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Ever since scientists were first able to read a DNA sequence, techniques to do so have 

developed explosively. The transcription of DNA to mRNA and subsequent translation 

into protein determines to what extent a gene plays a role in the functioning of the cell. 

For this reason, techniques to measure gene expression (i.e. the abundance of the 

mRNA of a certain gene in a sample) were developed. The first description of a 

microarray approach to measure gene expression on a genome wide level, rather than 

in individual genes, was described in -''[ (Schena et al. -''[). From this point onwards, 

progress was rapid and with more data available, ever more correlations between gene 

expression and disease progress could be discovered. A research area in which the 

application of gene expression measurements particularly exploded is cancer research.  

 

Cancer 
 
Broadly defined, cancer is the malignant proliferation of cells. In other words, cancer 

arises when cells start dividing when they should not. A fully developed human body 

consists of an estimated \(.. trillion cells (Bianconi et al. ./-\). From the moment the 

ovum is fertilized and starts dividing to form a foetus, the division of each cell is tightly 

regulated. Whether a cell divides or not is influenced by many factors, arising from both 

within the cell as well as its environment. A host of mechanisms are involved in this 

complicated process: mechanical factors, hormones, signalling molecules and nutrient 

receptors, among other things.  

 
When all signals align and a cell starts to divide to form a new cell, the roughly \ billion 

DNA bases in our genome need to be copied in order to provide the new cell with an 

identical copy of the genetic material. This process is not error free. It has been 

estimated that per -//,/// bases one error occurs (Arana and Kunkel ./-/). If these 

errors would persist and be passed on to the new cell (and then to subsequent progeny), 

they could lead to dysregulated activity within these cells and eventually disease. There 

are therefore many safeguards against passing on aberrant DNA; fidelity of the copy is 

checked both during transcription and before the final cell division. When errors are 

detected that cannot be corrected a cell can induce apoptosis, a controlled cell death.  

 

Nevertheless, with \(.. trillion cells and \ billion bases per cell, sometimes errors will 

slip through and be passed on to the next generation of cells. However, most often, in 
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order to disturb the function of a certain gene, both alleles of the genes need to contain 

an error. This is known as Knudsons “two hit-hypothesis” (Knudson -'(-). Even if this 

happens and leads to a cancerous cell it will not necessarily cause disease; the cell can 

be destroyed by the immune system before proliferating and forming a tumor.  

 

Then what does need to happen before cancer develops, given all the safeguards? In 

./// Hanahan and Weinberg defined , hallmarks of cancer that can be used to 

understand and categorize the steps that are required for carcinogenesis to be initiated 

(Hanahan and Weinberg .///). Two hallmarks are about taking the brakes off 

proliferation: resisting cell death and evading growth suppressors. This for example 

means disrupting the checks for accurate DNA replication before cell division. Two 

more hallmarks are about accelerating proliferation: enabling replicative immortality 

and sustaining proliferative signalling. A normal, healthy cell has a finite number of 

divisions it is able to perform, while a cancer cell needs to be able to divide indefinitely. 

Moreover, a cell is usually dependent on signals from its environment to kickstart the 

division; a cancer cell needs to sustain its own signals to achieve ongoing proliferation. 

Lastly, cancer is characterized by its ability to leave the site of origin and spread through 

the body. It therefore needs to activate invasion and metastasis. To have access to 

nutrients and oxygen a cancer cell needs to activate angiogenesis in order to form new 

blood vessels. The follow up paper in ./-- introduced four other hallmarks and also 

described the need for cancer cells to evade the immune system (Hanahan and 

Weinberg ./--). 

 

According to the hallmarks of cancer each cancer cell needs to exhibit all of these 

hallmarks to develop into disease. However, there are many different ways a cell can 

acquire one or more hallmarks since dysregulating different parts of the control system 

can have the same downstream effect. This dysregulation is usually caused by changes 

in the DNA of key genes regulating the cell behavior. Some genes controlling the cell 

cycle need to be under-expressed, i.e less present than in a healthy cell. On the other 

hand, cells driving cell division can be over-expressed. The fact that there are different 

roads a cell can take to become a cancer cell, means that the same type of cancer can 

exhibit different behavior and response to treatment in different patients.  
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When reading out the DNA sequence and measuring mRNA became easier and cheaper, 

tumors that were always considered to be the same disease, started to be subtyped and 

were shown to have a vastly different genetic architecture. Breast cancer was the first 

type of cancer where this was extensively shown. Perou et al. already described , 

different intrinsic subtypes in ./// based on gene expression measurements (Perou et 

al. .///).  

 

Not long after Perou et al., Van ‘t Veer et al. took the next step and described how gene 

expression measurements could be used to predict survival in breast cancer at the 

moment of diagnosis (Veer et al. .//.). This (/-gene model could predict if a breast 

cancer patient had a high or low risk of experiencing a metastasis of the primary tumor 

within [ years. This proved that the different genetic background of tumour influences 

the progression of disease. Many different gene expression signatures in many different 

cancer types would follow (Raponi et al. .//,; Barrier et al. .//,; Bullinger and Valk 

.//[; Kuiper et al. ./-.).  

 

Machine learning  
 
These growing datasets also called for new analysis methods and machine learning 

started to play a bigger part in biological and medical research. The term “machine 

learning” was coined by computer scientist Arthur Samuel. His -'[' paper on an 

algorithm that can play checkers starts with describing his studies on machine learning 

as “concerned with the programming of a digital computer to behave in a way which, if 

done by human beings or animals, would be described as involving the process of 

learning” (Samuel -'[').  

Samuels checker-playing program is seen as the first machine learning program 

(Schaeffer .//,). It clearly demonstrates an aspect of machine learning that is often 

explicitly included in later definitions: they can build models based on available data to 

perform a certain task on new data - without being explicitly programmed to do so. That 

is, the algorithm is told what its ultimate goal is (winning at checkers, in the case of 

Samuel) and the boundaries of the problem (the rules of checkers). However, how it 

should behave within these boundaries to achieve its goals is something it has to learn, 

as this behaviour is not explicitly programmed. Moreover, the program has to learn this 

in a way that makes its solutions applicable to situations on the board it has never seen 
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before. What goes for checkers, goes for all machine learning problems. A model that 

learns to predict cancer progression in an available dataset is useless if it cannot also 

predict this in a newly diagnosed patient with gene expression patterns it has never seen 

before.  

 

Machine learning approaches can generally be divided into three categories: supervised 

learning, unsupervised learning and reinforcement learning. Unsupervised learning 

aims to learn a structure in the data, without being guided by labels or classifications. 

Clustering algorithms are a good example in this category; they attempt to group data 

points that are similar to each other within a cluster and separate data points that are 

very dissimilar into different clusters. The different subtypes that were discovered in 

breast cancer are an example of unsupervised learning. Figure -a shows a gene 

expression matrix, figure -b shows the same gene expression matrix when clustered 

through unsupervised learning. As can be seen in the clusters marked by the two blue 

rectangles, clusters can be formed through finding genes that are all highly expressed, 

but also through a combination of under-expression (green) and over-expression (red). 

In reinforcement learning, the algorithm takes a sequence of decisions and gets 

rewarded (or punished) for the outcome of this decision. It learns by updating its model 

and amending its decision in response to this reward. Samuels checker player is an 

example of reinforcement learning; certain moves (decisions) lead to better game 

outcomes (rewards) than others. Unsupervised and reinforcement learning will not be 

considered further here; most approaches to predict survival or progression in cancer 

and all algorithms presented in this thesis use supervised learning.  

 

Supervised learning uses labelled data as input and learns a model that can accurately 

predict something about this label on unseen data; we use labels to define what the 

model should learn. The (/-gene breast cancer signature, for instance, labels patients 

as ‘poor prognosis’ if their survival was shorter than [ years and ‘good prognosis’ 

otherwise. Labels that indicate class membership (like poor or good prognosis) are 

categorical, but labels can also be continuous; for example, reduction in tumor size. 

Approaches differ for both types of labels, but in all supervised methods the model 

combines certain features (i.e. what was measured) to predict the label of interest (i.e. 

what we cannot measure and want to know). Figure -c shows supervised learning with 

a continuous label; the red line is the regression line that described the relation between 
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gene expression for a certain gene and the tumor size. This model can be extended to 

incorporate many variables. Often, we have measured more about the sample than is 

relevant. For example, we have measured expression for all genes, but the majority is 

not informative for survival time. Most approaches therefore include a feature selection 

step, to select the most relevant features. Feature selection can precede training or be 

incorporated in the training procedure.  

 

High dimensional data and overtraining 
 
An important challenge in machine learning, which is particularly salient in the analysis 

of gene expression data, is the curse of dimensionality. This challenge stems from the 

fact that we, in general, have many more features (genes) than samples (patients). When 

considering high dimensional datasets, it is likely to find untrue correlations: when you 

consider thousands of features, some will by chance correlate with the label even if no 

true signal is present in the data. It is important to take this into account when selecting 

features and training the model. In a high dimensional setting a machine learning model 

can easily overtrain, which means the model is not fitting an actual relationship 

between the gene expression patterns and the outcome, but starts to accommodate 

noise in the data. As a result, overtrained classifiers will not work on new and unseen 

data. Figure -d shows how this can happen with categorical labels; the grey line 

represents an overtrained classifier. Instead of learning a general distinction between 

good and poor prognosis (the red line), it has fitted the specific datapoints present in 

this dataset. To assess whether a true pattern is found (i.e. a pattern that generalized to 

new and unseen data) an important concept is the separation of training and test data, 

where one dataset is used to fit a model and other, unseen data is used to assess the 

performance of the model. Of course, we usually do not have unlimited data available. 

To guard against overtraining we can use cross-validation. In cross-validation we split 

the training data in equal parts, for example three, also called folds (Figure -e). We then 

train a model on the first two folds and test the model on the remaining third to obtain 

a better estimate of the expected performance on external data. We repeat this until all 

three folds have been used as test data once. When we do multiple repeats of this, the 

variables or models that perform well over all folds are most likely to be true and can be 

tested on true external data.  
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Figure 1. a. Unclustered gene expression. b. Unsupervised learning: clustering of gene 
expression. c. Supervised learning with continuous label: regression. d. Supervised 
learning with categorical label: classification. The grey line represents an overtrained 
classifier, the red dotted line a more generalizable classifier. e. Three-fold cross 
validation. 
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One can also try to directly prevent overtraining in the training of the model itself; one 

way is regularization. When applying regularization, the model contains parameters 

that penalize complicated models. If a model is allowed to incorporate enough features, 

it can fit any pattern. Imagine the model would incorporate each feature that was 

measured; it could describe the training data perfectly, while not learning general 

patterns. While regularization may lead to choosing simpler models with a slightly 

worse fit, such models are more likely to generalize to external data.  

 

Another way of preventing overtraining is using ensemble classifiers and bootstrapping. 

In an ensemble classifier many weak classifiers are trained: classifiers of which the 

performance by  

itself will not be satisfactory. The idea here is that a weak classifier will make many 

mistakes in assigning a sample to a class, but when we combine many weak classifiers 

that all make a different mistake, together they can still distinguish better between 

classes than any classifier on its own. We can make it more likely that these classifiers 

fit different effects in the data by bootstrapping. In bootstrapping we sample randomly 

from the data (typically with replacement) to generate a training dataset which 

encompasses a random subset of the variables and samples of the full dataset. Because 

we do this for each classifier separately, all classifiers have access to a slightly different 

part of the data. This simultaneously assures they cannot overfit on the dataset as a 

whole and that each classifier will make different mistakes. Which approach to prevent 

overtraining is best depends on the type of data and classification problem, though 

many successful approaches use a combination of all mentioned techniques.  

 

Personalized medicine  
 
If tumors behave differently based on the differences in mutations and gene expression 

patterns, a logical next step is to investigate whether these differences can be used to 

inform treatment. In .//-, it was estimated that for treatment across cancer types only 

one in four patients sees a beneficial effect (Spear, Heath-Chiozzi, and Huff .//-). 

While these numbers have improved somewhat with the rise of targeted therapies, it is 

clear that even today we treat patients with drugs that will not benefit them.  
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The practice to tailor treatment to the individual patients is known as personalized 

medicine. Broadly, we can differentiate between two approaches in personalized 

medicine. The first approach entails looking for specific mutations or aberrations 

present in the tumor that can be targeted with drugs. One of the first examples of such 

an approach was applied in chronic myelogenous leukemia, a type of blood cancer. A 

common aberration in CML creates a so-called fusion gene between the BCR gene and 

the ABL gene. This fusion gene encodes a protein that drives the rapid division of 

leukocytes. In the late '/’s a drug was developed - imatinib - that specifically inhibited 

this fusion gene and enormously improved survival for patients whose tumor harbors 

this particular fusion gene (Druker et al. .//-). By now more drugs that target cancer 

specific mutations have been introduced, like vemurafenib for BRAF mutations and 

crizotinib targeting ALK positive tumors (Chapman et al. ./--; Shaw et al ./-\). While 

this has led to great advances in cancer survival, there are many cancer patients for 

whom the tumor is not characterized by a cancer-specific, targetable mutation 

(Priestley et al. ./-') and that therefore do not benefit from this strategy.  

 

The second approach in personalized medicine is based on the presence of patient or 

tumor characteristics that can predict whether they will benefit from generic treatment, 

i.e. treatment not targeted to a cancer-specific aberration. Sometimes this can be 

achieved by simply associating known prognostic markers with treatment benefit. For 

example, it was shown that patients identified as low-risk by the (/-gene breast cancer 

signature could safely forego chemotherapy (Cardoso et al. ./-,). There have also been 

more specific machine learning approaches to predict a patient's response to a 

treatment, both using mutational data and gene expression (Le et al. ./-(; Tanoue ./-.; 

O'Connell et al. ./-/). Response to treatment can also be determined by non-tumor 

characteristics, like how the body metabolizes the drug before it reaches the tumor. The 

field of pharmacogenomics has identified many germline variants - common DNA 

variants inherited from your parents - that have an influence on how a drug is 

metabolized. Certain variants known to influence treatment are already routinely used 

to determine for example effective dose (van der Wouden et al. ./-'). Of course, even 

targeted treatments do not benefit every patient that receives them; here the two 

approaches combine.  
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Survival analysis  
 
To investigate whether one treatment leads to a better patient outcome than another 

treatment, survival analysis is often employed. This enables an assessment of whether a 

patient is statistically significantly less likely to die from the disease when for example 

being treated with a certain treatment. To perform survival analysis we need to define 

an endpoint: this is the outcome we are interested in. This can be death, but also, for 

example, metastasis of the cancer. A big challenge in analyzing survival data is the fact 

that some patients will be censored. When patients are enrolled in a trial and follow up 

is performed for -/ years some patients will die during this period and some will be 

known to be alive at the end of trial. However, there will also be a group for whom no 

information is available: they have left the trial or contact was lost for some reason. The 

patients for whom we have not recorded a date of death will be censored; we record the 

last date on which they were known to be alive. The challenge is using the data from 

censored patients; even if follow-up was not completed, there is useful information in 

the fact that a patient was still alive after a certain time. The most commonly used model 

is Cox proportional hazard model (Cox -'(.). Here the partial log likelihood is 

optimized over the 𝛽 by:  

 

 
 

Optimizing the likelihood means the model finds the 𝛽 that is most likely to give rise to 

the observed data. The i indicates the censoring status; if this is - a date of death was 

recorded, if it is a / this was not the case. Simply put, the Cox model describes which 𝛽 

best explains the observed sequence of deaths. This enables us to take censored patients 

into account up to the point of censoring; if a patient is censored at [ years, we know 

for sure everyone with an event before [ years died before them. The X in the formula 

represents the variable under consideration; when evaluating treatment effect this is 

the treatment variable. If a treatment had no effect at all, the 𝛽 will be (near) zero.  

 

When we use the Cox model to estimate treatment effect this is often captured in the 

hazard ratio. The hazard ratio is the exponent of the 𝛽; when a treatment has no effect, 

C ∑∑β θ= −
≥=

Xi j( ) ( log )
j Yj Yii Ci :: 1
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the HR is - (i.e. the exponent of /). Survival data is often visualized in Kaplan Meier 

plots, an example of which is shown in Figure .a. The 𝛽 describes the difference between 

the two treatment groups, here with treatment A as reference. The 𝛽 is this example is 

--, which means that when a patient receives the treatment their hazard of dying is 

lower. A 𝛽 above / would signify the patient has a higher hazard when treated with 

treatment A. Censored patients are represented with a vertical mark. The Cox model 

makes several assumptions about the data, the most important of which are that a) the 

hazards between the different groups are proportional over time and that b) the 

censoring is uninformative. Proportional hazards mean that the difference in risk 

between groups is the same at any point in time - i.e. if treatment A reduces risk two-

fold this should be true in year - but also in year [, etc. When the lines in a Kaplan Meier 

plot cross, this assumption is violated. Uninformative censoring means that the variable 

under consideration should not influence whether a patient is censored. If one 

treatment group has much more censoring and this is somehow due to the treatment 

itself, this cannot be modelled accurately within the Cox model and it will bias the 

estimate of treatment effect.  

 

In this thesis we mostly employ Cox proportional hazards modeling to estimate 

treatment effect, but it is not confined to treatment estimates. It can for example also 

be used to estimate the effect of gene expression on survival; it can incorporate multiple 

variables at once and a fitted Cox model can then also be used to predict outcome for a 

new patient. Survival analysis has been combined with machine learning, where the 

survival data functions as a label. For example, regularized cox models (i.e. models with 

a penalty on model complexity) were developed that can be used to model survival on 
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Figure 2. a. An example Kaplan Meier plot of a treatment A that confers a survival 
advantage. b. An example plot of a prognostic classifier. c. An example plot of a predictive 
classifier.  
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high dimensional data sets like gene expression data (Simon et al. ./--). Another 

popular approach for high dimensional data is training a Random Survival Forest. A 

random forest is a machine learning approach that can be used on both discrete and 

continuous labels and trains an ensemble of decision trees (Breiman .//-). It is 

particularly suitable for high dimensional datasets as it prevents overtraining both by 

bootstrapping and forming an ensemble classifier (discussed in the Machine Learning 

section). As the name suggests, Random Survival Forests extend this approach to 

survival data with censoring present. Rather than predict a particular label, Random 

Survival Forests aims to divide the samples in subsets with a maximum survival 

difference (Ishwaran and Lu ./-').  

 

The difficulties of treatment benefit  
 
Due to the rapid developments in cancer treatment, there is an increasing number of 

cancer treatments available to choose from and often it is not clear which will be the 

best choice. The classifiers previously discussed either predicted prognosis (regardless 

of treatment) or predicted response to a single treatment. Figure .b shows a Kaplan 

Meier plot for a prognostic classifier. While this classifier identifies patients with a 

better survival, the benefit from treatment A is present in both classes. Had this 

classifier been trained and validated on a population with solely patients who were 

treated with treatment A it would be impossible to distinguish between a predictive 

effect for treatment A specifically or a general prognostic effect. In this example the poor 

prognosis group still survives better than the good prognosis group when treated with 

treatment B; all patients should receive treatment B. When multiple treatments are 

available and a choice has to be made between them, the current classifiers are not 

sufficient. Arguably the most clinically relevant question is which treatment will benefit 

a patient most; i.e. which treatment would lead to the longest survival. However, 

patients who benefitted from a certain treatment cannot be identified straightforwardly, 

since we can only observe the response to the treatment the patient actually received. 

Even if a good response was achieved, it does not mean the patient benefited specifically 

from this treatment. Possibly any other treatment would have achieved the same 

results. Conversely, even if a patient had a short survival time, the given treatment could 

still have been the best choice - maybe the response would have been even worse on 

any other treatment. We can thus not label a patient as benefiting or not from the 
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observed survival. Traditional supervised machine learning approaches cannot be 

employed; these approaches rely on predefined labels.  

 

We thus need to employ other approaches to predict treatment benefit. In all following 

work we define treatment benefit as a patient surviving longer on the treatment of 

interest than they would have done on a comparator treatment. Figure .c visualizes 

treatment benefit in a Kaplan Meier plot: we identify a ‘benefit’ class with a larger 

benefit than the population as a whole and a ‘no benefit’ class where treatment A does 

not lead to a better survival.  

 

One approach is to investigate if known prognostic markers are also linked to treatment 

benefit, as was done in the case of the (/-gene breast cancer signature. However, these 

associations can only be investigated after the genes or markers were identified using 

survival information only (or possibly an unsupervised approach). It is to be expected 

that methods taking treatment specific survival into account in the discovery will be 

superior to after the fact analysis.  

 

Another approach is to model on two treatments separately, but to only retain variables 

that have an opposite effect in both treatment arms. The drawback here is that the 

model does not get an opportunity to specifically look for a combination of variables 

that achieve this. It is not necessarily expected that there will be one single marker that 

can separate these groups. Of course, a good response to one treatment would not 

automatically mean a bad response to another treatment and markers would be difficult 

to find in separate analyses.  

  

We show in Chapter * that we cannot successfully train a model on labels derived 

directly from survival and treatment information. In this thesis we will present multiple 

approaches to predict treatment benefit using survival outcome and treatment 

annotation without having to define training labels.  

 
Counterfactual reasoning 
 
When we talk about treatment benefit, we are trying to answer the question “what 

would have happened had we given this specific patient a different treatment?”. The 
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answer to this type of what-if question is known as a counterfactual. Counterfactual 

reasoning has mostly been used in establishing causality, i.e. which variable is causal for 

the difference in events when the “if” is changed. It should be noted that establishing 

causality is not necessarily the goal of machine learning; accurate prediction is. These 

two things can and perhaps ideally do occur together, but it is not necessary.  

 

Counterfactual approaches can explain models or important variables by investigating 

what would have changed the prediction of an already existing model (Mothilal, 

Sharma, and Tan ././). This is visualized in Figure \a; would a different treatment have 

led to the same poor outcome? The problem with these approaches is that a model 

needs to exist already or that at the very least candidate variables need to be known. 

With a defined model it can be investigated what the change in predicted outcome is 

when the value of a variable (like the treatment variable) is changed. In a gene 

expression setting tens of thousands of variables are available and it is likely only a small 

part of those are relevant to benefit from the treatment under investigation.  

We thus need a method to answer the what-if question without already having a model. 

An example of attempting this is an approach using so-called ‘virtual twins’ (Foster, 

Taylor, and Ruberg ./--). In the context of a clinical trial a ‘virtual twin’ can be modelled 

for each clinical trial participant, where the twin undergoes the counterfactual 

Figure 3. a. Example of a counterfactual model. We have observed a poor outcome when 
a patient with a certain gene expression profile (GEP) was exposed to drug A. The model 
now needs to predict whether drug B would have led to the same outcome. b. Example of 
how matched patients can be used; patient 2 has a similar gene expression profile as patient 
1, but was exposed to a different drug and experienced a longer survival. This represent the 
potential benefit for patient 1, had they been treated with drug B. 
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condition of the real participant (Vittinghoff et al. ./-/). Here again, the assumption is 

that the estimation of both responses arises from the same (linear) model and that the 

measured variables are independent of the alternative option you are modelling. Figure 

\b shows this matching of patients based on gene expression profiling, where patient - 

and . are very similar, but received a different treatment. However, the virtual twin 

approach was proposed in a setting of low dimensionality, considering less than -// 

variables. It has been shown since that the assumptions made in this approach do not 

hold in high dimensional settings (Lu et al. ./-)). Other imputation-like approaches, 

where the outcome on the treatment not received is regarded as a missing data point, 

have mostly been applied in a setting with a limited number of variables that are all 

likely to be of influence. In a high dimensional setting like gene expression - or even 

more difficult, germline variation - we are dealing with many irrelevant variables, but 

no way of determining which are irrelevant before building the model. We do not know 

which genes should be used to identify matched patients. We thus need new methods 

to be able to apply counterfactual reasoning in high dimensional datasets.  

 

Multiple Myeloma  
 
Chapter * and Chapter + deal with predicting treatment benefit in multiple myeloma. 

Multiple myeloma is a cancer of the plasma cells that develops in the bone marrow 

(Rajkumar ./-)). Plasma cells are a fully differentiated white blood cell and play an 

important role in the immune defense by producing immunoglobulins, i.e. the 

antibodies that enable the immune system to recognize pathogens. Multiple myeloma 

can develop slowly, sometimes being present as smouldering multiple myeloma over 

the course of decades, to suddenly spike and cause symptoms (Kyle et al. .//(). 

Multiple myeloma is also a very heterogeneous disease. A few chromosomal aberrations 

are often found in multiple myeloma, but most only occur in a minority of the patients 

(Nahi et al. ./--). Mutations in DNA are also sparse and there is no clear mutational 

event to define multiple myeloma (Walker et al. ./-)). A lot of effort has gone into 

distinguishing patients with high or low risk variants of the disease and most of these 

are defined by gene expression (Szalat, Avet-Loiseau, and Munshi ./-,). It is still an 

incurable disease, though survival expectancy at the moment of diagnosis has increased 

significantly in the past two decades due to novel treatment being introduced in the 

clinic (Rajkumar ./-)).  
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Two major treatment classes now used in the clinic are proteasome inhibitors (PI) and 

immunomodulatory drugs (IMIDs) and in this thesis we focus on predicting benefit to 

PIs. The rationale behind PIs is that MM cells overproduce immunoglobulins, which are 

proteins. The proteasome is the main way a cell has to get rid of unwanted proteins and 

this system is overburdened in MM cells. When the proteasome is inhibited, proteins 

start to accumulate in the cell, eventually triggering apoptosis when this situation 

cannot be resolved. MM cells are more reliant on the proteasome than other, healthy 

cells, providing a therapeutic window for PI treatment (Moreau et al. ./-.).  

 

An open problem is whether the risk profiles and different gene expression patterns 

across MM patients can also be informative for which treatment is ideal. Currently these 

markers are not used to decide on an ideal treatment and we thus have to look beyond 

the known markers. Multiple myeloma represents a good test case for the prediction of 

alternative treatment response from gene expression data; clinical trials are available 

and it is known gene expression is of influence on disease trajectory and there is an 

unmet need for tools to aid in treatment decisions. A clinical trial setting is ideal for 

training a model like this, since treatment assignment is random. As discussed, in 

counterfactual reasoning it is assumed that the variables in the model are independent 

of the condition to be modelled; this can be safely assumed in a clinical trial.  

 

Understanding treatment benefit  
 
Predicting treatment specific survival is one part of the challenge and very important in 

clinical decision making. The next question that inevitably presents itself is why certain 

patients respond better than others to a certain treatment. Could a well-performing 

model shed some light on this?  

A usual step to gain insight in the mechanism behind the predicted benefit is to 

investigate the genes included in the model that can predict treatment response, but 

more often than not these do not present a clear picture of mechanisms of treatment 

response. Classifiers trained for the same purpose, with similar performances, show very 

little overlap in genes used (Tang et al. ./-(). For the (/-gene breast cancer classifier 

mentioned earlier, it was shown that a similar classifier can be built when these (/ genes 

are excluded from the analysis (Ein-Dor et al. .//[). The fact that a good prediction 

performance can be achieved by many different genes is at least partly caused by the 
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great redundancy in gene expression information. This in turn is due to the fact genes 

act in pathways and regulate each other giving rise to highly (inversely) correlated gene 

expression patterns. For classification purposes, it can be irrelevant which of these genes 

are included in the model, since they provide the same information - as shown by Ein-

Dor et al. Substituting one for the other will not change the model performance. 

However, for the biological interpretation and understanding the role of these genes in 

determining patient benefit to treatment these genes are not equal.  

 

Some classification approaches take this aspect into account, and include pathways and 

known relationships between genes in the model. However, it has been shown these 

methods can achieve similar performances when using random networks as when true 

biological networks are used (Staiger et al. ./-.), rendering the importance of the 

biological links doubtful. These networks can also be biased towards well-studied genes; 

if a gene is known to be important in cancer development, more research will study it 

and more relationships will be discovered. Thus there are a few well known genes, that 

are annotated in many different contexts, while other genes are not annotated at all 

(Haynes, Tomczak, and Khatri ./-)). This limits the new mechanisms that can be 

discovered to what is already known. Moreover, disease can also change how genes 

interact with each other; interactions in healthy tissue can be very different to 

interactions in cancerous tissue and interactions can differ between cancer types. A 

possible approach is to learn new gene networks that are specific to the disease or even 

the treatment. This can be done in a data-driven manner, so it is not biased by gene 

annotation of pathways in health cells. In this thesis we use both known biological 

annotation (Chapter * and Chapter ,) and present a method to learn new networks, 

specific to treatment benefit (Chapter +).  

