light-blue edge a shared pathway, a dark-blue co-localization, a red
edge a physical interaction and a yellow edge a shared protein domain.

less likely. The other three classifiers include 22 overlapping genes (including HANDI),
which are shown in Figure 4d. The network was generated by GeneMania, which links
genes based on the interaction described in literature (Warde-Farley et al. 2010). The
network is highly enriched for the GO categories “RNA polymerase II core promoter
sequence-specific DNA binding transcription factor activity” and “sequence specific
DNA binding”, both important for the regulation of gene expression. Multiple of these
22 genes have also already been implicated in disease progression and chemotherapy
resistance in breast cancer. For example, overexpression of the transcription factor KLF4
has been shown to be predictive of complete remission in response to neoadjuvant

chemotherapy (Dong et al. 2014). Gas6 overexpression has been described to contribute
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to chemoresistance (Wang et al. 2016). SOX4 and SOXII are both related to disease
progression in breast cancer (Zhang et al. 2012; Shepherd et al. 2016). While these 22
genes are not essential for performance - as they were not included in the classifier

validated on Fold 1 - there are clear links with breast cancer progression.

Discussion

In this work, we show that the GESTURE approach, which we originally developed in
the context of MM in which survival rates are poor, can successfully be adapted to breast
cancer, which is characterized by much better survival rates. Our classifiers, which in
total are based on 101 gene sets containing 368 unique genes, can predict chemotherapy
benefit with an HR of 0.31 (p = 6*107) in class ‘benefit’. The classifier represents a
different signal than known markers. We also show that though treatment is not
randomized in the SCAN-B dataset, the performance of the classifier in non-
randomized data can be improved by matching patients between the treatment arms in

the training data.

We find that when applied to an external dataset, the METABRIC dataset, the classifier
does not show the same predictive behavior. However, it should be noted that the fact
that there is no HR in favor of chemotherapy in this dataset already indicates it does
not represent the same patient population and clinical setting. More specifically, the
patients included in the METABRIC dataset were diagnosed roughly 15 years before the
SCAN-B dataset and thus do not represent the same clinical practice. It may therefore
not be surprising that a classifier trained on one of the two datasets does not validate
on the other. This does highlight the necessity of training and validating in datasets that
accurately reflect the patient population for which the classifier is intended. It
represents a fundamental challenge in training these models; while the older dataset
has longer follow-up, more events and thus more statistical power, the newer data most
likely represents the intended use population better. The development of these models
is further hampered by the limited number of datasets with all necessary annotations

that are made available publicly.

While further validation in a representative test set is necessary, the cross validation

and validation of the classifier trained on matched data does indicate that GESTURE
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can be successfully adapted to breast cancer data and predict benefit to chemotherapy.
GESTURE is thus more widely applicable than the setting it was developed in and can
be adapted to different diseases. It could be an important tool in making personalized

medicine a reality in more types of cancer.
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Chapter 5

Abstract

When phase III clinical drug trials fail their end-point, enormous resources are wasted.
Moreover, even if a clinical trial demonstrates a significant benefit, the observed effects
are often rather small and may not outweigh the side effects of the drug. Therefore,
there is a great clinical need for methods to identify genetic markers that can identify
subgroups of patients which are likely to benefit from treatment as this may i) rescue
failed clinical trials and/or ii) identify subgroups of patients which benefit more than
the population as a whole. When single genetic biomarkers cannot be found, machine
learning approaches that find multivariate signatures are required. In the context of
SNP profiles this is extremely challenging owing to the high dimensionality of the data.
Here we introduce RAINFOREST (tReAtment beneflt prediction using raNdom
FOREST), an adaptation of the random forest that can predict treatment benefit from

patient SNP profiles obtained in a clinical trial setting.

We demonstrate the performance of RAINFOREST on the CAIRO2 dataset, a phase III
clinical trial which tested the benefit of cetuximab treatment for metastatic colorectal
cancer. While this trial concluded there was no benefit, we find that RAINFOREST is
able to identify a subgroup comprising 27.7% of the patients that significantly benefit
from treatment with a hazard ratio of 0.69 (p = 0.04) in favor of cetuximab. The method
is not specific to colorectal cancer and could aid in reanalysis of phase III clinical trial
data and provide a more personalized approach to cancer treatment, also for drugs

where there is no clear link between a single variant and treatment benefit.
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Introduction

Novel drugs are tested for efficacy in phase 3 clinical trials. Despite enormous
investments in the development and research prior to the trial, approximately 54% of
the phase 3 clinical trials still fail, most often due to a lack of efficacy of the drug tested
(Hwang et al. 2016). Trials testing anti-cancer drugs have a higher failure rate than non-
cancer drug trials. It was found that trials which adopt a biomarker strategy, i.e. attempt
to identify a subset of patients most likely to benefit, have a significantly lower failure
rate (Jardim et al. 2017). This is also true for trials evaluating targeted drugs. It is thus
clear that even if a clinical trial does not reach its predefined endpoint, there could still
be a subset of patients that do see benefit from the drug. Moreover, even if a clinical
trial does indicate statistically significant benefit, this benefit may in fact be quite
modest and driven by a subset of patients that have a larger benefit from the drug. For
this reason, the benefit for all patients may be insufficient to warrant prescription of a
drug with very serious side effects. In such cases, it is important to establish which
subset of patients benefit more than the population as a whole and develop tools that

can predict such treatment benefit at the moment of diagnosis.

It has become clear that the genetic background of both tumor and patient can
influence drug response and several germline variants have been linked to the
effectiveness of a number of drugs (anti-cancer and other). SNP panels enabling the use
of these variants for personalized medicine are under active development (van der
Wouden et al. 2019). For instance, for several chemotherapies, its sensitivity or toxicity
has been linked to specific single nucleotide polymorphisms (SNPs) (Panczyk 2014;
Sullivan et al. 2014; Yin et al. 2012). Despite this initial progress, for many drugs there
is no clear relationship between response and a single variant or other simple molecular
biomarker and more complex machine learning models are needed.

A major challenge is that genome wide germline variation datasets are very high
dimensional, often including 100- to 1000-fold more features (SNPs) than samples
(patients). As a result, machine learning models have a high risk of overtraining
(Szymczak et al. 2009). One class of models, which has shown great promise in
preventing overtraining in such situations, are Random Forests (RFs). Outside the
cancer field, RFs have successfully been used to predict drug response using germline

variation data (Athreya et al. 2019; Cosgun, Limdi, and Duarte 2011). RFs are ensemble
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classifiers combining multiple decision trees. RFs are explicitly designed to prevent
overtraining by using only a subset of the available training samples and randomly
sampling a subset of the features at each split. Since the algorithm only has access to
part of the dataset at a time, it is less likely to overtrain on the dataset as a whole, while
predictive performance remains high due to the fact that many trees are combined in
an ensemble. For instance, RFs have been successfully employed to predict optimal
warfarin dose using genome wide germline variation data and shown to outperform

alternative models (Cosgun, Limdi, and Duarte 2011).

Traditional machine learning methods like RFs enable the discovery of models that
predict sensitivity for one specific treatment, i.e. distinguish between poor and good
responders within one homogeneous treatment group. However, owing to recent
progress in drug development for most cancers there are different treatment options
available. A clinically more relevant question is thus whether an individual patient will
benefit more from one treatment than another. In this work, we therefore define
treatment benefit as having a better survival outcome on the treatment of interest than
an alternative treatment. The difference between these treatments, often expressed in
terms of hazard ratio (HR), should furthermore be greater than the difference observed

in the population as a whole.

RFs have also been applied to survival analysis and used to identify (non-linear)
prognostic factors in several cancer types, with modest success (Akai et al. 2018;
Manilich et al. 2011). In essence, these random survival forests are similar to traditional
RFs and also construct an ensemble classifier from individual decision trees, but the
optimal split in these trees maximizes the survival difference between the two daughter

nodes (Ishwaran et al. 2008).

In order to predict treatment benefit as we have defined it, traditional machine learning
methods are unsuitable. Traditional class labels required for training machine learning
models are not available. After all, we cannot know how a patient would have responded
to a treatment they did not receive, and therefore we cannot know a priori (and thus
label) a patient as class ‘benefit’ or class ‘no benefit’. More specifically, a patient
responding well to a certain treatment could have had an even better response on an

alternative treatment. Conversely, a poor response does not necessarily mean the
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patient did not see any benefit from the treatment. This lack of training labels renders
most regular machine learning approaches unsuitable. Likewise, survival analysis using
random survival forests also does not solve the problem of a lack of training labels, as
they simply aim to predict survival outcome instead of benefit to a certain treatment.
An overview of the different aims of traditional machine learning, survival analysis and

benefit prediction is provided in Figure la.

