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ABSTRACT Network function (NF) developers have traditionally prioritized performance when creating
new packet processing capabilities. This was usually driven by a market demand for highly available solu-
tions with differentiating features running at line rate, even at the expense of flexibility and tightly-coupled
monolithic designs. Today, however, the market advantage is achieved by providing more features in shorter
development cycles and quickly deploying them in different operating environments. In fact, network
operators are increasingly adopting continuous software delivery practices as well as new architectural styles
(e.g., microservices) to decouple functionality and accelerate development. A key challenge in revisiting NF
design is state management, which is usually highly optimized for a deployment by carefully selecting the
underlying data store. Therefore, migrating to a data store that suits a different use case is time-consuming
as it requires code refactoring and adaptation to new application programming interfaces, APIs. As a
result, refactoring NF software for different environments can take up to months, reducing the pace at
which new features and upgrades can be deployed in production networks. In this paper, we demonstrate
experimentally that it is feasible to introduce an abstraction layer to decouple NF state management from the
data store adopted while still approaching line-rate performance. We present FlexState, a state management
system that exposes data store functionality as configuration options, which reduces code refactoring efforts.
Experiments show that FlexState achieves significant flexibility in optimizing the state management, and
accelerates deployment on new scenarios while preserving performance and scalability.

INDEX TERMS Data storage systems, middleboxes, network functions, network functions virtualization,
NFV, parallel processing, state management.

I. INTRODUCTION
Network functions (NFs), such as network address translators
(NATs), load balancers or intrusion detection systems (IDS)
are stateful. For this reason, developers must deal with the
inherent trade-off of maintaining a consistent state shared
across packet flows manipulated by multiple NF instances
while processing packets at line rate [1], [2].

This trade-off has become significantly more challeng-
ing with the adoption of cloud-native principles (CNF [3])
that enable efficient container packaging, continuous delivery
and integration, decomposition, autoscaling, and off-the-shelf
platform services like generic load-balancers and data stores.
That is, transitioning to containerized deployments where
NF instances can be created and terminated dynamically,
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and where NF components are interchangeable and loosely
coupled, adds complexity to the state management since there
is a need for new functionality to gracefully migrate network
traffic, handle session-related variables and manipulate flow
information end to end.

A first step to overcome this challenge is to delegate the
management of NFs state information to dedicated systems.
Such systems are designed and optimized for a specific set of
requirements driven by conflicting needs, which determine
the appropriate data store applicable to a specific use case.
Some of these systems are, for example, StatelessNF [4],
which relies on a remote key-value store (KVS) to pro-
vide reliability; or S6 [5], which uses a distributed hash
table (DHT) to optimize for high performance instead.

More concretely, NF operational requirements can vary
quite significantly among use cases. For instance, a net-
work tailored for stock trading targets the lowest achievable
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latency [6], whereas for voice and video services, networks
must be robust to disruptions [7]. Thus, the specific use case
influences the selection of the data store used internally by the
state management system, and in practice, developers need
to design packet-processing functions that can be adapted to
a variety of scenarios and work properly with different data
store optimized features.

However, in NF development today most state manage-
ment systems are tightly coupled to the specific data store
used internally, and it requires a significant effort to incorpo-
rate new data stores or even upgrades of the existing one. That
is, the selection of a data store and its optimization condition
the state management API that is ultimately exposed to the
packet processing logic of the network function. In turn, this
also creates a dependency between the NFs and the data store
used by the state management system, since–to the best of
our knowledge–there is no middleware available to abstract
out such dependency.

Figure 1 (top) illustrates the dependencies between the
function processing logic and the API exposed by the state
management system. Notice that changes in the NF require-
ments, new use cases, or upgrading the existing data store
with new features, require a coding effort that significantly
delays the NF deployment in production. That is, the process
of identifying all the state variables in thousands of lines of
code and adapt them to a new data store API is error-prone
and time-consuming [2], [8].

FIGURE 1. FlexState middleware. The APIs exposed by state
management systems are tightly coupled with the data store used
internally (top). FlexState(bottom) provides an abstraction layer that
exposes a single API to simplify data store changes and upgrades.

Table 1 shows how different optimization goals influence
the interface design and the data store selection. For instance,
the state management system CHC [9] uses a custom
key-value store to supportmethod call shipping, by which the
NF can offload some operations on the collections to the data
store itself. Assume that a given network operator is using a
state management system without any method call shipping
support, like for example Split/Merge [1]. The expectation
is that refactoring efforts should be limited to extending the
NFs code to leverage the new feature. In practice, due to the
heterogeneity of theAPIs, NF developers also need to refactor
code sections which reference the features that are common

TABLE 1. Comparing state management APIs.

to the two data stores, e.g., get/set calls, in both previous and
upgraded management systems.

The need for refactoring all API calls when adopting a
new data store, even if such calls are semantically similar,
represents a significant obstacle for network operators, which
translates into data store vendor lock-in as well as incurs
delays in developing network functions.