 

Contribution of this thesis  
 
There is a gap between the machine learning approaches available to predict treatment 

response and the clinical reality, where we are interested in answering the question: 

which drug is the best choice for this patient? There have been several approaches 

developed in the field of counterfactual reasoning, but none that can handle the high 

dimensional nature of gene expression data. In this thesis we present several different 

approaches to model what the outcome would have been for a patient had they received 
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a different treatment. With these we can predict treatment benefit in a clinically 

relevant way. Much of the work rests on our concept Simulated Treatment Learning, 

which uses the idea that genetically similar patients who received a different treatment 

can be used to model response to the alternative treatment. In Chapter * we present 

GESTURE (Gene Expression-based Simulated Treatment Using similaRity between 

patiEnts), an algorithm that evaluates which gene sets (here formed by Gene Ontology 

annotation) are most relevant to treatment benefit and combines them in an ensemble 

classifier to predict treatment benefit for new patients. We show its performance in a 

multiple myeloma dataset, predicting benefit to both bortezomib (a PI) and 

lenalidomide (an IMID), representing two major treatment classes in multiple 

myeloma. In Chapter + we present STLsig, which uses Simulated Treatment Learning 

to form disease and treatment specific gene networks that can predict treatment 

benefit. We demonstrate its utility in predicting treatment benefit to PI treatment in 

multiple myeloma and moreover showing that the genes in the signature are unique 

(i.e. a new, similar performing signature cannot be found with the same method when 

the genes are removed). This offers perspective for biological interpretation. In Chapter 

, we adapt GESTURE to predict chemotherapy benefit in breast cancer. This offers 

additional challenges, as we do not have access to randomized trial data and the event 

rate is much lower. Here we also find the limitations of such a setting, as we can build 

a classifier that validates in cross validation, but not in external data. In Chapters * - , 

we use tumour gene expression data to predict treatment benefit, but in Chapter / we 

use SNP data (i.e. germline variation) to predict treatment benefit. We introduce 

RAINFOREST (tReAtment benefIt prediction using raNdom FOREST) and use it to 

predict benefit to cetuximab in metastatic colorectal cancer. This method is based on 

random forests, but does not need predefined labels and can identify a subset of patients 

who benefit from the addition of cetuximab, while the population as a whole.  

 

Together, we provide an array of tools that can be used to predict treatment benefit in 

high dimensional settings and we show their utility in a variety of settings. This can help 

make personalized medicine a reality in cancer treatment. 
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Abstract 
 
Many cancer treatments are associated with serious side effects, while they often 

only benefit a subset of the patients. Therefore, there is an urgent clinical need for 

tools that can aid in selecting the right treatment at diagnosis. Here we introduce 

Simulated Treatment Learning (STL), which enables prediction of a patient's 

treatment benefit. STL uses the idea that patients who received different 

treatments, but have similar genetic tumor profiles, can be used to model their 

response to the alternative treatment.  

  

We applied STL to two Multiple Myeloma gene expression datasets, containing 

different treatments (bortezomib and lenalidomide). We find that STL can predict 

treatment benefit for both; a two-fold progression free survival (PFS) benefit was 

observed for bortezomib for -'.)% and a three-fold PFS benefit for lenalidomide for 

\-.-% of the patients. This demonstrates that STL can derive clinically actionable 

gene expression signatures that enable a more personalized approach to treatment. 

  



Predicting treatment benefit in Multiple Myeloma        

 29 

 
2 
 

 

 

 

 

 

 

Introduction  
 
The successful treatment of cancer is hampered by genetic heterogeneity of the disease. 

Differences in the genetic makeup between tumors can result in a different response to 

treatment (Burrell et al. ./-\). As a result, despite the existence of a wide range of 

efficient cancer treatments, many therapies only benefit a minority of the patients that 

receive them (Block et al. ./-[). Because many therapies may be associated with serious 

adverse effects, there is a great clinical need for tools to predict - at the moment of 

diagnosis - which patient will benefit most from a certain treatment. 

  

To address this, substantial efforts have been made to identify clinical and molecular 

markers, such as gene expression signatures, that can predict a favorable or adverse 

prognosis (Santos et al. ./-[). Traditionally, this is achieved by defining subtypes (e.g. 

through unsupervised learning approaches) based on molecular markers such as 

genotype or gene expression. For many of these subtypes an association has been 

determined to survival or drug response (Lièvre et al. .//,; Bernard et al. .//'; 

Walther .//'). 

  

More direct approaches use supervised learning, such as (logistic) regression, to identify 

markers associated with survival. In this setting, a class label is defined for each patient 

based on their survival or some other outcome measure, such as the risk of experiencing 

a relapse. The training procedure then focuses on predicting these labels as accurately 

as possible to ultimately produce a classifier that can predict outcome for a new patient. 

One of the first successful examples of such approach resulted in a (/-gene prognostic 

expression signature for breast cancer (Van ‘t Veer et al. .//.). A phase III clinical trial 

recently revealed that patients predicted to have good survival based on this signature 

can safely forego chemotherapy without compromising outcome (Cardoso et al. ./-,), 

thus preventing overtreatment of these patients. These examples demonstrate that 

prognostic predictors can have value in predicting benefit to treatment. 

  

Despite these successes, prognostic signatures are fundamentally limited in their ability 

to predict treatment benefit. This is because prognostic signatures are determined 

without taking treatment into account, i.e. they are not trained to distinguish patients 

that survive long as a result of the treatment. For this reason, patients classified in the 
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'long survival' class may in fact survive just as long on any treatment available. 

Conversely, patients in the 'short survival' class could actually have benefit from 

treatment because they would have had an even shorter survival on another treatment. 

In Figure 4a and 4b we illustrate this in the setting of a randomized trial with two 

treatment arms. Figure -a shows the result for a prognostic classifier which results in a 

survival difference between the two classes that is similar in both treatment arms. 

However, to achieve treatment benefit prediction we should identify a subset of patients 

that specifically benefit from one of the two treatments, that is, where the difference in 

survival between the two treatments is larger than in the population as a whole (Figure 

4b). It should be noted that it is possible that a prognostic classifier happens to identify 

a difference between treatment arms as well, but this is not an aim in the training 

procedure. We hypothesized that a method that is specifically geared towards 

Figure 1. Illustration of the difference between prognostic and predictive classifiers 
and an overview of the approach a. Example of the Kaplan Meier curve for a 
prognostic classifier. b. Example of the Kaplan Meier curve for a predictive classifier. 
c. Division of dataset into training and test sets. D1, D2 and D3 are all used once to 
validate the classifier trained on the remaining two thirds of data. d. Flow of the 
GESTURE algorithm. In step 1 the prototypes with a longer than expected survival 
difference are identified on fold A. In step 2 the number of prototypes and 
corresponding decision boundary used in the classifier are optimized on fold B. In 
step 3 the performance of the classifier on fold C across all repeats is used to select 
the combination of gene sets to be used in the final classifier. In step 4 a classifier 
for these gene sets is defined on all training data. This classifier will be validated on 
the fold D not included in the training data. 
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optimizing the identification of a subset of patients with a greater treatment benefit will 

achieve better results. 

  

Treatment benefit is commonly measured by the Hazard Ratio (HR), which describes a 

patient’s hazard to experience an event, for example death or progression of disease, 

relative to another set of patients who received a different treatment. Some recently 

published predictive classifiers have only shown to find a difference in response or 

survival between two groups of patients who all received the same treatment (Bhutani 

et al. ./-(; Vansted et al. ./-); Ting et al. ./-(). These signatures are not constructed 

to be predictive, since they do not necessarily provide a treatment decision; the 

prognosis may well be the same in every treatment group. To be truly predictive, a  

subgroup with a difference in survival between two treatment arms needs to be 

identified. 

  

Constructing classifiers that can achieve true treatment benefit prediction thus poses a 

unique challenge, as it is impossible to know how a patient would have responded to 

the alternative treatment. As a result, class labels based which can be used to train a 

classifier are not available and existing classification schemes are not applicable (as 

demonstrated in the Results and discussion section). 

 

To address the lack of suitable training labels, we introduce the concept of Simulated 

Treatment Learning (STL), a method to derive classifiers that can predict treatment 

benefit. STL can be applied to gene expression datasets with two treatment arms and 

survival data. STL uses genetic similarity, defined based on gene expression in the 

tumor, between patients from different treatment groups to model how a particular 

patient would have responded to the alternative treatment.  

 

In this work we focus on predicting treatment benefit for Multiple Myeloma (MM), a 

clonal B-cell malignancy that is characterized by abnormal proliferation of plasma cells 

in the bone marrow. Median survival of MM patients is [ years (Howlader et al. ./-,). 

In the last two decades many novel therapies have been introduced for MM, resulting 

in an improved survival (Kumar et al. .//); Munshi and Anderson ./-\). Bortezomib 

and lenalidomide were crucial in achieving these improved survival rates. However, 

despite these advances, not all patients benefit from these novel agents and there are 
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insufficient tools to predict treatment response or survival. Between MM patients 

heterogeneity in gene expression profiles is observed (Lohr et al ./-+; Keats et al. ./-.). 

For these reasons, genetic signatures that can predict treatment benefit for MM patients 

are of high clinical value, making it an ideal test case for STL. 

 

There are some preliminary indications that predictive signatures may exist for MM. 

Some of the various prognostic factors known in MM were later found to be predictive 

as well. For instance, it was shown that patients with the chromosomal aberration 

del-(p, known to be prognostic, benefitted more from the proteasome inhibitor 

bortezomib than patients without del-(p (Neben et al. ./-.). Furthermore, expression 

levels of tumor suppressor RPL[, located on chromosome -, were also found to correlate 

with bortezomib response (Hofman et al. ./-(). Both these abnormalities have been 

found to be recurrently present in MM plasma cells and were later found to be 

prognostic and predictive. STL enables us to directly discover predictive markers, 

without relying on previously discovered (prognostic) markers. 

 

We implement the STL concept in the algorithm GESTURE (Gene Expression-based 

Simulated Treatment Using similaRity between patiEnts), which makes it possible to 

derive a gene expression signature that is able to distinguish a subset of patients with 

improved treatment outcome from the treatment of interest, but not from the 

comparator treatment.  

We show that GESTURE can predict treatment benefit for two major treatments in 

multiple myeloma, bortezomib and lenalidomide. The final classifier finds a subgroup 

containing -'.)% of the patients that have a two-fold progression free survival (PFS) 

benefit when treated with bortezomib and a three-fold PFS benefit for lenalidomide for 

\-.-% of the patients. Our results demonstrate that GESTURE can be used to robustly 

derive clinically actionable gene expression signatures that enable a more personalized 

approach to cancer treatment. 

 

Results  
 
Definition of treatment benefit class 
We combined data from three randomized phase III clinical trials comprising of '-/ 

patients with MM (see methods), who either received the proteasome inhibitor 
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bortezomib (n = +/() or not (n = [/\). For each patient gene expression profiles were 

generated from purified myeloma plasma cells at diagnosis. An overall HR of /.(+ ('[% 

CI /.,- – /.'/, p = /.//.', n = '-/) is observed between the two treatment arms, in 

favor of the bortezomib arm. While this HR indicates significant treatment benefit for 

bortezomib, we asked whether this was driven by a small benefit for all patients, or if a 

subgroup of patients can be identified showing a large benefit from treatment with 

bortezomib, while the remainder of patients show a smaller or no benefit from 

bortezomib. With this research we aim to identify a subset of patients, the ‘benefit’ class, 

who benefit from the treatment of interest (bortezomib) relative to a comparator 

treatment arm which does not contain bortezomib. The patients not included in the 

‘benefit’ class belong to the class ‘no benefit’ and would not benefit from receiving 

bortezomib. The classifier identifying this ‘benefit’ class could serve as a valuable 

diagnostic to determine which newly diagnosed patients would benefit from 

bortezomib (based) treatment. 

  

Regular classifiers cannot predict treatment benefit  
We first aimed to evaluate how well a regular (prognostic) classification approach is 

able to reach treatment benefit prediction. According to our definition of treatment 

benefit, a classifier should identify a subset of patients (class ‘benefit’) with a 

significantly better survival on the treatment of interest than the population as a whole. 

In a regular binary classification setting, training such classifier requires a labeled 

dataset, where the label indicates if the patient will or will not benefit from treatment. 

As discussed in the introduction, such labels are not available, since we cannot know 

how a patient would have responded to a different treatment. However, one reasonable 

assumption could be that patients who survive long in the treatment arm of interest do 

so because they benefited from the treatment, and, conversely, patients who survive 

short in the other treatment arm do so because they should have received the treatment 

of interest. Following this line of reasoning, we define the ‘benefit’ class as the .[% 

longest surviving patients in the bortezomib arm and the .[% shortest surviving non-

bortezomib patients. Together, these two groups form the class ‘benefit’ (.[% of all 

patients). All other patients from the two arms (([%) are labeled as class ‘no benefit’. 

  

Table 4 demonstrates that with some classifiers class ‘benefit’ can be predicted from the 

gene expression data reasonably well, with a cross-validation accuracy ranging from 
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/.[) for the random forest classifier to /.)- for the support vector machine classifier. 

However, using an independent validation fold, we find that prediction of treatment 

benefit fails as no improvement in HR is found over the whole population. A similar 

absence of performance is observed when other percentages than .[% were chosen to 

define the class ‘benefit’ (Supplementary Table *, + and ,). 

 

The approach to derive labels directly from survival information is essentially similar to 

prognostic classification, and our results thus cast doubt on the utility of prognostic 

approaches in a predictive setting. However, this lack of performance may not be 

surprising, since the training labels already lead to unrealistically large HRs (</.-), 

indicating that the labels are often wrong. Classifiers trained on such noisy labels are 

indeed unlikely to have predictive performance in independent validation data. It 

should moreover be noted that this approach does not take censoring of the patients 

into account. 

As an alternative approach, we therefore also generated a large number (-///) of 

random labelings and evaluated the HR in the ‘benefit’ class of these randomly labeled 

datasets. Those labelings that resulted in a significant (p</./[) HR below /.[ were 

subsequently used to train a classifier. This greedy random search procedure enables 

taking into account censoring of patients (through the calculation of the HR) and leads 

to less extreme HRs in the training data. However, this approach also did not yield 

classifiers with a significant HR when applied to the validation fold (Table *). This 

demonstrates that it is not straightforward to derive labels for treatment benefit that 

can be accurately predicted from the gene expression dataset. 

 
Overview of simulated treatment learning 
The key idea of STL is that a patient’s treatment benefit can be estimated by comparing 

its survival to a set of genetically similar patients that received the comparator 

treatment (Figure 4d, step -). Patients with a large survival difference compared to 

genetically similar patients can then act as prototype patients; new patients with a 

similar gene expression profile are expected to also benefit from receiving the treatment 

of interest. Since similarity in gene expression profile is greatly influenced by the choice 

of input genes, we define this similarity according to a large number of gene sets. 

Training the prototype-based classifier requires optimizing two parameters per gene 

set: the number of prototypes to use and the decision boundary, defined in terms of the 
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Table 1. Classification accuracy in cross validation and HR in independent validation 
for the classifiers trained on labels based on the top 25% surviving bortezomib patients 
and the bottom 25% non-bortezomib patients. 
  

  Classification 

accuracy 

Validation HR p-value 

Nearest mean /.[) (sd: /./() /.', ('[% CI: /.[( - 

-.,/) 

/.), 

Random forest /.,) (sd: /./\) /.'[ ('[% CI: /.[+ – 

-.,)) 

/.)( 

SVM /.)- (sd: /./,) /.)- ('[% CI: /.\- – 

..-\) 

/.,( 

  
 
 
Table 2. Classification accuracy in cross validation and HR in independent validation 
for the classifiers trained on labels selected from randomly generated classifications 
with a significant HR under 0.5 

  Classification 

accuracy 

Validation HR p-value 

Nearest mean /.[/ (sd: /./.) /.)- ('[% CI: /.+' – 

-.\[) 

/.+. 

Random forest /.,, (sd: /./.) /.)- ('[% CI: /.[/ – 

-.+-) 

/.[- 

SVM /.)\ (sd: /./,) -.-/ ('[% CI: /.[. – 

..\+) 

/.)/ 
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Euclidean distance to the prototype (Figure 4d, step .). The STL classifier also needs to 

select the optimal gene sets to ultimately classify a patient. Importantly, the labels are 

now defined using the prototypes identified for the various gene sets, which means that 

in the STL approach there is no need to define labels before training the classifier. To 

train the classifier and select the best performing gene sets, the training data are split 

in three folds (A, B and C). Fold A is used to identify prototypes, fold B to optimize the 

decision boundary and fold C to estimate classifier performance. 

  

To obtain unbiased estimates of the overall prediction performance, the entire dataset 

is divided in three equal folds, D-, D. and D\, ensuring a similar HR between the 

treatment arms in all three folds. Training is performed on two folds, while the 

remaining fold is kept separate to serve as an independent validation set. This is rotated 

to obtain an unbiased prediction for each fold. The division of the data in D-, D. and 

D\, and subsequently in folds A, B and C is shown in Figure 4c. 

 

It is a priori unknown which genes will be relevant to defining patient similarity and 

predicting treatment response. We used -/,[)- functionally coherent gene sets based 

on Gene Ontology annotation. Each gene set is used to train a separate classifier. The 

top-performing classifiers are subsequently combined into an ensemble classifier to 

determine the optimal number of gene sets to be used in the final classifier (Figure 4d, 

step \, for details see Methods). For the gene sets included in this optimal number a 

single classifier is trained using all the training data. These classifiers are combined into 

the final ensemble classifier that is used to classify the patients in the validation set 

(Figure 4d, step +). 

 

STL finds a predictive classifier for bortezomib benefit 
Figure *a shows the cumulative progression free survival curves for two treatment 

arms, with an HR of /.(+ ('[% CI /.,- – /.'/, p = /.//.', n = '-/) between the 

treatment arms. Figure *b shows the treatment arms and classes as identified by the 

STL classifier, when combining the class ‘benefit’ from the three validation folds. These 

three validation folds together comprise the whole dataset; the classification of each 

validation fold is predicted by separately trained classifiers. This enables us to show a 

validation performance for the whole dataset. The validation HRs for the ‘benefit’ and 

‘no benefit’ class are /.[/ ('[% CI /.\. – /.(,, p = /.//-., n = -)/) and /.() ('[% CI 
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/.,\ – /.'), p = /./\, n = (\/), respectively. In the entire population an HR of /.(+ (p 

= /.//.', n = '-/) is observed. These results show that a subgroup, comprising -'.)% 

of the population (n=-)/ out of '-/), is identified by our method that benefits 

substantially more from bortezomib treatment than the population as a whole.  

 

More importantly, the STL approach is able to discover and predict this subgroup using 

the gene expression data at diagnosis. In the bortezomib arm, the ‘benefit’ and ‘no 

benefit’ class exhibit similar survival curves. This is expected, since our classifier is 

trained to predict benefit with respect to the patient group not receiving bortezomib. 

As the Kaplan Meier in Figure *b shows, the other treatment arm in the ‘no benefit’ 

class also has a similar survival, which means we expect these patients would have had 

a similar survival had they not received bortezomib. The ability to determine that a 

patient would not benefit from bortezomib is of equal importance as predicting benefit; 

preventing unnecessary treatment is an important aim of personalized medicine. 

 

The HRs observed within each of the individual validation folds are similar to the HR 

obtained when combining all folds (/.[- ('[% CI /..) – /.'., p = /./\, n = )',), /.\' 

('[% CI /.-+ – -./), p = /./(, n = \/,) and /.+, ('[% CI /..- – -./., p = /./,, n = ,-) in 

folds D-, D. and D\ respectively). We note that the HR is comparable in all folds, 

demonstrating a stable performance, although not statistically significant for fold D. 

and D\ at p < /./[ due to the fact that in D. '.'% of patients and in D\ ./.-% are 

included in the ‘benefit’ class and versus .'.+% in D-. 

 

Traditionally, the performance of a classifier is assessed by computing its accuracy, 

which is done by comparing the labels predicted by the classifier with ground truth 

labels. Ground truth labels are labels that are known to be accurate because they can be 

directly observed, e.g. if a patient survives longer than [ years or not. Since we do not 

know beforehand which patients benefited from bortezomib, we have no ground truth 

labels available and cannot compute the accuracy of our classifier. However, we can 

compare the class labels obtained with the three separate classifiers when applied to all 

'-/ patients. We find that these three class assignments agree between the classifiers 

significantly more than expected by chance (i.e. //\ classifiers or \/\ classifiers predict 

benefit; Supplementary Figure 4). A similar conclusion is reached by comparing the 

classification scores directly, which significantly correlate (all p-values < -*-/-").  
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HR = 0.74, p = 0.0029 HR 'benefit' class = 0.50, p = 0.0012
HR 'no benefit' class = 0.78, p = 0.03
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Figure 2. Overview of the bortezomib classifier results and comparison to known markers. a. 
Kaplan Meier of the entire bortezomib dataset, showing a HR of 0.74 (95% CI 0.61 – 0.90, p 
= 0.0029, n = 910,) between the treatment arms. b. Kaplan Meier of the combined 
classifications into a ‘benefit’ and ‘no benefit’ class of D1, D2 and D3. A HR of 0.50 (95% CI 
0.32 – 0.76, p = 0.0012, n = 180,) is found between the treatment arms in the ‘benefit’ class 
and a HR of 0.78 (95% CI 0.63 – 0.98, p = 0.03, n = 730) in the ‘no benefit’ class. These results 
show that a subgroup, comprising 19.8% of the population (n=180 out of 910 total), is identified 
by our method that benefits substantially more from bortezomib treatment than the population 
as a whole; in the entire population an HR of 0.74 (95% CI 0.61 – 0.90, p = 0.0029, n = 910) 
is found. c. The HR found in the ‘benefit’ class (y-axis) when different operating points (x-axis) 
are used, compared with known predictive and prognostic markers. The gray dotted line 
indicated the HR found in the entire dataset, without classification. d. Relationships between 
the 31 genes in common between the D1, D2 and D3 classifiers. Node size corresponds to 
how much more a gene was observed in the selected gene sets than expected. Green nodes 
indicate that the gene is associated with a p-value < 0.05. Relationships are inferred from 
literature with the GeneMANIA algorithm (Warde-Farley et al. 2010). A purple edge indicates 
the genes are co-expressed, a green edge indicates a genetic interaction, a red edge a 
physical interaction, an orange edge a shared protein domain, a dark blue edge indicates co-
localization and a light blue edge shows that both genes are annotated to the same pathway. 
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When considering the cases for which the three classifiers agree, we find that [/\ 

patients are consistently classified as ‘no benefit’ and [( patients as ‘benefit’. Together, 

this demonstrates that, even though the classifiers do not agree on the class assignment 

for all patients (which is expected in practice for classifiers with less than -//% 

accuracy), they capture the same gene expression patterns. 

  

The decision boundary of the classifiers are defined by the parameters k and gamma 

and a threshold T. We optimize the combination of k and gamma by an exhaustive grid 

search. We verified that the performance of our classifier is robust to small changes in 

these parameters (Supplementary Note 4). The operating point of the classier is 

determined by the number of individual classifiers in the ensemble that agree on the 

class label, and is thus directly related to the confidence of the ensemble classifier about 

the label ‘benefit’. To ensure sufficient power and provide a treatment decision for a 

substantial group of patients, the operating point of the classifier was set to ./% in 

training (see methods). At this operating point, -'.)% of patients in the validation folds 

were actually assigned to the ‘benefit’ class. Figure *c depicts the HR as a function of 

the confidence level of the classifier. We observe that, for higher confidence levels 

(yielding smaller sizes of the ‘benefit’ class) more extreme validation HRs are observed, 

demonstrating that there is a direct relation between classifier score and treatment 

benefit. This is consistent with the fact that the highest HR and largest class ‘benefit’ 

are found in fold D- in validation, while the lowest HR and the smallest class ‘benefit’ 

are found in D.. 

  

As a control experiment, we also ran the algorithm with shuffled treatment labels, 

destroying the relationship between the gene expression and the treatment specific 

survival. As expected, the classifier trained on this data shows no performance in the 

validation data, achieving an HR of -./' ('[% CI /.(- – -.,(, p = /.,', n = -,() in the 

class ‘benefit’ and an HR of /.'[ ('[% CI /.(( – -.-), p = /.,[, n = (+\) in the class ‘no 

benefit’ (Supplementary Figure +). This reinforces our observation that STL identifies 

a true effect, since the classifier shows no performance in random data. 

  

STL classifier outperforms known markers 
We compared the HRs found using the STL classifier with several known prognostic 

markers in MM, some of which also show predictive value (Figure *c). The STL 



Chapter 2 

 40 
 

 
2 

 

 

 

 

 

 

 

classifier has a superior performance for operating points that result in assignment of 

up to \/% of the patients to the class ‘benefit’. The markers that slightly outperform the 

STL classifier do so only for operating points that results in much larger sizes of the class 

‘benefit’ and lead to smaller effect sizes. The grey line indicates the baseline HR found 

in the entire dataset. A clinically actionable classifier should reach a substantially larger 

benefit than this baseline, which is only attained by the STL classifier and the MF cluster 

for operating points <\/%, where the STL classifier outperforms the MF biomarker. 

  

Biological information is important for performance 
To investigate if the biological knowledge contained in the Gene Ontology, used to 

define gene sets, truly aids classification performance, we also tested random gene sets 

with the same set size distribution. Using the random gene sets, final classification 

results in a significant HR of /.[, ('[% CI /.\+ – /.'/, p = /./., n = -+)) when all three 

validation folds are combined (Supplementary Figure *). This is not unexpected as 

combining random feature sets in an ensemble classifier is known to achieve good 

classification performance (Breiman .//-). Moreover, it has been shown previously that 

random gene signatures can perform on par in a prognostic setting (Venet et al. ./--). 

Nonetheless, the STL classifier trained using the GO gene sets outperforms the random 

gene set approach in both HR and p-value. Moreover, in contrast to the relatively stable 

performance across validation folds when using the GO gene sets, the performance of 

the random set approach varies greatly between the folds, ranging from an HR of /.(, 

('[% CI /.\. – -.)[, p = /.[[, n = +-) in D- to an HR of /.++ ('[% CI /..- – /.'\, p = 

/./\, n = ,() in D\. 

Together, this demonstrates that the biological information contained in the Gene 

Ontology gene sets is important to the performance of the STL classifier. 

  

Genes used to predict treatment benefit bortezomib 
The classifiers built for D-, D. and D\ use respectively --\, .-) and --- GO gene sets to 

predict bortezomib benefit, encompassing a total of -'-\ unique genes. There are \- 

genes used in all three classifiers (Figure *d). There are GO categories that include a 

large subset of these \- genes, including “positive regulation of transcription from RNA 

polymerase II promoter”, “cellular response to hypoxia” and “negative regulation of the 

apoptotic process”. All these GO categories are associated with the pathogenesis of 

cancer. Both increased proliferation and the ability to evade apoptosis are hallmarks of 
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cancer (Hanahan and Weinberg ./--). It has also been established that cancer cells can 

adapt their metabolism to thrive in hypoxic conditions (Eales et al. ./-,). For the \- 

genes, we calculated they are selected more than expected by chance. GO sets are 

hierarchical (i.e. there is a larger parent category that can include several children 

categories) and genes can be annotated to multiple GO categories. Therefore, we have 

taken into account how many GO categories include a certain gene to establish if we 

observe a gene more often than expected in our classifiers. The expected count for a 

gene is based on the number of GO categories that include that gene, e.g. PTEN is 

included in -.\ of the -/,[)- gene sets, so in the ++. gene sets used across D-, D. and 

D\ we would expect to observe PTEN approximately [ times if it would occur at the 

same frequency as within our selected gene sets. Most genes in common between the 

three classifiers are observed more often than expected (degree of overrepresentation 

indicated by node size in Figure *d), with -- of \- significantly overrepresented (p < 

/./[). The most overrepresented genes are TMODG, PHKAG, SPTCLK and SPTCLG. None 

of these genes are known to be associated with MM or response to bortezomib. 

However, investigation of the proteome of a cell line carrying a SPTCLK mutation 

showed an increased presence of Ig kappa chain C (Stimpson et al. ./-[). 

Immunoglobulin light chain presence is used as a biomarker for MM and has been 

identified as a risk factor for progression (Dispenzieri et al .//)). PTEN is also found to 

be significantly overrepresented. PTEN is a known tumor suppressor and was found to 

be mutated in a various cancers (Yamada and Araki .//-). In MM, PTEN mutations are 

relatively uncommon and associated with advanced disease (Chang et al. .//,). 