The machine learning method we propose can directly derive a benefit prediction model
from germline genetic data gathered in a clinical trial in which patients were randomly
assigned to one of two different treatment arms. To this end we propose an alternative
formulation of the traditional RF classifier, called RAINFOREST (tReAtment beneflt
prediction using raNdom FOREST). RAINFOREST implements the SurvDiff measure as
an alternative to the Gini impurity, to decide on the best possible split in each decision
tree. SurvDiff captures the survival difference between the treatment arms within a
node. The SurvDiff measure enables training predictive decision trees by providing a
split criterion which results in a ‘benefit’ and ‘no benefit’ branch in the tree. An overview

of RAINFOREST and the SurvDiff measure is provided in Figure 1b.

We apply RAINFOREST to the CAIRO2-trial, a randomized phase III clinical trial
designed to test whether patients with metastatic colorectal cancer benefit from
addition of the EGFR inhibitor cetuximab to standard first-line treatment. This trial
showed that the addition of cetuximab to a regimen of chemotherapy and bevacizumab
results in a significantly shorter progression free survival (Tol et al, 2009). However, it
is known that cetuximab response varies widely between patients. Previously, several
somatic mutations in the tumor that influence cetuximab response have been identified
(Salvatore et al. 2010; Khan et al. 2017). Moreover, in the context of the CAIRO?2 trial a
germline SNP was identified with the potential capability to predict treatment benefit
(Pander et al. 2015), although this variant was not validated.

In this paper we demonstrate the capability of RAINFOREST on the CAIRO2 trial. We
show that RAINFOREST can identify a subset of patients with significant benefit from
cetuximab and that this approach outperforms both univariate analysis and a random

forest trained on predefined labels.
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Methods

Overview of RAINFOREST

A random forest model is an ensemble classifier consisting of individual decision trees
trained on different subsets of the training data. More specifically, each tree in the forest
only has access to a subset of the samples (sampled with replacement) and for each split
in the tree a random subset of the features is sampled.

The optimization of each tree, i.e. choosing the optimal split for a node in the tree, is
most often achieved by minimizing the Gini impurity. The Gini impurity is a measure
of the probability that a sample would be incorrectly labeled in this split and is O when
a node contains only samples with the same label. Problematically, in the context of
predicting treatment benefit no predefined training labels are available, as we cannot
know if a patient survived longer (or shorter) from treatment than on standard of care
or some other treatment. We can therefore not use the Gini impurity for RF

construction.

Treatment effect is most often determined through a Cox proportional hazards model
(see next section for more details), based on which a hazard ratio (HR) is calculated.
The HR associated with a treatment provides an estimate of the hazard of experiencing
progression of disease relative to the hazard when another treatment would be given. A
HR below 1 indicates benefit from receiving the treatment. In the absence of training
labels that can be used to calculate accuracy, we use the HR as performance measure
when validating the RAINFOREST model in cross validation.

Problematically, estimating a Cox model is too computationally expensive to be used in
a splitting criterion when training thousands of decision trees. We therefore propose
RAINFOREST, a random forest approach in which we introduce a novel splitting
criterion that can be optimized to directly predict treatment benefit. For each sample,
RAINFOREST requires treatment arm data, survival data and SNP data. Each decision
tree should define a class ‘benefit’ and ‘no benefit’ which maximizes the difference
between treatment effect. We define this difference through the splitting criterion

SurvDiff:

e SUrvAL,—survBy, SUrvAg—survBg
SurvDiff = | - = — = 2|
o(survA)” | o(survBy) o(survAg)”  o(survBg)
TLAL I nBL TlAR ' nBR
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Figure 1. a. An overview of the difference between traditional machine learning,
survival analysis and benefit prediction. b. An overview of the RAINFOREST
algorithm. The survival curves show examples of what a class ‘benefit’ and ‘no
benefit’ should look like. We train 10,000 of these individual decision trees to form
the RAINFOREST model, which is validated on 14 of the data that acts as test data
and was not used in training of the model.
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where survA; and survB, are the mean survival data for treatment arm A and B in the

left node of the split, respectively. Similarly, survAg and survBy are the equivalent in
the right node. Moreover, nyand nz denote the number of samples included in the node
in treatment arm A and B, respectively. For each SNP under consideration we test two
thresholds (SNP value >0 or >l) to define the left and right node. SurvDiffthus
corresponds to calculating the absolute difference between the Welch'’s T-test statistics
found in the left and right node. The best SNP is the one resulting in the maximum

value of SurvDiff.

Using this criterion we train 10,000 decision trees. We further prevent overtraining by
restricting every tree to a depth of two. This restricts the tree to a maximum number of
four leaves (nodes without a child node) and means every tree uses at most three SNPs.
When building a tree using SNP data, the RF can be biased towards choosing non-
informative SNPs with a high minor allele frequency over informative SNPs with a lower
minor allele frequency (Boulesteix et al. 2012). This bias is not very pronounced in the
beginning of a tree, but can dramatically influence SNP selection lower in the tree, when
smaller sample sizes are present. We therefore also only split a node further when it
contains at least 50 patients. These restrictions also reduce computational cost. An

overview of the construction of the RAINFOREST model is given in Figure 1.

Survival analysis and event imputation

Survival data is right censored, which means that all patients who did not experience
progression of disease by the end of follow-up are censored, i.e. no event is recorded.
Cox models can handle censored data by maximizing the partial log likelihood over

coefficient § through:

()= ) X+ f-log ) 6

i!Ci=1 j:YjEYi

where 6, = exp(X; = ) and X represents the explanatory variable, i.e. the treatment
arm in this situation. When estimating the likelihood of an event occurring for subject
I at a certain time t the 6;is summed for every subject j that has not yet experienced an

event at t. In this way censored patients can be included and used for optimization up
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to the time of censoring, instead of being excluded from the dataset all together. The

HR is defined as the exponent of .

The SurvDiff measure does not rely on Cox models. Instead, RAINFOREST deals with
the censoring problem by imputation. More specifically, for all censored patients an
event time is imputed based on all patients for whom an event was observed as
reference. To achieve this, a Weibull distribution is fitted to all uncensored patients
through maximum likelihood estimation. The Weibull distribution can be used to
adequately parametrize a survival distribution and can also - akin Cox regression -
model proportional hazards (Carroll 2003). The cumulative distribution function of a

Weibull distribution is described by
F(x;k,A) =1 — e~ (/1)

where x is the time to event, k is a shape parameter and 4 is the scale parameter. In our
dataset we find the maximum likelihood is reached with a value of 11.91 for 4 and 1.65
for k. Importantly, we find very similar parameters for the distribution when we perform
a maximum likelihood estimation for each treatment arm separately, justifying an
estimation over the whole dataset. This is in line with the observation in the original
trial that there is no significant survival difference between the two treatment arms. For
each censored patient we now sample an event time greater than the time of censoring

from the estimated Weibull distribution.

Data

In this work the survival and genome wide genotype data from patients enrolled in the
CAIRO2 trial are used, which included patients in 79 Dutch centers to test the addition
of cetuximab for the treatment of metastatic colorectal cancers. The data generation
and processing has been previously described in detail (Pander et al. 2015). Briefly, we
use survival data and germline DNA of 553 patients who received treatment regimen
CAPOX-B (capecitabine, oxaliplatin and bevacizumab) with cetuximab (n = 274) or
without cetuximab (n = 279).

DNA was isolated from peripheral leukocytes and genome wide genotyping was
performed with Illumina beadchip arrays. Of all measured variants 647,550 passed all

quality checks and we performed no imputation of additional variants. We also exclude
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SNPs with a minor allele frequency <5% and SNPs with any missing data, after which
257,008 SNPs remain. Each SNP is coded as 0,1, or 2, corresponding to the number of
copies of the alternative allele. We use progression free survival (PFS) as the end point

in all analyses.

Univariate SNP analysis

To evaluate the ability of individual SNPs to predict cetuximab benefit, we compute two
Cox proportional hazard models per SNP. First, we compute an additive model which
contains the SNP and treatment arm as separate variables. The second model also
includes an interaction term between the SNP and treatment arm (i.e. treatment
arm*SNP). For a SNP that influences treatment benefit, this second model should
provide a better fit. We test whether there is a significant difference in model fit using
a likelihood ratio test. We rank SNPs on most significant contribution of the interaction
term to the model, as measured by the likelihood ratio test p-value. With the best SNPs

we define a benefit score by:

n
benefitScore = EXiﬁi
i=1

Where X is the alternative allele count for a certain SNP i and S the Cox regression
coefficient associated with the interaction term. We perform forward feature selection
to determine the best SNP combination by ranking the SNPs on p-value and adding the
top 250 in order. The SNP combination resulting in the lowest HR in class ‘benefit’ is

chosen. We validate this model in a three-fold cross validation.