In this paper, we argue that adapting the code base to differ-
ent data storesmust not require continuous refactoring but can
be provided through configuration. To this end, we propose
FlexState, a state management system that introduces an
abstraction layer for decoupling the NF state management
from the adopted data store. As shown in Figure 1 (bottom),
FlexStateenables NF developers to access and manipulate
the state of NFs through a single API exposed to the packet
processing logic while leveraging a range of data store drivers
to translate API operations into data-store-specific query
language. FlexStateis inspired by a multitude of successful
projects that introduce abstraction layers to minimize devel-
opment times. These are, for instance, Apache Libcloud [10]
that implements a library for interacting with many cloud
service providers through a unified API; or the Serverless
framework [11] which offers an open source command line
interface to deploy serverless applications across arbitrary
platform providers.

In NF development, however, it is critical that introducing
an abstraction layer does not affect the capability of NFs to
process packets at line rate. Therefore, FlexStateis designed
to make the best use of the resources available, e.g.,by scaling
adequately. In Section V, we use two structurally different
data stores to demonstrate that FlexStaterequires nomodifica-
tion on the NF’s packet processing code while still preserving
line-rate performance and scalability.

The rest of the paper is organized as follows. Section II
provides background information and motivations behind
FlexState, while Section III elaborates on its design and archi-
tecture. Implementation details are discussed in Section IV.

46838 VOLUME 9, 2021



M. Pozza et al.: FlexState: Flexible State Management of NFs

Evaluation results are presented in Section V, while
we discuss the limitations of FlexStateand the directions
for future work in Section VI. Finally we conclude in
Section VII.

II. BACKGROUND AND MOTIVATION
Network functions, e.g.,NATs and load balancers, can be
deployed in different scenarios, such as data center intercon-
nects or enterprise networks, and for a variety of use-cases
ranging from latency-sensitive to bandwidth-intensive. When
deployed in production environments, NFs are expected to
scale with the traffic load. For this reason, there can be mul-
tiple NF instances acting on a packet flow, or sharing states
across multiple flows concurrently. Furthermore, within each
NF instance, developers can also parallelize the packet pro-
cessing to fully utilize the available CPU cores and increase
performance. In this section, we describe the implications of
the NF design choices mentioned above on the state manage-
ment system.

A. NETWORK FUNCTION STATE
NFs are stateful entities that require timely data access and
the ability to operate on the variables used to track the state
of packet flows in the incoming traffic. The state of a NF can
be arranged in two categories: per-flow state, and cross-flow
state [9]. The per-flow category represents the state process-
ing corresponding to packets of a specific flow. In contrast,
the cross-flow state represents the state information consid-
ered when processing packets from all the flows traversing
the NF. For instance, the per-flow state in a NAT NF contains
the pair of IP addresses of a given TCP/UDP flow, while the
cross-flow state includes the available IP addresses and port
numbers that can be used for the translation.

B. STATE MANAGEMENT SYSTEMS
Maintaining the state information of NFs at line rate is chal-
lenging in terms of performance and consistency because
each NF instance may have multiple threads processing
packet flows, and there may be multiple NF instances in the
network. For this reason, researchers have explored several
state management alternatives to handle the entire life-cycle
on behalf of the NFs by taking care of aspects such as consis-
tency and correctness of data.

Table 1 summarizes some of these state management sys-
tems, each of which is optimized for a specific goal. Note
that some systems are tailored for reliability, thus prioritizing
that the NF state is always available, while other systems
are designed for scalability, thus focusing on the capability
of supporting a varying traffic load in an elastic, eventually
consistent, manner. Developers can select the data store that
is most suited for their use-case(s), according to the goal for
which the system is developed. Some examples are key-value
data stores for maximizing reliability goals [4]; or dis-
tributed implementations of hash tables for high performance
objectives [5].

C. Problem Description
As mentioned in Section I, a common issue across all state
management systems is that they are ultimately tightly cou-
pled to a given data store, and do not provide any simple
explicit mechanism for migrating to a different data store.
Due to this coupling, different state management systems
expose different APIs, even when the API calls are semanti-
cally equivalent, e.g., get/set calls. As a consequence, adopt-
ing a different data store requires changes in the API of
the state management system, which entails invasive refac-
toring of the network function code while preserving its
functionality.

EXAMPLE 1
The Bro intrusion detection system (IDS) [13] uses timers
to handle cases in which the response of a DNS query is
not received within certain time budget [14]. To manage
the state of Bro, a network developer could initially adopt
Split/Merge because it supports timers (Table 1). However,
to improve the network reliability to deal with larger traffic
volumes, the network developer must consider, for instance,
using RAMCloud as proposed by state management systems
tailored for reliability such as StatelessNF. Unfortunately,
the RAMCloud API is not compatible with Split/Merge API,
thus requiring refactoring the code for the new data store.
In this example, the code of Bro using timers needs to be
changed according to the RAMCloud API.