  

Impact of dataset of origin on validation performance 

Our training dataset is a combination of three different datasets: Total Therapy ., Total 

Therapy \ (together forming the TT dataset) and HOVON,[/GMMG-HD+ (H,[). Both 

the bortezomib and the no bortezomib arm contain more than one treatment regimen 

(Supplementary Table 4). We trained and validated on a combination of the datasets 

(see Methods). To investigate the contribution of the different datasets to the final 

validation performance, we calculated the HR in class ‘benefit’ for the TT and H,[ 

patients separately. Reassuringly, we observe a similar effect in class ‘benefit’ in both 

datasets, albeit not significant due to small sample size in the H,[ dataset (HR = /.,' 

('[% CI /.\, – -.\.) , p = /..,, n = +', for H,[ and HR = /.\) ('[% CI /..- – /.,'), p = 

/.//., n = -\- for TT, Supplementary Figures , and /). Also, the observed HR is much 
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smaller in the TT dataset. This may be expected, since the HR in the overall population 

is also smaller in TT than in H,[ (the overall HR in TT is /.,. ('[% CI = /.+, – /.)+), 

p = /.//., n = [)\ vs. an HR of /.), ('[% CI = /.,, – -.-\), p = /..), n = \.( in H,[). 

We hypothesized that heterogeneity helps to prevent overfitting to one specific dataset 

or treatment regimen. To test this, we also performed a cross validation within the two 

TT datasets only (the H,[ dataset is too small for this with n = \.(). Subsequently, we 

trained a classifier on the entire TT dataset (combining Total Therapy . and Total 

Therapy \) and validated on H,[. Cross validation within the TT dataset leads to an HR 

of /..) ('[% CI /.-\ – /.,/, p = /.///'), n = ),) in class ‘benefit’ and an HR of /.(- 

('[% CI /.[- – /.'), p = /./\), n = +'() in class ‘no benefit’ (Supplementary Figure 

I), which is a substantial improvement over the classifier trained on the combined 

dataset. In contrast, when the classifier is trained on the entire TT dataset, no 

performance is observed in the H,[ dataset (an HR of -.-\ ('[% CI /.,\ – ../+), p = 

/.,), n = ,, in class ‘benefit’ and /.)- ('[% CI /.,/ – -.-), p = /.-), n = .,- in class ‘no 

benefit’), indicating that some dataset specific fitting has occurred. Importantly, dataset 

specific fitting does not necessarily indicate overtraining; the classifiers still validate on 

the completely independent hold out validation fold. These results do suggest that it is 

very important to match the training population with the population one intends to use 

the classifier in. If the population in which the classifier is intended to be applied is 

heterogeneous, the training dataset also needs to reflect this heterogeneity. 

In the MM dataset under study here, one possible explanation for the lack of validation 

of the TT- based classifier on the H,[ data is that the TT trials were conducted in the 

USA and included more additional treatment than the European H,[ trial (see 

Supplementary Table 4 for treatment details). When the STL classifier is trained 

exclusively on the TT datasets, it could become specifically predictive for the TT 

regimen, rather than bortezomib, explaining why this classifier does not show a 

satisfactory performance in H,[. When trained on the mixed dataset, the classifier does 

show performance in the H,[ dataset, but still performs better within the TT dataset, 

which makes up a bigger part of the training data. 

  

STL finds a predictive classifier for lenalidomide benefit 
The STL method was developed based on the bortezomib dataset. Even though a strict 

separation of training and validation has been made, we cannot exclude the possibility 

of ‘experimenter bias’ (Holman et al. ./-[), which is the result of making experimental  
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choices based on the results on the training dataset and which can lead to a classifier 

that will only perform well on the specific dataset at hand. 

  

To demonstrate that the STL method is not biased to just one dataset we applied it to a 

completely independent dataset obtained from the CoMMpass database 

(https://research.themmrf.org/). CoMMpass contains data from an observational MM 

study, meaning the trial did not interfere with the treating physician’s choice of 

treatment. This is a good model for the setting in which an eventual predictive 

biomarker would be applied. Moreover, instead of microarrays, RNA-seq was used to 

obtain gene expression measurements, thus providing an additional axis of variation 

compared to microarray data. Overall, gene expression data and annotation was 

available for ,,. patients, ++( of which received lenalidomide in the first line and .-[ 

did not. An overall HR of /.[' (p = /.//+) in favor of lenalidomide was observed, as 

seen in the Kaplan Meier in Figure +a. 

  

Similar as before, the dataset was divided into three equal folds and STL obtains 

classifiers that successfully predict benefit in all folds. Since the CoMMpass dataset is 

a. b.

HR = 0.59, p = 0.0042 HR 'benefit' class = 0.36, p = 0.0031  
HR 'no benefit' class = 0.71, p = 0.13

Figure 3. Overview of the lenalidomide classifier results a. Kaplan Meier curves for 
the entire lenalidomide dataset, showing an HR of 0.59 (95% CI 0.41 – 0.84, p = 
0.0042, n = 662) between the treatment arms. b. Kaplan Meier curve of the combined 
classifications into a ‘benefit’ and ‘no benefit’ class of D1, D2 and D3. An HR of 0.36 
(95% CI 0.18 – 0.71, p = 0.0031, n = 206) is found between the treatment arms in the 
‘benefit’ class and an HR of 0.71 (95% CI 0.46 – 1.10, p = 0.13, n = 456) in the ‘no 
benefit’ class 
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smaller than the bortezomib dataset used before, we required the ‘benefit’ class to 

contain at least \/% of the patients, to ensure sufficient power. This results in a 

combined HR of /.\, ('[% CI /.-) – /.(-, p = /.//\-, n = ./,) over the entire dataset, 

as shown in Figure +b. In total \-.-% of patients were classified as class ‘benefit’. Again, 

the STL classifier was able to distinguish a subset of patients with significant treatment 

benefit in each fold with HRs of /..( ('[% CI /./( – -./,, p = /./,, n = (.), /.\' ('[% 

CI /.-- – -.+-, p = /.-[, n = ,,) and /.+/ (/.-+ – -.-[, p = /./', n = ,)) in D-, D. and D\, 

respectively. This demonstrates that STL also successfully identified a predictor for 

lenalidomide benefit. 

 
Genes used to predict treatment benefit lenalidomide 

The predictive classifiers for lenalidomide use +(, [ and --' gene sets in D-, D. and D\ 

respectively, encompassing \(.\ unique genes. Out of these, [ genes are used in all three 

classifiers: CYPKKBG, SHH, HGNC, CAVK and SMO, all of which are observed more 

frequently than expected. SHH and CYPKKBG are significantly overrepresented (p < 

/./[). SHH is a crucial part of the hedgehog signaling pathway, which has been 

previously found to play an important role in the pathogenesis of MM (Blotta et al. 

./-.). Neither of these genes has previously been associated with lenalidomide 

response, possibly representing an undiscovered mechanism influencing lenalidomide 

response in MM patients. 

  

Discussion 
 
Simulated Treatment Learning addresses an urgent clinical need because response rates 

to current cancer therapies are often poor and moreover frequently accompanied with 

serious side effects. STL offers an important step towards realistic personalization of 

cancer medicine administration by identifying gene expression markers that can be 

used to determine the most effective treatment for a cancer patient at the moment of 

diagnosis. 

  

The STL classifier was successfully tested across different gene expression platforms, 

different treatments and different study types, demonstrating that STL is more 

generically applicable than one particular dataset. Since our work has focused on MM, 

an important next step is to investigate if STL is also successful in unraveling treatment 
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benefit for other diseases. If so, STL can play an important role in rescuing treatments 

that do not achieve a significant effect in the entire patient population but may still 

benefit a subset of the patients. For instance, STL can be an important post-hoc analysis 

for phase III clinical trials of novel treatments that have missed their endpoint, such as, 

for instance, nivolumab in the CheckMate-/., trial (Socinki et al. ./-,). We do note 

that STL requires a relatively large number of samples to build the classifier, which may 

not always be available when a novel treatment first enters clinical trials. The generic 

concept of STL can be readily extended to include patient similarity definitions based 

on e.g. germline or somatic genomic profiles and other types of outcome measure such 

as categorical or binary measures. 

 

Methods 
 
Data and processing 
We pooled gene expression and survival data from three phase III trials: Total Therapy 

. (TT., GSE.,[)) Total Therapy \ (TT\, GSE.,[)) and HOVON-,[/GMMG-HD+ (H,[, 

GSE-'()+). The TT. dataset included \+[ newly diagnosed multiple myeloma (NDMM) 

samples, treated either with thalidomide and melphalan (n = -(\) or melphalan alone 

(n = -(.). Average age is [,.\ (range: .+ - (,) and [(.-% of the patients is male. The TT\ 

dataset included .\) NDMM samples treated with bortezomib, thalidomide, 

dexamethasone, cyclophosphamide, cisplatin and etoposide (VTDPACE). Average age 

is [).( (range: \. - ([) and ,(.,% is male. The H,[ dataset included \.( NDMM 

samples, treated either with vincristine, doxorubicin and dexamethasone (VAD, n = -[)) 

or bortezomib, doxorubicin and dexamethasone (PAD, n = -,'). Average age is [+.( 

(range: .( - ,[) and [,.+% percent is male. In our analyses of the pooled data two 

treatment arms were considered: a bortezomib arm, which comprises the PAD arm from 

H,[ and TT\, and a non-bortezomib arm, which comprises the VAD arm from H,[ and 

TT.. Combined, these datasets include '-/ patients, of which +/( received bortezomib 

and [/\ did not.  

  

All samples were profiled with the Affymetrix Human Genome U-\\ plus ../ array. Gene 

expression was MAS[ and log. normalized. Batch effects resulting from pooling 

different datasets were corrected with ComBat (Johnson et al. .//(). Data was scaled 
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to mean / and variance - per probeset. Probesets with a variance of < - before scaling 

were discarded. 

 

The data was split in fold D- (\/\ samples), fold D. (\/\ samples) and fold D\ (\/+ 

samples), stratifying for treatment arm and survival. Fold D- is not used at any point in 

the training and serves as validation data, while Fold D. and fold D\ are combined to 

serve as training data. After the STL classifier is successfully validated on fold D-, the 

folds are rotated to serve as additional validation folds to assess robustness. The training 

data for fold D. consists of D- and D\ and the training data for D\ consists of D- and 

D. (specification of which samples were used in which folds is available with the code 

in the GitHub repository). 

  

After developing the STL method on the microarray dataset, we also applied it to the 

CoMMpass trial (NCT/-+[+.') dataset generated by the Multiple Myeloma Research 

Foundation (MMRF). For ,,. patients both RNAseq, survival data, and treatment 

information was available. Sequencing data is processed with the Cufflinks pipeline 

(researcher.themmrf.org). The dataset was split into a treatment arm where patients 

received lenalidomide as first line treatment (n = ++() and an arm where patients did 

not (n = .-[). This data was also split into folds D- (../ samples), D. (..- samples) and 

D\ (..- samples), specification of which samples were used in which folds is available 

with the code in the GitHub repository.  

  

Endpoint and survival analysis 
Progression Free Survival (PFS) was used as endpoint, as this is the most direct readout 

of first line treatment related survival and therefore considered to be more relevant 

compared to overall survival. PFS times in the TT. and H,[ datasets were truncated to 

[..[\ months, corresponding to the longest follow-up time in the TT\ dataset. 

  

Survival analyses were done using the Cox Proportional Hazards model (survival 

package, version ..\).+)(Therneau ./-[). For the microarray data, the survival analysis 

included a stratification for dataset of origin. This means the base hazard was estimated 

separately for the TT./TT\ dataset and the H,[ dataset. This is necessary to correct for 

the significant survival difference found between these datasets. Hazard Ratios (HR) 

and associated .-sided p-values were calculated. P-values below /./[ were considered 
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statistically significant. All HRs are computed as bortezomib vs no bortezomib and 

lenalidomide vs no lenalidomide, which means an HR below - signifies a benefit when 

receiving bortezomib or lenalidomide. All calculations were performed in R version 

\.-... 

 
Gene sets 
For the bortezomib classifier we tested all Gene Ontology (GO) categories, as defined 

by the R Bioconductor package hgu-\\plus..db (Carlson ./-,)(accessed: .( October 

./-[), with two or more probesets associated to them. This resulted in -/,[)- gene sets. 

To test whether the biological information, contained in the GO annotation, aids the 

performance of the algorithm, -/,[)- random gene sets matching the size of the actual 

selected GO categories were also tested. 

For the lenalidomide classifier we tested all the GO categories with two or more genes 

associated to them, as defined by Bioconductor package biomaRt (Durinck et al 

.//')(accessed: -' June ./-(). This resulted in ',-.- gene sets. 

  
Algorithm 
The STL classifier aims to predict if a patient does or does not benefit from a certain 

treatment of interest based on the gene expression profile of the patient. In order to 

train this classifier, a gene expression dataset is required that consists of two treatment 

arms and a continuous outcome measure. These data are first split into training and 

validation folds. The training data comprises of two thirds of the data, while one third 

(fold D) is kept apart to function as validation data. We define three separate folds D 

(D-, D. and D\), such that each patient is included in the validation set once. The 

training data is subsequently split further into folds A, B and C for training. 

  

We first define a ranked list of prototype patients on fold A (Step -) that exhibit a better 

than expected prognosis on the treatment of interest compared to a set of genetically 

similar patients that received an alternative treatment. In Step ., a decision boundary 

around a selection of prototype patients is determined on fold B. Patients that lie within 

this decision boundary are expected to show a favorable outcome when receiving the 

treatment of interest and are classified as benefitting (class ‘benefit’). All other patients 

are considered class ‘no benefit’ and are not expected to benefit from receiving the 

treatment of interest. Because it is a priori unknown based on which genes patient 
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similarity should be defined, step - and . are performed for a large number of 

functionally coherent gene sets obtained from the Gene Ontology annotation, yielding 

one classifier per gene set. Step - and . are repeated -. times to obtain a robust estimate 

of the performance per gene set. In each repeat, the training data is split into a different 

fold A, B and C. The performance is defined as the Hazard Ratio (HR) between 

treatments in class ‘benefit’, found in a fold C, which contains samples that were not 

used in step - and .. All gene sets are ranked by their mean performance in fold C across 

repeats. In Step \ we determine the optimal number of gene sets to combine into a final 

classifier. We found that defining performance and selecting the optimal number of 

gene sets on the same folds C leads to overtraining. Therefore, we run the entire 

algorithm a second time (Run .), using -. new repeats with different splits into fold A, 

B and C. The first run of -. repeats is used to rank the gene sets. The combined 

performance of these ranked gene sets on the folds C from Run . is used to determine 

the optimal number s of gene sets. Similar to the boosting principle (Schapire -'''), the 

individual classifiers are combined into an ensemble to construct a more robust final 

classifier. The performance of this combined classifier is measured on fold C of Run .. 

The gene sets are added to the classifier in order of their ranking, until an optimal 

performance is reached across all the repeats from Run .. Since there are -. repeats, 

each combination results in -. HRs as measured on the folds C from run -.. To 

determine the optimal number of gene sets, we fit a local polynomial regression line on 

the median HRs for each combination of gene sets. The optimal number of gene sets s 

is reached when adding a gene set does not result in a lower HR. We then rank the gene 

sets based on their individual performance across the folds C of Run . and select the 

top s for inclusion in the final ensemble classifier. Finally, in Step +, one final classifier 

is trained using the entire training dataset for these selected gene sets. 

These steps are visualized in Figure 4d and are described in more detail below. 

  

In Step -, we perform prototype ranking on Fold A. For each patient receiving the 

treatment of interest, the treatment benefit is defined as 

 

D𝑃𝐹𝑆!	 	= 	
#
$
∑ (𝑃𝐹𝑆! − 	𝑃𝐹𝑆%)%∈' 	,  (1) 

 



Predicting treatment benefit in Multiple Myeloma        

 49 

 
2 
 

 

 

 

 

 

 

where O is the set of the n most similar patients (based on Euclidean distance) that did 

not receive the treatment of interest. We use n = -/. In an approach similar to Harrell’s 

C-statistic (Harrell et al. -'',), ΔPFS is only calculated for neighbor pairs where it is 

clear which patient experienced an event first; if both are censored or one patient is 

censored before the neighbor experienced an event, ΔPFS is not computed. When n = 

-/ is used, this on average leads to ( neighbours being used in the calculation of ΔPFS. 

To correct for the fact that a patient with a long survival time will, on average, have a 

large ΔPFS irrespective of its relative treatment benefit compared to genetically similar 

patients, we define the z- normalized zPFS score as: 

 

𝑧𝑃𝐹𝑆!	 =	
#$%&!	'	((*$%&!)

,(*$%&!)
,  (2) 

 
where RPFS is a distribution of -/// random ΔPFS scores, obtained by calculating ΔPFS 

for randomly chosen sets O, i.e. determining treatment benefit with respect to random 

patients instead of genetically similar patients. Based on the zPFS score all patients in 

fold A that were given the treatment of interest can be ranked. 

  

In Step ., we define the classifier on fold B. The classifier is defined by a subset of k top-

ranked prototypes along with a decision boundary defined in terms of the Euclidean 

distance γ around a prototype. A patient is classified as class ‘benefit’ when it lies within 

γ of any of the top k prototypes. The optimal values for k and γ are those resulting in 

the lowest Hazard Ratio (HR) in class ‘benefit’ (the patient group in which the treatment 

of interest should have a better survival). We set an operating point that additionally 

constrains k and γ, such that class ‘benefit’ comprises at least a certain percentage of the 

dataset. This ensures sufficient statistical power to compute the significance of the HR 

in the ‘benefit’ class. The number of prototypes was restricted to -/ to prevent defining 

an extremely complicated classifier. The search grid for parameter γ was made 

dependent on the local density of the neighbors, and consisted of the sorted list of 

Euclidean distances between the prototype and its neighbors. The optimal k and γ 

combination is chosen so that the HR in class ‘benefit’ is minimal, while still associated 

with a p-value below /./[. If no combination results in a p-value below /./[, the 

minimal non-significant HR that results in a class ‘benefit’ of sufficient size is chosen. 
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In step \, we rank and select the gene sets. First, the gene sets are ranked by their mean 

performance in fold C over all repeats from Run -. After ranking, we run the algorithm 

a second time, with different divisions into fold A, B and C. We add gene sets to an 

ensemble classifier one by one based on this ranking. The performance of the combined 

gene sets is measured on each fold C of this second run. We find that defining the 

ranking on different folds than we use to measure combined performance prevents 

overtraining, although some bias is still expected to occur. Since the found HR can 

fluctuate between folds and gene set numbers, a regression line is fit through the 

median HRs found on folds C in the second run and the optimal number of gene sets is 

determined: the first combination of gene sets for which adding another gene set does 

not lead to an improvement of the HR larger than -*-/". 

  

After the optimal number of gene sets is determined in Step \, the final classifier is 

defined in Step +. The gene sets are ranked based on their mean performance in fold C 

in the second run. The top scoring gene sets are selected and for these gene sets a final 

classifier is trained. To this end, the complete training dataset is split into only two folds, 

since the third fold is no longer required. The classifiers defined by different gene sets 

are combined into an ensemble classifier by an equally weighted voting procedure, 

which means each classifier has an equal influence on the final classification. For an 

ensemble classifier containing s gene sets, this defines a classification score between / 

and s per patient. This score is thresholded by threshold T, which determines whether 

a patient is to benefit from the treatment of interest, where a patient with a score below 

the threshold is classified as not benefitting from treatment (‘no benefit’ class). The 

optimal threshold T is the one for which the HR between treatments is minimal in class 

‘benefit’. This combination of classifiers and threshold can be used to classify new and 

unseen patients and is validated on fold D. 

 

Calculating overrepresentation of genes in the classifier 
The same gene can be used multiple times in a single classifier and/or multiple times 

across the classifiers obtained for fold D-, D. and D\. Both cases provide evidence of 

the importance of the gene for the treatment benefit prediction. To assess whether 

genes are selected more frequently than expected by chance across all three classifiers, 

we determine the degree of overrepresentation by dividing the observed count by the 

expected count. The expected count is calculated by 𝑝 ∗ 𝑊 where 𝑝 is the fraction of the 
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gene sets containing the gene and 𝑊 the total number of gene sets selected across all 

three classifiers. A p-value is determined using the binomial test. 

  
Training regular classifiers 
We defined the labels that were used to train the regular classifiers in two ways. First, 

labels were defined by assigning the .[% longest surviving bortezomib patients and the 

.[% shortest surviving non-bortezomib patients to the ‘benefit’ class and all others to 

the ‘no benefit’ class. A classifier was trained using folds A-C to predict these labels, 

using the HR in validation fold D- as performance measure of the predictive power. For 

the nearest mean classifier, a double-loop cross-validation was used to optimize the 

number of genes (ranked based on t-score), using balanced accuracy as the performance 

measure. 

 

A random forest classifier (R package randomForest, version +.,.-.)(Liaw and Wiener 

.//.) and a support vector machine (R package e-/(-, version -.,.()(Meyer et al. ./-[) 

were also trained. For both these classifiers, the number of genes was optimized in cross 

validation. For the random forest classifier ./// trees were trained per classifier and 

the bootstrap sample was sampled equally from both classes, to prevent the classifier 

being affected by the class imbalance. For the support vector machine, C-values from - 

to -// were tested, in steps of -. The gamma used is -/P, where P is the number of input 

variables, i.e. the number of genes. 

For all classifiers, the accuracy reported is the mean accuracy in cross validation for the 

optimal number of input genes. 

 
 
Comparison with known prognostic markers 
To the best of our knowledge, RPL[ is the only published gene expression based marker 

that predicts bortezomib benefit by comparing to another treatment group (Hofman et 

al. ./-(). We tested RPL[ on the data from the Total Therapy studies, since it was 

trained on the HOVON-,[ data. Since some predictive markers are discovered by 

testing markers previously known to be prognostic, we also compare with prognostic 

markers. FISH markers were called on the gene expression data, using previously 

developed classifiers (Van Vliet et al. ./-\), since FISH data was not available for all 

patients. Unfortunately, there is no reliable gene expression classifier for del-(p. We 
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tested if any predictive information was available in previously defined molecular 

subtypes in MM (Zhan et al. .//,) and in the prognostic gene signature EMC-'. 

(Kuiper et al. ./-.). 

 

Data availability 
 All survival and treatment data included in the bortezomib dataset are supplied in 

Supplement -. The gene expression data from the Total Therapy II and Total Therapy 

III studies are accessible in the GEO database, accession number GSE.,[). The gene 

expression data from the HOVON-,[/GMMG-HD+ study is accessible in the GEO 

database, accession number GSE-'()+. 

All survival, treatment and RNAseq data used for the lenalidomide dataset is accessible 

at research.themmrf.org. 

  
Code availability 
All code needed to train and validate the classifier is available at 

github.com/jubels/GESTURE. 
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Supplementary Figure 1. We computed for how many patients the three classifiers 
trained in the different folds of the cross validation agree on class assignment. The 
values on the x-axis represent the number of classifiers that classified a patient as 
benefitting from treatment. A value of 0 means that all three classifiers classified a 
patient as ‘no benefit’ and the value of 3 (which is the maximum) means all 
classifiers agreed on the assignment to class ‘benefit’. These are the red dots in the 
plot. We also generated 10 000 random labelings per training fold, with the same 
proportion of patients labeled ‘benefit’ and ‘no benefit’ as in the labelings found by 
STL to obtain a background distribution of the expected overlap by random chance 
(boxplot). Since the number of patients for which all three STL classifier agree (i.e. 
the patients with either a value of 0 or 3) is larger than expected by random chance, 
the concordance between the STL classifiers is significant. 
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Supplementary Figure 3. Kaplan Meier showing the survival curves in validation 
when the treatment labels are shuffled, i.e. patients are in silico randomly assigned 
to the either the bortezomib or no bortezomib arm. An HR of 1.09 (95% CI 0.71 – 
1.67, p = 0.69, n = 167) in the class ‘benefit’ and an HR of 0.95 (95% CI 0.77 – 1.18, 
p = 0.65, n = 743) in the class ‘no benefit’ is observed. It is expected that no 
performance is observed, since the relationship between the gene expression data 
and the treatment specific survival is destroyed. 

HR ‘benefit’ class = 1.09, p = 0.69 
HR ‘no benefit’ class = 0.95, p = 0.65 

HR ‘benefit’ class = 0.56, p = 0.02 
HR ‘no benefit’ class = 0.77, p = 0.02 

Supplementary Figure 2. Kaplan Meier of the classification of the bortezomib 
dataset using random gene sets. In the class ‘benefit’ an HR of 0.56 (95% CI 0.34 
– 0.90, p = 0.02, n = 148) is found and in the class ‘no benefit’ an HR of 0.77 (95% 
CI 0.62 – 0.96, p = 0.02, n = 762). 
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Supplementary Figure 4. Validation performance of the STL classifier in the H65 
dataset when the classifier is trained on the combined TT/H65 dataset. An HR of 
0.69 (95% CI 0.36 – 1.32, p = 0.26, n = 49) is observed in class ‘benefit’ and an HR 
of 0.85 (95% CI 0.63 – 1.14, p = 0.27, n = 278). 

HR ‘benefit’ class = 0.69, p = 0.26 
HR ‘no benefit’ class = 0.85, p = 0.27 

HR ‘benefit’ class = 0.38, p = 0.002 
HR ‘no benefit’ class = 0.71, p = 0.05 

Supplementary Figure 5. Validation performance of the STL classifier in the Total 
Therapy dataset when the classifier is trained on the combined TT/H65 dataset. An 
HR of 0.38 (95% CI 0.21 – 0.69, p = 0.002, n = 131) is observed in class ‘benefit’ 
and an HR of 0.71 (95% CI 0.50 – 1.00, p = 0.05, n = 452) in class ‘no benefit’. 
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HR ‘benefit’ class = 0.28, p = 0.00098 

HR ‘no benefit’ class = 0.71, p = 0.038 

Supplementary Figure 6. Kaplan Meier showing the survival curves when the STL 
classifier is trained within the Total Therapy (TT) datasets, excluding the data from 
the HOVON65 (H65) trial. An HR of 0.28 (95% CI 0.13 – 0.60, p = 0.00098, n = 86) 
is observed in class ‘benefit’ and an HR of 0.71 (95% CI 0.51 – 0.98, p = 0.038, n = 
497) is class ‘no benefit’. The HR found in class ‘benefit’ is far lower than the HR 
found in validation when TT and H65 are combined. 

Supplementary Table 1. An X indicates a patient included in the study (rows) 
received that drug (columns). 
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 [% -/% -[% ./% .[% \/% \[% +/% +[% [/% 

HR -./[ -./. /.(. /.)[ /.', /.,[ /.,+ /.(+ /.([ /.,[ 

p-value /.)[ /.', /.., /.[\ /.), /./) /./' /..\ /..\ /./) 

Size class 

'benefit' 

/.\/ /../ /..( /.\[ /.\, /.+- /.+. /.++ /.+, /.+' 

Mean 

accuracy 

/.+- /.[/ /.+' /.+' /.[) /.[, /.[, /.[[ /.[[ /.[, 

 [% -/% -[% ./% .[% \/% \[% +/% +[% [/% 

HR /.,- /.[, /.'/ /.'- /.'- /.([ /.)+ /.(+ /.)/ /.([ 

p-value /.+- /..\ /.(\ /.)/ /.(\ /..' /.[- /..\ /.\, /..+ 

size class 

'benefit' 

/.-- /.-\ /../ /.-, /..[ /.\/ /.\( /.+- /.++ /.[/ 

accuracy /.(/ /.,' /.(/ /.,' /.,' /.,) /.,) /.,) /.,( /.,[ 

Supplementary Table 2. Performance of nearest mean classifier when different 
percentages are used to define class ‘benefit’ 

Supplementary Table 3. Performance of random forest classifier when different 
percentages are used to define class ‘benefit’ 
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Supplementary Note 1 
The parameters k and g determine the classification boundary. For this reason, they are 

optimized using an exhaustive grid search which chooses the optimal combination. To 

investigate how sensitive this optimization is, we investigated how small changes to the 

parameters affect the HR found in validation. In essence, a smaller g leads to a smaller 

class benefit. We show the effect of changing the g parameter in two scenarios: leaving 

all other parameters as is (Supplementary Figure () and when also retraining the 

threshold T which determines how many classifiers need to agree on the ‘benefit’ 

classification (Supplementary figure )). The classifier is robust to (small) changes in 

these parameters, which is a desirable feature of a robust classifier. As can be seen in 

Supplementary Figure (, when g decreases, the HR also decreases since a smaller class 

benefit is identified. This is consistent with our observation that a smaller class benefit 

leads to a lower HR (Figure .c). When threshold T is also reoptimized, the HR stays 

relatively constant when g is changed, since the threshold T is chosen so at least ./% of 

the patients are classified as class ‘benefit’. Supplementary Figure ' shows the number 

of patients who receive a different class assignment when g is changed, again without 

reoptimizing threshold T (black line) and with reoptimization (red line). When 

 [% -/% -[% ./% .[% \/% \[% +/% +[% [/% 

HR NA '.+(E 

+/) 

/.+- /.', /.)- -./- /.)[ -.-\ /.)\ /.(/ 

p-value NA -./// /.[\ /.'[ /.,( /.'( /.[( /.,, /.+, /.-, 

size class 

'benefit' 

NA /./-\ /./. /./[ /.-/ /..\ /.\/ /.\+ /.+/ /.[/ 

accuracy /.') /.',\ /.'\ /.'. /.)- /.() /.(. /.(- /.(' /.(- 

Supplementary Table 4. Performance of support vector machine when different 
percentages are used to define class ‘benefit’. When using 5% no patients were 
assigned to class ‘benefit’ in validation, making it impossible to compute an HR. 
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threshold T is reoptimized, few patients change classification, showing different 

settings for g would identify the same patients as benefitting from bortezomib. We also 

investigated how sensitive the classifier is to changing the number of genesets in the 

classifier (with reoptimization of threshold T, Supplementary figure -/). The red line 

indicates the validation HR we originally found. As can be seen, there are many settings 

which achieve a similar or better validation performance, indicating the classifier is also 

not very sensitive to the exact number of gene sets included.  