Random forest using survival-derived labels

We compare the performance of RAINFOREST to the results obtained by a regular RF
trained on the survival labels directly (which, as discussed previously, is not necessarily
the best measure for treatment benefit). To obtain a labeled dataset, required for
training a regular RF, we define the class ‘benefit’ as the patients with the 25% best
progression free survival from the cetuximab arm combined with the patients with the
25% worst progression free survival from the other arm. The other 75% of patients

comprise class ‘no benefit. With these labels we define a class benefit that has a
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significantly better survival on cetuximab than the rest of the population, satisfying our

definition of treatment benefit.

Cross validation fold construction

To evaluate the performance of univariate SNP selection, the regular RF and the
RAINFOREST models, we employ 3-fold cross validation. To ensure the results are
directly comparable, we use the same folds for all analyses. To obtain a fair estimation
of the performance, it is important that the different folds are stratified, i.e. contain a
similar and representative part of the whole dataset. Here we cannot balance the folds
using training labels, as these are not available. To ensure the cross validation folds are
representative, we therefore balance on treatment arm. Furthermore, we require that

the HR found between the treatment arms does not differ more than 0.05 between all
three folds.

Optimization of mtry parameter

RFs often use an out-of-bag (OOB) error to optimize model parameters. Since in an RF
model each tree samples a different subset of the patients, each training sample is not
used in a number of trees. The OOB error is determined by classifying each training
sample, using only the trees in which a particular sample was not included. However,
the OOB error can severely underestimate performance when random sampling is
performed from unbalanced classes (Mitchell 2011). As we do not know the labels here,
representative sampling is impossible. Using random sampling we indeed see that the
OOB performance, defined as the HR between treatment arms in class ‘benefit’, is close

to random (HR class ‘benefit’ in OOB sample is 1.45 (95% CI 0.94 - 2.26, p =0.10)).

As we cannot obtain a realistic estimation of the performance from the OOB sample in
RAINFOREST, we cannot optimize the mtry parameter which defines how many
features are sampled at every split. However, previous work suggests that the best mtry
is linked to dataset dimensionality (Goldstein et al. 2010). The RF trained on survival
labels uses the same features as RAINFOREST. In training this RF we try several settings
for mtry (Vp, 2Vp, 0.1p and 0.2p). For training RAINFOREST we use the same mtry
setting as in the best performing RF trained on survival based labels (vp) and train

10,000 trees.
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Results

T-test in SurvDiff criterion captures survival difference

We first assess whether the T-test on the imputed survival data, which is used in the
SurvDiff splitting criterion, captures the same signal as Cox regression would capture,
to ensure this is a suitable measure to use during training of the RAINFOREST model.
For each SNP we perform a T-test for both the reference and alternative allele,
contrasting the difference in imputed survival between the two treatment arms. We
compare the resulting T-test statistic to the equivalent Cox regression f (Figure 2a).
We find these measures to be highly correlated for both the reference allele (Spearman
correlation coefficient = 0.95, p < 2*10®) and the alternative allele (Spearman
correlation coefficient = 0.94, p < 2*10™°). Importantly, this approach reduces compute
time by one order of magnitude (34.41 minutes for the Cox regression computation
versus 1.89 for the T-test on a single core). Thus, the T-test approach captures a similar
signal as a full survival analysis while keeping it computationally feasible to train a

model with thousands of trees.

RAINFOREST can identify patients benefiting from cetuximab

We next trained RAINFOREST to predict cetuximab benefit on the CAIRO2 trial data
and validate its performance in a three-fold cross validation. Figure 2b shows the
survival curves in the dataset as a whole, without any classification. Here we find an HR
of L11 (95%CI 0.93 - 133, p = 0.25) for cetuximab treatment. Figure 2c shows the
different HRs found in class ‘benefit’ when using different operating points of the
classifier (i.e. different thresholds on the number of trees classifying a sample as
‘benefit’). This curve indicates a direct relationship between the operating point and the
HR found in class ‘benefit’ - we find a lower HR when the threshold is set higher. As no
sample has a posterior probability higher than 0.5, we cannot use a majority vote to
assign a sample to class ‘benefit’ or ‘no benefit’. The threshold set provides a trade-off
between the size of class ‘benefit’ and the HR found. Figure 2d shows the Kaplan Meier
plot when the classification threshold that results in the lowest p-value in class ‘benefit’
is used. Importantly, all thresholds classifying 50% or less of the patients as ‘benefit’
result in an HR below 1 and would thus provide benefit. We show the combined results
across the three cross validation folds, i.e. the predictions for each patient is based on

the two folds in which this patient was not present. In class ‘benefit’ (n = 153) we find a
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Figure 2. a. Scatterplot of the T-test statistic and Cox regression coefficient per
SNP. We perform this analysis once using the reference allele to define class
‘benefit’” and once using the alternative allele. b. Kaplan Meier of the CAIRO2
survival data used, showing no survival benefit for the patients who received
cetuximab. c. The HR found in class ‘benefit’ when using different threshold on the
posterior probability to define benefit. The red dashed line shows the HR between
treatments found in the dataset as a whole, without any classification. d. Kaplan
Meier of the classification in class ‘benefit’ and ‘no benefit’ using the posterior
probability threshold associated with the lowest Cox regression p-value in class
‘benefit’.
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significant HR of 0.69 (95% CI 0.49 - 0.98, p = 0.04) whereas in class ‘no benefit’ (n =
400) an HR 0f 1.32 (95% CI 1.07 - 1.62, p = 0.01) is found. This performance is relatively
stable in all cross validation folds. More specifically, we find an HR of 0.66 (0.33 - 1.03,
p = 0.23) in class ‘benefit’ in Fold 1, an HR of 0.72 (0.40 - 1.31, p = 0.28) in Fold 2, and
an HR of 0.61 (0.44 - 1.09, p = 0.10) in Fold 3. While the original trial concluded addition
of cetuximab to the standard regimen has no benefit, this result shows RAINFOREST
can successfully identify a subset of patients, comprising 27.7% of the population, that

do benefit from cetuximab.

Known and new SNPs are identified in frequently chosen SNPs

Over the three cross validation folds in total 51,154 unique SNPs are used (19,918, 19,982,
and 19,810 in the models validated on Fold 1, 2 and 3 respectively). Figure 3b shows the
number of SNPs overlapping between the three different models. We obtain an
empirical p-value for this overlap by randomly sampling 10,000 trees for each fold and
computing the overlap. We find the overlap of 781 SNPs between the three folds to be
significant (p < 1*10™*). We also train a RAINFOREST model using shuffled treatment
labels with the same cross validation folds. With shuffled labels the association between
genomic data and treatment specific outcome is removed and these models can indeed
not predict benefit in hold-out data (HR class benefit = 0.95, 95% CI10.64 - 1.41, p = 0.8).
Between the models trained on shuffled labels only 356 SNPs overlap, which is similar
to mean overlap found in random sampling (mean overlap = 344.7). The overlap found
in the RAINFOREST model is thus clearly non-random.

Figure 3a shows the number of times each individual SNP is selected across the three
cross validation folds. Interestingly, the SNP selected most often, rs885036, has been
reported before to predict cetuximab benefit in a univariate analysis of the CAIRO2 trial
(Pander et al. 2015). This shows that when univariate signals are present in the data,
RAINFOREST will also capture these. In addition to rs885036, we also find a cluster of
frequent SNPs on chromosome 5 which have not been reported before. Four of these
variants (rs2549782, rs2287988, rs1056893 and rs2255546) are intronic variants within
the ERAPI gene. A fifth SNP (rs10069361) is annotated to LNPEP, a paralog of ERAPI.
These SNPs are in high linkage disequilibrium (coefficient of linkage disequilibrium
>0.9), where linkage disequilibrium is defined as the squared Pearson correlation
coefficient. Both ERAP1 and LNPEP code for aminopeptidases. ERAP1 plays an

important role in cleaving proteins into peptides that can be presented by MHC class 1
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Figure 3. a. Manhattan plot showing the number of times individual SNPs were used
in a decision tree across all three cross validation folds. b. Venn diagram showing the
overlap in SNPs used in the three models for the three different cross validation folds.
c. Barplot showing the 20 SNPs with the greatest influence on validation HR when the
data is shuffled. Error bars indicate standard deviation. The SNPs indicated in red text
are in LD > 0.9 with each other and all lie in the same region of chromosome 5. SNPs
in black are not in high LD with any other SNP in the plot.

proteins to immune cells (Falk and Rotzschke 2002). Cetuximab is a monoclonal
antibody and it has been shown that activation of the adaptive of the immune system
and presence of cytotoxic T-cells are essential for its antitumor effect (Holubec et al.
2016; Yang et al. 2013). A potential explanation of these observations is that these SNPs

represent genetic variation in the T-cell response that influence cetuximab response.