Another limitation, caused by tightly coupled data stores,
is the inability to streamline–in the production NF–new fea-
tures, bug fixes, and performance enhancements that are
constantly released by the data store developers. Network
operators would highly benefit from incorporating constant
data store upgrades in their state management system, but this
is a challenging process [8]. High refactoring costs usually
result in some form of lock-in for network operators.

EXAMPLE 2
A network developer may implement the NFs with State-
lessNF, which internally uses the RAMCloud data store as
mentioned above. It is possible that a newRAMCloud version
is released with major API changes. Note that such signif-
icant changes are not unusual, and are typically tracked by
compatibility matrices [15], [16]. Unfortunately, StatelessNF
currently does not have any built-in mechanism to support
changes of the RAMCloud API, so the data store cannot be
upgraded without incurring significant refactoring efforts.

D. Goal
The limitations mentioned above motivate our goal of decou-
pling the NF state management from the data store. As men-
tioned in Section I, we borrow the design principles from
projects such as Apache Libcloud [10], the Serverless frame-
work [11], and Prisma.io [17], which introduce an abstraction
layer between coupled entities to minimize code refactoring.
These approaches follow best practices in software engineer-
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ing [18], and we leverage their architectural patterns to design
FlexState, our NF state management system that allows to
alternate across multiple data store APIs by simplymodifying
configuration parameters.

Notice, however, that while decoupling reduces code refac-
toring when upgrading existing data stores, or migrating to
new ones, the additional level of indirection can affect perfor-
mance. So, to constitute a compelling solution, FlexStatemust
not affect the capability of NFs to process packets at line rate
and, to do so, must be able to scale properly so that the load
is distributed evenly across the available resources.
Therefore, the challenge addressed in this paper is two-fold.

• Enable flexibility in the choice of the data store used for
NF state management

• Preserve scalability and line-rate performance.

Next, we provide more details on the FlexStatesystem design,
architecture, and implementation.

III. FlexState ARCHITECTURE
In the following, we describe the key components of FlexS-
tate, namely the API and the data store drivers, andwe explain
how they can be used by NF developers and network opera-
tors (Section III-A). We then describe how FlexStatemanages
state information (Section III-B) and the optimizations we
designed to enable NFs using FlexStateto approach line rate
(Section III-C).

A. KEY ENABLERS
1) API
The main goal in designing FlexStateAPI is to provide the
features required by packet processing logic of NFs. To iden-
tify the features to be included, we use the classification of
the APIs exposed by the other state management systems
shown in Table 1. We present here how FlexStatesupports the
two main features, namely the support for get/set operations
and collections. We discuss how FlexStatecan support the
remaining features in Section VI-B.

FlexStateAPI provides a set of data structures, each sup-
porting a range of operations. Each data structure has a
type, which determines the operations supported on the data
structure. When a data structure is instantiated using the
FlexStateAPI, the NF developer assigns an identifier (id) to
it. Both the type and id are used to identify the data structure
in the data store as explained in Section III-B2.

NAME-VALUE PAIRS AND COUNTERS
The NF developer can use a name-value pair to save a generic
blob of data using a string as an identifier. The API calls
exposed on such name-value pairs correspond to a Create,
Read, Update, and Delete (CRUD) interface. Note that Read
and Update calls correspond to Get and Set calls in key-value
stores. In addition to name-value pairs, FlexStateexposes a
dedicated data structure for counters. Indeed counters are
used in a multitude of tasks, such as counting the total number
of active flows, and they are natively supported by many

data stores [19], [20]. In the FlexStateAPI, counters expose
the same CRUD calls of the name-value pairs, and they
also expose the call add(value), which adds the specified
value to the current value of the counter.

COLLECTIONS
Similarly to other state management systems [5], [9], FlexS-
tateexposes collections, namely lists, sets, and maps. In addi-
tion to the CRUD interface, the calls exposed by collections
take inspiration from the corresponding data structures in the
C++ standard containers library [21]. FlexStatealso exposes
countermaps, i.e.,maps whose values are counters. They are
useful in many NF tasks, such as counting the number of
packets for each active flow. Countermaps expose the same
calls as a regular map, but they also expose theaddTo(key,
value) call, which adds the specified value to the current
value of the counter identified by key.

2) DATA STORE DRIVERS
The goal of a data store driver is to translate FlexStateAPI
calls using the query language of the data store. In this
way, when changing data store, it is only needed to config-
ure FlexStateto use the appropriate data store driver because
the NF packet processing logic is written using the FlexS-
tateAPI and it does not need to be changed. An example of
translatingAPI calls is shown in Table 2. A key challenge here
is to realize a simple mechanism that allows network opera-
tors to change the driver adopted. In FlexState, the network
operator compiles a configuration file, which is fed to the
state management system. The network operator specifies the
driver to be adopted and the parameters required to connect to
the data store, i.e.,IP address and port. To specify the driver,
the network operator uses a label, which identifies the data
store of the driver.