 

We also investigated the training HR found for all k and g combinations of three of our 

top- performing genesets (Supplementary Figures -- - -\). Note that these gene sets were 

the best performing in one of the folds and are not necessarily overrepresented in the 

final classifier. The y-axis show the different settings for k and the x-axis the different 

settings for g. A yellow color indicates a low HR, a blue color a high HR and white 

indicates too few or too many patients were included in class ‘benefit’ when this 

combination was used. What can be seen is that a low setting for k (meaning few 

prototypes) leads to the most favorable HRs. Also here can be seen that small changes 

in k and g do not lead to large changes in HR.
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Supplementary Figure 7. The effect of changing g on the HR when threshold T is 
not re-optimized. The y-axis shows the validation HR and the x-axis the change in 
g. 

Supplementary Figure 8. The effect of changing g on the HR when threshold T is 
re-optimized. The y-axis shows the validation HR and the x-axis the change in g. 
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Supplementary Figure 9. The number of patients who change from class ‘benefit’ 
to class ‘no benefit’ or vice versa when g is changed. The red line shows the 
difference when we re-optimize the threshold T, the black line when we do not. 

Supplementary Figure 10. The validation HR found when a different number of 
genesets is included in the final classifier. The red line indicates the validation HR 
found with the original classifier. 
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Supplementary Figure 11. Training performance for different combination of k and 
g, using GO category olfactory bulb axon guidance. The y-axis show the different 
settings for k and the x-axis the different settings for g. A yellow color indicates a low 
HR, a blue color a high HR and white indicates too few or too many patients were 
included in class ‘benefit’ when this combination was used. 

Supplementary Figure 12. Training performance for different combination of k and 
g, using GO category peptidoglycan receptor activity. The y-axis show the different 
settings for k and the x-axis the different settings for g. A yellow color indicates a low 
HR, a blue color a high HR and white indicates too few or too many patients were 
included in class ‘benefit’ when this combination was used. 
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Supplementary Figure 13. Training performance for different combination of k and 
g, using GO category IgG binding. The y-axis show the different settings for k and 
the x-axis the different settings for g. A yellow color indicates a low HR, a blue color 
a high HR and white indicates too few or too many patients were included. 
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Abstract 
 
Proteasome inhibitors are widely used in treating Multiple Myeloma, but can cause 

serious side effects and response varies between patients. It is therefore important to 

gain more insight into which patients will benefit from proteasome inhibitors. 

 

We introduce Simulated Treatment Learned signatures (STLsig), a machine learning 

method to identify predictive gene expression signatures. STLsig uses genetically similar 

patients who received an alternative treatment to model which patients will benefit 

more from proteasome inhibitors than from an alternative. STLsig constructs gene 

networks by linking genes that are synergistic in their ability to predict benefit. 

 

In a dataset of '-/ MM patients STLsig identifies two gene networks that together can 

predict benefit to the proteasome inhibitor bortezomib. In class ‘benefit’ we find a 

hazard ratio of /.+( (p = /./+) in favor of bortezomib, while in class ‘no benefit’ the 

hazard ratio is /.'- (p = /.,)). Importantly, we observe a similar performance (HR class 

benefit = /.+,, p = /./+) in an independent patient cohort. Moreover, this signature 

also predicts benefit for the proteasome inhibitor carfilzomib, indicating it is not 

specific to bortezomib. No equivalent signature can be found when the genes in the 

signature are excluded from the analysis, indicating they are essential. Multiple genes 

in the signature are linked to working mechanisms of proteasome inhibitors or MM 

disease progression. 

STLsig can identify gene signatures that could aid in treatment decisions for MM 

patients and provide insight into the biological mechanism behind treatment benefit. 
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Introduction 
 
For many anti-cancer drugs the response varies widely across patients. As many of these 

drugs are associated with serious side effects, it is essential to identify which drug will 

maximally benefit the patient. Tools that aid in such decisions, e.g. based on patient-

derived genetic or transcriptomic profiles have only been developed for a few 

treatments and diseases. Most efforts in this direction focus on detecting specific 

mutations for which it is known that a targeted therapy exists (Syn et al. ./-,). However, 

many patients do not carry any mutations that are known to be actionable and in 

practice only (% of patients can be matched to a targeted therapy with the highest level 

of evidence (Zehir et al. ./-(). Moreover, a range of efficacious therapies exist that are 

non-targeted. Consequently, there is a clear clinical utility for methods that can more 

generically predict - at the time of diagnosis - if a patient will benefit from a certain 

treatment or not. 

  

Multiple myeloma (MM) is characterized by a malignant proliferation of plasma cells, 

both in the bone marrow and extramedullary sites. MM is considered incurable with a 

median survival of approximately , years (Rajkumar and Vincent Rajkumar ./-)). 

Several driver mutations have been identified in MM (Walker et al. ./-)), but in most 

patients no actionable mutations are observed and targeted therapies are therefore not 

commonly used in MM. Currently, proteasome inhibitors (PIs) are one of the most 

important components of treatment in MM and since their introduction in the clinic 

survival has significantly improved (Moreau et al. ./-.). Due to higher immunoglobulin 

production, MM cells are thought to be more reliant on proteasomal degradation of 

proteins, making them vulnerable to proteasome inhibition (Laubach, Richardson, and 

Anderson ./--). After bortezomib, which was the first PI to be introduced in the clinic 

for MM, second generation proteasome inhibitors like carfilzomib and ixazomib have 

recently been approved. 

  

Despite the success of PIs, there is still wide variability in response across patients. 

Substantial efforts have been made to discover what distinguishes responders from non-

responders. For instance, several studies have implicated differential expression of 

genes involved in the unfolded protein response (Dong et al. .//'). Other studies 

describe complex changes in the entire energy metabolism as a potential discriminating 
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factor (Soriano et al. ./-,). Several chromosomal aberrations have also been found to 

influence bortezomib response, although this effect is not fully understood (Smetana et 

al. ./-\; Avet-Loiseau et al. ./-/). Despite all efforts, there is currently no biomarker 

capable of determining which patients will benefit most from receiving a PI. 

  

Most studies investigating PI response compare gene expression patterns of patients 

responding well or poor to a certain treatment (Laubach, Richardson, and Anderson 

./--; Hofman et al. ./-(; Yoshida et al. ./-); Narita et al. ./-[). The identified genes 

can then be combined in a classifier to predict good or poor response in new patients. 

However, a clinically more interesting question is whether a patient will benefit more 

from a PI than from another treatment. This is a markedly different question than 

identifying good and poor responders within one homogeneous treatment group. After 

all, even patients with poor survival may have benefited from their treatment; their 

outcome could have been even worse on another treatment. Conversely, a patient with 

a good survival outcome could have experienced an equivalently good or better 

response on another treatment. It is therefore impossible to assign patients to class 

‘benefit’ or ‘no benefit’ a priori, since response to another treatment cannot be observed. 

Standard methods. which rely on the existence of such class labels, are thus unsuitable 

for predicting treatment benefit. 

  

Here we propose a novel method, Simulated Treatment Learning signatures (STLsig), 

to infer gene signatures that can predict treatment benefit for patients at the moment 

of diagnosis. We apply STLsig to find a gene expression signature capable of identifying 

patients for whom treatment with PIs results in better survival than an alternative 

treatment. Firstly, the gene signature should be capable of predicting PI benefit in an 

independent patient cohort, which has been shown challenging for prognostic 

classifiers (Bernau et al. ./-+). A second important objective of STLsig is to identify a 

simple, interpretable model which contains genes that have biological relevance to the 

molecular mechanism underlying PI efficacy. To enable this, we leverage the core 

concept of Simulated Treatment Learning (STL), which we proposed previously (Ubels 

et al. ./-)), that allows training classifiers without having a predefined labelling of 

patients. While our previous method was successful in identifying a model that can 

predict treatment benefit, these models rely on large numbers of Gene Ontology sets, 

making interpretation complex. 



Gene networks can predict proteasome benefit in Multiple Myeloma  

 71 

 
 
3 
 

 

 

 

 

 

  

We propose a different approach which identifies small gene networks that can be used 

to predict PI benefit. To obtain a signature for treatment benefit, we form networks of 

genes that are complementary in their ability to predict benefit. STLsig is fully data 

driven and does not rely on any biological knowledge or predefined gene networks as 

input. 

  

We demonstrate the utility of STLsig on a '-/ sample dataset combining three different 

Phase III clinical trials with MM patients receiving either a treatment with or without 

the PI bortezomib (the HTT cohort). STLsig enables discovery of a -+-gene signature 

that can accurately identify a subset of patients benefiting from bortezomib. We 

validate this gene expression signature in independent data (the CoMMpass cohort) 

where we predict benefit for bortezomib or an alternative PI, carfilzomib, 

demonstrating that the signature is robust and generalizes to other data. Moreover, we 

show that no gene expression signature with a similar performance can be found when 

the signature genes are removed from the dataset. The genes included in the signature 

are thus essential for predicting PI benefit. Several of the genes in the signature are 

related to MM or the working mechanisms of PIs. To our knowledge, this is the first 

approach capable of discovering treatment benefit specific gene signatures without 

predefined labels. 

  

Methods 
 
Data 
To develop the gene network and train the bortezomib benefit signature, we pool gene 

expression and survival data from three phase III trials (referred to as the HTT cohort): 

Total Therapy . (TT., GSE.,[)), Total Therapy \ (TT\, GSE.,[)) and HOVON-

,[/GMMG-HD+ (H,[, GSE-'()+). The TT. dataset includes \+[ newly diagnosed 

multiple myeloma (NDMM) samples, treated either with thalidomide and melphalan (n 

= -(\) or melphalan alone (n = -(.). The TT\ dataset includes .\) NDMM samples 

treated with bortezomib, thalidomide, dexamethasone, cyclophosphamide, cisplatin 

and etoposide (VTDPACE). The H,[ dataset includes \.( NDMM samples, treated 

either with vincristine, doxorubicin and dexamethasone (VAD, n = -[)) or bortezomib, 

doxorubicin and dexamethasone (PAD, n = -,'). In the HTT cohort we define a 
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bortezomib arm (n = +/(), which comprises the PAD arm from H,[ and TT\, and a 

non-bortezomib arm (n = [/\), which comprises the VAD arm from H,[ and TT.. We 

divide the HTT cohort in a train set (n = ,/,) and a test set (n = \/+). We ensured the 

two treatment arms were distributed evenly between training and test data and that the 

HR between the treatments was similar. 

  

All samples have been profiled with the Affymetrix Human Genome U-\\ plus ../ array. 

Gene expression is MAS[ and log. normalized. Batch effects resulting from pooling 

different datasets are corrected with ComBat(Johnson, Li, and Rabinovic .//(). Data is 

scaled to mean / and variance - per probeset. 

  

For validation of both the bortezomib model and carfilzomib model, we use the 

CoMMpass trial (NCT/-+[+.') dataset generated by the Multiple Myeloma Research 

Foundation (MMRF). For (+( patients both RNAseq, survival data, and treatment 

information is available (CoMMpass Interim Analysis -\). Of these patients, ,- did not 

receive any PI in first line treatment, [\/ received bortezomib and -[, received 

carfilzomib. Sequencing data is processed with the Cufflinks pipeline (for details see 

researcher.themmrf.org). For validation we combine the log. normalized values from 

the HTT data and the FPKM values from CoMMpass. We scale the combined data to 

mean / and variance - and then perform ComBat batch correction, as performing mean-

variance scaling before ComBat leads to better overlap between the datasets in the tSNE. 

In ComBat batch correction H,[, TT., TT\ and CoMMpass are defined as four separate 

batches. 

  

For training the signature, we use Progression Free Survival (PFS) as an endpoint as we 

consider PFS a more direct measurement of treatment effect than overall survival. Cox 

proportional hazard models were fitted using the R package ‘survival’ (version ..++). 

  

Constructing and evaluating gene pairs 
We select only probe sets that meet the following requirements: (i) variance across the 

samples > . in the training dataset before mean variance scaling, (ii) unambiguous 

mapping to one gene and (iii) matching gene in the CoMMpass dataset. This yields n = 

\\-' genes. We then construct all possible gene pairs from these \\-' genes, resulting 

in [,[/,,..- gene pairs. 
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To train the gene signature we divide the HTT cohort (n = '-/) into four folds, Fold A 

(n = ./.), Fold B (n = ./.), Fold C (n = ./.) and Fold D (n = \/+), fold assignment is 

provided in the supplementary information. Fold A, B and C are used to train the 

signature as described below, while fold D acts as hold out data to validate the signature 

and optimize a threshold to use in independent validation data. 

  

To determine treatment benefit, we follow the core concept of STL laid out in our 

previous work (Ubels et al. ./-)), where for each patient a score zPFS is defined that 

measures whether the patient survived longer than expected compared to patients with 

similar gene expression that received another treatment. More specifically, for genepair 

{n,m} and patient j we define: 

 

𝜇𝑃𝐹𝑆!
",$ =	

𝐼
𝐾	- 𝑃𝐹𝑆! − 𝑃𝐹𝑆%

%&'!
 

 

where PFSj is the progression free survival time of patient j, I =- if patient j received the 

target treatment (a PI in this work) and I =--, otherwise. Moreover, Π! is the set of K 

nearest neighbors to patient j defined in terms of euclidean distance in the expression 

space spanned by genes n and m and only considering patients that received another 

treatment than patient j. Throughout this manuscript K=-/. In the set Π!, we discard 

patients for whom we cannot be sure whether they survived longer or not (i.e. if both 

patients are censored). This leads to an average of ( patients being used in the 

calculation of μPFSj. Subsequently, zPFS is normalized to a z-score by comparing PFS 

to a background distribution resulting from repeating this procedure M=-/// times 

with a random Π!. The zPFS score describes how much smaller (or larger) the survival 

of patient j is compared to patients with similar gene expression but opposite treatment 

than expected by random chance. 

  

To score gene pairs, a .-fold cross validation is employed using fold A (n = ./.) and fold 

B (n = ./.). Within each fold, a kNN-regression model (k = -/) is trained, which is used 

to predict zPFS on the other fold. The gene pair score is defined as the Spearman 

correlation coefficient between the predicted zPFS and calculated zPFS across all 
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patients. The score for each gene pair is the mean correlation of the . folds. We repeat 

this procedure [ times with a different split in folds. 

  

Gene network construction 
We construct gene networks separately for all [ repeats and then construct a consensus 

network, which only contains the genes and edges found in all [ repeats. To construct 

the gene networks, for each gene, we rank all gene pairs containing that gene on the 

mean Spearman correlation coefficient found. We then connect genes that are mutually 

synergistic. We achieve this by requiring that AB is among the top [% of pairs including 

A and among the top [% of pairs including B. However, if a single gene is informative 

for treatment benefit, gene pairs containing this gene could be highly ranked even if the 

second gene is uninformative. Including these gene pairs in our network and 

subsequent signature would introduce noise, which would both harm biological 

interpretation of the signature and potentially decrease the predictive performance in 

independent data. Therefore, we also require the mean correlation of the gene pair to 

be above the median correlation of all selected gene pairs. We evaluate all gene 

networks in the consensus network on their ability to predict benefit and select the best 

performing combination to construct the signature. 

  

Gene network selection and gene signature construction 
After gene network construction, gene networks are selected using forward feature 

selection. To rank gene networks, we determine the predictive performance for each 

gene network. To this end, we calculate zPFS for each patient and each gene network 

separately on fold A and B together (n = +/+). The top .[% of patients (in terms of 

zPFS) are assigned to class ‘benefit’, while the remaining patients are assigned to class 

‘no benefit’. Subsequently, a Cox proportional hazards regression on the treatment 

variable is performed within the ‘benefit’ patient group as well as in the ‘no benefit’ 

patients. The performance of a gene network is defined by the difference between the 

Cox’ regression β’s in class ‘benefit’ and class ‘no benefit’. 

To select gene networks to use in the final model we perform forward feature selection 

using fold C, which comprises ./. patients not used in fold A and B. Gene networks are 

added sequentially based on their performance on fold A and B. Ranking of patients 

across more than one gene network is done based on the sum of the zPFS scores of the 

individual gene networks. 
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Validation of gene networks 
To validate the signature in independent data, we use all training data (n = ,/,) as a 

reference set where zPFS is known. For each patient in the validation set we compute 

the euclidean distance to all patients in the reference set per gene network. We then 

use inverse distance weighting to calculate the estimated zPFS of a validation patient j 

by 

where T comprises all patients in the reference dataset. Given a certain gene expression 

vector x, weights wi are given by 

𝑤% =	
1

𝑑(𝑥! , 𝑥%)
 

where d is the Euclidean distance between the expression data of gene of patients i and 

j. 

 
Results 
 
Overview of the algorithm 
STLsig relies on the idea that patients exhibiting similar gene expression profiles who 

received different treatments, can be used to model response to the treatment they did 

not receive. Similarity between patients should be defined by genes relevant to 

treatment benefit. STLsig therefore derives treatment specific gene networks, to form a 

gene expression signature capable of predicting treatment benefit. To train this 

signature we divide the HTT cohort in a test set (Fold D, n = \/+) and a training set (n 

= ,/,), which is further subdivided into three equal parts, fold A, B and C. We then 

assess the ability to predict bortezomib benefit for all [,[/,,..- gene pairs arising from 

the high variance genes (n = \\-') in the HTT training set. 

For each patient i in fold A, we determine a z-score (zPFS) per gene pair describing the 

normalized mean survival difference of patient i with its genetically similar neighbours 

that received a different treatment than patient i. We then test the ability of the 

genepair to predict the zPFS score for patients in fold B. We also assess the performance 

of each gene pair when calculation of zPFS is performed on Fold B and predicted on 

Fold A. Performance of each gene pair is defined as the mean Spearman rank correlation 

coefficient between predicted and calculated zPFS values in both folds. A gene pair is 
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retained if it is synergistic, i.e. if the genes in the pair predict zPFS better together than 

when they are paired with other genes. 

We form a consensus network by repeating the two-fold cross validation five times. 

Only gene pairs that are found to be synergistic in all repeats and that exceed the 

median correlation across all gene pairs and all repeats are retained. From this 

consensus network we extract gene networks, i.e. all connected components. 

  

To evaluate each gene network, we recalculate zPFS for each patient using all genes in 

the network and classify the top .[% of the patients as class ‘benefit’ and the rest as 

class ‘no benefit’. Subsequently, gene networks are ranked based on the difference 

between the Cox regression β’s found in class ‘benefit’ and class ‘no benefit’. To build 

the signature, we sequentially add each network based on this ranking and evaluate the 

performance of the combined networks on fold C. The steps of the algorithm are 

summarized in Figure 4. 

  

Gene networks yield a 14-gene signature that can predict bortezomib benefit  
The consensus network formed as described above contains ,-( genes connected by +[- 

edges and consists of -,( gene networks, which includes -/+ individual gene pairs. The 

largest gene network contains +. genes; the mean number of genes per network is \.(. 

The optimal signature is formed by combining the top two ranked gene networks, which 

are shown in Figure *. With this signature we find a hazard ratio (HR) of /.+' (p = 

/./', '[% CI /... - -.--) in class ‘benefit’ (n = [/) and an HR of /.'- (p = /.(+, '[% CI 

/.[+ - -.[[) in class ‘no benefit’ (n = -[.), on fold C of the HTT cohort. In order to assign 

a zPFS score to a new and unseen patient, for whom survival is unknown, we calculate 

the distance in gene expression space between this patient and every patient in the 

training data (the reference set). The predicted zPFS score of the new patient is the 

weighted sum of the zPFS scores of the patients in the reference set. Weights are 

determined by the inverse distance, i.e. the most similar patients in the reference set 

contribute most to the predicted zPFS (see ‘Methods’). In this manner, we assess the 

ability of the -+-gene signature to predict benefit for the \/+ patients from the HTT 

cohort not included in training (Fold D). The HR in favour of bortezomib found in fold 

D is /.([ (p = /.--, '[% CI /.[\ - -./,). Figure +a shows the HR in class benefit found 
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with different zPFS thresholds. A range of thresholds result in an HR below the HR  with 

Figure 1. Overview of the construction and selection of the gene networks. First 
each gene pair is scored on the correlation between predicted and calculated zPFS. 
Gene networks are then formed by connecting synergistic genes, i.e. genes that are 
amongst the top 5% partners for each other based on correlation coefficient. The 
gene networks are then ranked based on difference between Cox regression β in 
class ‘benefit’ and ‘no benefit’. The signature consists of the combination of gene 
networks that results in the largest difference in Cox’ regression β between class 
‘benefit’ and ‘no benefit’. 
 

  
Figure 2. The constructed network with all gene networks. The highlighted networks are 
those selected by the feature selection procedure and contain the 14 genes in the 
signature. 
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with different zPFS thresholds.  A range of thresholds result in an HR below the HR 

observed in the total dataset, indicating that the predicted zPFS is associated with  

bortezomib benefit. The optimal class ‘benefit’, i.e. the class ‘benefit’ associated with the 

lowest HR, comprises \/.,% of the patients which corresponds to a zPFS threshold of 

/.\.,). With this threshold we find an HR of /.+( (p = /./+, '[% CI /..\ - /.',) in 

class ‘benefit’ and an HR of /.'- (p = /.,), '[% CI /.,/ - -.\') in class ‘no benefit’ 

(Figure +b). This establishes that our signature can predict bortezomib benefit in 

unseen data from the same patient cohort, demonstrating that the signature can be used 

prospectively to inform treatment choice. Our results indicate that, despite the fact that 

nearly all MM patients receive a treatment regimen that includes a PI (Moreau et al. 

./-.), approximately (/% of patients do not see benefit. 
 

The 14-gene signature achieves robust prediction performance in an independent 
patient cohort 
Gene expression signatures often suffer from cohort-specific fitting and cross-validation 

within one dataset can thus lead to an overestimation of performance(Castaldi, 

Dahabreh, and Ioannidis ./--). To obtain a more robust estimate of performance it is 

essential to perform validation on an external and completely independent cohort. 

Therefore, we validate its performance in the CoMMpass trial, which represents an 

independent patient cohort which was profiled on a different platform (RNAseq). In 

contrast to the HTT dataset, which is a randomized clinical trial, the CoMMpass dataset 

is an observational study and thus represents clinical reality more closely. To bring the 

CoMMpass RNAseq data in the same space as the microarray reference dataset, we 

employ a ComBat batch correction (Supplementary Figure 4 and Methods). We 

define a PI treatment arm (n = ,),) and a no PI treatment arm (n = ,-). The PI treatment 

arm contains both bortezomib and carfilzomib. Using the threshold optimized on fold 

D of the HTT cohort, we find an HR of /.+, (p = /./+, '[% CI /... - /.'() in class 

‘benefit’ (n = -[/) (Figure +c). We also see a good performance when we use overall 

survival (OS) as an endpoint (Table 4). Our signature is thus capable of predicting 

benefit in a completely independent cohort and across platforms, indicating the signal 

picked up by our classifier is robust and generalizes to the broader MM patient 

population. We next assess the performance for each of the two PIs separately. When 

we evaluate benefit for the bortezomib patients (excluding carfilzomib patients from  
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the analysis), we find an HR of /.+' (p = /./,, '[% CI /..\ - -./\) in class ‘benefit’ (n = 

-.+). 

 

When predicting benefit for the carfilzomib patients we find an HR of /.\- (p = /./,, 

'[% CI /./' - -./.) in class ‘benefit’ (n = \)). It should be noted the carfilzomib ‘no 

benefit’ group should be considered a ‘less benefit’ group, as there is still a significant 

HR in favor of carfilzomib in class ‘no benefit’, likely due to the low overall HR (/.+., p 

= /.///+, '[% CI /.., - /.,)). Nevertheless, the fact that our signature can identify a 

patient group with substantially reduced HRs for carfilzomib treated patients indicates 

that it is more broadly applicable to PIs in general and not only bortezomib. All HRs for 

PFS and OS are shown in Table 4. 
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Figure 3. a. HR found in class ‘benefit’ using different zPFS thresholds on the hold 
out data. b. KM of bortezomib benefit prediction in the hold out data using the 
optimal zPFS threshold. c. KM of PI benefit prediction on CoMMpass using the 
optimal zPFS threshold from the hold out data. d. HR found in class ‘benefit’ for 
bortezomib in CoMMpass, using different zPFS thresholds. e. HR found in class 
‘benefit’ for carfilzomib in CoMMpass, using different zPFS thresholds. f. the 
prevalence of certain patient characteristics in class ‘benefit’ and ‘no benefit’. 
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Table 1. Summary of HRs found in all analyses using PFS and OS as an endpoint 

  HR whole 
population 

(PFS) 

HR 
benefit 
(PFS) 

HR no 
benefit 
(PFS) 

HR whole 
population 

(OS) 

HR 
Benefit 

(OS) 

HR no 
benefit 
(OS) 

Bortezomib (HTT cohort) C.EF (C.FG 
- H.CI) 
p = C.HH 
n = GCK 

C.KE 
(C.LG - 
C.MI) 
p = 

C.CK 
n = MG 

C.MH 
(C.IC - 

H.GM) 
p = 

C.IN 
n = LHH 

C.EH (C.KF -
H.HH) 

p = C.HG 
n = GCK 

C.FC 
(C.LC – 

H.LG) 
p = C.HG 
n = MG 

C.NL 
(C.KE – 
H.KC) 
p = 

C.KI 
n = LHH 

PI C.EC (C.FH 
– C.ME) 

p = C.CK 
n = EKE 

C.KI 
(C.LL - 
C.ME) 
p = 

C.CK 
n = HFC 

C.EM 
(C.FF - 

H.HG) 
p = C.L 

n = 
FME 

C.FF (C.GK 
– C.NF) 

p = C.CCE 
n = EKE 

C.HN 
(C.CN - 
C.KL) 
p = 

N*HC-" 
n = HFC 

C.EK 
(C.KK - 
H.LG) 
p = 

C.LF 
n = FME  

Bortezomib (no 
Carfilzomib) 

C.EF (C.FK 
– H.CK) 

p = C.CM 
n = FMH 

C.KM 
(C.LG - 
H.CG) 
p = 

C.CI 
n = HLK 

C.NK 
(C.FN - 

H.LH) 
p = 
C.GF 
n = 
KIE 

C.IC (C.GM 
– C.ML) 

p = C.CL 
n = FMH 

C.LC 
(C.CM - 
C.KN) 
p = 

C.CCCG 
n = HLK 

C.EM 
(C.KN - 

H.GG) 
p = 

C.CGN 
n = KIE 

Carfilzomib (no 
Bortezomib) 

C.KL (C.LI 
– C.IN) 

p = C.CCCK 
n = LHE 

C.LF 
(C.CI – 
C.MG) 
p = 

C.CK 
n = GE 

C.KE 
(C.LE - 
C.NC) 

p = 
C.CCF 

n = HNC 

C.LK (C.HH – 
C.FG) 

p = C.CCCK 
n = LHE 

Inf* C.GE 
(C.HI - 
C.NF) 
p = 

C.CL 
n = HNC 

Lenalidomide C.EL (C.FN 
– C.NN) 

p = C.CCH 
n = EKE 

C.EM 
(C.FC - 
H.LF) 
p = 
C.GH 

n = HKM 

C.IM 
(C.FK - 
C.NI) 
p = 

C.CCH 
n = 
FMN  

C.FI (C.KH 
– C.EI) 

p = C.CCCH 
n = EKE 

C.EK 
(C.GI – 

H.FL) 
p = 

C.KL 
n = HKM 

C.FH 
(C.GE – 
C.EG) 
p = 

C.CCCL 
n = FMN 

PI (excluding 
chemotherapy) 

C.IM (C.KM 
– C.ME) 

p = C.CG 
n = FHF 

C.FC 
(C.LG - 

H.HG) 
p = 
C.HC 

n = HCM 

C.EF 
(C.FH -

H.HH) 
p = 
C.HF 
n = 
KCI 

C.FL (C.GG 
– C.NG) 

p = C.CCI 
n = FHF 

C.LH 
(C.CN – 
C.FG) 
p = 

C.CCH 
n = HCM 

C.IE 
(C.GM – 

H.HF) 
p = C.HF 
n = KCI 
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PI (no PI/lenalidomide 
combination) 

C.MH (C.IK 
– H.GC) 

p = C.IC 
n = GNE 

C.IF 
(C.LE – 

H.FE) 
p = 
C.GG 

n = EH 

H.CL 
(C.IN – 

H.FH) 
p = 

C.MG) 
n = GHI 

C.NL (C.FH 
– H.GL) 

p = C.KL 
n = GNE  

C.LM 
(C.HC – 
C.NL) 
p = 

C.CL 
n = EH 

H.CF 
(C.IH – 

H.NH) 
p = 

C.NI 
n = GHI 

Bortezomib (APEX) C.EK (C.FK 
– H.CG) 

p = C.CE 
n = LKL 

C.GH 
(C.HH - 
C.NE) 
p = 

C.CG 
n = LF 

C.EN 
(C.FF - 
H.HC) 
p = 
C.HF 

n = LHE 

H.LK (C.NL 
– H.NL) 

p = C.LN 
n = LKL 

C.KL 
(C.HF – 
H.HI) 
p = 

C.CM 
n = LF 

H.KL 
(C.MG – 
L.HI) 
p = 
C.HC 

n = LKL 

Bortezomib/Lenalidomide 
vs Bortezomib 

C.IK (C.FH 
– C.NH) 

p = C.CCCL 
n = FGC 

C.NK 
(C.FH – 
H.GM) 
p = 

C.FC 
n = HHL 

C.FM 
(C.KF – 
C.EI) 
p = 

E*HC-" 
n = KHN 

C.KI (C.GL 
- C.II) 

p = H*HC-" 
n = FGC 

C.IG 
(C.LN – 

H.KF) 
p = 

C.LN 
n = HHL 

C.KL 
(C.LN – 
C.IG) 
p = 

G*HC-" 
n = KHN 

 * No events in carfilzomib arm 

  

The percentage of patients classified as ‘benefit’ in the CoMMpass dataset is lower than 

on the HTT dataset. When we calculate the HR on the CoMMpass dataset using 

different zPFS thresholds to define class ‘benefit’, we find that for both bortezomib and 

carfilzomib the class ‘benefit’ associated with the lowest HR contains approximately 

\/% of the patients (Figure +d,e), similar to what we observed in the HTT data. This 

shows that also in CoMMpass, different zPFS thresholds are associated with benefit and 

suggests approximately \/% of MM patients experience more benefit from PI treatment 

than the population as a whole. 