For all 781 SNPs that are present in all three models we also assessed feature importance
by shuffling the genotype of the individual SNP and predicting the class labels on the
validation again. This eliminates the association between the genetic data and
treatment effect, so we can estimate the importance of each SNP. Without exception,
shuffling SNPs increases the HR, which means the model performs worse. Figure 3c

shows the difference in HR for the 20 SNPs with the largest effect. Note that since many
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SNPs are only present in a few trees (i.e. the most frequent SNP is only present 31 times),
the effect of shuffling is limited. We thus also do not see large changes in validation HR.
Despite this limitation, 4 out of 5 SNPs from the chromosome 5 cluster as well as
rs885036 are present in the top 20, strengthening their putative role in predicting

cetuximab benefit.

Lactate dehydrogenase and age do not determine benefit prediction

High baseline lactate dehydrogenase (LDH) is a known prognostic factor in colorectal
cancer (Li et al. 2016), but it does not have a significant interaction with treatment effect
in survival analysis in our data (HR = 0.81, 95% CI 0.57 - 1.17, p = 0.26). Patients with
high LDH are fairly evenly spread between class ‘benefit’ (45.6%) and class ‘no benefit’
(42.0%) and in neither class there is a significant interaction between treatment and
high LDH (HR ‘benefit’ = 0.92, 95% CI 0.46 - 1.84, p = 0.30 and HR ‘no benefit’ = 0.80,
95% CI 0.52 - 1.22. p = 0.30).

There is also no significant difference in the mean age between the two classes (p =
0.66). The difference in treatment benefit is thus not explained by LDH and age, which
are two common patient characteristics used in clinical decision making (van Eeghen

et al. 2015; Li et al. 2016).

Sex influences treatment benefit

In the original trial the authors reported that women have a significantly better survival
when not treated with cetuximab. Indeed, when considering the patients classified as
‘benefit’, we find an HR of 0.61 (95%CI 0.40 - 0.94, p = 0.02) for men and an HR of 1.04
(95% CI 0.56 - 1.94, p = 0.90) for women. While for women the HR in class benefit is
lower than the overall HR (1.51, 95% CI 1.14 - 2.00, p = 0.003), it is not below 1 and
therefore does not signify benefit. Moreover, more men are classified as benefit (31.9%)
than women (22.0%). In our dataset we find an HR of 1.73 (p = 0.003, 95% CI 1.20 -
2.49) for the interaction term treatment*sex. We therefore investigate whether the
interaction between treatment effect and chromosomal sex could also partly explain the
performance of our model. The interaction term for sex*treatment was similar in both
classes, giving an HR of 1.71 (p = 0.17, 95% CI 0.80 - 3.63) in class ‘benefit’ and an HR of
1.67 (p = 0.02, 95% CI 1.09 - 2.56) in class ‘no benefit. Together, this indicates
RAINFOREST discovered a signal independent of the sex effect.
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Figure 4. Performance for different sized class benefit (as determined with different
thresholds on the posterior probability) for men and women, and the whole dataset.
The red dashed line represent the HR found in the population as a whole.

Model incorporating chromosomal sex predicts benefit for men

Since sex is known to influence the outcome of cetuximab treatment and we see a
different HR for men and women in our class ‘benefit’, we also train a RAINFOREST
model that incorporates the sex variable, which we call the sex aware model in the rest
of this text. The training procedure is the same as before, but in the construction of a
tree, in addition to a sample of the SNPs, chromosomal sex can be selected as a splitting
variable. We also construct new cross validation folds, in which the stratification is
chosen such that, in addition to the overall treatment HR, the interaction term

sex*treatment is similar in all folds.

For each fold we train 10,000 trees. On average 1109 trees use the sex variable for a split
(1232 for Fold 1, 1263 for Fold 2 and 831 for Fold 3). The optimal HR found in class
‘benefit’ (n = 131) is 0.52 (95% CI 0.35 - 0.76, p = 0.0007), while the HR in class ‘no
benefit’ (n = 422) is 1.35 (95% CI L.11 - 1.67, p = 0.004). The sex aware model thus
provides a better performance than the original model that did not include the sex
variable. However, it should be noted that in this case class ‘benefit’ consists almost
entirely of men (95.4%). We therefore evaluate the optimal threshold for men and
women separately, as well as for the whole dataset (Figure 4). It follows that the sex-
aware model works better than the original model for men for a class ‘benefit’ below
50%, but not for women. While the sex aware model has a better performance for
women in a larger class ‘benefit’, it should be noted that all these HRs are well above 1

and thus do not represent true benefit.
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When considering the selected SNP-variables, 110 SNPs are shared between all three
folds of the original model and all three folds of this new model. This includes rs885036
and all the SNPs in the cluster on chromosome 5 described above, underscoring their

importance in determining benefit to cetuximab.

When we train a RAINFOREST model in only women, we do find an optimal HR of 0.76
(p = 0.39), suggesting a model can be obtained with a true predictive performance.
However, the performance curve (Supplemental Figure 1) does not show the linear
relationship between the size of class benefit (as determined by the threshold on the
posterior probability) and HR in class benefit. This indicates that a well-defined class
‘benefit’ cannot be identified by RAINFOREST in this dataset. The sex aware model
reflects this fact by not including women in class ‘benefit’ when given access to this
information. This shows RAINFOREST can accommodate this type of known effect and

fit a model on the rest of the variables, improving the performance of the model.

Univariate SNP selection does not validate in cross validation

We compare the performance of RAINFOREST to the univariate selection of SNPs (see
Methods). This analysis reveals no SNPs that are significant at a multiple testing
corrected p-value less than 0.05. We perform forward feature selection by ranking the
SNPs on likelihood ratio test p-value to find the optimal SNP combination. With this
approach, the models for fold 1, 2 and 3 contain 101, 197 and 190 SNPs respectively. In
line with the earlier univariate study (Pander et al, 2015), Rs885036 (the most
frequently selected SNP in the RAINFOREST model) is selected in all three folds. With
the exception of one other SNP (rs10165386) no other SNPs overlap. Moreover, the
model does not result in a significant HR, as we find an HR of 1.00 (95% CI = 0.70 - 1.44,
p =1) in class ‘benefit’ (n = 138) and an HR of 1.15 (95% CI 0.93 - 1.41, p = 0.19) in class
‘no benefit’ (n = 415). Univariate selection of the SNPs thus does not lead to a model

that validates on unseen patient data.

Random forest on survival based labels does not validate

We also train a classical random forest model on the benefit labels derived from the
survival data (see Methods). The cross validation is performed using the same folds as
in the univariate and RAINFOREST analysis. Since we do have training labels in this

case, mtry can be optimized using the OOB error. The default setting often used is the
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Figure 5 a. The OOB error found for the survival based levels when using different
values for mtry. b. Kaplan Meier of the classification in class ‘benefit’ and ‘no benefit’,
using the threshold that defines the class ‘benefit’ with the lowest Cox regression p-
value.

square root of all features available, but it has been suggested that in high dimensional
datasets a higher mtry leads to a better performance (Goldstein et al. 2010). We
therefore try several values for mtry and evaluate the OOB error. Figure 5a shows that

the default \/13, where p is the total number of features, leads to the lowest error (Figure
5a).

Using the optimal model we find that no patients are classified into the ‘benefit’ class
when using majority vote, despite the fact that both classes are sampled equally in the
training data. We therefore classify a sample with where more than 30% of trees
indicate benefit as benefiting, as this leads to a class benefit of approximately 25%.
Using these settings we train a random forest with 10,000 trees and validate it on the
test set. In the test set we set a threshold on the posterior probability that results in the
lowest p-value in class ‘benefit’. We then find an HR of 0.88 (95% CI 0.59 - 1.32, p =
0.54) in class ‘benefit’ (n = 138) and an HR of 1.18 (95% CI 0.97 - 1.44, p = 0.10) in class
‘no benefit’ (n = 415). The Kaplan Meier curve is shown in Figure 5b. While the RF can
identify a class ‘benefit’ with an HR below 1, this is not statistically significant at p <
0.05. Similar results are obtained when defining benefit as the top 50% and bottom

50% of the treatment arms (HR benefit = 0.97, 95% CI 0.70 - 1.36, p = 0.88) or when
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restricting the RF to a depth of two (HR benefit = 0.92, 95% CI 0.50 - 1.67, p = 0.77).
We conclude that predefined benefit labels based on survival outcome are not suitable

as training labels for training an RF classifier for treatment benefit.