When a new data store or a newmajor version of an existing
data store is released, a driver can be written or upgraded
to incorporate such a data store in FlexState. Developing the
driver requires implementing FlexStateAPI calls only. Once
the driver is developed, it can be integrated in FlexStateby
providing a new label in the configuration file to identify the
data store. After the integration process, network operators
can set up the new data store by compiling the configuration
file accordingly, and FlexStatewill start using the new inte-
grated data store for state management.

B. STATE MANAGEMENT
1) ORGANIZATION
A state management system must ensure correctness of state
variables, for example making sure that concurrent write
operations do not corrupt the state information. While pre-
vious work have extensively discussed the difficulties in han-
dling cross-flow state [5], [9], we argue that the handling of
per-flow state is also not trivial. Indeed, the state management
system must appropriately handle race conditions on state
information when a NF instance runs on multiple cores.
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FIGURE 2. FlexState architecture. A network function can run over a variable number of instances, each of which processes a
subset of flows. Within each instance, the network interface card (NIC) typically applies receive side scaling (RSS) to load-balance
the flows across the cores available for each instance. On each core, the packet processing logic sends state operations to
FlexState, which handles the state in a local cache. FlexStateuses a configuration file describing a) the data store driver to use and
the information to reach the data store, and b) the frequency at which the state in the local cache is pushed to the data store.

TABLE 2. Examples for API conversion.

FlexStatesolves this problem using partitioning. Accord-
ing to this principle, data is partitioned among a group of
executors, such as NF instances or cores, and each execu-
tor accesses and modifies only its own data. In this way,
the executors are made independent from each other and they
do not incur race conditions because there is no shared data.
When considering multiple NF instances, FlexStatedivides
the state information among the instances, and each instance
accesses and modifies its own state information only. As an
example, when considering a cross-flow state information,
such as a counter for the total number of flows traversing the
NF, the counter is split into a set of independent counters,
each one of them associated to a single instance.

Partitioning is not applied only across different NF
instances, but also within each instance. Figure 2 illus-
trates how FlexStateapplies partitioning within a single
NF instance. FlexStateleverages the fact that modern Net-
work Interface Cards (NICs) support Receiving Side Scaling
(RSS). When RSS is activated, the flows arriving at the NIC
are distributed evenly among the cores made available to the
NIC. Crucially, the NIC forwards packets of the same flow
always to the same core [22]. As a consequence, for each
flow, there is a single core processing its packets, so race
conditions cannot occur handling per-flow state. When con-
sidering cross-flow state instead, FlexStateapplies partition-
ing by splitting the cross-flow state among the cores allocated
for the NF instance. Considering the example of the counter
for the total number of flows, FlexStatesplits the NF instance

counter into a set of independent counters, each one of them
associated to a single core. While each counter is still in the
cross-flow state, it is accessed and modified only by a single
core, and thus race conditions cannot occur.

Note that designing partitioning-aware NFs is a non-trivial
task. NF developers need to split the state information
across cores and NF instances that are typically shared. In
Section V-A4 we provide two examples of how to perform
this splitting. Moreover, network operators need additional
tools to view the NF state as a single entity, e.g.,to examine
the overall load across all NF instances. In Section VI-B we
discuss the need for merging functions, also called combin-
ers [1], which are used to obtain a single representation of
state that is scattered across NF instances.

2) IDENTIFICATION
Each core of each NF instance manages a piece of NF state
in an exclusive fashion. The NF state is stored in a data store
which is shared by all cores of the NF instance. Moreover,
the data store might be shared also by other NF instances and
by other NFs. Therefore, there is a need for creating unique
identifiers for state information so that partitioning can be
applied in the data store.

In FlexState’s configuration file, the network operator
specifies two additional pieces of information, a) a NF iden-
tifier, and b) a NF instance identifier. These pieces of infor-
mation are used to distinguish data of different NFs and
to distinguish data of different instances of the same NF,
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respectively. FlexStatealso leverages the id of the core from
which state operations are being issued to distinguish data
used by different cores of the same NF instance. For each data
structure created using the API, FlexStatecreates a unique key
combining a) the NF identifier, b) the NF instance identifier,
and c) the id of the core. FlexStatealso combines the type of
the data structure performing the state operation, e.g.,counter,
and the id of the data structure assigned by the NF developer.
These two pieces of information allow distinguishing data
managed by the same core. An example of how a unique id is
created can be found in Appendix A.

C. PERFORMANCE OPTIMIZATIONS
1) no_wait CALLS
All API calls described so far return either a result of a query,
e.g.,the data corresponding to a get call, or an acknowledge-
ment of completed operation. While normally the NF waits
for the response from the data store, there are situations in
which waiting for the response is not desirable. For example,
if state operations are issued in the packet processing loop,
waiting for responses from the data store can slow down the
NF. Some state management systems address this issue by
adopting no_wait calls, which issue state operations without
waiting for a response from the data store [5], [9]. Therefore,
we complement the regular API calls with no_wait calls that
can be used in the packet processing loop without slowing
down the NF. Note that not all calls can have a no_wait
version. For example, if a NF uses the get call to obtain data
from the data store, then it needs to wait for the response from
the data store. In our experience, normal calls are used only in
initialization or shutdown of the NF, but not within the packet
processing loop.