  

Finally, we confirm that our model is specific for PI treatment by testing it on the 

immunomodulatory drug lenalidomide. We find an HR of /.(' ('[% CI /.[/ - -..[) in 

class ‘benefit’ (n = -+'), clearly showing the signature is specific for PI treatment. 

  

The predictive performance of the 14-gene signature holds in single agent PI treatment 
 In clinical practice, the majority of patients receive a combination of treatments. To 

ensure the signal captured in our signature is PI specific, and not dependent on a 

specific treatment combination, we test the performance of our signature on data from 

the APEX trial(Lee et al. .//)) (GSE'().). In this trial, a single agent bortezomib 



Chapter 3 

 82 
 
 

 
 
3 

 

 

 

 

 

 

treatment was tested against high-dose dexamethasone in a relapse setting. 

Unfortunately, two of the genes in our signature (CFAP[\ and linc//+)[) were not 

measured in this study, but we can apply the signature with the remaining -. genes. 

With these genes, -/.\% of the patients are classified as benefit and we find an HR of 

/.\- ('[% CI /.---/.)(, p = /./\) in favor of bortezomib in class ‘benefit’, while in class 

‘no benefit’ we find an HR of /.() ('[% CI /.[[ - -.-/, p = /.-[)(Supplementary Figure 

*). Secondly, while there are no single agent treated patients in CoMMpass, we find that 

we can still predict benefit when we remove patients who received both a PI and 

lenalidomide, albeit with a non-significant HR due to lower sample size (Table 4). The 

signal of our signature is thus not dependent on a combination of treatments.  

 

The predictive performance of the 14-gene signature is relevant in current clinical 
practice 
Chemotherapy is not regularly used to treat MM in the clinic anymore, but is present in 

the CoMMpass dataset. To test the performance of our model in a more clinically 

representative setting and show the performance generalizes to a more modern  

treatment regimen, we exclude all patients who received any type of chemotherapy 

(vincristine, doxorubicin, cyclophosphamide or melphalan, n = .\., patient numbers 

per treatment in Supplementary table .). We find that, in this chemotherapy free 

cohort, we can still predict benefit to PI treatment with a similar effect size (HR = /.[/ 

('[% CI /..\ - -.-\, p = /.-/)), as found in the whole dataset (Supplementary Figure 

+). However, due to the smaller sample size this HR is not significant at p = 

/./[. Bortezomib and lenalidomide are two of the most used drugs and are often given 

together. In the CoMMpass data many patients in the PI arm also received lenalidomide 

(see Table * for patient numbers per treatment). The combination of bortezomib and 

lenalidomide is superior to both lenalidomide alone and to bortezomib alone. However, 

in class ‘benefit’ this combination is not superior to bortezomib alone (HR = /.'[, '[% 

CI /.[) – -.[[, p = /.)+), suggesting the addition of lenalidomide is not beneficial if the 

patient already benefits from bortezomib treatment. This shows our signature is also 

relevant in treatment combinations and could guide when bortezomib alone is 

sufficient, thus reducing the treatment burden on the patient.  
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Table 2. Overview of the distribution of the combination of PI and lenalidomide 
treatment in the CoMMpass dataset 
  

  Class ‘benefit’ Class ‘no 

benefit’ 

Total 

Bor without Len [\ (\[.,%) .-' (\,.,%) .(. (\,.+%) 

Car without Len ) ([.+%) [- ().[%) [' ((.'%) 

Len without Car/Bor -/ (,.(%) +, ((.(%) [, ((.[%) 

BorLen [' (\'.,%) -'' (\\.\%) .[) (\+.[%) 

CarLen -( (--.+%) )/ (-\.+%) '((-\./%) 

No Car/Bor/Len . (-.\%) \ (/.[%) [ (/.(%) 

  -+' [') (+( 

 Bor= bortezomib (PI arm), Car = carfilzomib (PI arm), Len = lenalidomide 

 
Class ‘benefit’ cannot be characterized by known markers or models 
Next we assess whether class ‘benefit’ can be characterized by known markers. To this 

end we first performed enrichment analysis of the routinely measured chromosomal 

aberrations (FISH markers), ECOG performance status or revised International Staging 

System (ISS) score in both classes. None of these were overrepresented in either class 

‘benefit’ or ‘no benefit’ (Figure +f).  

 

Moreover, none of the markers have a predictive performance for PI benefit in the 

CoMMpass study that outperforms our signature (Supplementary figure ,). There 

have been extensive efforts to predict prognosis in MM using gene expression, for 

example with the GEP(/ signature (Chapman et al. ./-); Shaughnessy et al. .//(). We 

find no correlation between our score and the GEP(/ model (Supplementary figure 

/). While we observe that the GEP(/ low risk group in CoMMpass has more benefit 

form PI treatment (HR = /.[,, '[% CI /.\) - /.)+, p = /.//[), we do not see this effect 

in the H,[/GMMG-HD+ dataset (HR benefit = /.'/, '[% CI /.,( - -../, p = /.+[). Our 
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signature can also still distinguish a benefit group (n = ),) within this low risk group in 

CoMMpass (HR benefit is /.\\, '[%CI /.-+ - /.(,, p = /.//'). 

Recently, a (-gene signature was published to distinguish standard and good response 

to bortezomib in the PADIMAC study (Chapman et al. ./-)); none of these genes 

overlap with our signature genes. When we assess the ability of our signature to predict 

bortezomib response in the PADIMAC study, we find an AUC of /.), (Supplementary 

Figure I), indicating that our signature is also capable of predicting response. 

Moreover, the (-gene signature is reported to only be applicable in a non-transplant 

setting, while our signature does not have this limitation.  

  

Selected genes and links between them are essential for performance 
In prognostic classification it is known that many different signatures with similar 

performance can be found (Ein-Dor et al. .//[). This casts doubt on the usefulness of 

biologically interpreting the genes within a signature. We thus first investigate whether 

the genes in our signature are essential for performance.  

  

We first permute the expression vector for each gene in the signature -// times (while 

the other -\ genes remain unchanged) and apply this signature to fold D of the HTT 

cohort. The largest effect is observed for DABGIP, with a mean difference in validation 

HR of /..' (se = /./,). Correlation between genes influence the decrease in 

performance: for instance, shuffling SHTNK has the smallest impact on validation 

performance and its expression is significantly correlated with more genes than any 

other gene (with TPDUGLK, NES and STVGALG, Supplementary figure J). Therefore, 

losing its information has less impact. Nevertheless, we demonstrate all individual 

genes are important for the validation performance, as none can be shuffled without 

decreasing performance (Figure ,a). 

  

Next, we assess the importance of the relationship between the genes by shuffling the 

edges between all genes included in the network ten times, while ensuring every gene 

remains linked to at least one other gene. We then infer a signature with STLsig, 

meaning a new combination of gene networks is selected to form the predictive 

signature. The mean HR found in the hold out data in class ‘benefit’ is /.(+ (se = /./[), 

which is approximately equal to the HR found in the dataset without classification. The 

connection between genes is thus essential for the performance of the signature. Lastly, 
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we remove all -+ signature genes from the dataset and rerun STLsig. The new signature, 

which contains \-. genes from )[ gene networks, results in an HR of /.[, (p = /..\,  

 

'[% CI = /..\ - -.+-) in the training data, which is worse than the original signature. The 

performance on the patients in fold D, which requires optimizing a new zPFS threshold, 

also yields a worse performance (HR of /.['; p = /./,, '[% CI /.\+ - -./-; n=-\/ in the  

 

‘benefit’ class). Moreover, changing this threshold to yield a differently sized class 

‘benefit’ does not yield performances that approach that of the original -+-gene 

signature (Supplementary Figure K). Together, these results establish that the -+ 

identified genes are essential to the performance of the model. 

  

Multiple signature genes are associated with MM or proteasome inhibition 
Having established the genes in the signature are essential to the performance, we 

investigate how the genes in the signature may be involved in determining PI benefit. 

Interestingly, in addition to having the largest impact when its information is lost, 

DABGIP is also the only gene that is significantly differentially expressed between class 

‘benefit’ and ‘no benefit’ (p = /.//.). DABGIP plays an essential role in the IREK-
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Figure 4. a. The decrease in performance (difference in HR) for i) shuffling of each 
gene separately, ii) shuffling links in the network and iii) when the 14 signature genes 
are excluded from the analysis. Error bars indicate standard error. b. Genes with a 
significant change in expression before and 48 hours after bortezomib treatment in 
only either class ‘benefit’ or ‘no benefit’. Bold genes have a significant difference in 
response between class ‘benefit’ and ‘no benefit’, determined empirically by testing 
the difference with 1000 random labellings. 
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mediated ER stress response and inducing apoptosis via the JNK pathway (Luo et al. 

.//)). Apoptosis induced by ER-stress is one of the main working mechanisms of 

proteasome inhibitors (Moreau et al. ./-.). 

  

While none of the other signature genes are differentially expressed between class 

benefit and no benefit, several genes do have a clear link to cancer or MM specifically. 

For instance, NES is a stem cell marker that is not found in healthy plasma cells, but is 

found specifically in MM (Svachova et al. ./-+). Moreover, NES has been associated 

with treatment response in MM. CLIP- is involved in microtubule-kinetochore 

attachment and plays a role in proper chromosome alignment during mitosis (Amin et 

al. ./-+) and has been associated with cancer progression and chemotherapy resistance 

(Sun et al. ./-.), though not in relation to MM. SNX' is described to play an important 

role in trafficking ADAM' to the cell surface (Mygind et al. ./-)). ADAMX is expressed 

in MM cells and induces IL, production by osteoblasts, potentially creating a more 

permissive bone marrow environment for MM cell proliferation (Karadag, Zhou, and 

Croucher .//,). One of the described working mechanisms of bortezomib is the 

downregulation of the production of IL-, in the bone marrow environment (Karadag, 

Zhou, and Croucher .//,; Roccaro et al. .//,). The gene TPDUGLK is a negative 

regulator of ATM (Chen et al. ./-\), which is involved in the DNA damage response and 

activated by bortezomib treatment (Hideshima et al. .//\). STVGALG has been 

described before to be significantly downregulated in carfilzomib-resistant cell lines 

(Zheng et al. ./-(). 

  

Together, this indicates that our signature is not only capable of predicting benefit but 

could also aid in understanding differential response to PI treatment. 

  
Different cellular response to bortezomib in class benefit 
For -+. patients in the HTT cohort tumor gene expression was measured again +) hours 

after receiving bortezomib. To investigate whether the cellular response to bortezomib 

is different for patients classified as ‘benefit’, we performed a differential expression 

analysis before and after treatment separately in class ‘benefit’ and class ‘no benefit’ 

using SAM (Tusher, Tibshirani, and Chu .//-). Because of the low number of patients 

in class ‘benefit’ for whom a second measurement is available, we relax our definition of 

benefit and classify patients as ‘benefit’ if the calculated zPFS>/ (n = (-). We find -. 
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genes that are significantly differentially expressed before and after treatment in class 

‘benefit’ but not in class ‘no benefit’. We also find two genes that are significantly 

differentially expressed only in class ‘no benefit’ (Figure ,b). To identify the genes that 

truly represent a different cellular response in class ‘benefit’ and ‘no benefit’, we 

compute the difference in fold change between both classes. To ensure that this is not 

a random difference, we also compute this difference for all genes using -/// random 

class labellings. We find four genes - TNSY, PXN, CGCDZA and PSPCK - where the 

difference between ‘benefit’ and ‘no benefit’ is larger than expected by random chance 

(p </./[ after Bonferroni correction for multiple testing). None of these genes have 

been linked to MM, though all have been connected to disease progression in other 

cancer types (Carter et al. ./-\; Wu et al. ./-/; Yao et al. ./-[; Yeh et al. ./-)). 

Interestingly, TNSY, PXN and PSPCK are all described to play a role in cell adhesion and 

a migratory phenotype (Yeh et al. ./-); Mouneimne and Brugge .//(). Cell adhesion 

mediated drug resistance (CAM-DR) has been described extensively in MM (Damiano 

et al. -'''; Landowski et al. .//\; Damiano and Dalton .///). Moreover, it has been 

suggested that bortezomib can overcome CAM-DR (Hatano et al. .//'; Yanamandra 

.//,). A different regulation of cell adhesion in class ‘benefit’ could play a role in the 

observed benefit to PIs. 

  

Discussion 
 
In this work we propose STLsig, a method to identify interpretable signatures that 

robustly predict patient benefit to PIs from a gene expression measurement at time of 

diagnosis. The -+ gene signature, derived with our method, validates on an independent 

patient cohort which was moreover measured on a different platform, confirming the 

robust nature of the signature. 

  

A clinical trial setting is most suitable for training the STLsig model. Here treatment is 

randomized and each treatment arm contains roughly the same number of patients. 

This is important for calculating zPFS and training the signature, as it ensures each 

patient has sufficiently similar neighbours in the gene expression space. Once the 

signature is trained, it can be validated on a less balanced dataset. We therefore used 

the HTT cohort as training data, rather than the newer CoMMpass dataset. It should be 

noted that the treatment combinations used in the HTT cohort are no longer 
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representative of clinical practice; since sufficiently long follow up is needed to train a 

model, we necessarily train on older data. Recently, it was shown that daratumumab, 

combined with bortezomib, thalidomide and dexamethasone (VTd), is superior to VTd 

(Moreau et al. ./-'). This will arguably be the new standard, but since daratumumab is 

relatively new, suitable gene expression datasets are not available. It is clear that PIs 

continue to play an important role in MM treatment. In the CoMMpass dataset, we 

show that the performance of our signature remains stable in different treatment 

combinations and that - while it was trained on bortezomib - also can predict benefit to 

carfilzomib. Moreover, we show that the addition of lenalidomide to bortezomib based 

treatment only leads to better survival in the ‘no benefit’ group. This establishes our 

model is also relevant in a more modern, chemotherapy free setting. We also 

demonstrate our signature can be applied to patients for which the expression profiling 

was performed using RNAseq, demonstrating cross-platform robustness. 

  

We have only considered gene expression patterns in this research since it has been 

shown that for classifiers aimed at predicting cancer survival, gene expression captures 

the majority of the signal (Aben et al., ./-)). More specific to MM, Chapman et al found 

bortezomib response could not be reliably predicted from mutation events (Chapman 

et al. ./-)). The mutational landscape in MM is quite sparse and we find no difference 

in mutation burden or in the specific genes that are mutated between class ‘benefit’ and 

‘no benefit’ (Supplementary Figure L). We also do not see a difference between class 

‘benefit’ and ‘no benefit’ in the ,\ driver genes that were recently identified (Walker et 

al. ./-)) (Supplementary Figure 4M). While MM is a very complex disease and this 

complexity can most likely not be captured in only two groups differentiated by gene 

expression patterns, the signature identified can aid in optimal treatment selection and 

thus has direct clinical applicability. 

  

Several of the genes in the signature are already described to be involved in the 

proteasome system or disease progression in MM and we show these genes are essential 

for the predictive performance, as no equivalent signature can be found without them. 

These findings reinforce the importance of the selected genes and indicate the power of 

STLsig to further elucidate proteasome inhibitor specific mechanisms. 
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STLsig can readily be applied to other diseases and drugs. A very potent application 

could be to perform post-hoc analysis of clinical trial data for drugs which missed their 

endpoint. Such analysis could reveal a subset of patients who would still benefit from 

the drug, thus potentially extracting valuable information from failed clinical trials. 

  

Taken together, we provide a powerful machine learning approach to aid in treatment 

decisions in the clinic, ensuring a more optimal treatment choice and ultimately 

improve patient outcomes. 

  

Availability of data and material 
The datasets supporting the conclusions of this article are available on GEO. Gene 

expression data from the HOVON-,[/GMMG-HD+ study is available at GSE-'()+ 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE-'()+). Gene expression 

data from both Total Therapy . and Total Therapy \ are available at GSE.,[) 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE.,[)) . \/ patients from 

the Total Therapy \ study used in the manuscript are not included in the GSE.,[) 

dataset, these can be found in ArrayExpress dataset E-TABM---\) 

(https://www.ebi.ac.uk/arrayexpress/experiments/E-TABM---\)/). The PFS survival 

data for all three studies are available at https://github.com/jubels/GESTURE, linked to 

the GEO and ArrayExpress IDs. All gene expression and survival data for the CoMMpass 

study is available at research.themmrf.org 

  

All code needed to discover and validate the signature is available at 

https://github.com/jubels/STLsig. All code requires R and is platform independent.  
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 Supplementary table 1 Log2 fold difference of signature genes between class 
‘benefit’ and ‘no benefit’ in fold D of the HTT cohort 
  

  

Mean log* fold 

difference p-value 

NEXN /..( /.-, 

DAB*IP -/.,[ /.//. 

CFAP/+ -/./, /.(. 

TPD/*L4 /../ /.\+ 

SHTN4 /.\) /./[ 

ZNF,L+ -/./-[ /.'[ 

NES /.-/ /.(( 

CLIP4 /..\ /.., 

LINCMM,K/ /.-[ /.+' 

STIGAL* /.., /.-+ 

EBF* -/.-+ /.++ 

LINCMMLL* /.-[ /.++ 

FA*H /./[ /.(+ 

SNXL -/.//, /.') 
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Supplementary table 2. Overview of the number of patients who received a form of 
chemotherapy 
  

  Class benefit Class no benefit Total 

Doxorubicin / (/%) + (/.(%) + (/.[%) 

Cyclophosphamide .) (-).)%) -,) (.).-%) -', (.,..%) 

Melphalan -. ().-%) ./ (-.(%) \. (+..%) 

Vincristine / / / 

 
  

Supplementary figure 1. tSNE of the datasets before and after batch correction 
with ComBat.  
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Supplementary figure 3. Kaplan Meier plot of the performance of the signature 
when patients who received chemotherapy are removed from the CoMMpass 
validation set.  
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Supplementary figure 2. Kaplan Meier plot of the performance of the signature in 
the APEX study. 
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Supplementary figure 4. Performance of several known markers in predicting 
benefit to PI treatment. The blue line represents the performance of our signature 
at different size class ‘benefit’, the red dotted line represents the HR as found in the 
dataset as a whole.  

Supplementary figure 5. Distribution of UAMS ratio in class ‘benefit’ and class ‘no 
benefit’.  
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Supplementary figure 6. ROC curve of the performance of our signature in the 
PADIMAC dataset and boxplot of the benefit score for good and standard 
responders. The red dotted line represents the cutoff for class ‘benefit’.  

Supplementary figure 7 The HR found in class ‘benefit’ using different cutoffs for 
zPFS, as predicted by the signature found when excluding the original 14 genes 
from the analysis. 
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Chapter 3 

 98 
 
 

 
 
3 

 

 

 

 

 

 

 
 
 
  

Su
pp

le
m

en
ta

ry
 fi

gu
re

 9
. A

ll 
no

n-
sy

no
ny

m
ou

s 
m

ut
at

io
ns

 fo
un

d 
in

 m
or

e 
th

an
 1

0%
 o

f t
he

 s
am

pl
es

 in
 th

e 
C

oM
M

pa
ss

 d
at

as
et

 
pe

r p
at

ie
nt

, w
ith

 th
e 

lo
w

er
 b

ar
 in

di
ca

tin
g 

w
he

th
er

 th
e 

pa
tie

nt
 is

 p
re

di
ct

ed
 to

 b
en

ef
it 

or
 n

ot
.  



Gene networks can predict proteasome benefit in Multiple Myeloma  

 99 

 
 
3 
 

 

 

 

 

 

Su
pp

le
m

en
ta

ry
 fi

gu
re

 1
0.

 O
ve

rv
ie

w
 o

f t
he

 m
ut

at
io

ns
 fo

un
d 

in
 th

e 
63

 d
riv

er
 m

ut
at

io
ns

 id
en

tif
ie

d 
by

 W
al

ke
r e

t a
l, 

w
ith

 th
e 

lo
w

er
 

ba
r i

nd
ic

at
in

g 
w

he
th

er
 th

e 
pa

tie
nt

 is
 p

re
di

ct
ed

 to
 b

en
ef

it 
or

 n
ot

.  



 

  
 
 

 



  

 

Chapter 4

Joske Ubels1,2,3,4, Martin H. van Vliet4, Jeroen de Ridder1,2*

1. Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg
100, 3584 CG, Utrecht, The Netherlands 2. Oncode Institute, Utrecht, The Netherlands 3.

Department of Hematology, Erasmus MC Cancer Institute, Wytemaweg 80, 3015 CN,
Rotterdam, The Netherlands 4. SkylineDx, Lichtenauerlaan 40, 3062 ME, Rotterdam, 

The Netherlands

Predicting treatment benefit in data with low event rates and 

non-randomized treatment arms: chemotherapy benefit 

in breast cancer

  



Chapter 4 

 102 
 
 

 
 
 
4 

 

 

 

 

 

Abstract  
 
Selecting the best treatment for each patient remains a challenge in cancer. We have 

previously developed the GESTURE algorithm, which is designed to predict whether a 

patient will benefit more from a treatment than an alternative using tumor gene 

expression. We here adapt it to deal with survival data with few events, to predict 

chemotherapy benefit in breast cancer. We show it can successfully identify a subgroup 

of patients who benefit more from chemotherapy than the population as a whole. 

Importantly we also identify a group who does not see a significant benefit from 

chemotherapy and can thus be spared the side effects. The classifier does not validate 

in other external data with a different patient composition and treatment regimen, 

highlighting the importance of matching the patient population included in the training 

and validation set, and by extension the intended use population.  
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Background  
 
Personalized medicine has received increasing attention in cancer. However, selecting 

the best treatment for each patient remains a challenge in almost all cancer types, 

especially when treatments targeting a specific mutation are not available.  

We have previously developed GESTURE (Gene Expression-based Simulated Treatment 

Using similaRity between patiEnts), an algorithm that can predict treatment benefit 

using gene expression and survival data as input (Ubels et al. ./-)). We define 

treatment benefit as having a superior survival on the treatment of interest to the 

survival had this patient been given an alternative treatment. This is a challenging 

problem, as we can only observe the response to the treatment a patient actually 

received. Even when a patient did not experience a good outcome on a certain 

treatment, they may still have benefited, as their outcome may have been even worse 

on another treatment. In GESTURE we therefore implement the concept of Simulated 

Treatment Learning (STL). STL relies on the idea that a genetically similar patient who 

received a different treatment can be used to model the response to a treatment the 

patient did not receive. We need to define this similarity between patients with genes 

that are relevant to treatment benefit. In GESTURE we use many different gene sets 

based on Gene Ontology (GO) annotation to define similarity; we then build a classifier 

out of the gene sets that are most successful at identifying so-called prototype patients. 

These are patients who experience more benefit from the treatment than similar 

patients who did not receive the treatment; new patients who are similar to such a 

prototype are also expected to benefit from the treatment.  

 

We developed GESTURE and demonstrated its performance in Multiple Myeloma 

(MM), a type of plasma cell cancer. However, GESTURE is not specific to MM and can 

be applied to any dataset where gene expression, survival data and two treatment 

groups are available.  

 

With roughly -.( new million cases per year, breast cancer is the most common cancer 

for women and one of the leading causes of death in women worldwide (Sharma ./-'). 

Breast cancer was one of the first cancer types where gene expression was used to 

predict disease progression (Veer et al. .//.). Moreover, it was later shown in a 

prospective clinical trial that this (/ gene classifier (the MammaPrint) can predict 
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which women can safely forego chemotherapy (Audeh et al. ./-'; Cardoso et al. ./-,). 

Breast cancer represents a good test case for applying GESTURE in a new disease, as it 

is known that information relevant to treatment choice is captured in the gene 

expression. While the MammaPrint was developed to predict [-year survival and was 

later found to be relevant to treatment benefit, GESTURE can train classifiers that are 

optimized to predict treatment benefit.  

 

While GESTURE is not specific to MM, the algorithm as is does not achieve a satisfactory 

performance on the breast cancer data. This may be expected, as there are certain key 

differences between the clinical reality of both diseases. MM is an incurable disease, 

with a median survival of [-, years (Rajkumar and Vincent Rajkumar ./-)). For breast 

cancer, the average [-year survival rate is '/% (SEER statistic). Because of this higher 

survival rate and thus lower number of events, we have to adapt the optimization 

criterion GESTURE uses for training classifiers. For clarity, from here on we call the 

adapted version GESTURE-BC. GESTURE defines the best classifier as the one that can 

identify a subset of patients - class ‘benefit’ - with the largest difference in survival 

between the two treatment arms, as defined by the hazard ratio (HR). However, in 

breast cancer a subset without any events in the treated arm can easily be identified. A 

better HR cannot be achieved, even if the other treatment arm also has very good 

survival. Applying GESTURE to breast cancer thus leads to a class ‘benefit’ where 

patients in both treatment arms survived well, and a class ‘no benefit’ (i.e. all patients 

not in class ‘benefit’) where we also find a significant HR in favor of the treatment 

(Supplementary figure -). Such a classifier cannot be used to aid in clinical decisions. 

We thus adjust the optimization criterion in GESTURE-BC to take both class ‘benefit’ 

and ‘no benefit’ into account, to arrive at a classifier that is clinically useful. 

 

Another consideration is that STL hinges on the idea that similar patients are present 

in both treatment arms. The ideal setting for training a treatment benefit classifier is 

thus a clinical trial, where treatment is randomized and similar patients are by 

definition included in both treatment arms. However, in practice suitable clinical trials 

data is rarely available and data from clinical practice has to be used. Breast cancer has 

been well characterized both by gene expression and receptors present on the cell 

surface. An important consideration in treating breast cancer is the presence or absence 

of estrogen receptors (ER), progesterone receptor (PR) and human epidermal growth 
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factor receptor . (HER.). There are specific treatments targeting these and triple 

negative breast cancer (absence of all three receptors) carries the worst prognosis 

(Kaplan and Malmgren .//)). There are also treatment guidelines taking tumor size, 

lymph node status (i.e. whether cancer cells have infiltrated the lymph nodes) and cell 

differentiation into account (Waks and Winer ./-'). In breast cancer it is thus most 

likely not true both treatment arms contain similar patients. When we train in such a 

cohort, it is likely the signal captured in the classifier is then specific to the setting where 

the data was gathered. For example, if only node positive patients received 

chemotherapy, the classifier cannot train on chemotherapy benefit for node negative 

patients. This classifier will then probably not generalize to a wider breast cancer patient 

population, where patients with other characteristics did receive chemotherapy.  