Discussion

We here demonstrate RAINFOREST, a new approach to predict treatment benefit from
patient germline variation data. The RAINFOREST model successfully identifies a
subset of patients that benefits from cetuximab treatment in the CAIRO2 trial. It
outperforms univariate analysis and traditional random forest models. We demonstrate
its performance through cross validation, as the best estimate of the performance on
independent validation data. Further validation in a truly independent patient cohort
should further establish clinical utility of our approach. Moreover, in this model we
have only considered the influence of germline variation on cetuximab benefit. Several
tumor characteristics, like KRAS and BRAF mutation status and molecular subtype,
have also been shown to correlate with cetuximab response (Salvatore et al., 2010, Trinh
et al, 2017). A further analysis could take both tumor and germline variation into

account to identify benefiting patients even more comprehensively.

The CAIRO?2 trial represents a good test case for RAINFOREST as previous univariate
analysis has shown a relation between germline variation and treatment specific
survival. Reassuringly, we identify rs885036, the variant identified previously, among
the most frequently used SNPs in the RAINFOREST model. Importantly, RAINFOREST
identifies a number of previously unknown SNPs, which are not found with a univariate
approach, that suggest a role for genetic variation in the immune response in

determining cetuximab benefit.

With the sex aware model we show RAINFOREST can be adapted to incorporate
characteristics known to be important, such as chromosomal sex. However, as the
overlap in important SNPs show, the same signal can still be identified, underscoring

the stability of the method.

The authors of the CAIRO2 trial concluded that there was a slight detrimental effect of

the addition of cetuximab to the CAPOX-B treatment regimen. This is a clear example
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for how RAINFOREST can be applied, as roughly half of all phase 3 clinical trials fail to
reach their predefined endpoints and most fail due to insufficient efficacy of the drug
(Hwang et al. 2016). As a result, these drugs do not enter the clinic, while it is very
possible that a subset of the patient population experiences benefit. RAINFOREST can
identify patients that do benefit from drugs which failed to show significant benefit in
the patient population as a whole, and thus play an important role in leveraging valuable
patient data and find an application for drugs that otherwise would not be introduced

to the clinic.
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Code availability

The R code used to produce the results in this paper is available at
github.com/UMCUGenetics/RAINFOREST. A more configurable, user-friendly Python
implementation of RAINFOREST is also provided.
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Personalized medicine has been discussed as the future of cancer treatment for over
three decades now, since the discovery and potential targeting of mutations in the RAS
signalling pathway (Reddy et al. 1982; Downward 2003). There has been tremendous
progress, particularly in matching targeted treatment with specific mutations or cell
surface markers. However, despite the fact that we have known for a long time that both
germline variation and tumor characteristics influence disease progression and
treatment response, there are not many DNA or RNA signatures in use in the clinic
(Frohlich et al. 2018). There is in fact a great gap between the great number of papers
reporting gene expression signatures and the ones that have an impact on clinical care
(Koscielny 2010). In this thesis several different approaches for predicting treatment
benefit are presented. While multiple counterfactual approaches exist, they have so far
been used mostly in low dimensional settings for causal inference. Here we present
multiple ways of using this kind of reasoning in high dimensional settings to build
clinically useful models. These approaches could play an important role in a further
realization of personalized medicine - the tailoring of treatment to a patient based on
individual characteristics - in cancer treatment. However, there are still various
challenges to be faced. We will discuss here what the work in this thesis can contribute

and which challenges still have to be addressed.

Reproducibility of signatures and different populations

A major concern and hindrance in clinical adaptation is the lack of reproducibility for
many classifiers (Subramanian and Simon 2010). For prognostic signatures it has been
shown that many classifiers in fact do not outperform random classifiers when tested
on external data (i.e. data the classifier was not trained on) (Tang et al. 2017). Moreover,
it was also shown a gene expression classifier with satisfactory internal performance

could be trained on completely random data. Proper validation is thus crucial.

In absence of truly independent data, many studies use cross validation to estimate the
expected performance, as we also do in Chapter 2 and Chapter 5. However, it is known
that cross validation can overestimate performance (Castaldi, Dahabreh, and Ioannidis
2011). In some cases, the cross validation may not have been properly performed (for
example, when multiple models are validated and the best is presented), but there are

also signatures that were correctly evaluated and yet do not show a satisfactory
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performance in independent data. This could be due to the fact that the classifier has
fitted a signal specific to the population in the original data (i.e. the data the cross
validation was performed on), with the difference in signal between datasets influenced
by a true biological difference between the patients or differences in lab procedure or

clinical practice.

This thesis contains some examples of this: in Chapter 2 we see that when we train the
model solely on the Total Therapy dataset the classifier does not validate on the
Hovon65 dataset, while we can perform a successful cross validation when the two
datasets are mixed. With mixed dataset GESTURE has the opportunity to fit the mixed
signal, where the model is most likely too specific when trained solely on the Total
Therapy dataset. In Chapter 3 of this thesis cross validation was quite predictive of the
performance in independent data, while this was not the case in Chapter 4, even though
the set-up of the cross validation was nearly identical. Most likely the difference
between the breast cancer datasets used in Chapter 4 is far greater than the multiple
myeloma datasets in Chapter 3, as the clinical reality is very different for both diseases.
Treatment is less guided by patient characteristics in multiple myeloma than in breast
cancer; patients in an observational trial are probably more likely to match the
population from a randomized clinical trial. Training on randomized data is more
suitable for simulated treatment learning, as there are similar patients in both treatment
arms by definition. While the strategy of matching patients in the breast cancer dataset
- to simulate a clinical trial like setting - improved performance on hold out data from
the same population, this classifier still did not validate on external data. There could
be trade off in data selection: training within one population leads to better results in
that specific population, but is less generalizable to a wider population. This conflict
extends to the follow-up time: longer follow up is often beneficial for the training
procedure, especially for cancer types with a long median survival. When using a 20-
year-old dataset most relevant events will have been recorded, but the setting in which
these women were treated is no longer relevant. This meant that the older METABRIC
dataset in Chapter 4 was less useful for training, even though it included far more
events than the SCAN-B dataset. There is no clear solution to this problem, though
potentially subsetting older datasets to more closely match new datasets could be a
strategy (to for example conform to current treatment guidelines). There are limits to

this; in METABRIC we could not match patients in a manner that resulted in a dataset
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with a hazard ratio in favor of chemotherapy. We should always carefully evaluate
whether a dataset can still be relevant. The training data used has important
implications for clinical deployment; the intended use population should match the

training and validation population.

Finally, for identification of cancer subtypes tumor purity is an important factor. When
a biopsy of a solid tumor is taken it will always contain both cancer cells and other cells
(for example cells from the immune system). When gene expression is measured on this
mixture the outcome will also be influenced by non-cancer cells. It has been shown that
the variability in tumor purity biases subtype classification and estimating tumor purity
can improve classification results (Aran, Sirota, and Butte 2015; Zhang et al. 2017).
Multiple myeloma is a non-solid tumor and cells are sorted to a purity of at least 80%
before gene expression is measured. This could lead to a more consistent measurement,

less bias and thus a higher chance of successful external validation.

Lack of available data

Absolutely crucial for the training and proper validation of these classifiers is the
availability of data. Especially for diseases that are not very prevalent, data available
within one institution will not be sufficient. Moreover, as discussed, validation within
one dataset or population is no guarantee for predictive availability in another
population. All considerations about matching populations are only relevant if enough
data is available. Open science and the sharing of data has received a lot of attention in
the past few years, but many scientists are still worried that sharing their data will be to
their disadvantage (Gewin 2016). While many journals now require a statement on data
availability and the data needs to be publicly available (Naughton and Kernohan 2016),
many publicly available gene expression datasets (for example in the Gene Expression
Omnibus) do not offer enough patient information to enable the training of predictive
or even prognostic classifiers on this data. We need systems in place that encourage
sharing of all useful data, while of course keeping an eye on privacy concerns. Journal
simply requiring data to be available seems to be insufficient. For example, when the
British Medical Journal randomly audited 157 research articles in their journal, they

found data was available (either publicly or upon request) for only 4.5% of those articles
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(Rowhani-Farid and Barnett 2016). However, as more and more journals adopt a data
sharing policy and open data is normalized, more data will hopefully be shared.
Increasingly, funders also require a data sharing plan and publishers start encouraging
data sharing more actively, with Springer Nature starting a research data helpdesk that
can facilitate the sharing process (Jones, Grant, and Hrynaszkiewicz 2019). Data can
also be assigned a digital object identifier (DOI), so it can be cited and researchers
receive credit for the data they made available. Increasingly, researchers are aware of
the FAIR data principles: data should be Findable, Accessible, Interoperable, Reusable
(Wilkinson et al. 2016). This means it should be clear where data is located, how to gain
access, and it should be in a format that can be read and manipulated by commonly
used programs. It should be clear which data is included in the file and how it was
produced. Importantly, accessible does not mean freely accessible. FAIR data can still
safeguard privacy. For further model development and validation, wide availability of
data is crucial and the research community should take all possible steps to encourage

FAIR data sharing.