2) ASYNCHRONOUS UPDATES
The rate at which NFs process packets can be very different
from the throughput of data stores, i.e.,number of operations
per second [23]. In this case, the overall processing rate of
the system corresponds to the rate of the slowest between
the data store and the packet processing logic. The prob-
lem stems from the idea of performing state operations on
the data store every time a packet is processed in a syn-
chronous fashion. FlexStatesolves this problem by decou-
pling the packet processing loop from the state management
operations. The packet processing loop operates on a local
cache of the state, thus avoiding the need to communicate
synchronously with the data store. A periodic operation
is then issued to update the state on the data store with
the changes that have been performed on the local cache.
In effect, this corresponds to asynchronous updates to the
data store.

A key aspect to consider is the frequency at which the
update operations are carried out. Depending on the use-
case, a network operator might require high availability, and
thus to have very frequent updates on the data store [22],
[24]. FlexStateallows the network operator to configure the

frequency of updates to the data store in the configuration file,
as shown in Figure 2. More specifically, the network operator
sets the time gap between updates to the data store, e.g.,1 ms.
By decreasing the value, the network operator increases the
frequency of updates to the data store at the expenses of a
higher amount of traffic between FlexStateand the data store.

IV. IMPLEMENTATION
Our FlexStateprototype consists of approximately 5K lines of
C++ code. In the following, we describe the tools and tech-
niques we used to implement each component of FlexState.

A. KEY ENABLERS
The key goal of FlexStateis to enable changing the data store
driver without requiring changes in the code of the packet
processing logic of the NFs nor in the state management sys-
tem. Therefore, we implemented FlexStateAPI as an interface
that is instantiated by the data store drivers. FlexStateinter-
nally uses this interface to issue state operations, thus remain
agnostic to the data store driver being used.

To exemplify how FlexStateAPI can be used with different
data stores, we implemented the drivers for a range of data
stores in our FlexStateprototype. We choose Redis [19] and
Cassandra [20] because they belong to different data store
families, i.e.,Redis is a key-value store with a flat key space
while Cassandra organizes data in tables. Redis has been
used in NF systems due to its consistency guarantees [12],
while the fault tolerance capabilities of Cassandra can be
leveraged with use-cases with very stringent availability
requirements [25]. Moreover, Redis and Cassandra are both
carrier-grade data stores, i.e.,they are used and maintained
by major IT companies: using carrier-grade data stores for
NF state management provides further benefits, as discussed
in Section VI-C. We also implemented the driver for an
in-memory hashmap. The hashmap is not shared among NF
instances and it executes locally to each NF instance, i.e.,it
runs in the same host of the NF instance. We use the hashmap
only for benchmarking purposes.

Table 2 shows a few examples of how the data structures
and the API calls of FlexStateare converted by the data
stores drivers. Supporting counters is straightforward because
both Redis and Cassandra natively support counters, and
the add(value) call of the FlexStateAPI can be mapped
directly to the corresponding calls in Redis and Cassandra,
respectivelyINCRBY and addition operand. Supportingmaps
and countermaps in Redis is easy as well because the data
store supports both data structures and thus it natively exposes
calls for inserting an element into a map and incrementing a
value in a countermap. With Cassandra, we implement maps
and countermaps by expanding them in normal tables because
the native support for maps in Cassandra is inefficient. We
discuss this aspect in more detail in Section IV-B.

B. STATE MANAGEMENT
FlexStateleverages RSS to distribute the flows across the
available cores and partitioning to avoid inter-core con-
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tention, and thus improve the performance and the scalability
of the system. In our implementation, we use Seastar [26],
a framework that has been used successfully in other related
work [14]. Seastar distributes the flows across the available
cores by configuring the NIC to apply RSS and linking each
hardware queue of the NIC to a different core. If the number
of available cores is higher than the number of hardware
queues in the NIC, then Seastar creates software queues
for the remaining cores and it performs RSS in software
to distribute the flows evenly among all available cores.
For each available core, Seastar creates a thread, it pins
the thread to the core, and it configures the thread to pro-
cess the packets of the queue linked to the core. Seastar
also facilitates partitioning by creating per-core data struc-
tures, which are accessed and modified only by the thread
assigned to the core. Lastly, Seastar natively integrates with
DPDK [27], which we adopt to improve the performance of
the system.

Data store drivers fetch and organize the state informa-
tion in the data store leveraging the unique keys created by
FlexStateas described in Section III-B2. Each data store has
a specific way of organizing data: Cassandra, for example,
organizes data in tables which can be grouped in different
key spaces, while Redis has typically a single flat key space.
In our implementation, the data store driver for Redis uses
the keys of FlexStatedirectly to store and fetch state informa-
tion. For example, the key nf1@ins1@1@Counter@abc
is used as-is to identify the counter abc used by core 1 of
NF instance ins1 of NF nf1. Instead, the data store driver
for Cassandra uses first the NF id, the NF instance id, and
the core id to identify a key space. Then, data structures of
different types are stored in different tables, and the data
structure id is used to identify the data structure within a
table. Using the previous example, the key space identifier is
nf1@ins1@1, the table is Counter, and the id of the data
structure is abc. To fetch the value of the counter, we use the
query SELECT value FROM nf1@ins1@1.Counter
WHERE key=abc.