 

When clinical trials are impossible or simply not (yet) available, one could potentially 

still leverage datasets with non-random treatment groups by computationally matching 

the patients characteristics between the two groups. A possible approach is the 

matching of patients to break the link between certain patient characteristics and the 

treatment variable, so the model fitted is not influenced by these correlations (Ho et al. 

.//(). In this approach we use the relevant patient characteristics (i.e. age, tumor size 

and node status) to calculate the probability a patient received chemo. We then match 

patients from both treatment arms that have a similar probability. With perfect 

matching, there is then no longer a correlation between these variables and the 

treatment, so they will not bias the classifier. While perfect matching is often not 

possible, this approach can still reduce the bias.  

 

We here show GESTURE can be successfully adapted to fit the clinical reality of breast 

cancer and find a classifier that can predict chemotherapy benefit in cross-validation. 

We show its performance in ..(\ ER positive and ER treated patients from the Sweden 

Cancerome Analysis Network - Breast cancer cohort. Our classification cannot 

characterized by factors currently in the treatment guidelines and we thus identify a 

new group of patients with chemotherapy benefit. We also show that training a classifier 

on matched data improves performance on unmatched data from the same population. 

However, neither a classifier trained on unmatched nor on matched data could show 

performance in an unrelated, older cohort, highlighting the importance of matching 

training and validation datasets.  
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Methods  
 
Algorithm  
GESTURE relies on the idea that patients who received different treatments, but have 

similar tumor gene expression profiles, can be used to model the expected response to 

an alternative treatment than the one received. Patients with a larger than expected 

survival difference with similar patients who received a different treatment, can be used 

as prototype patients. New patients who have a similar gene expression profile to a 

prototype patient can then be expected to also benefit from that particular treatment. 

The process of defining similarity and identifying prototype patients has been described 

in detail before (Ubels et al. ./-)). Briefly, to identify prototype patients we first need 

to define similarity between all patients. Because it is unknown a priori which genes are 

relevant to treatment benefit and thus should be used to define this similarity, we use 

gene sets based on Gene Ontology (GO) annotation. We can then build a classifier based 

on each GO set separately and assess which gene set leads to the best performance. To 

build a classifier we divide the training data in three equal parts: fold A, fold B and fold 

C. First we compute the mean survival difference for each treated patient through: 

𝜟𝑆! 	= 	
1
𝑛
-(𝑆! −	𝑆%)
%∈'

 

where Si is the overall survival for the treated patient and O the set of the n nearest 

patients (based on Euclidean distance) who did not receive the treatment of interest. 

For all training we set the n to \/. We normalize this survival difference by also sampling 

n random neighbours a -/// times and calculating 𝛥𝑆%	, to select patients with a larger 

survival difference with their neighbours than expected randomly.  

The classifier then optimizes two variables on fold B: how many prototypes are used (k) 

and how close to a prototype a new patient should be to be considered class ‘benefit’ 

(𝜸).  

 

Previously, for the algorithm developed on MM data, the best classifier (representing 

one gene set) was defined as the classifier that resulted in the largest hazard ratio (HR) 

between the two treatment arms within class benefit. The HR in the class ‘no benefit’ 

(i.e. all patients not close to a prototype) was not taken into account. However, there 

are far fewer patients who experienced an event in the breast cancer dataset ('./% 
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versus +)..%). Furthermore, there is already a large HR between the chemotherapy and 

no chemotherapy arm (HR = /.+[, p = [., * -/-,). When GESTURE only takes the HR 

in class ‘benefit’ into account when choosing the optimal values for k and 𝜸, it tends to 

define a class benefit with no events at all in the chemotherapy arm in the training 

procedure, since this leads to the best possible performance. However, this classifier is 

not useful in clinical practice, as we also find a large, significant HR in favor of 

chemotherapy in class ‘no benefit’ (Supplementary Figure 4 shows the cross-validated 

performance of this classifier).  

 

Therefore, we here define the best performance in GESTURE-BC as the minimum of 

𝛽)*"*+%,	 −	𝛽"-	)*"*+%,where the β is the coefficient for the treatment variable in each 

class as calculated by Cox regression. We then test the optimal classifier on fold C. The 

β’s found in fold C define the performance of this gene set in this repeat.  

Since there can be large differences in performance of a gene set when a different 

division in folds is used, we repeat the procedure +) times. We take the median 

performance over , repeats at a time and rank the gene sets, resulting in ) separate 

rankings (+)/,). The final ranking of the geneset is determined by its mean rank over 

these ) rankings. We found that this method leads to a more robust ranking than either 

taking the mean of the +) separate rankings or calculating the median performance over 

all repeats. Averaging the rankings, rather than the performance directly, reduces the 

impact of having a few extremely low HRs, while not disregarding them entirely. The 

whole algorithm is summarized in Figure 4.  

 

This final ranking of gene sets is used to perform forward feature selection; gene sets 

are added sequentially to form an ensemble classifier. For each repeat we evaluate the 

performance of this ensemble classifier on fold C; the combination leading to the largest 

median difference between class ‘benefit’ and ‘no benefit’ is selected. For these gene sets 

a final classifier is trained on all training data to validate on hold-out data.  

 

Data 
We train GESTURE-BC on data from the Sweden Cancerome Analysis Network - Breast 

cancer (SCAN-B) initiative (Saal et al. ./-[) (GEO accession: GSE',/[)). This study 

included women with breast cancer from centers around Sweden between ./-/ and 

./-\ and measured tumor gene expression with RNAseq. This data is not from a 
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randomized trial and this cohort thus represents current clinical practice. The publicly 

available data includes RNAseq for .',' patients, patient characteristics are 

summarized in Table 4. The majority of patients are ER positive. Since survival and 

treatment strategies differ significantly between these two groups, we exclude all ER 

negative patients and ER positive patients who did not receive ER treatment from the 

analysis, which results in ..(\ patients.  

 

The only other dataset available which includes the necessary patient information is 

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) (Curtis 

et al. ./-.). This dataset includes -')- patients from the UK and Canada, diagnosed 

between -'(( and .//[, for whom gene expression was measured with Illumina array.  

 

Fold construction for cross validation 
We divide the SCAN-B dataset into three equal folds, ensuring the balance between 

chemotherapy and no chemotherapy is the same in each fold. Moreover, we ensure the 

HR between the treatment arms does not differ more than /./[ between the folds. The 

two folds used for training each classifier are divided in fold A, B and C in the same 

manner.  

 

 

 

 
Figure 1. Summary of the training procedure for GESTURE in breast cancer 
(GESTURE-BC). First prototypes are identified and optimal parameters for the 
classifier are determined per gene set. The performance of the gene set is then 
defined on hold-out data by comparing the b’s found in class ‘benefit’ and ‘no 
benefit’. The gene sets are then ranked by mean rank over 8 repeats. The rank for 
each repeat is in turn determined over 6 repeats of cross validation.  
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Table 1. Overview of the patient characteristics in the SCAN-B data.  

 Chemothera
py 
(N=44LM) 

No 
Chemotherapy 
(N=4J/L) 

Overall 
(N=*LIL) 

Age (years)    

Mean (SD) [[.. (--.\) ,(.) (--.,) ,..) (-\.-) 

Median [Min, 
Max] 

[[./ [.+./, 
)../] 

,)./ [\+./, 
',./] 

,+./ [.+./, 
',./] 

Size (mm)    

Mean (SD) .-.' (-..,) -).[ (--.+) -'.' (-..\) 

Median [Min, 
Max] 

././ [/, -.[] -[./ [-.//, -.,] -(./ [/, -.,] 

Missing .( (..\%) [ (/.\%) \. (-.-%) 

Positive nodes    

No [++ (+[.(%) -.[+ ((-.\%) -)-, (,-..%) 

Yes ,-. ([-.+%) +[/ (.[.,%) -/,+ (\[.)%) 

Missing \+ (..'%) [[ (\.-%) )' (\./%) 

ER    

Negative -,( (-+./%) +- (..\%) .-+ ((..%) 

Positive ))[ ((+.+%) -,(\ ('[.-%) .[,' (),.[%) 

Missing -\) (--.,%) +[ (..,%) -), (,.\%) 

HER*    

Negative )+/ ((/.,%) -,\\ ('..)%) .+'/ ()\.'%) 

Positive \/' (.,./%) ,( (\.)%) \() (-..(%) 

Missing +- (\.+%) [' (\.+%) -/- (\.+%) 

PGR    

Negative .-( (-)..%) -.+ ((./%) \+( (--.(%) 

Positive ()[ (,,./%) -[-+ (),.-%) .\-/ (((.)%) 

Missing -)) (-[.)%) -.- (,.'%) \-. (-/.[%) 
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Matching patients between treatment arms  
We calculate a propensity score for receiving chemotherapy for each patient using 

logistic regression with 𝑐ℎ𝑒𝑚𝑜𝑡ℎ𝑒𝑟𝑎𝑝𝑦	 ∼ 𝑎𝑔𝑒	 + 	𝑛𝑜𝑑𝑒	𝑠𝑡𝑎𝑡𝑢𝑠	 + 	𝑡𝑢𝑚𝑜𝑟	𝑠𝑖𝑧𝑒. All 

patients with missing values for one of these variables are excluded. We also exclude all 

patients older than )., as there are no older patients in the chemotherapy arm. Based 

on the propensity score, we match each chemotherapy treated patient to one untreated 

patient. These pairs are chosen so total distance between all the pairs is minimized. This 

is implemented in the R matchIt package, using the “optimal” setting (Ho et al. ./--)  

 

Construction of gene sets 
We only use genes measured in both the SCAN-B and the METABRIC dataset, which 

results in -,,()' unique genes. We define GO sets with the R package goSTAG (Bennett 

and Bushel ./-() and keep all sets which included more than one and less than a 

thousand genes, which results in ',[() gene sets. We use the FPKM values for SCAN-B 

and the log. normalized data from METABRIC. We then perform a batch correction 

with ComBat (Johnson, Li, and Rabinovic .//(), with METABRIC and SCAN-B as the 

batches. We then perform a quantile normalization, so measurements from both 

datasets are directly comparable.  

 

Results  
 
Cross-validation on SCAN-B leads to a significant HR in class benefit 
We perform \-fold cross validation on the SCAN-B dataset. In the dataset as a whole an 

HR of /.+[ (p = ,*-/-&) in favor of chemotherapy is found (Figure *a). When we classify 

the population with the GESTURE-BC classifier we find a class ‘benefit’ comprising 

(/..% of the dataset with an HR of /.\- (p = ,*-/-') in favor of chemotherapy (Figure 

*b). The HR in class ‘no benefit’ (n =,)[) is /.)' (p = /.,(). This performance is fairly 

stable across the three cross validation folds. In Fold - (+.\% of the patients are classified 

as ‘benefit’, which results in an HR of /.\- (p = /.///[) in class ‘benefit’ and an HR of 

-.+, (p = /.[/) in class ‘no benefit’. The classifier validated on Fold ., classifies [[..% of 

the patients as ‘benefit’, which results in an HR of /..( (p = /.//() in class ‘benefit’ and 

an HR of /.(+ (p = /.+[) in class ‘no benefit’. The Fold \ classifier classifies )-./% of 

patients as ‘benefit’, which results in an HR of /.\. (p = /./-) in class ‘benefit’ and an 

HR of /.(+ (p = /.[+) in class ‘no benefit’. The Kaplan Meiers of these classifications are 
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shown in Supplementary Figure *. The classifiers validated on Fold -, Fold . and Fold 

\ use -/, \- and ,+ gene sets respectively.  

 

The ensemble classifier is formed by classifying all patients with each gene set 

separately. The benefit score of a patient is then defined by the number of gene sets that 

classify the patient as ‘benefit’. To define the final class ‘benefit’ a threshold t is set, 

where a patient is classified as class ‘benefit’ when their benefit score is above the 

threshold. This threshold t is optimized by the difference in β between the classes, with 

the constraint that both classes contain at least ./% of the patients and the HR in class 

‘benefit’ is significant at p < /./[. There is a trade-off between class size and HR in 

setting t.  

 

When we vary the threshold determining class ‘benefit’ we find that a smaller class 

‘benefit’ is associated with a lower HR (Figure *c), since a higher threshold requires the 

classifier to be more confident about the classification (i.e. more individual gene sets 

need to classify the patient as ‘benefit’). This shows the performance is not dependent 

on one specific threshold, but a high score also means more benefit.  

 

GESTURE-BC classification is not characterized by known chemotherapy predictors  
There are already many factors known to influence chemotherapy benefit. We first 

compare our classification with that of the MammaPrint. It has been shown that 

patients who are predicted to have a good prognosis by the MammaPrint can safely 

forego chemotherapy, i.e. see no benefit from it. The MammaPrint signature included 

(/ probes that code for [, unique genes, which we can all match to a gene measured in 

the SCAN-B dataset. When we apply the MammaPrint to the SCAN-B dataset we do 

find a prognostic effect (HR poor prognosis = -.,(, '[% CI -.-\ - ..+,, p = /./-), but we 

do not see a predictive effect (Supplementary Figure *). This could be due to the fact 

that the population in SCAN-B was in part already treated in accordance with this risk 

classification: +..)% of the poor prognosis group received chemotherapy, versus just 

-[.[% of the good prognosis group. For only ,[.\% patients the classification of our 

classifier and MammaPrint overlap, which is according to statistical expectation given 

a class ‘benefit’ comprising (/.-% of the patients. Our classifier clearly identifies a 

different signal, which is to be expected given that we trained specifically on 
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chemotherapy benefit rather than prognosis and the fact that most patients were 
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Figure 3. a. Overview of the difference in patient characteristics between the two 
treatment groups, in all data and in the matched dataset. b. Kaplan Meier of the 
performance of the classifiers trained on all data on the SCAN-B hold out data. c. 
Kaplan Meier of the performance of the classifier trained on matched data on the 
SCAN-B hold out data.  
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Figure 2. a. Kaplan Meier of the SCAN-B dataset, only including ER positive and 
ER treated patients. b. Kaplan Meier of the cross-validated performance of the 
GESTURE classifiers. c. Performance of the GESTURE classifiers using varying 
thresholds to define class ‘benefit’. The dotted line represents the HR found in the 
dataset as a whole.  
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chemotherapy benefit rather than prognosis and the fact that most patients were 

already treated according to their MammaPrint classification.  

 

Tumor characteristics like tumor grade, tumor size and lymph node status are also 

included in treatment guidelines. Tumor grade information is not available for the 

SCAN-B dataset, but tumor size and lymph node status is included. While tumor size is 

significantly greater in the chemotherapy treated group (p = +*-/-'), this is not the case 

between class ‘benefit’ and ‘no benefit’ (p = /.'().  

 

The same holds true for lymph node status, with the percentage of lymph node positive 

patients similar in class ‘benefit’ and ‘no benefit’ (+/.)% versus \,.[%). This shows our 

classifier does not identify patients according to known risk factors and adds new 

information that can be used clinically.  

 

Classifier on matched data results in a better performance in unseen data  
As seen in Table 4, patient characteristics vary between the treated and untreated 

patients, which may impede GESTURE-BC from finding the right predictive signal for 

predicting treatment benefit. To mitigate this issue, we created a matched population 

where the difference between the treatment arms is minimized. To this end, we 

calculate a propensity score per patient that describes the probability of receiving 

chemotherapy given the age, tumor size and node status of the patient. We then match 

each treated patient to an untreated patient minimizing the difference in this score over 

all patients pairs. Figure +a shows the distribution of the characteristics in the data 

before and after matching. It can be observed that the difference in tumor 

characteristics cannot be fully equalized with the matching procedure. However, the 

difference in likelihood of receiving chemotherapy is much smaller in between the two 

matched groups. The HR in favor of chemotherapy in the matched dataset is /.)[ (p = 

/.+'), which is much higher than in the dataset as whole. In total )/\ patients are not 

included in the matched dataset. These patient samples are used to compare the 

performance of the cross validated classifiers and the matched classifier. These )/\ 

patients are not matched on patient characteristics and thus represent a better test case 

for performance in a clinical setting, where treatment is non-randomized. While the 

classifiers trained on all data do find a class ‘benefit’ with a larger benefit from 

chemotherapy than the population as a whole in these patients (Figure +b), the 



Chapter 4 

 114 
 
 

 
 
 
4 

 

 

 

 

 

matched classifier performs better (Figure +c), particularly in identifying a class ‘no 

benefit’. This shows matching a population to simulate a more randomized setting 

could improve performance, even when validating in a non-matched setting.  

 

GESTURE-BC classifier cannot identify a class ‘benefit’ in METABRIC data  
We next assess the performance of the classifier trained on the matched dataset in the 

ER positive en ER treated patients included in the METABRIC data. Most patients in 

this dataset were diagnosed before ./// and thus represent a different clinical reality. 

Moreover, only -../% of patients received chemotherapy and we find an HR of -.[( ('[ 

% CI -.-, - ..-\, p= /.//\) against giving chemotherapy. When we classify these patients 

with the GESTURE classifier, we find an opposite effect, where class ‘no benefit’ in fact 

sees a greater benefit than the population as a whole (Figure ,a). Since there are only 

.- patients in the no benefit class who received chemotherapy this HR is, however, not 

significant and could therefore be due to chance. Interestingly, when we train a classifier 

on METABRIC - matched in a similar manner as with SCAN-B - we see the same effect, 

with a lower HR in class ‘no benefit’ (Figure ,b). Unfortunately, the METABRIC dataset 

does not include enough chemotherapy patients to perform a cross validation. It is clear 

however that the SCAN-B classifier does not validate in the METABRIC dataset. While 

this could be due to overfitting on the SCAN-B dataset, cross validation did show some 

signal was captured in the classifier. It could also be that the METABRIC dataset, where 

an HR not in favor of chemotherapy is found, represents a different population in part 

due to the fact that these patients were included when clinical practise was different.  

 

HAND2 is present in all classifiers  
Finally, we investigate which genes are included in all four classifiers trained on the 

SCAN-B (three classifiers from cross validation and one trained on the matched data). 

Of the selected GO categories none are selected in all four classifiers. Also, there is little 

overlap among the genes within the GO categories selected (Figure ,c). The only gene 

present in all three classifiers trained in cross validation and the classifier trained on the 

matched data is HAND.. HAND. is also present in the classifier trained on the 

METABRIC data. This gene plays an important role in limb development and is 

associated with progression in endometrial cancer (Jones et al. ./-\), but has not been 

associated with breast cancer. It should be noted that the classifier validated on Fold - 

in the cross validation only included -/ gene sets and \[ genes in total, making overlap 
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 less likely. The other three classifiers include .. overlapping genes (including HAND-), 

which are shown in Figure ,d. The network was generated by GeneMania, which links 

genes based on the interaction described in literature (Warde-Farley et al. ./-/). The 

network is highly enriched for the GO categories “RNA polymerase II core promoter 

sequence-specific DNA binding transcription factor activity” and “sequence specific 

DNA binding”, both important for the regulation of gene expression. Multiple of these 

.. genes have also already been implicated in disease progression and chemotherapy 

resistance in breast cancer. For example, overexpression of the transcription factor KLFZ 

has been shown to be predictive of complete remission in response to neoadjuvant 

chemotherapy (Dong et al. ./-+). Gas, overexpression has been described to contribute 

Figure 4. a. Kaplan Meier of the performance of the classifier trained on matched 
SCAN-B in the METABRIC dataset. b. Kaplan Meier of the performance of the 
classifier trained on the matched METABRIC dataset on the SCAN-B dataset. c. 
Overlap of genes between the four classifiers trained on the SCAN-B dataset. d. 
The overlapping genes in 3 out of 4 classifiers. The edges are inferred by 
GeneMania. A purple edge indicates co-expression, a green edge a genetic 
interaction, a light-blue edge a shared pathway, a dark-blue co-localization, a red 
edge a physical interaction and a yellow edge a shared protein domain.  
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to chemoresistance (Wang et al. ./-,). SOX+ and SOX-- are both related to disease 

progression in breast cancer (Zhang et al. ./-.; Shepherd et al. ./-,). While these .. 

genes are not essential for performance - as they were not included in the classifier 

validated on Fold - - there are clear links with breast cancer progression.  

 

Discussion 
 
In this work, we show that the GESTURE approach, which we originally developed in 

the context of MM in which survival rates are poor, can successfully be adapted to breast 

cancer, which is characterized by much better survival rates. Our classifiers, which in 

total are based on -/- gene sets containing \,) unique genes, can predict chemotherapy 

benefit with an HR of /.\- (p = ,*-/-') in class ‘benefit’. The classifier represents a 

different signal than known markers. We also show that though treatment is not 

randomized in the SCAN-B dataset, the performance of the classifier in non-

randomized data can be improved by matching patients between the treatment arms in 

the training data.  

 

We find that when applied to an external dataset, the METABRIC dataset, the classifier 

does not show the same predictive behavior. However, it should be noted that the fact 

that there is no HR in favor of chemotherapy in this dataset already indicates it does 

not represent the same patient population and clinical setting. More specifically, the 

patients included in the METABRIC dataset were diagnosed roughly -[ years before the 

SCAN-B dataset and thus do not represent the same clinical practice. It may therefore 

not be surprising that a classifier trained on one of the two datasets does not validate 

on the other. This does highlight the necessity of training and validating in datasets that 

accurately reflect the patient population for which the classifier is intended. It 

represents a fundamental challenge in training these models; while the older dataset 

has longer follow-up, more events and thus more statistical power, the newer data most 

likely represents the intended use population better. The development of these models 

is further hampered by the limited number of datasets with all necessary annotations 

that are made available publicly.  

 

While further validation in a representative test set is necessary, the cross validation 

and validation of the classifier trained on matched data does indicate that GESTURE 
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can be successfully adapted to breast cancer data and predict benefit to chemotherapy. 

GESTURE is thus more widely applicable than the setting it was developed in and can 

be adapted to different diseases. It could be an important tool in making personalized 

medicine a reality in more types of cancer.  
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Abstract  
 
When phase III clinical drug trials fail their end-point, enormous resources are wasted. 

Moreover, even if a clinical trial demonstrates a significant benefit, the observed effects 

are often rather small and may not outweigh the side effects of the drug. Therefore, 

there is a great clinical need for methods to identify genetic markers that can identify 

subgroups of patients which are likely to benefit from treatment as this may i) rescue 

failed clinical trials and/or ii) identify subgroups of patients which benefit more than 

the population as a whole. When single genetic biomarkers cannot be found, machine 

learning approaches that find multivariate signatures are required. In the context of 

SNP profiles this is extremely challenging owing to the high dimensionality of the data. 

Here we introduce RAINFOREST (tReAtment benefIt prediction using raNdom 

FOREST), an adaptation of the random forest that can predict treatment benefit from 

patient SNP profiles obtained in a clinical trial setting. 

 

We demonstrate the performance of RAINFOREST on the CAIRO. dataset, a phase III 

clinical trial which tested the benefit of cetuximab treatment for metastatic colorectal 

cancer. While this trial concluded there was no benefit, we find that RAINFOREST is 

able to identify a subgroup comprising .(.(% of the patients that significantly benefit 

from treatment with a hazard ratio of /.,' (p = /./+) in favor of cetuximab. The method 

is not specific to colorectal cancer and could aid in reanalysis of phase III clinical trial 

data and provide a more personalized approach to cancer treatment, also for drugs 

where there is no clear link between a single variant and treatment benefit. 
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Introduction  
 
Novel drugs are tested for efficacy in phase \ clinical trials. Despite enormous 

investments in the development and research prior to the trial, approximately [+% of 

the phase \ clinical trials still fail, most often due to a lack of efficacy of the drug tested 

(Hwang et al. ./-,). Trials testing anti-cancer drugs have a higher failure rate than non-

cancer drug trials. It was found that trials which adopt a biomarker strategy, i.e. attempt 

to identify a subset of patients most likely to benefit, have a significantly lower failure 

rate (Jardim et al. ./-(). This is also true for trials evaluating targeted drugs. It is thus 

clear that even if a clinical trial does not reach its predefined endpoint, there could still 

be a subset of patients that do see benefit from the drug. Moreover, even if a clinical 

trial does indicate statistically significant benefit, this benefit may in fact be quite 

modest and driven by a subset of patients that have a larger benefit from the drug. For 

this reason, the benefit for all patients may be insufficient to warrant prescription of a 

drug with very serious side effects. In such cases, it is important to establish which 

subset of patients benefit more than the population as a whole and develop tools that 

can predict such treatment benefit at the moment of diagnosis.  

 

It has become clear that the genetic background of both tumor and patient can 

influence drug response and several germline variants have been linked to the 

effectiveness of a number of drugs (anti-cancer and other). SNP panels enabling the use 

of these variants for personalized medicine are under active development (van der 

Wouden et al. ./-'). For instance, for several chemotherapies, its sensitivity or toxicity 

has been linked to specific single nucleotide polymorphisms (SNPs) (Panczyk ./-+; 

Sullivan et al. ./-+; Yin et al. ./-.). Despite this initial progress, for many drugs there 

is no clear relationship between response and a single variant or other simple molecular 

biomarker and more complex machine learning models are needed.  

A major challenge is that genome wide germline variation datasets are very high 

dimensional, often including -//- to -///-fold more features (SNPs) than samples 

(patients). As a result, machine learning models have a high risk of overtraining 

(Szymczak et al. .//'). One class of models, which has shown great promise in 

preventing overtraining in such situations, are Random Forests (RFs). Outside the 

cancer field, RFs have successfully been used to predict drug response using germline 

variation data (Athreya et al. ./-'; Cosgun, Limdi, and Duarte ./--). RFs are ensemble 
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classifiers combining multiple decision trees. RFs are explicitly designed to prevent 

overtraining by using only a subset of the available training samples and randomly 

sampling a subset of the features at each split. Since the algorithm only has access to 

part of the dataset at a time, it is less likely to overtrain on the dataset as a whole, while 

predictive performance remains high due to the fact that many trees are combined in 

an ensemble. For instance, RFs have been successfully employed to predict optimal 

warfarin dose using genome wide germline variation data and shown to outperform 

alternative models (Cosgun, Limdi, and Duarte ./--).  

 

Traditional machine learning methods like RFs enable the discovery of models that 

predict sensitivity for one specific treatment, i.e. distinguish between poor and good 

responders within one homogeneous treatment group. However, owing to recent 

progress in drug development for most cancers there are different treatment options 

available. A clinically more relevant question is thus whether an individual patient will 

benefit more from one treatment than another. In this work, we therefore define 

treatment benefit as having a better survival outcome on the treatment of interest than 

an alternative treatment. The difference between these treatments, often expressed in 

terms of hazard ratio (HR), should furthermore be greater than the difference observed 

in the population as a whole.  

 

RFs have also been applied to survival analysis and used to identify (non-linear) 

prognostic factors in several cancer types, with modest success (Akai et al. ./-); 

Manilich et al. ./--). In essence, these random survival forests are similar to traditional 

RFs and also construct an ensemble classifier from individual decision trees, but the 

optimal split in these trees maximizes the survival difference between the two daughter 

nodes (Ishwaran et al. .//)). 

 

In order to predict treatment benefit as we have defined it, traditional machine learning 

methods are unsuitable. Traditional class labels required for training machine learning 

models are not available. After all, we cannot know how a patient would have responded 

to a treatment they did not receive, and therefore we cannot know a priori (and thus 

label) a patient as class ‘benefit’ or class ‘no benefit’. More specifically, a patient 

responding well to a certain treatment could have had an even better response on an 

alternative treatment. Conversely, a poor response does not necessarily mean the 
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patient did not see any benefit from the treatment. This lack of training labels renders 

most regular machine learning approaches unsuitable. Likewise, survival analysis using 

random survival forests also does not solve the problem of a lack of training labels, as 

they simply aim to predict survival outcome instead of benefit to a certain treatment. 

An overview of the different aims of traditional machine learning, survival analysis and 

benefit prediction is provided in Figure 4a.  

 

The machine learning method we propose can directly derive a benefit prediction model 

from germline genetic data gathered in a clinical trial in which patients were randomly 

assigned to one of two different treatment arms. To this end we propose an alternative 

formulation of the traditional RF classifier, called RAINFOREST (tReAtment benefIt 

prediction using raNdom FOREST). RAINFOREST implements the SurvDiff measure as 

an alternative to the Gini impurity, to decide on the best possible split in each decision 

tree. SurvDiff captures the survival difference between the treatment arms within a 

node. The SurvDiff measure enables training predictive decision trees by providing a 

split criterion which results in a ‘benefit’ and ‘no benefit’ branch in the tree. An overview 

of RAINFOREST and the SurvDiff measure is provided in Figure 4b.  