Integration of different data types

An approach not employed in this thesis is the integration of different data types (i.e.
DNA and RNA data). In Chapter 2, 3 and 4 we use tumor gene expression and in
Chapter 5 we use germline DNA variation. The truth is that the benefit for each
treatment is probably influenced both by factors specific to the cancer cells and specific
to the individual patient. An important distinction to be made here is the integration of
different data types from the same cell (type) and data representing different systems
in the body. For the prediction of prognosis in breast cancer it has been shown that
tumor gene expression captures most of the information and adding different data types
does not improve performance (Aben et al. 2018). However, the data considered there
was all taken from the tumor and thus represented the same system. When we would
for example combine tumor gene expression and germline DNA data, we are taking data
from different systems; the tumor cell and the body surrounding it. The impact of a drug
not being metabolized in the liver could never be captured by tumor gene expression
for example. In Chapter 5 we identify SNPs that are predictive of cetuximab benefit.

Previously, tumor gene expression profiles and tumor specific mutations that are
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predictive of cetuximab response have been identified (Salvatore et al. 2010; Baker et al.
2011). Since information is most likely present in all these data types, a logical next step
would be to analyze them together to form a more complete picture of which patients
benefit. There are several ways of integrating data; you can pool all data and train a
single classifier (early integration) or train separate classifiers and then combine the
classifications (late integration) and forms in between. RAINFOREST in Chapter 5
could easily be adapted to also take tumor gene expression into account, with the values
discretized to match the SNP format. However, in early integration dimensionality of
datasets matters a lot; the higher dimensional data type can dominate the signal and
seem the most important, even though this is not biologically true. Late integration, on
the other hand, does not offer opportunities to model interactions between the
germline data and tumor gene expression. Early integration may then be preferable, but

steps should be taken to bring different data types in the same (dimensional) space.

Interpretability of the classifiers

When a predictive classifier is able to identify which patients benefit from a treatment,
the logical next step is to investigate why these patients benefit and how the genes
included in the classifier fit in. It has been shown for prognostic classifiers that many
classifiers with a similar performance, and yet using completely different genes, can be
found (Ein-Dor et al. 2005). Since genes function in pathways and expression is often
very correlated, many genes can encode the same signal and simply interpreting the
genes included in a classifier may not be useful. In Chapter 2 and Chapter 4 we attempt
to encode biological information using gene ontology (GO) annotations and these gene
sets do indeed perform better than random sets at predicting treatment benefit.
However, the GO sets used in different classifiers predicting benefit for the same drug
show very little overlap and no (obvious) interpretation of these genes could be
formulated. An additional concern is that especially when a classifier is trained in a non-
linear way like GESTURE is, it is possible the class ‘benefit’ is actually composed of
multiple subsets; not all benefiting patients benefit for the same reason. We also
measure gene expression in bulk, while each multiple myeloma patient probably
harbors multiple different tumor clones (Keats et al. 2012). We could be measuring an

average of the clones, or just a signal dominated by the largest clone. While there is
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clearly enough information present to predict treatment benefit in a meaningful wayj, it

could be a barrier to interpretation.

Gene sets defined by biological knowledge may thus not be useful for interpretation.
Interestingly, when we formed entirely data driven gene sets in Chapter 3, the
individual genes were more crucial for performance than when we used gene sets
informed by biological annotation. Without the 14 genes included in the original
signature, no signature with a similar performance could be found. The strategy
followed in Chapter 3 (i.e. only selecting genes that the algorithm always ranks highly
over different repeats) could be beneficial in finding these crucial genes. However, it
should be noted we could not describe a mechanism that links the 14 genes in this
classifier and individually they were not differentially expressed between class ‘benefit’
and ‘no benefit’. This approach also does not address the concern of measuring several

clones at the same time.

Once we have an interpretation of the genes, a next step could be to functionally
validate the findings. The fact that the 14 genes in Chapter 3 can only be identified
together and do not show differential expression by themselves could also be a barrier
to proving their role in a functional assay. We would have to under- or overexpress a
combination of 14 genes, without the model itself providing a hypothesis on how benefit
could be achieved (i.e. which genes should be over- or under-expressed). For even more
complicated models, like GESTURE produces, this would be impossible. It is also
important to consider what the goal of interpretation could be, beyond providing
further insight into the disease. When a clear mechanism can be identified that causes
a patient not to benefit from a drug, this could be used for rational design of a drug that
could overcome this. It seems clear the models presented in this thesis are far away from

playing a role in this.

Clinical practice and clinical utility

Finally, the most important part of work like this is the clinical utility: even if the
classifier is completely accurate, would clinical care be changed based on its prediction?
In some cases this may be obvious. With the Mammaprint, which can predict which

breast cancer patients can safely forgo chemotherapy, it seems the decision is clear. It

155




Chapter 6

should however be noted, that even here the case is not clear cut. Patients can be
reluctant to forgo available therapy based on a risk assessment, even if statistically we
would not expect benefit. In the case of the Mammaprint, the Dutch Healthcare
Institute declined to mandate insurance companies to reimburse the test, citing a
possible 2.4% increase in distant metastases if chemotherapy was not given
(Zorginstituut Nederland 2018). This test failed to become the standard, even though a
prospective clinical trial proved its accuracy. With algorithms and artificial intelligence
playing a larger role in society, there has been a lot of public debate on when algorithms
can be trusted to make decisions that will impact lives. Which decisions can be taken
by non-human systems and where lies the responsibility for the outcome of such a
decision? Explainability of the decision plays a large role here (Abdollahi and Nasraoui
2018). It could very well be unreasonable to expect physicians and patients to stake lives
on a model for which it cannot be explained why it works. For this purpose identifying
which genes are crucial - as discussed above - can be already useful, even if it does not
lead to a new treatment; it can aid in the explainability of the treatment decision.
Smaller, clearer signatures like the one presented in Chapter 3 will then be preferable

over the large, complicated models built by GESTURE.

Of course, what is clinically useful is not static. When a treatment is standard and given
to all patients, it may make more sense to attempt finding a group that does not benefit:
for those patients treatment should be changed. However, without a convincing
alternative treatment, such a classifier does not have a high probability of being
adapted. The discovery of a new drug could render a classifier useless or useful; for
example by establishing a new standard treatment or by providing an alternative

treatment for a no benefit group.

In light of changing clinical practice, it is crucial to shorten the time between biomarker
discovery and introduction in the clinic. As mentioned before, there are limitations
here: sufficient follow up is needed. However, adaptive clinical trials could play a role
here. This is a trial that changes design based on data gathered during the trial (Barker
et al. 2009; Gallo et al. 2006). The I-SPY trial in breast cancer is an example, where
inclusion criteria for treatment arms are adapted as the trial goes on to incorporate
effects discovered during the trial (Barker et al. 2009). The I-SPY trial is mostly designed

around known patient characteristics. There are also strategies that facilitate biomarker
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discovery and validation when no obvious candidates are known. Here patients are
randomized as normal between two treatment arms and then split in a training and
validation cohort during the trial. The training cohort can be used to continuously build
a predictive model, while the validation cohort can be used as a prospective trial at the
same time (Scher et al. 2011). There are obvious ethical considerations here and in
practice this design will be followed only when there is no evidence for superiority of

the treatment under investigation in the population as a whole.

There is also the wider context of health care to consider. In most developed countries
the cost of healthcare is on the rise and discussions on when treatment is no longer
affordable need to be had (Baltagi et al. 2017). Personalized medicine can play an
important role in this problem and reduce overall health care expenditure (Jakka and
Rossbach 2013). When we can predict who will benefit from more generic treatments,
we do not only spare patients who do not benefit unnecessary side effects, we can also
reduce the cost of treatment. However, in incurable forms of cancer like Multiple
Myeloma, where a patient will always receive a form of treatment and often will be

treated until their death, it may be hard to quantify the amount of money saved.

This also relates to the importance of finding a subset of the population that does
benefit from drugs that fail to show a significant effect in the population as a whole.
Pharmaceutical companies claim high prices for drugs are needed to offset all the costs
made in developing drugs that do not reach the market. The more efficient drug
development is and the more drugs can be used, the cheaper drugs can (theoretically)
be.