Using verbose queries and receiving bulky replies can
quickly saturate the link between FlexStateand the data store,
ultimately decreasing the performance of the system. For this
reason, data store drivers must use the data structures offered
by the data store in the most efficient way. For example,
the data store driver for Redis directly uses collections and
their calls exposed by the data store. Cassandra also supports
collections, but they expose a limited number of calls, e.g.,it
is not possible to fetch a single element from a map in an
efficient manner. For this reason, the data store driver for
Cassandra implements maps by expanding them in tables,
and it uses queries on tables to perform operations on maps
efficiently. As shown in Table 2, every key space in Cassandra
has a tableMap, which contains maps. For eachmap, the table
Map contains the id of the map (in column key1) and all the
key-value pairs of themap (in column key2 and column value,
respectively).

C. PERFORMANCE OPTIMIZATIONS
To decouple packet processing logic and state management,
we cannot schedule the state management operations on the
threads used for processing packets. For each Seastar thread,
we create a dedicated thread to perform the state manage-
ment operations. Periodically, the Seastar thread schedules
the state updates for the data store to its state management
thread. The network operator uses the configuration file to set
the frequency with which the Seastar threads schedule state
updates. To implement the state managements threads, we use
libevent [28] because it integrates easily with the libraries for
communicating with the data store, i.e.,hiredis-vip [29] for
Redis and DataStax C++ Driver [30] for Cassandra.

V. EVALUATION
The design of FlexStateguarantees the achievement of our
first objective, i.e.,FlexStateoffers the ability to change the
data store adopted for NF state management by means of
configuration. Nevertheless, we need numerical evidence that
the second objective is achieved, i.e.,FlexStateis able to scale
with the assigned resources, and it allows the NFs to process
packets approaching line rate. In particular, attention should
be paid to all the aspects that might influence line-rate per-
formance, such as the hardware setup and the location of the
data store. For these reasons, the aim of our evaluation is to
answer the following questions.

DOES OUR TESTBED SUPPORT LINE RATE?
Answering this question is important because we want to
make sure that the testbed we use for evaluating FlexStateis
able to serve packets arriving at line rate.

DOES FlexStateENABLE NFs TO APPROACH LINE RATE?
The goal of FlexStateis to provide flexibility in changing the
data store without hampering performance. NFs using FlexS-
tatemust therefore be able to process packets approaching
line rate.

DOES FlexStateSCALE WITH THE NUMBER OF CORES
MADE AVAILABLE TO THE NF?
NFs parallelize their packet processing across the cores made
available to it, and FlexStatemust be able to support this and
fully utilize the available resources.

HOW TO QUANTIFY THE BENEFITS OF PERFORMANCE
OPTIMIZATIONS?
We believe no_wait calls and asynchronous updates to be
crucial in enabling the NFs to approach line rate. To confirm
our expectations, we need numerical evidence that shows the
benefits of the performance optimizations in FlexState.

HOW DO THE DATA STORE AND ITS LOCATION AFFECT
FlexState?
The decoupling between the state management and the data
store, together with the proposed performance optimizations,
should ensure that the location of the data store does not
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affect the system. For example, we want to verify that running
the data store on the same node where FlexStateis running,
i.e.,locally, or on another node, i.e.,remotely, does not affect
the performance.

In the following, we describe our testbed (Section V-A)
and the experiments we perform to answer our questions
(Section V-B).

A. TESTBED DESCRIPTION
1) OVERVIEW
Our testbed is described in Figure 3. It comprises two Dell
C6320 nodes [31], i.e.,node1 and node2. Both nodes are
equipped with a Intel 82599ES 10GbE dual-port SFP+ NIC,
which features two ports, port1 and port2. The nodes are con-
nected with an 10 Gbps link for each port pair, i.e.,port1 and
port2 of the first node are connected to port1 and port 2 of
the second node respectively. The traffic is generated on
node1 using Pktgen [32], a tool of the DPDK suite which
is capable of saturating the 10 Gbps link. The other node,
node2, is used for running the NFs atop FlexState, which in
turn uses Seastar and DPDK to receive and send the packets.
The first node, node1, is then used to collect the traffic
processed by the NFs. The two nodes use port1 to exchange
data traffic. If the data store is run locally, then the commu-
nication between FlexState and the data store occurs through
the loopback interface; otherwise, the communication occurs
through port2.

FIGURE 3. Testbed workflow. Pktgen sends data packets from node1 to
node2 using port1, and FlexStateprocesses the data packets before
sending them back. Simultaneously, FlexStatesends state updates to the
data store, which can be local or remote. In the local case,
the communication is confined to node2; in the remote case,
FlexStatecommunicates with the data store on node1 using port2.