 

We apply RAINFOREST to the CAIRO.-trial, a randomized phase III clinical trial 

designed to test whether patients with metastatic colorectal cancer benefit from 

addition of the EGFR inhibitor cetuximab to standard first-line treatment. This trial 

showed that the addition of cetuximab to a regimen of chemotherapy and bevacizumab 

results in a significantly shorter progression free survival (Tol et al, .//'). However, it 

is known that cetuximab response varies widely between patients. Previously, several 

somatic mutations in the tumor that influence cetuximab response have been identified 

(Salvatore et al. ./-/; Khan et al. ./-(). Moreover, in the context of the CAIRO. trial a 

germline SNP was identified with the potential capability to predict treatment benefit 

(Pander et al. ./-[), although this variant was not validated.  

 

In this paper we demonstrate the capability of RAINFOREST on the CAIRO. trial. We 

show that RAINFOREST can identify a subset of patients with significant benefit from 

cetuximab and that this approach outperforms both univariate analysis and a random 

forest trained on predefined labels.  
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Methods 

 
Overview of RAINFOREST 
A random forest model is an ensemble classifier consisting of individual decision trees 

trained on different subsets of the training data. More specifically, each tree in the forest 

only has access to a subset of the samples (sampled with replacement) and for each split 

in the tree a random subset of the features is sampled.  

The optimization of each tree, i.e. choosing the optimal split for a node in the tree, is 

most often achieved by minimizing the Gini impurity. The Gini impurity is a measure 

of the probability that a sample would be incorrectly labeled in this split and is / when 

a node contains only samples with the same label. Problematically, in the context of 

predicting treatment benefit no predefined training labels are available, as we cannot 

know if a patient survived longer (or shorter) from treatment than on standard of care 

or some other treatment. We can therefore not use the Gini impurity for RF 

construction.  

 

Treatment effect is most often determined through a Cox proportional hazards model 

(see next section for more details), based on which a hazard ratio (HR) is calculated. 

The HR associated with a treatment provides an estimate of the hazard of experiencing 

progression of disease relative to the hazard when another treatment would be given. A 

HR below - indicates benefit from receiving the treatment. In the absence of training 

labels that can be used to calculate accuracy, we use the HR as performance measure 

when validating the RAINFOREST model in cross validation.  

Problematically, estimating a Cox model is too computationally expensive to be used in 

a splitting criterion when training thousands of decision trees. We therefore propose 

RAINFOREST, a random forest approach in which we introduce a novel splitting 

criterion that can be optimized to directly predict treatment benefit. For each sample, 

RAINFOREST requires treatment arm data, survival data and SNP data. Each decision 

tree should define a class ‘benefit’ and ‘no benefit’ which maximizes the difference 

between treatment effect. We define this difference through the splitting criterion 

SurvDiff: 
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Figure 1. a. An overview of the difference between traditional machine learning, 
survival analysis and benefit prediction. b. An overview of the RAINFOREST 
algorithm. The survival curves show examples of what a class ‘benefit’ and ‘no 
benefit’ should look like. We train 10,000 of these individual decision trees to form 
the RAINFOREST model, which is validated on ⅓ of the data that acts as test data 
and was not used in training of the model.  
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where 𝑠𝑢𝑟𝑣𝐴.MMMMMMMMMM and 𝑠𝑢𝑟𝑣𝐵.MMMMMMMMMM are the mean survival data for treatment arm A and B in the 

left node of the split, respectively. Similarly, 𝑠𝑢𝑟𝑣𝐴/MMMMMMMMMM and 𝑠𝑢𝑟𝑣𝐵/MMMMMMMMMM are the equivalent in 

the right node. Moreover, 𝑛0and 𝑛1 denote the number of samples included in the node 

in treatment arm A and B, respectively. For each SNP under consideration we test two 

thresholds (SNP value >/ or >-) to define the left and right node. 𝑆𝑢𝑟𝑣𝐷𝑖𝑓𝑓thus 

corresponds to calculating the absolute difference between the Welch’s T-test statistics 

found in the left and right node. The best SNP is the one resulting in the maximum 

value of 𝑆𝑢𝑟𝑣𝐷𝑖𝑓𝑓.  

 

Using this criterion we train -/,/// decision trees. We further prevent overtraining by 

restricting every tree to a depth of two. This restricts the tree to a maximum number of 

four leaves (nodes without a child node) and means every tree uses at most three SNPs. 

When building a tree using SNP data, the RF can be biased towards choosing non-

informative SNPs with a high minor allele frequency over informative SNPs with a lower 

minor allele frequency (Boulesteix et al. ./-.). This bias is not very pronounced in the 

beginning of a tree, but can dramatically influence SNP selection lower in the tree, when 

smaller sample sizes are present. We therefore also only split a node further when it 

contains at least [/ patients. These restrictions also reduce computational cost. An 

overview of the construction of the RAINFOREST model is given in Figure 4. 

  

Survival analysis and event imputation 
Survival data is right censored, which means that all patients who did not experience 

progression of disease by the end of follow-up are censored, i.e. no event is recorded. 

Cox models can handle censored data by maximizing the partial log likelihood over 

coefficient 𝛽 through: 

 

ℓ(𝛽) = 	 - 𝑋! ∗ 	𝛽 − log - 𝜃%
%:3.43/!:5/6#

 

 

where 𝜃! = 	𝑒𝑥𝑝(𝑋! ∗ 𝛽) and 𝑋 represents the explanatory variable, i.e. the treatment 

arm in this situation. When estimating the likelihood of an event occurring for subject 

i at a certain time t the 𝜃!is summed for every subject j that has not yet experienced an 

event at t. In this way censored patients can be included and used for optimization up 



RAINFOREST: predicting treatment benefit from clinical trials 

 131 

 
 
 
 
5 
 

 

 

 

to the time of censoring, instead of being excluded from the dataset all together. The 

HR is defined as the exponent of 𝛽.  

 

The SurvDiff measure does not rely on Cox models. Instead, RAINFOREST deals with 

the censoring problem by imputation. More specifically, for all censored patients an 

event time is imputed based on all patients for whom an event was observed as 

reference. To achieve this, a Weibull distribution is fitted to all uncensored patients 

through maximum likelihood estimation. The Weibull distribution can be used to 

adequately parametrize a survival distribution and can also - akin Cox regression - 

model proportional hazards (Carroll .//\). The cumulative distribution function of a 

Weibull distribution is described by  

 

𝐹(𝑥; 𝑘, 𝜆) = 1 −	𝑒.(8/:0) 
 

where 𝑥 is the time to event, 𝑘 is a shape parameter and 𝜆 is the scale parameter. In our 

dataset we find the maximum likelihood is reached with a value of --.'- for 𝜆 and -.,[ 

for k. Importantly, we find very similar parameters for the distribution when we perform 

a maximum likelihood estimation for each treatment arm separately, justifying an 

estimation over the whole dataset. This is in line with the observation in the original 

trial that there is no significant survival difference between the two treatment arms. For 

each censored patient we now sample an event time greater than the time of censoring 

from the estimated Weibull distribution. 

 

Data  
In this work the survival and genome wide genotype data from patients enrolled in the 

CAIRO. trial are used, which included patients in (' Dutch centers to test the addition 

of cetuximab for the treatment of metastatic colorectal cancers. The data generation 

and processing has been previously described in detail (Pander et al. ./-[). Briefly, we 

use survival data and germline DNA of [[\ patients who received treatment regimen 

CAPOX-B (capecitabine, oxaliplatin and bevacizumab) with cetuximab (n = .(+) or 

without cetuximab (n = .(').  

DNA was isolated from peripheral leukocytes and genome wide genotyping was 

performed with Illumina beadchip arrays. Of all measured variants ,+(,[[/ passed all 

quality checks and we performed no imputation of additional variants. We also exclude 
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SNPs with a minor allele frequency <[% and SNPs with any missing data, after which 

.[(,//) SNPs remain. Each SNP is coded as /,-, or ., corresponding to the number of 

copies of the alternative allele. We use progression free survival (PFS) as the end point 

in all analyses. 

 

Univariate SNP analysis  
To evaluate the ability of individual SNPs to predict cetuximab benefit, we compute two 

Cox proportional hazard models per SNP. First, we compute an additive model which 

contains the SNP and treatment arm as separate variables. The second model also 

includes an interaction term between the SNP and treatment arm (i.e. treatment 

arm*SNP). For a SNP that influences treatment benefit, this second model should 

provide a better fit. We test whether there is a significant difference in model fit using 

a likelihood ratio test. We rank SNPs on most significant contribution of the interaction 

term to the model, as measured by the likelihood ratio test p-value. With the best SNPs 

we define a benefit score by:  

 

𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑆𝑐𝑜𝑟𝑒 = 	-𝑋!𝛽!	
$

!6#

 

 

Where X is the alternative allele count for a certain SNP i and 𝛽 the Cox regression 

coefficient associated with the interaction term. We perform forward feature selection 

to determine the best SNP combination by ranking the SNPs on p-value and adding the 

top .[/ in order. The SNP combination resulting in the lowest HR in class ‘benefit’ is 

chosen. We validate this model in a three-fold cross validation.  

  

Random forest using survival-derived labels  
We compare the performance of RAINFOREST to the results obtained by a regular RF 

trained on the survival labels directly (which, as discussed previously, is not necessarily 

the best measure for treatment benefit). To obtain a labeled dataset, required for 

training a regular RF, we define the class ‘benefit’ as the patients with the .[% best 

progression free survival from the cetuximab arm combined with the patients with the 

.[% worst progression free survival from the other arm. The other ([% of patients 

comprise class ‘no benefit’. With these labels we define a class benefit that has a 



RAINFOREST: predicting treatment benefit from clinical trials 

 133 

 
 
 
 
5 
 

 

 

 

significantly better survival on cetuximab than the rest of the population, satisfying our 

definition of treatment benefit.  

 

Cross validation fold construction 
To evaluate the performance of univariate SNP selection, the regular RF and the 

RAINFOREST models, we employ \-fold cross validation. To ensure the results are 

directly comparable, we use the same folds for all analyses. To obtain a fair estimation 

of the performance, it is important that the different folds are stratified, i.e. contain a 

similar and representative part of the whole dataset. Here we cannot balance the folds 

using training labels, as these are not available. To ensure the cross validation folds are 

representative, we therefore balance on treatment arm. Furthermore, we require that 

the HR found between the treatment arms does not differ more than /./[ between all 

three folds.  

 

Optimization of mtry parameter  
RFs often use an out-of-bag (OOB) error to optimize model parameters. Since in an RF 

model each tree samples a different subset of the patients, each training sample is not 

used in a number of trees. The OOB error is determined by classifying each training 

sample, using only the trees in which a particular sample was not included. However, 

the OOB error can severely underestimate performance when random sampling is 

performed from unbalanced classes (Mitchell ./--). As we do not know the labels here, 

representative sampling is impossible. Using random sampling we indeed see that the 

OOB performance, defined as the HR between treatment arms in class ‘benefit’, is close 

to random (HR class ‘benefit’ in OOB sample is -.+[ ('[% CI /.'+ - ...,, p =/.-/)).  

 

As we cannot obtain a realistic estimation of the performance from the OOB sample in 

RAINFOREST, we cannot optimize the mtry parameter which defines how many 

features are sampled at every split. However, previous work suggests that the best mtry 

is linked to dataset dimensionality (Goldstein et al. ./-/). The RF trained on survival 

labels uses the same features as RAINFOREST. In training this RF we try several settings 

for mtry (√𝑝, .√𝑝, /.-p and /..p). For training RAINFOREST we use the same mtry 

setting as in the best performing RF trained on survival based labels (√𝑝) and train 

-/,/// trees. 
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Results 
 
T-test in SurvDiff criterion captures survival difference  
We first assess whether the T-test on the imputed survival data, which is used in the 

SurvDiff splitting criterion, captures the same signal as Cox regression would capture, 

to ensure this is a suitable measure to use during training of the RAINFOREST model. 

For each SNP we perform a T-test for both the reference and alternative allele, 

contrasting the difference in imputed survival between the two treatment arms. We 

compare the resulting T-test statistic to the equivalent Cox regression 𝛽 (Figure *a). 

We find these measures to be highly correlated for both the reference allele (Spearman 

correlation coefficient = /.'[, p < .*-/-(&) and the alternative allele (Spearman 

correlation coefficient = /.'+, p < .*-/-(&). Importantly, this approach reduces compute 

time by one order of magnitude (\+.+- minutes for the Cox regression computation 

versus -.)' for the T-test on a single core). Thus, the T-test approach captures a similar 

signal as a full survival analysis while keeping it computationally feasible to train a 

model with thousands of trees.  

 

RAINFOREST can identify patients benefiting from cetuximab 
We next trained RAINFOREST to predict cetuximab benefit on the CAIRO. trial data 

and validate its performance in a three-fold cross validation. Figure *b shows the 

survival curves in the dataset as a whole, without any classification. Here we find an HR 

of -.-- ('[%CI /.'\ – -\\, p = /..[) for cetuximab treatment. Figure *c shows the 

different HRs found in class ‘benefit’ when using different operating points of the 

classifier (i.e. different thresholds on the number of trees classifying a sample as 

‘benefit’). This curve indicates a direct relationship between the operating point and the 

HR found in class ‘benefit’ - we find a lower HR when the threshold is set higher. As no 

sample has a posterior probability higher than /.[, we cannot use a majority vote to 

assign a sample to class ‘benefit’ or ‘no benefit’. The threshold set provides a trade-off 

between the size of class ‘benefit’ and the HR found. Figure *d shows the Kaplan Meier 

plot when the classification threshold that results in the lowest p-value in class ‘benefit’ 

is used. Importantly, all thresholds classifying [/% or less of the patients as ‘benefit’ 

result in an HR below - and would thus provide benefit. We show the combined results 

across the three cross validation folds, i.e. the predictions for each patient is based on 

the two folds in which this patient was not present. In class ‘benefit’ (n = -[\) we find a  
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Figure 2. a. Scatterplot of the T-test statistic and Cox regression coefficient per 
SNP. We perform this analysis once using the reference allele to define class 
‘benefit’ and once using the alternative allele. b. Kaplan Meier of the CAIRO2 
survival data used, showing no survival benefit for the patients who received 
cetuximab. c. The HR found in class ‘benefit’ when using different threshold on the 
posterior probability to define benefit. The red dashed line shows the HR between 
treatments found in the dataset as a whole, without any classification. d. Kaplan 
Meier of the classification in class ‘benefit’ and ‘no benefit’ using the posterior 
probability threshold associated with the lowest Cox regression p-value in class 
‘benefit’.  
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significant HR of /.,' ('[% CI /.+' - /.'), p = /./+) whereas in class ‘no benefit’ (n = 

+//) an HR of -.\. ('[% CI -./( - -.,., p = /./-) is found. This performance is relatively 

stable in all cross validation folds. More specifically, we find an HR of /.,, (/.\\ - -./\, 

p = /..\) in class ‘benefit’ in Fold -, an HR of /.(. (/.+/ - -.\-, p = /..)) in Fold ., and 

an HR of /.,- (/.++ - -./', p = /.-/) in Fold \. While the original trial concluded addition 

of cetuximab to the standard regimen has no benefit, this result shows RAINFOREST 

can successfully identify a subset of patients, comprising .(.(% of the population, that 

do benefit from cetuximab.  

 

Known and new SNPs are identified in frequently chosen SNPs 
Over the three cross validation folds in total [-,-[+ unique SNPs are used (-','-), -',')., 

and -',)-/ in the models validated on Fold -, . and \ respectively). Figure +b shows the 

number of SNPs overlapping between the three different models. We obtain an 

empirical p-value for this overlap by randomly sampling -/,/// trees for each fold and 

computing the overlap. We find the overlap of ()- SNPs between the three folds to be 

significant (p < -*-/-"). We also train a RAINFOREST model using shuffled treatment 

labels with the same cross validation folds. With shuffled labels the association between 

genomic data and treatment specific outcome is removed and these models can indeed 

not predict benefit in hold-out data (HR class benefit = /.'[, '[% CI /.,+ - -.+-, p = /.)). 

Between the models trained on shuffled labels only \[, SNPs overlap, which is similar 

to mean overlap found in random sampling (mean overlap = \++.(). The overlap found 

in the RAINFOREST model is thus clearly non-random.  

Figure +a shows the number of times each individual SNP is selected across the three 

cross validation folds. Interestingly, the SNP selected most often, rs))[/\,, has been 

reported before to predict cetuximab benefit in a univariate analysis of the CAIRO. trial 

(Pander et al. ./-[). This shows that when univariate signals are present in the data, 

RAINFOREST will also capture these. In addition to rs))[/\,, we also find a cluster of 

frequent SNPs on chromosome [ which have not been reported before. Four of these 

variants (rs.[+'()., rs..)(')), rs-/[,)'\ and rs..[[[+,) are intronic variants within 

the ERAP- gene. A fifth SNP (rs-//,'\,-) is annotated to LNPEP, a paralog of ERAP-. 

These SNPs are in high linkage disequilibrium (coefficient of linkage disequilibrium 

>/.'), where linkage disequilibrium is defined as the squared Pearson correlation 

coefficient. Both ERAP- and LNPEP code for aminopeptidases. ERAP- plays an 

important role in cleaving proteins into peptides that can be presented by MHC class - 
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proteins to immune cells (Falk and Rötzschke .//.). Cetuximab is a monoclonal 

antibody and it has been shown that activation of the adaptive of the immune system 

and presence of cytotoxic T-cells are essential for its antitumor effect (Holubec et al. 

./-,; Yang et al. ./-\). A potential explanation of these observations is that these SNPs 

represent genetic variation in the T-cell response that influence cetuximab response.  

 

For all ()- SNPs that are present in all three models we also assessed feature importance 

by shuffling the genotype of the individual SNP and predicting the class labels on the 

validation again. This eliminates the association between the genetic data and 

treatment effect, so we can estimate the importance of each SNP. Without exception, 

shuffling SNPs increases the HR, which means the model performs worse. Figure +c 

shows the difference in HR for the ./ SNPs with the largest effect. Note that since many 

Figure 3. a. Manhattan plot showing the number of times individual SNPs were used 
in a decision tree across all three cross validation folds. b. Venn diagram showing the 
overlap in SNPs used in the three models for the three different cross validation folds. 
c. Barplot showing the 20 SNPs with the greatest influence on validation HR when the 
data is shuffled. Error bars indicate standard deviation. The SNPs indicated in red text 
are in LD > 0.9 with each other and all lie in the same region of chromosome 5. SNPs 
in black are not in high LD with any other SNP in the plot. 
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SNPs are only present in a few trees (i.e. the most frequent SNP is only present \- times), 

the effect of shuffling is limited. We thus also do not see large changes in validation HR. 

Despite this limitation, + out of [ SNPs from the chromosome [ cluster as well as 

rs))[/\, are present in the top ./, strengthening their putative role in predicting 

cetuximab benefit.  

 

Lactate dehydrogenase and age do not determine benefit prediction 
High baseline lactate dehydrogenase (LDH) is a known prognostic factor in colorectal 

cancer (Li et al. ./-,), but it does not have a significant interaction with treatment effect 

in survival analysis in our data (HR = /.)-, '[% CI /.[( – -.-(, p = /..,). Patients with 

high LDH are fairly evenly spread between class ‘benefit’ (+[.,%) and class ‘no benefit’ 

(+../%) and in neither class there is a significant interaction between treatment and 

high LDH (HR ‘benefit’ = /.'., '[% CI /.+, – -.)+, p = /.\/ and HR ‘no benefit’ = /.)/, 

'[% CI /.[. – -.... p = /.\/).  

There is also no significant difference in the mean age between the two classes (p = 

/.,,). The difference in treatment benefit is thus not explained by LDH and age, which 

are two common patient characteristics used in clinical decision making (van Eeghen 

et al. ./-[; Li et al. ./-,). 

  

Sex influences treatment benefit  
In the original trial the authors reported that women have a significantly better survival 

when not treated with cetuximab. Indeed, when considering the patients classified as 

‘benefit’, we find an HR of /.,- ('[%CI /.+/ - /.'+, p = /./.) for men and an HR of -./+ 

('[% CI /.[, - -.'+, p = /.'/) for women. While for women the HR in class benefit is 

lower than the overall HR (-.[-, '[% CI -.-+ - ..//, p = /.//\), it is not below - and 

therefore does not signify benefit. Moreover, more men are classified as benefit (\-.'%) 

than women (.../%). In our dataset we find an HR of -.(\ (p = /.//\, '[% CI -../ - 

..+') for the interaction term treatment*sex. We therefore investigate whether the 

interaction between treatment effect and chromosomal sex could also partly explain the 

performance of our model. The interaction term for sex*treatment was similar in both 

classes, giving an HR of -.(- (p = /.-(, '[% CI /.)/ - \.,\) in class ‘benefit’ and an HR of 

-.,( (p = /./., '[% CI -./' - ..[,) in class ‘no benefit’. Together, this indicates 

RAINFOREST discovered a signal independent of the sex effect. 
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Model incorporating chromosomal sex predicts benefit for men 
Since sex is known to influence the outcome of cetuximab treatment and we see a 

different HR for men and women in our class ‘benefit’, we also train a RAINFOREST 

model that incorporates the sex variable, which we call the sex aware model in the rest 

of this text. The training procedure is the same as before, but in the construction of a 

tree, in addition to a sample of the SNPs, chromosomal sex can be selected as a splitting 

variable. We also construct new cross validation folds, in which the stratification is 

chosen such that, in addition to the overall treatment HR, the interaction term 

sex*treatment is similar in all folds. 

 

For each fold we train -/,/// trees. On average --/' trees use the sex variable for a split 

(-.\. for Fold -, -.,\ for Fold . and )\- for Fold \). The optimal HR found in class 

‘benefit’ (n = -\-) is /.[. ('[% CI /.\[ - /.(,, p = /.///(), while the HR in class ‘no 

benefit’ (n = +..) is -.\[ ('[% CI -.-- - -.,(, p = /.//+). The sex aware model thus 

provides a better performance than the original model that did not include the sex 

variable. However, it should be noted that in this case class ‘benefit’ consists almost 

entirely of men ('[.+%). We therefore evaluate the optimal threshold for men and 

women separately, as well as for the whole dataset (Figure ,). It follows that the sex-

aware model works better than the original model for men for a class ‘benefit’ below 

[/%, but not for women. While the sex aware model has a better performance for 

women in a larger class ‘benefit’, it should be noted that all these HRs are well above - 

and thus do not represent true benefit. 
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Figure 4. Performance for different sized class benefit (as determined with different 
thresholds on the posterior probability) for men and women, and the whole dataset. 
The red dashed line represent the HR found in the population as a whole. 
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When considering the selected SNP-variables, --/ SNPs are shared between all three 

folds of the original model and all three folds of this new model. This includes rs))[/\, 

and all the SNPs in the cluster on chromosome [ described above, underscoring their 

importance in determining benefit to cetuximab. 

 

When we train a RAINFOREST model in only women, we do find an optimal HR of /.(, 

(p = /.\'), suggesting a model can be obtained with a true predictive performance. 

However, the performance curve (Supplemental Figure -) does not show the linear 

relationship between the size of class benefit (as determined by the threshold on the 

posterior probability) and HR in class benefit. This indicates that a well-defined class 

‘benefit’ cannot be identified by RAINFOREST in this dataset. The sex aware model 

reflects this fact by not including women in class ‘benefit’ when given access to this 

information. This shows RAINFOREST can accommodate this type of known effect and 

fit a model on the rest of the variables, improving the performance of the model. 

 

Univariate SNP selection does not validate in cross validation  
We compare the performance of RAINFOREST to the univariate selection of SNPs (see 

Methods). This analysis reveals no SNPs that are significant at a multiple testing 

corrected p-value less than /./[. We perform forward feature selection by ranking the 

SNPs on likelihood ratio test p-value to find the optimal SNP combination. With this 

approach, the models for fold -, . and \ contain -/-, -'( and -'/ SNPs respectively. In 

line with the earlier univariate study (Pander et al, ./-[), Rs))[/\, (the most 

frequently selected SNP in the RAINFOREST model) is selected in all three folds. With 

the exception of one other SNP (rs-/-,[\),) no other SNPs overlap. Moreover, the 

model does not result in a significant HR, as we find an HR of -.// ('[% CI = /.(/ - -.++, 

p = -) in class ‘benefit’ (n = -\)) and an HR of -.-[ ('[% CI /.'\ - -.+-, p = /.-') in class 

‘no benefit’ (n = +-[). Univariate selection of the SNPs thus does not lead to a model 

that validates on unseen patient data.  

 

Random forest on survival based labels does not validate 
We also train a classical random forest model on the benefit labels derived from the 

survival data (see Methods). The cross validation is performed using the same folds as 

in the univariate and RAINFOREST analysis. Since we do have training labels in this 

case, mtry can be optimized using the OOB error. The default setting often used is the  



RAINFOREST: predicting treatment benefit from clinical trials 

 141 

 
 
 
 
5 
 

 

 

 

 

square root of all features available, but it has been suggested that in high dimensional 

datasets a higher mtry leads to a better performance (Goldstein et al. ./-/). We 

therefore try several values for mtry and evaluate the OOB error. Figure [a shows that 

the default V𝑝, where p is the total number of features, leads to the lowest error (Figure 

[a).  

 

Using the optimal model we find that no patients are classified into the ‘benefit’ class 

when using majority vote, despite the fact that both classes are sampled equally in the 

training data.  We therefore classify a sample with where more than \/% of trees 

indicate benefit as benefiting, as this leads to a class benefit of approximately .[%. 

Using these settings we train a random forest with -/,/// trees and validate it on the 

test set. In the test set we set a threshold on the posterior probability that results in the 

lowest p-value in class ‘benefit’. We then find an HR of /.)) ('[% CI /.[' - -.\., p = 

/.[+) in class ‘benefit’ (n = -\)) and an HR of -.-) ('[% CI /.'( - -.++, p = /.-/) in class 

‘no benefit’ (n = +-[). The Kaplan Meier curve is shown in Figure [b. While the RF can 

identify a class ‘benefit’ with an HR below -, this is not statistically significant at p < 

/./[. Similar results are obtained when defining benefit as the top [/% and bottom 

[/% of the treatment arms (HR benefit = /.'(, '[% CI /.(/ - -.\,, p = /.))) or when 

Figure 5 a. The OOB error found for the survival based levels when using different 
values for mtry. b. Kaplan Meier of the classification in class ‘benefit’ and ‘no benefit’, 
using the threshold that defines the class ‘benefit’ with the lowest Cox regression p-
value.  
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restricting the RF to a depth of two (HR benefit = /.'., '[% CI /.[/ - -.,(, p = /.((). 

We conclude that predefined benefit labels based on survival outcome are not suitable 

as training labels for training an RF classifier for treatment benefit.  

 

Discussion 
 
We here demonstrate RAINFOREST, a new approach to predict treatment benefit from 

patient germline variation data. The RAINFOREST model successfully identifies a 

subset of patients that benefits from cetuximab treatment in the CAIRO. trial. It 

outperforms univariate analysis and traditional random forest models. We demonstrate 

its performance through cross validation, as the best estimate of the performance on 

independent validation data. Further validation in a truly independent patient cohort 

should further establish clinical utility of our approach. Moreover, in this model we 

have only considered the influence of germline variation on cetuximab benefit. Several 

tumor characteristics, like KRAS and BRAF mutation status and molecular subtype, 

have also been shown to correlate with cetuximab response (Salvatore et al., ./-/, Trinh 

et al, ./-(). A further analysis could take both tumor and germline variation into 

account to identify benefiting patients even more comprehensively.  

 

The CAIRO. trial represents a good test case for RAINFOREST as previous univariate 

analysis has shown a relation between germline variation and treatment specific 

survival. Reassuringly, we identify rs))[/\,, the variant identified previously, among 

the most frequently used SNPs in the RAINFOREST model. Importantly, RAINFOREST 

identifies a number of previously unknown SNPs, which are not found with a univariate 

approach, that suggest a role for genetic variation in the immune response in 

determining cetuximab benefit.  

 

With the sex aware model we show RAINFOREST can be adapted to incorporate 

characteristics known to be important, such as chromosomal sex. However, as the 

overlap in important SNPs show, the same signal can still be identified, underscoring 

the stability of the method.  