Conclusion

Personalized medicine and predictive biomarkers will play an important role in the
health care of the future. However, it is also clear that there are different challenges for
different diseases and there is not one model to be applied here. Algorithms should be
combined with clinical trial design and an awareness of clinical reality. For adaptation
in the clinic, simpler models may be better.

In this thesis we present three different algorithms to train a model capable of

predicting treatment benefit: GESTURE, STLsig, and RAINFOREST. Considering the
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topics discussed, they all have different strengths. For the purpose of training an
interpretable model, STLsig seems to produce the best classifiers; GESTURE models are
too complicated. However, STLsig is much more sensitive to high censoring rates. When
a patient does not have suitable neighbours (i.e. no neighbours who experienced an
event), our main measure for benefit (zPFS) cannot be calculated and this patient then
drops out of the analysis. This obviously happens more often when there are fewer
events recorded in the dataset. STLsig uses the whole distribution of zPFS and its
performance is more impacted by patients dropping out than GESTURE, which just uses
patients with a high zPFS. For data with fewer events GESTURE(-BC) is thus more
suitable. Both GESTURE and STLsig need continuous data like gene expression to
calculate distances between patients. RAINFOREST is more versatile; it can handle the
discrete values of SNP data, but could also easily be adapted to categorical data like sex.
It could potentially also handle gene expression data and a mix of different data types.
It would thus be most suitable to be used for integration of patient characteristics and
different data types. Together they can hopefully be used to make personalized

medicine a reality in cancer treatment.
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Summary

Many cancer treatments are associated with serious side effects, while it is known not
all patients who receive them see benefit from the treatment. It has become clear both
patient and tumor characteristics can influence the response of a cancer patient to a
specific treatment. There is therefore great interest in personalized medicine: matching
the right drug with the right patient, based on certain predictive features that can be
measured. Certain drugs are designed to target a specific mutation in the tumor DNA,;
this drug is only beneficial for patients whose tumor harbors this alteration. But
personalized medicine can also play a role in more generic treatments. Machine
learning approaches have been employed to separate poor and good responders on the

basis of tumor gene expression, among other things.

However, often there is more than one drug available and a choice has to be made
between them, which is a more challenging problem. Most machine learning
approaches employed in predicting benefit for a single treatment require labels to train
amodel. Patients are be labeled as poor or good responders, and the model is optimized
to distinguish these two classes. These cannot be employed when predicting whether a
patient will benefit more from a certain treatment than from an alternative. We can
only observe the response to a treatment the patient actually receives; we cannot know
if they would have responded more or less favourably to an alternative treatment. A
patient can thus not be labeled as benefiting or not. New methods need to be developed

to deal with this problem.

This thesis presents several different algorithms that can train a model capable of
identifying patients that will benefit more from the treatment of interest than an
alternative treatment. In Chapter 2,3 and 4 we use the concept of Simulated Treatment
Learning (STL). STL relies on the idea that genetically similar patients who received
different treatments can be used to model the response to an alternative treatment.
Similarity between patients should be defined by genes relevant to treatment benefit.
As we do not know beforehand which genes are relevant, the algorithms we build to
implement STL need to both select relevant genes and use these to build a model that

can classify new patients.
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In Chapter 2 we present GESTURE (Gene Expression-based Simulated Treatment
Using similaRity between patiEnts) and demonstrate its utility in Multiple Myeloma, a
plasma cell cancer. GESTURE uses predefined gene sets, informed by biological
annotation, to define similarity between patients. It then tests which of these gene sets
can be used to identify a class ‘benefit, i.e. patients who benefit more from the
treatment than the population as a whole. We show it can do so successfully for two

major treatments in Multiple Myeloma: bortezomib and lenalidomide.

In Chapter 3 we implement the concept of STL in the algorithm STLsig, which does not
need predefined gene sets. While GESTURE could predict in unseen data which patients
would benefit from bortezomib or lenalidomide, it produced models that contain
hundreds of gene sets and thousands of genes. These models are complicated to
interpret. Instead, STLsig builds gene networks specific to the disease and treatment by
connecting pairs of genes that are synergistic in their ability to predict benefit. With
STLsig we define a 14-gene model that can predict benefit to proteasome inhibitors (like
bortezomib) in Multiple Myeloma. These 14 genes present a much simpler model and
they are moreover unique: a model with similar performance cannot be found when

they are removed from the dataset.

In Chapter 4 we adapt GESTURE to predict chemotherapy benefit in breast cancer.
Breast cancer patients have on average a much better survival than Multiple Myeloma
patients. This poses a statistical challenge as the majority of the patients included in the
dataset are still alive at the end of follow-up. When two similar patients from different
treatment arms are both still alive, we cannot define who benefited more. The adapted
version, GESTURE-BC, uses a different criterion to define the best classifier better suited
to a dataset with few recorded deaths. We show that GESTURE-BC can identify which
patients see benefit from chemotherapy treatment and which patients do not benefit.
However, this model did not show performance on older data where patients were
treated along different guidelines. This highlights the importance of matching the
patient populations in which a model is trained and in which its performance is

evaluated.

In Chapters 2, 3 and 4 we use tumor gene expression to predict treatment benefit.

However, this is not the only factor influencing response. In Chapter 5 we introduce
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RAINFOREST (tReAtment beneflt prediction using raNdom FOREST), which predicts
treatment benefit using germline DNA variation, which is the inherited genetic
variation and not specific to the tumor. We use RAINFOREST to predict cetuximab

benefit in metastatic colorectal cancer.

The algorithms presented have different strengths and weaknesses. STLsig provides
simpler models, but is less adept at dealing with low event rates, which GESTURE-BC
can deal with. Neither can deal with non-continuous data, which RAINFOREST can do.
Together, GESTURE, STLsig and RAINFOREST provide a versatile toolbox to predict

treatment benefit in different settings and using different data types.

181




Addendum

Samenvatting

Veel kankerbehandelingen zijn geassocieerd met ernstige bijwerkingen, terwijl het
bekend is dat niet alle patiénten die er mee behandeld worden baat hebben bij het
medicijn. Het is bekend dat zowel patiént- als tumorkenmerken de respons van een
kankerpatiént op een specifieke behandeling kunnen beinvloeden. Er is dan ook grote
belangstelling voor gepersonaliseerde geneeskunde: het matchen van het juiste
medicijn met de juiste patiént, op basis van bepaalde voorspellende kenmerken die
kunnen worden gemeten. Sommigemedicijnen zijn gericht op een specifieke mutatie in
het DNA van de tumor; dit medicijn is alleen nuttig voor patiénten wiens tumor deze
mutatie herbergt. Maar gepersonaliseerde geneeskunde kan ook een rol spelen bij meer
generieke behandelingen. In het verleden is machinaal leren (“machine learning”)
toegepast om patiénten met een slechte en goede respons op een bepaald medicijn van
elkaar te onderscheiden. Dit is bijvoorbeeld gedaan op basis van genexpressie in de

tumor.

Vaak is er echter meer dan één medicijn beschikbaar en moet er een keuze worden
gemaakt welk medicijn het beste is voor de patiént. Dit is een moeilijker probleem dan
respons voor één medicijn voorspellen. De meeste methodes voor het voorspellen van
een goede of slechte respons hebben labels nodig; patiénten worden gelabeld als goede
of slechte responder en het model wordt geoptimaliseerd om deze groepen van elkaar
te onderscheiden. Deze methodes kunnen niet worden gebruikt om te voorspellen of
een patiént meer baat zal hebben bij een bepaalde behandeling dan bij een alternatief.
We kunnen alleen kijken naar de respons op een behandeling die de patiént
daadwerkelijk krijgt; we kunnen niet weten of die beter of slechter gereageerd zou
hebben op een alternatieve behandeling. Een patiént kan dus niet worden gelabeld als
wel of geen baat hebben. Er moeten nieuwe methoden worden ontwikkeld om dit

probleem aan te pakken.

Dit proefschrift presenteert verschillende algoritmen die een model kunnen trainen dat
in staat is om patiénten te identificeren die meer baat hebben bij een bepaalde
behandeling dan bij een alternatief. In Hoofdstuk 2, 3 en 4 gebruiken we het concept
van Simulated Treatment Learning (STL). STL is gebaseerd op het idee dat genetisch

vergelijkbare patiénten die verschillende behandelingen hebben gekregen, kunnen
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worden gebruikt om de respons op een alternatieve behandeling te modelleren.
Genetische gelijkenis tussen patiénten moet worden bepaald door genen die relevant
zijn voor baat bij de behandeling. We weten niet op voorhand welke genen relevant
zijn. Daarom moeten de algoritmes zowel relevante genen kunnen selecteren, alsook

nieuwe patiénten kunnen classificeren met behulp van deze genen.