2) TRAFFIC GENERATION
We perform our experiments replicating a worst-case sce-
nario, i.e., a scenariowhere theNF has to serve a large number
of packets arriving at the line rate. We therefore generate
packets of 64 bytes, which corresponds to the minimum size
for an Ethernet frame [33]. The source and destination MAC
addresses of the packets are set to the MAC address of the
data interface of node1 and node2 respectively; the source IP
address, destination IP address, source port, and destination
port are generated randomly. The generated packets are stored

into a pcap file, which is then used by Pktgen as input. The
pcap file contains 50K different packets, which are sent over
and over to the NFs for the whole duration of the exper-
iment, resulting in 50K flows traversing the NFs. In each
experiment, we configured Pktgen to stream the traffic for
15 seconds. To improve confidence in the results, we repeat
our experiments using 10 different pcap files, and the results
presented here are obtained by computing the average of the
results over all experiments.

3) CONFIGURING NIC AND CORES
To test the scalability of FlexState, we run our experiments
assigning to FlexStatea varying number of CPU cores. Each
node is equipped with 48 cores (24 physical cores and 24 vir-
tual cores). More specifically, each node consists of two
NUMA nodes, NUMA1 and NUMA2. Each NUMA node
contains 12 physical cores, and for each physical core there
is an additional virtual core due to hyperthreading. In both
nodes of our testbed, port1 has 16 queues [34]. Each queue
is assigned to a dedicated core that processes the packets
arriving in that queue [22].

We design and adopted a set of rules for deciding how to
connect the available cores and the queues of port1. We took
into consideration the DPDK guidelines [35] that recommend
selecting distinct cores of the same NUMA node to which
the NIC is connected, i.e.,NUMA2. For this reason, we also
configured the physical cores of NUMA2 with isolcpus,
nohz_full, and rcu_nocbs kernel flags. We order the
48 cores in the followingmanner: the twelve physical cores of
NUMA2, followed by the twelve physical cores of NUMA1,
the twelve virtual cores of NUMA2, and the twelve virtual
cores of NUMA1; an experiment requiring n cores, selects
the first n cores in this list. Note that Seastar creates software
queues for the remaining available cores when the number
of available cores is higher than the number of queues of the
NIC port (Section IV-B).

4) NETWORK FUNCTIONS
We consider the following NFs in our experiments.

TESTPMD
We use testpmd [36] to assess the capabilities of the testbed
and to obtain a baseline for comparing FlexState’s perfor-
mance. This tool of the DPDK suite performs simple opera-
tions on the packets, such as changing header information and
forwarding, and it provides statistics about received, dropped,
and transmitted packets. We run testpmd on node2 by con-
necting it directly to port1 through DPDK, and thus skipping
the software layers of Seastar and FlexState. We configured
testpmd to send back the received packets by swapping the
MAC addresses. Unlike Seastar, testpmd cannot create addi-
tional software queues, sowe run testpmd using up to 16 cores
only.5
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COUNTER NF
To measure the impact of the software layers of Seastar
and FlexState, we implement a NF which just counts the
packets flowing through it. To alsomeasure the benefits of the
asynchronous updates, we develop two versions of this NF. In
the first version, for each received packet, theNF immediately
updates the counter in the data store (Sync Counter). The sec-
ond version uses asynchronous updates and FlexStateupdates
the counter in the data store every 1 ms (Async Counter).

NAT AND LOAD BALANCER
To measure the performance of FlexStatewith regular NFs,
we implement a NAT and a load balancer using the scaffold-
ing provided by Kablan et al. [4]. The NAT substitutes the
source IP and the source port of an incoming packet with a
(IP, port) pair taken from a pool of available (IP, port) pairs.
Each flow is assigned its own pair, i.e.,all packets of the flow
are modified using the same (IP, port) pair. The load balancer
distributes the incoming flows evenly among the servers in a
given list. When a new flow arrives to the NF, the least loaded
server is selected to serve the flow. We adopted partitioning
to implement the two NFs. In our NAT we split the pool of
available (IP, port) pairs into chunks and we assign a chunk
to each core of the NF instance, while in our load balancer
each core has its own load counters. Moreover, both NFs
make use of no_wait calls and asynchronous updates, and
FlexStatesends state updates to the data store every 1 ms.
Note that, despite the logic of the load balancer is applied
to received packets, all packets are eventually forwarded to
node1.

B. EXPERIMENTS AND RESULTS
DOES THE TESTBED SUPPORT LINE RATE?
We configure Pktgen on node1 to send traffic to node2 satu-
rating the 10 Gbps link, i.e.,14.88Mpps [14]. We run testpmd
on node2 and we configure it to send the received traffic back
to node1. We vary the number of cores assigned to testpmd,
and this internally determines the number of NIC queues
used. Figure 4 shows the transmission rate of testpmd, i.e.,the
number of packets forwarded back to node1 per second.
testpmd is indeed able to transmit packets back at the same
rate of reception, so we can conclude that the testbed supports
line-rate communication. Note that increasing the number of

FIGURE 4. Performance of testpmd. The testbed supports line-rate
speed, i.e.,14.88 Million packets per second (Mpps).

assigned cores determines a deterioration in performance due
to the overhead in managing additional queues [37].