 

The authors of the CAIRO. trial concluded that there was a slight detrimental effect of 

the addition of cetuximab to the CAPOX-B treatment regimen. This is a clear example 
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for how RAINFOREST can be applied, as roughly half of all phase \ clinical trials fail to 

reach their predefined endpoints and most fail due to insufficient efficacy of the drug 

(Hwang et al. ./-,). As a result, these drugs do not enter the clinic, while it is very 

possible that a subset of the patient population experiences benefit. RAINFOREST can 

identify patients that do benefit from drugs which failed to show significant benefit in 

the patient population as a whole, and thus play an important role in leveraging valuable 

patient data and find an application for drugs that otherwise would not be introduced 

to the clinic.  
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Data availability  
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Code availability  
The R code used to produce the results in this paper is available at 

github.com/UMCUGenetics/RAINFOREST. A more configurable, user-friendly Python 

implementation of RAINFOREST is also provided. 
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Supplementary figure 1. Performance when RAINFOREST is trained and 
validated on only women.  
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Personalized medicine has been discussed as the future of cancer treatment for over 

three decades now, since the discovery and potential targeting of mutations in the RAS 

signalling pathway (Reddy et al. -').; Downward .//\). There has been tremendous 

progress, particularly in matching targeted treatment with specific mutations or cell 

surface markers. However, despite the fact that we have known for a long time that both 

germline variation and tumor characteristics influence disease progression and 

treatment response, there are not many DNA or RNA signatures in use in the clinic 

(Fröhlich et al. ./-)). There is in fact a great gap between the great number of papers 

reporting gene expression signatures and the ones that have an impact on clinical care 

(Koscielny ./-/). In this thesis several different approaches for predicting treatment 

benefit are presented. While multiple counterfactual approaches exist, they have so far 

been used mostly in low dimensional settings for causal inference. Here we present 

multiple ways of using this kind of reasoning in high dimensional settings to build 

clinically useful models. These approaches could play an important role in a further 

realization of personalized medicine - the tailoring of treatment to a patient based on 

individual characteristics - in cancer treatment. However, there are still various 

challenges to be faced. We will discuss here what the work in this thesis can contribute 

and which challenges still have to be addressed.  

 

Reproducibility of signatures and different populations  
 
A major concern and hindrance in clinical adaptation is the lack of reproducibility for 

many classifiers (Subramanian and Simon ./-/). For prognostic signatures it has been 

shown that many classifiers in fact do not outperform random classifiers when tested 

on external data (i.e. data the classifier was not trained on) (Tang et al. ./-(). Moreover, 

it was also shown a gene expression classifier with satisfactory internal performance 

could be trained on completely random data. Proper validation is thus crucial.  

 

In absence of truly independent data, many studies use cross validation to estimate the 

expected performance, as we also do in Chapter * and Chapter /. However, it is known 

that cross validation can overestimate performance (Castaldi, Dahabreh, and Ioannidis 

./--). In some cases, the cross validation may not have been properly performed (for 

example, when multiple models are validated and the best is presented), but there are 

also signatures that were correctly evaluated and yet do not show a satisfactory 
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performance in independent data. This could be due to the fact that the classifier has 

fitted a signal specific to the population in the original data (i.e. the data the cross 

validation was performed on), with the difference in signal between datasets influenced 

by a true biological difference between the patients or differences in lab procedure or 

clinical practice.  

 

This thesis contains some examples of this: in Chapter * we see that when we train the 

model solely on the Total Therapy dataset the classifier does not validate on the 

Hovon,[ dataset, while we can perform a successful cross validation when the two 

datasets are mixed. With mixed dataset GESTURE has the opportunity to fit the mixed 

signal, where the model is most likely too specific when trained solely on the Total 

Therapy dataset.  In Chapter + of this thesis cross validation was quite predictive of the 

performance in independent data, while this was not the case in Chapter ,, even though 

the set-up of the cross validation was nearly identical. Most likely the difference 

between the breast cancer datasets used in Chapter , is far greater than the multiple 

myeloma datasets in Chapter +, as the clinical reality is very different for both diseases. 

Treatment is less guided by patient characteristics in multiple myeloma than in breast 

cancer; patients in an observational trial are probably more likely to match the 

population from a randomized clinical trial. Training on randomized data is more 

suitable for simulated treatment learning, as there are similar patients in both treatment 

arms by definition. While the strategy of matching patients in the breast cancer dataset 

- to simulate a clinical trial like setting - improved performance on hold out data from 

the same population, this classifier still did not validate on external data. There could 

be trade off in data selection: training within one population leads to better results in 

that specific population, but is less generalizable to a wider population. This conflict 

extends to the follow-up time: longer follow up is often beneficial for the training 

procedure, especially for cancer types with a long median survival. When using a ./-

year-old dataset most relevant events will have been recorded, but the setting in which 

these women were treated is no longer relevant. This meant that the older METABRIC 

dataset in Chapter , was less useful for training, even though it included far more 

events than the SCAN-B dataset. There is no clear solution to this problem, though 

potentially subsetting older datasets to more closely match new datasets could be a 

strategy (to for example conform to current treatment guidelines). There are limits to 

this; in METABRIC we could not match patients in a manner that resulted in a dataset 
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with a hazard ratio in favor of chemotherapy. We should always carefully evaluate 

whether a dataset can still be relevant. The training data used has important 

implications for clinical deployment; the intended use population should match the 

training and validation population.  

 

Finally, for identification of cancer subtypes tumor purity is an important factor. When 

a biopsy of a solid tumor is taken it will always contain both cancer cells and other cells 

(for example cells from the immune system). When gene expression is measured on this 

mixture the outcome will also be influenced by non-cancer cells. It has been shown that 

the variability in tumor purity biases subtype classification and estimating tumor purity 

can improve classification results (Aran, Sirota, and Butte ./-[; Zhang et al. ./-(). 

Multiple myeloma is a non-solid tumor and cells are sorted to a purity of at least )/% 

before gene expression is measured. This could lead to a more consistent measurement, 

less bias and thus a higher chance of successful external validation.  

 

Lack of available data  
 
Absolutely crucial for the training and proper validation of these classifiers is the 

availability of data. Especially for diseases that are not very prevalent, data available 

within one institution will not be sufficient. Moreover, as discussed, validation within 

one dataset or population is no guarantee for predictive availability in another 

population. All considerations about matching populations are only relevant if enough 

data is available. Open science and the sharing of data has received a lot of attention in 

the past few years, but many scientists are still worried that sharing their data will be to 

their disadvantage (Gewin ./-,). While many journals now require a statement on data 

availability and the data needs to be publicly available (Naughton and Kernohan ./-,), 

many publicly available gene expression datasets (for example in the Gene Expression 

Omnibus) do not offer enough patient information to enable the training of predictive 

or even prognostic classifiers on this data. We need systems in place that encourage 

sharing of all useful data, while of course keeping an eye on privacy concerns. Journal 

simply requiring data to be available seems to be insufficient. For example, when the 

British Medical Journal randomly audited -[( research articles in their journal, they 

found data was available (either publicly or upon request) for only +.[% of those articles 
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(Rowhani-Farid and Barnett ./-,). However, as more and more journals adopt a data 

sharing policy and open data is normalized, more data will hopefully be shared. 

Increasingly, funders also require a data sharing plan and publishers start encouraging 

data sharing more actively, with Springer Nature starting a research data helpdesk that 

can facilitate the sharing process (Jones, Grant, and Hrynaszkiewicz ./-'). Data can 

also be assigned a digital object identifier (DOI), so it can be cited and researchers 

receive credit for the data they made available. Increasingly, researchers are aware of 

the FAIR data principles: data should be Findable, Accessible, Interoperable, Reusable 

(Wilkinson et al. ./-,). This means it should be clear where data is located, how to gain 

access, and it should be in a format that can be read and manipulated by commonly 

used programs. It should be clear which data is included in the file and how it was 

produced. Importantly, accessible does not mean freely accessible. FAIR data can still 

safeguard privacy. For further model development and validation, wide availability of 

data is crucial and the research community should take all possible steps to encourage 

FAIR data sharing.  

 

Integration of different data types  
 
An approach not employed in this thesis is the integration of different data types (i.e. 

DNA and RNA data). In Chapter *, + and , we use tumor gene expression and in 

Chapter / we use germline DNA variation. The truth is that the benefit for each 

treatment is probably influenced both by factors specific to the cancer cells and specific 

to the individual patient. An important distinction to be made here is the integration of 

different data types from the same cell (type) and data representing different systems 

in the body. For the prediction of prognosis in breast cancer it has been shown that 

tumor gene expression captures most of the information and adding different data types 

does not improve performance (Aben et al. ./-)). However, the data considered there 

was all taken from the tumor and thus represented the same system. When we would 

for example combine tumor gene expression and germline DNA data, we are taking data 

from different systems; the tumor cell and the body surrounding it. The impact of a drug 

not being metabolized in the liver could never be captured by tumor gene expression 

for example. In Chapter / we identify SNPs that are predictive of cetuximab benefit. 

Previously, tumor gene expression profiles and tumor specific mutations that are 
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predictive of cetuximab response have been identified (Salvatore et al. ./-/; Baker et al. 

./--). Since information is most likely present in all these data types, a logical next step 

would be to analyze them together to form a more complete picture of which patients 

benefit. There are several ways of integrating data; you can pool all data and train a 

single classifier (early integration) or train separate classifiers and then combine the 

classifications (late integration) and forms in between. RAINFOREST in Chapter / 

could easily be adapted to also take tumor gene expression into account, with the values 

discretized to match the SNP format. However, in early integration dimensionality of 

datasets matters a lot; the higher dimensional data type can dominate the signal and 

seem the most important, even though this is not biologically true. Late integration, on 

the other hand, does not offer opportunities to model interactions between the 

germline data and tumor gene expression. Early integration may then be preferable, but 

steps should be taken to bring different data types in the same (dimensional) space.  

 

Interpretability of the classifiers 
 
When a predictive classifier is able to identify which patients benefit from a treatment, 

the logical next step is to investigate why these patients benefit and how the genes 

included in the classifier fit in. It has been shown for prognostic classifiers that many 

classifiers with a similar performance, and yet using completely different genes, can be 

found (Ein-Dor et al. .//[). Since genes function in pathways and expression is often 

very correlated, many genes can encode the same signal and simply interpreting the 

genes included in a classifier may not be useful. In Chapter * and Chapter , we attempt 

to encode biological information using gene ontology (GO) annotations and these gene 

sets do indeed perform better than random sets at predicting treatment benefit. 

However, the GO sets used in different classifiers predicting benefit for the same drug 

show very little overlap and no (obvious) interpretation of these genes could be 

formulated. An additional concern is that especially when a classifier is trained in a non-

linear way like GESTURE is, it is possible the class ‘benefit’ is actually composed of 

multiple subsets; not all benefiting patients benefit for the same reason. We also 

measure gene expression in bulk, while each multiple myeloma patient probably 

harbors multiple different tumor clones (Keats et al. ./-.). We could be measuring an 

average of the clones, or just a signal dominated by the largest clone. While there is 
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clearly enough information present to predict treatment benefit in a meaningful way, it 

could be a barrier to interpretation.  

 

Gene sets defined by biological knowledge may thus not be useful for interpretation. 

Interestingly, when we formed entirely data driven gene sets in Chapter +, the 

individual genes were more crucial for performance than when we used gene sets 

informed by biological annotation. Without the -+ genes included in the original 

signature, no signature with a similar performance could be found. The strategy 

followed in Chapter + (i.e. only selecting genes that the algorithm always ranks highly 

over different repeats) could be beneficial in finding these crucial genes. However, it 

should be noted we could not describe a mechanism that links the -+ genes in this 

classifier and individually they were not differentially expressed between class ‘benefit’ 

and ‘no benefit’. This approach also does not address the concern of measuring several 

clones at the same time.  

 

Once we have an interpretation of the genes, a next step could be to functionally 

validate the findings. The fact that the -+ genes in Chapter + can only be identified 

together and do not show differential expression by themselves could also be a barrier 

to proving their role in a functional assay. We would have to under- or overexpress a 

combination of -+ genes, without the model itself providing a hypothesis on how benefit 

could be achieved (i.e. which genes should be over- or under-expressed). For even more 

complicated models, like GESTURE produces, this would be impossible. It is also 

important to consider what the goal of interpretation could be, beyond providing 

further insight into the disease. When a clear mechanism can be identified that causes 

a patient not to benefit from a drug, this could be used for rational design of a drug that 

could overcome this. It seems clear the models presented in this thesis are far away from 

playing a role in this.  

 

Clinical practice and clinical utility  
 
Finally, the most important part of work like this is the clinical utility: even if the 

classifier is completely accurate, would clinical care be changed based on its prediction? 

In some cases this may be obvious. With the Mammaprint, which can predict which 

breast cancer patients can safely forgo chemotherapy, it seems the decision is clear. It 
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should however be noted, that even here the case is not clear cut. Patients can be 

reluctant to forgo available therapy based on a risk assessment, even if statistically we 

would not expect benefit. In the case of the Mammaprint, the Dutch Healthcare 

Institute declined to mandate insurance companies to reimburse the test, citing a 

possible ..+% increase in distant metastases if chemotherapy was not given 

(Zorginstituut Nederland ./-)). This test failed to become the standard, even though a 

prospective clinical trial proved its accuracy. With algorithms and artificial intelligence 

playing a larger role in society, there has been a lot of public debate on when algorithms 

can be trusted to make decisions that will impact lives. Which decisions can be taken 

by non-human systems and where lies the responsibility for the outcome of such a 

decision? Explainability of the decision plays a large role here (Abdollahi and Nasraoui 

./-)). It could very well be unreasonable to expect physicians and patients to stake lives 

on a model for which it cannot be explained why it works. For this purpose identifying 

which genes are crucial - as discussed above - can be already useful, even if it does not 

lead to a new treatment; it can aid in the explainability of the treatment decision. 

Smaller, clearer signatures like the one presented in Chapter + will then be preferable 

over the large, complicated models built by GESTURE.  

 

Of course, what is clinically useful is not static. When a treatment is standard and given 

to all patients, it may make more sense to attempt finding a group that does not benefit: 

for those patients treatment should be changed. However, without a convincing 

alternative treatment, such a classifier does not have a high probability of being 

adapted. The discovery of a new drug could render a classifier useless or useful; for 

example by establishing a new standard treatment or by providing an alternative 

treatment for a no benefit group.  

 

In light of changing clinical practice, it is crucial to shorten the time between biomarker 

discovery and introduction in the clinic. As mentioned before, there are limitations 

here: sufficient follow up is needed. However, adaptive clinical trials could play a role 

here. This is a trial that changes design based on data gathered during the trial (Barker 

et al. .//'; Gallo et al. .//,). The I-SPY trial in breast cancer is an example, where 

inclusion criteria for treatment arms are adapted as the trial goes on to incorporate 

effects discovered during the trial (Barker et al. .//'). The I-SPY trial is mostly designed 

around known patient characteristics. There are also strategies that facilitate biomarker 
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discovery and validation when no obvious candidates are known. Here patients are 

randomized as normal between two treatment arms and then split in a training and 

validation cohort during the trial. The training cohort can be used to continuously build 

a predictive model, while the validation cohort can be used as a prospective trial at the 

same time (Scher et al. ./--). There are obvious ethical considerations here and in 

practice this design will be followed only when there is no evidence for superiority of 

the treatment under investigation in the population as a whole.  

 

There is also the wider context of health care to consider. In most developed countries 

the cost of healthcare is on the rise and discussions on when treatment is no longer 

affordable need to be had (Baltagi et al. ./-(). Personalized medicine can play an 

important role in this problem and reduce overall health care expenditure (Jakka and 

Rossbach ./-\). When we can predict who will benefit from more generic treatments, 

we do not only spare patients who do not benefit unnecessary side effects, we can also 

reduce the cost of treatment. However, in incurable forms of cancer like Multiple 

Myeloma, where a patient will always receive a form of treatment and often will be 

treated until their death, it may be hard to quantify the amount of money saved.  

 

This also relates to the importance of finding a subset of the population that does 

benefit from drugs that fail to show a significant effect in the population as a whole. 

Pharmaceutical companies claim high prices for drugs are needed to offset all the costs 

made in developing drugs that do not reach the market. The more efficient drug 

development is and the more drugs can be used, the cheaper drugs can (theoretically) 

be.  

 

Conclusion  
 
Personalized medicine and predictive biomarkers will play an important role in the 

health care of the future. However, it is also clear that there are different challenges for 

different diseases and there is not one model to be applied here. Algorithms should be 

combined with clinical trial design and an awareness of clinical reality. For adaptation 

in the clinic, simpler models may be better.  

In this thesis we present three different algorithms to train a model capable of 

predicting treatment benefit: GESTURE, STLsig, and RAINFOREST. Considering the 
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topics discussed, they all have different strengths. For the purpose of training an 

interpretable model, STLsig seems to produce the best classifiers; GESTURE models are 

too complicated. However, STLsig is much more sensitive to high censoring rates. When 

a patient does not have suitable neighbours (i.e. no neighbours who experienced an 

event), our main measure for benefit (zPFS) cannot be calculated and this patient then 

drops out of the analysis. This obviously happens more often when there are fewer 

events recorded in the dataset. STLsig uses the whole distribution of zPFS and its 

performance is more impacted by patients dropping out than GESTURE, which just uses 

patients with a high zPFS. For data with fewer events GESTURE(-BC) is thus more 

suitable. Both GESTURE and STLsig need continuous data like gene expression to 

calculate distances between patients. RAINFOREST is more versatile; it can handle the 

discrete values of SNP data, but could also easily be adapted to categorical data like sex. 

It could potentially also handle gene expression data and a mix of different data types. 

It would thus be most suitable to be used for integration of patient characteristics and 

different data types. Together they can hopefully be used to make personalized 

medicine a reality in cancer treatment. 
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Summary 
 
Many cancer treatments are associated with serious side effects, while it is known not 

all patients who receive them see benefit from the treatment. It has become clear both 

patient and tumor characteristics can influence the response of a cancer patient to a 

specific treatment. There is therefore great interest in personalized medicine: matching 

the right drug with the right patient, based on certain predictive features that can be 

measured. Certain drugs are designed to target a specific mutation in the tumor DNA; 

this drug is only beneficial for patients whose tumor harbors this alteration. But 

personalized medicine can also play a role in more generic treatments. Machine 

learning approaches have been employed to separate poor and good responders on the 

basis of tumor gene expression, among other things. 
 

However, often there is more than one drug available and a choice has to be made 

between them, which is a more challenging problem. Most machine learning 

approaches employed in predicting benefit for a single treatment require labels to train 

a model.  Patients are be labeled as poor or good responders, and the model is optimized 

to distinguish these two classes. These cannot be employed when predicting whether a 

patient will benefit more from a certain treatment than from an alternative. We can 

only observe the response to a treatment the patient actually receives; we cannot know 

if they would have responded more or less favourably to an alternative treatment. A 

patient can thus not be labeled as benefiting or not. New methods need to be developed 

to deal with this problem.  

 

This thesis presents several different algorithms that can train a model capable of 

identifying patients that will benefit more from the treatment of interest than an 

alternative treatment. In Chapter *,+ and , we use the concept of Simulated Treatment 

Learning (STL).  STL relies on the idea that genetically similar patients who received 

different treatments can be used to model the response to an alternative treatment. 

Similarity between patients should be defined by genes relevant to treatment benefit. 

As we do not know beforehand which genes are relevant, the algorithms we build to 

implement STL need to both select relevant genes and use these to build a model that 

can classify new patients.  
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In Chapter * we present GESTURE (Gene Expression-based Simulated Treatment 

Using similaRity between patiEnts) and demonstrate its utility in Multiple Myeloma, a 

plasma cell cancer. GESTURE uses predefined gene sets, informed by biological 

annotation, to define similarity between patients. It then tests which of these gene sets 

can be used to identify a class ‘benefit’, i.e. patients who benefit more from the 

treatment than the population as a whole. We show it can do so successfully for two 

major treatments in Multiple Myeloma: bortezomib and lenalidomide.  

 

In Chapter + we implement the concept of STL in the algorithm STLsig, which does not 

need predefined gene sets. While GESTURE could predict in unseen data which patients 

would benefit from bortezomib or lenalidomide, it produced models that contain 

hundreds of gene sets and thousands of genes. These models are complicated to 

interpret. Instead, STLsig builds gene networks specific to the disease and treatment by 

connecting pairs of genes that are synergistic in their ability to predict benefit. With 

STLsig we define a -+-gene model that can predict benefit to proteasome inhibitors (like 

bortezomib) in Multiple Myeloma. These -+ genes present a much simpler model and 

they are moreover unique: a model with similar performance cannot be found when 

they are removed from the dataset.  

 

In Chapter , we adapt GESTURE to predict chemotherapy benefit in breast cancer. 

Breast cancer patients have on average a much better survival than Multiple Myeloma 

patients. This poses a statistical challenge as the majority of the patients included in the 

dataset are still alive at the end of follow-up. When two similar patients from different 

treatment arms are both still alive, we cannot define who benefited more. The adapted 

version, GESTURE-BC, uses a different criterion to define the best classifier better suited 

to a dataset with few recorded deaths. We show that GESTURE-BC can identify which 

patients see benefit from chemotherapy treatment and which patients do not benefit. 

However, this model did not show performance on older data where patients were 

treated along different guidelines. This highlights the importance of matching the 

patient populations in which a model is trained and in which its performance is 

evaluated. 

 

In Chapters *, + and , we use tumor gene expression to predict treatment benefit. 

However, this is not the only factor influencing response. In Chapter / we introduce 
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RAINFOREST (tReAtment benefIt prediction using raNdom FOREST), which predicts 

treatment benefit using germline DNA variation, which is the inherited genetic 

variation and not specific to the tumor. We use RAINFOREST to predict cetuximab 

benefit in metastatic colorectal cancer.  

 

The algorithms presented have different strengths and weaknesses. STLsig provides 

simpler models, but is less adept at dealing with low event rates, which GESTURE-BC 

can deal with. Neither can deal with non-continuous data, which RAINFOREST can do. 

Together, GESTURE, STLsig and RAINFOREST provide a versatile toolbox to predict 

treatment benefit in different settings and using different data types.
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Samenvatting 
 
Veel kankerbehandelingen zijn geassocieerd met ernstige bijwerkingen, terwijl het 

bekend is dat niet alle patiënten die er mee behandeld worden baat hebben bij het 

medicijn. Het is bekend dat zowel patiënt- als tumorkenmerken de respons van een 

kankerpatiënt op een specifieke behandeling kunnen beïnvloeden. Er is dan ook grote 

belangstelling voor gepersonaliseerde geneeskunde: het matchen van het juiste 

medicijn met de juiste patiënt, op basis van bepaalde voorspellende kenmerken die 

kunnen worden gemeten. Sommigemedicijnen zijn gericht op een specifieke mutatie in 

het DNA van de tumor; dit medicijn is alleen nuttig voor patiënten wiens tumor deze 

mutatie herbergt. Maar gepersonaliseerde geneeskunde kan ook een rol spelen bij meer 

generieke behandelingen. In het verleden is machinaal leren (“machine learning”) 

toegepast om patiënten met een slechte en goede respons op een bepaald medicijn van 

elkaar te onderscheiden. Dit is bijvoorbeeld gedaan op basis van genexpressie in de 

tumor.  
 

Vaak is er echter meer dan één medicijn beschikbaar en moet er een keuze worden 

gemaakt welk medicijn het beste is voor de patiënt. Dit is een moeilijker probleem dan 

respons voor één medicijn voorspellen. De meeste methodes voor het voorspellen van 

een goede of slechte respons hebben labels nodig; patiënten worden gelabeld als goede 

of slechte responder en het model wordt geoptimaliseerd om deze groepen van elkaar 

te onderscheiden. Deze methodes kunnen niet worden gebruikt om te voorspellen of 

een patiënt meer baat zal hebben bij een bepaalde behandeling dan bij een alternatief. 

We kunnen alleen kijken naar de respons op een behandeling die de patiënt 

daadwerkelijk krijgt; we kunnen niet weten of die beter of slechter gereageerd zou 

hebben op een alternatieve behandeling. Een patiënt kan dus niet worden gelabeld als 

wel of geen baat hebben. Er moeten nieuwe methoden worden ontwikkeld om dit 

probleem aan te pakken.  

 

Dit proefschrift presenteert verschillende algoritmen die een model kunnen trainen dat 

in staat is om patiënten te identificeren die meer baat hebben bij een bepaalde 

behandeling dan bij een alternatief. In Hoofdstuk *, + en , gebruiken we het concept 

van Simulated Treatment Learning (STL). STL is gebaseerd op het idee dat genetisch 

vergelijkbare patiënten die verschillende behandelingen hebben gekregen, kunnen 
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worden gebruikt om de respons op een alternatieve behandeling te modelleren. 

Genetische gelijkenis tussen patiënten moet worden bepaald door genen die relevant 

zijn voor baat bij de behandeling. We weten niet op voorhand welke genen relevant 

zijn. Daarom moeten de algoritmes zowel relevante genen kunnen selecteren, alsook 

nieuwe patiënten kunnen classificeren met behulp van deze genen.  

 

In Hoofdstuk * presenteren we GESTURE (Gene Expression-based Simulated 

Treatment Using similaRity between patiEnts) en demonstreren we het nut ervan in 

multipel myeloom, een plasmacelkanker. GESTURE maakt gebruik van vooraf 

gedefinieerde verzamelingen van genen (“gene sets”), gevormd aan de hand van 

biologische functie, om de gelijkenis tussen patiënten te definiëren. Vervolgens wordt 

getest welke van deze gene sets kunnen worden gebruikt om een ‘baat’-groep te 

identificeren, d.w.z. patiënten die meer baat hebben bij de behandeling dan de rest van 

de patiëntenpopulatie gemiddeld heeft. We laten zien dat GESTURE in staat is dit te 

doen voor twee veel gebruikte medicijnen in multipel myeloom: bortezomib en 

lenalidomide.  

 

In Hoofdstuk + implementeren we het concept van STL in STLsig, een algoritme 

waarbij het niet nodig is van te voren gene sets  te definiëren. Hoewel GESTURE in staat 

is te voorspellen welke patiënten baat zouden hebben bij bortezomib of lenalidomide, 

gebruikte het hiervoor modellen met honderden gene sets en duizenden genen. Het is 

lastig dit soort modellen te interpreteren. In plaats van vooraf gedefinieerde gene sets 

te gebruiken, maakt STLsig netwerken van genen die specifiek relevant zijn voor de 

ziekte en de behandeling. Om deze netwerken te maken, verbinden we genen die samen 

beter in staat zijn om baat te voorspellen, dan met een ander gen. Met STLsig trainen 

we een model dat baat kan voorspellen voor proteasoomremmers (zoals bortezomib) in 

multipel myeloom. Het model gebruikt slechts -+ genen en vormt Hiermee een veel 

simpeler model. Bovendien zijn deze genen uniek in hun voorspellende waarde: als we 

deze uit de dataset verwijderen kunnen we geen model vinden dat even goed kan 

voorspellen welke patiënten baat hebben.  

 

In Hoofdstuk , passen we GESTURE aan om te voorspellen welke 

borstkankerpatiënten baat hebben bij chemotherapie. Borstkankerpatiënten overleven 

gemiddeld veel langer na de diagnose dan patiënten die lijden aan multipel myeloom. 
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Daardoor was de meerderheid van de patiënten in de dataset aan het einde van de 

follow-up periode nog in leven. Dit maakt het statistisch gezien lastiger om een model 

te trainen. Wanneer twee vergelijkbare patiënten die verschillende medicijnen hebben 

gekregen allebei nog in leven zijn, kunnen we niet bepalen of de ene patiënt meer baat 

heeft gehad dan de andere. De aangepaste versie van GESTURE, GESTURE-BC, 

definieert de beste classificatie met een ander criterium. Dit criterium train op zowel 

baat als geen baat en rangschikt de gene sets op een andere manier, waardoor we een 

beter model kunnen trainen op data met goede overleving. We demonstreren dat 

GESTURE-BC kan voorspellen welke patiënten baat hebben bij behandeling met 

chemotherapie en welke niet. Dit model werkt echter niet goed op een andere, oudere 

dataset, waar de patiënten volgens andere richtlijnen werden behandeld. Dit laat zien 

dat het erg belangrijk is om de patiëntenpopulatie waar het model op getraind wordt, 

te matchen met de populatie waar het in getest wordt.  

 

In Hoofdstuk *, + en , gebruiken we genexpressie van de tumor om baat bij een 

behandeling te voorspellen. Dit is echter niet de enige factor die de respons beïnvloedt. 

In Hoofdstuk / introduceren we RAINFOREST (tReAtment benefIt prediction using 

raNdom FOREST), dat gebruik maakt van verschillen in kiemlijn DNA om baat bij 

behandeling te voorspellen. Kiemlijn DNA is DNA dat overgeërfd kan worden, dit is dus 

anders dan het (gemuteerde) DNA van de tumor. We gebruiken RAINFOREST om te 

voorspellen welke patiënten baat hebben bij behandeling met cetuximab bij uitgezaaide 

darmkanker.  

 

Al deze algoritmen hebben zwakke en sterke kanten. STLsig kan simpelere, beter te 

interpreteren, modellen trainen, maar kan minder goed omgaan met data waar de 

meeste patiënten nog in leven zijn; daar kan GESTURE-BC beter mee omgaan. Allebei 

de algoritmes hebben continue data zoals genexpressie nodig om gelijkenis tussen 

patiënten te definiëren, terwijl RAINFOREST ook om kan gaan met andere soorten data. 

GESTURE, STLsig en RAINFOREST vormen samen een toolbox om baat bij behandeling 

te voorspellen voor verschillende soorten kanker en verschillende soorten data.  
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