In Hoofdstuk 2 presenteren we GESTURE (Gene Expression-based Simulated
Treatment Using similaRity between patiEnts) en demonstreren we het nut ervan in
multipel myeloom, een plasmacelkanker. GESTURE maakt gebruik van vooraf
gedefinieerde verzamelingen van genen (“gene sets”), gevormd aan de hand van
biologische functie, om de gelijkenis tussen patiénten te definiéren. Vervolgens wordt
getest welke van deze gene sets kunnen worden gebruikt om een ‘baat’-groep te
identificeren, d.w.z. patiénten die meer baat hebben bij de behandeling dan de rest van
de patiéntenpopulatie gemiddeld heeft. We laten zien dat GESTURE in staat is dit te
doen voor twee veel gebruikte medicijnen in multipel myeloom: bortezomib en

lenalidomide.

In Hoofdstuk 3 implementeren we het concept van STL in STLsig, een algoritme
waarbij het niet nodig is van te voren gene sets te definiéren. Hoewel GESTURE in staat
is te voorspellen welke patiénten baat zouden hebben bij bortezomib of lenalidomide,
gebruikte het hiervoor modellen met honderden gene sets en duizenden genen. Het is
lastig dit soort modellen te interpreteren. In plaats van vooraf gedefinieerde gene sets
te gebruiken, maakt STLsig netwerken van genen die specifiek relevant zijn voor de
ziekte en de behandeling. Om deze netwerken te maken, verbinden we genen die samen
beter in staat zijn om baat te voorspellen, dan met een ander gen. Met STLsig trainen
we een model dat baat kan voorspellen voor proteasoomremmers (zoals bortezomib) in
multipel myeloom. Het model gebruikt slechts 14 genen en vormt Hiermee een veel
simpeler model. Bovendien zijn deze genen uniek in hun voorspellende waarde: als we
deze uit de dataset verwijderen kunnen we geen model vinden dat even goed kan

voorspellen welke patiénten baat hebben.
In Hoofdstuk 4 passen we GESTURE aan om te voorspellen welke

borstkankerpatiénten baat hebben bij chemotherapie. Borstkankerpatiénten overleven

gemiddeld veel langer na de diagnose dan patiénten die lijden aan multipel myeloom.
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Daardoor was de meerderheid van de patiénten in de dataset aan het einde van de
follow-up periode nog in leven. Dit maakt het statistisch gezien lastiger om een model
te trainen. Wanneer twee vergelijkbare patiénten die verschillende medicijnen hebben
gekregen allebei nog in leven zijn, kunnen we niet bepalen of de ene patiént meer baat
heeft gehad dan de andere. De aangepaste versie van GESTURE, GESTURE-BC,
definieert de beste classificatie met een ander criterium. Dit criterium train op zowel
baat als geen baat en rangschikt de gene sets op een andere manier, waardoor we een
beter model kunnen trainen op data met goede overleving. We demonstreren dat
GESTURE-BC kan voorspellen welke patiénten baat hebben bij behandeling met
chemotherapie en welke niet. Dit model werkt echter niet goed op een andere, oudere
dataset, waar de patiénten volgens andere richtlijnen werden behandeld. Dit laat zien
dat het erg belangrijk is om de patiéntenpopulatie waar het model op getraind wordst,

te matchen met de populatie waar het in getest wordt.

In Hoofdstuk 2, 3 en 4 gebruiken we genexpressie van de tumor om baat bij een
behandeling te voorspellen. Dit is echter niet de enige factor die de respons beinvloedt.
In Hoofdstuk 5 introduceren we RAINFOREST (tReAtment beneflt prediction using
raNdom FOREST), dat gebruik maakt van verschillen in kiemlijn DNA om baat bij
behandeling te voorspellen. Kiemlijn DNA is DNA dat overgeérfd kan worden, dit is dus
anders dan het (gemuteerde) DNA van de tumor. We gebruiken RAINFOREST om te
voorspellen welke patiénten baat hebben bij behandeling met cetuximab bij uitgezaaide

darmkanker.

Al deze algoritmen hebben zwakke en sterke kanten. STLsig kan simpelere, beter te
interpreteren, modellen trainen, maar kan minder goed omgaan met data waar de
meeste patiénten nog in leven zijn; daar kan GESTURE-BC beter mee omgaan. Allebei
de algoritmes hebben continue data zoals genexpressie nodig om gelijkenis tussen
patiénten te definiéren, terwijl RAINFOREST ook om kan gaan met andere soorten data.
GESTURE, STLsig en RAINFOREST vormen samen een toolbox om baat bij behandeling

te voorspellen voor verschillende soorten kanker en verschillende soorten data.
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jaar! Joanna W, bedankt voor alle prachtige designs. Ik heb veel geleerd van al je
vormgeving tips en mijn papers zijn er zeker mooier van geworden! Marleen, ik ben
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betere organisatie. Heel veel succes met laatste loodjes, ik weet zeker dat er straks een
prachtig proefschrift ligt! Liting, you've been a great addition to east side office and
thank you for taking such good care of Boete during the lockdown! Emmy, mijn corona
office buddy! Het is een lastige tijd om een PhD te starten, maar je bent ondanks dat
voortvarend van start gegaan. [k weet zeker dat het project - welke richting het ook

krijgt — bij jou in goede handen is. Succes en - minstens zo belangrijk - veel plezier!
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use GitHub properly! Jasmin, our Shut Up And Write! adminstrator and focus hour
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killer combination of discipline and cookies. Flip, oplosser van elk mogelijk probleem.
Ik denk niet dat ik ooit tevergeefs iets aan je hebt gevraagd. Monique, bedankt voor
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Joske Ubels was born on December 12" 1992 in
Amstelveen, the Netherlands. She grew up in
Amersfoort, where she attended Corderius college for
her pre-university education. In 2007/2008 she
attended the Advanced Academy of the University of
West Georgia in Carrollton, Georgia, USA. After
returning to the Netherlands she obtained her high

school diploma and started the bachelor Biomedical
Science at the Vrije Universiteit in Amsterdam in 2009. In 2011 she attended Lunds
Universitet in Lund, Sweden for her minor in Neurobiology. After completing an
internship in the Oncogenomics lab of the Cancer Center Amsterdam she became
interested in oncology research and started the research master Oncology at the Vrije
Universiteit in Amsterdam. She first became acquainted with bioinformatics research
during an internship at SkylineDx in 2013 and became so enthusiastic she decided to
pursue a PhD in the topic. She started her PhD in September 2015 under the supervision
of prof. dr. Pieter Sonneveld at Erasmus MC and dr. Jeroen de Ridder, first at the TU
Delft, and later at UMC Utrecht. She currently works as a postdoctoral researcher in the

lab of dr. Ruben van Boxtel at the Princess Maxima Center for Pediatric Oncology.
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PhD porifolio

Name PhD student: Joske Ubels PhD period: Sept 2015 — July 2020
Erasmus MC Hematology Promotor: Prof. dr. P. Sonneveld
department:
Research school: Molecular Medicine Co-promotor: Dr. J. de Ridder
Training
Courses Year ECTS
BioSB course Pattern recognition 2015 3
BioSB course Algorithms for Biological Networks 2016 3
Presenting — Breaking Science 2018 2
Research planning and Time management 2018 0.5
Psychological Flexibility 2018 1
Scientific Artwork with Photoshop and lllustrator 2019 0.6
Interpersonal Communication 2019 0.5
This thing called science 2019 2
Total 12.6
Cancer, Stem cells & Developmental biology PhD Program Year ECTS
CSND PhD masterclass 2017 2017 1
CSND PhD retreat 2018 2018 1
GSLS PhD Day — Talking science 2018 0.3
CSND PhD masterclass 2018 1
GSLS PhD Day — Transparent Science 2019 0.3
Total 3.6
Conferences Year ECTS
Bioinformatics & Systems Biology meeting 2016 1
European Conference on Computational Biology (poster) 2016 1
Bioinformatics & Systems Biology meeting (talk) 2017 1
European Hematology Association meeting (E-poster) 2017 1
Intelligent Systems for Molecular Biology (poster) 2017 1
Bioinformatics & Systems Biology meeting (poster) 2018 1
Utrecht Bioinformatics Center symposium (talk) 2018 1
Bioinformatics & Systems Biology meeting (poster) 2019 1
Intelligent Systems for Molecular Biology (poster) 2019 1
Total 9
Teaching
Year ECTS
Daily supervisor literature study MSc 2017 1
Daily supervisor mini-project MSc 2017 2
Daily supervisor literature study MSc 2017 1
Daily supervisor minor internship MSc 2018 3
Supervision paper discussion CSND introductory course 2018 0.1
Lecturer CSND course Analytics & Algorithms for Omics Data 2019 2
Total 9.1
Total ECTS 34.3
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