DOES FlexStateENABLE NFs TO APPROACH LINE RATE?
Figure 5 and Figure 6 show the performance recorded in our
testbed by NAT and load balancer respectively. In particular,
we measure the performance running each NF with all data
stores, i.e.,hashmap, Redis, and Cassandra, and considering
all the locations, i.e.,local and remote. We can see that the
NFs both record a transmission rate of about 10 Mpps when
we allocate 24 cores to FlexState. These results are in line
with the performance recorded by the NFs using other state
management systems [4], [14]. We can conclude that FlexS-
tate, similarly to existing state management solutions, allows
NFs to approach line-rate packet processing.

FIGURE 5. Line-rate performance and scalability of FlexStatefor a NAT.
FlexStateapproaches line-rate performance, i.e.,close to 10 Mpps, and it
scales with the number of cores assigned. The performance drops as
soon as FlexStateuses virtual cores, thus indicating that hyperthreading is
not beneficial.

FIGURE 6. Line-rate performance and scalability of FlexStatefor a Load
Balancer. The legend is the same as in Figure 5. As in the case of for the
NAT, FlexStateapproaches line-rate performance, i.e.,close to 10 Mpps,
and it scales with the number of cores assigned. The performance drops
as soon as FlexStateuses virtual cores, thus indicating that
hyperthreading is not beneficial.

DOES FlexStateSCALE WITH THE NUMBER OF CORES MADE
AVAILABLE TO THE NF?
Figure 5 and Figure 6 show how the NFs perform when we
vary the number of cores assigned to FlexState. In both cases,
there is a steady increase in performance when going from
2 to 24 cores, which highlights the capability of FlexStateto
scale with the resources available. Nevertheless, when we
assign to FlexStatemore than 24 cores, we can see that both
NFs record a drop in their performance. We believe that
this is due to the usage of virtual cores. FlexState uses the
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physical cores of node2 when it is assigned up to 24 cores,
and it starts using the virtual cores when it is assigned more
than 24 cores. We have detailed the allocation of CPU cores
in Section V-A3. When more than 24 cores are assigned,
the physical cores have no idle time because they are busy in
processing packets. Consequently, using virtual cores forces
interleaving between non-idle cores, which worsens the per-
formance.

One can note that the behaviour of testpmd is very different
from the one of the two NFs, i.e.,testmpd performance wors-
ens when increasing the number of cores. We suspect that
this depends on the overhead of the packet processing logic.
testpmd simply performs a swap of theMAC addresses, while
NAT and load balancer operate on several data structures and
change several header fields before sending the packet out.
The main overhead for testpmd is therefore distributing the
flows of packets to a high number of queues. Instead, NAT
and load balancer benefit from distributing the packet flows
to a high number of cores because their main overhead is due
to their own packet processing logic.

HOW TO QUANTIFY THE BENEFITS OF PERFORMANCE
OPTIMIZATIONS?
We compare the performance of Sync Counter, which
does not use no_wait calls and which communicates syn-
chronously with the data store, with the performance of
Async Counter, which uses asynchronous updates instead.
We show the comparison in Figure 7. We can see that Async
Counter outperforms Sync Counter; more specifically, Async
Counter reaches around 12 Mpps, while Sync Counter is
never able to record more than 2 Mpps.

FIGURE 7. Sync Counter vs Async Counter. Async Counter outperforms
Sync Counter in terms of transmitted packets per second.

We can observe that Async Counter performs best whenwe
assign 8 cores to FlexState, which confirms the need to find a
trade-off between the overhead of the packet processing logic
and the overhead of distributing the flows to a higher number
of queues. The packet processing logic of Async Counter
only increases a counter, in addition to swapping the MAC
addresses to send the packet back; the overhead of its logic
is higher than the one of testpmd, but smaller than the one of
NAT and load balancer. They just have to increase a counter,
but it is still higher than the one of testpmd. As a result,
assigning up to 8 cores benefits the performance, while the

overhead of managing additional queues becomes too high
when assigning more than 8 cores.

HOW DO THE DATA STORE AND ITS LOCATION AFFECT
FlexState?
Given a data store and its location, we selected the number of
cores which resulted in the NF having the best performance,
and we reported the corresponding value in Figure 8. We can
see that a) all NFs perform close to line-rate performance, and
b) for each NF, the difference in performance across different
data stores and different locations of the data stores is negli-
gible. These results confirm that FlexStateindeed allows the
packet processing logic to operate at its own speed regardless
of the data store being adopted.

FIGURE 8. Benefits of Asynchronous Updates. For each NF, the values are
obtained using the number of cores that achieve the best performance
for the data store_location pair. There are no substantial differences in
performance across different combinations of data store and location.

VI. DISCUSSION
We have shown that FlexStatecan abstract the data store used
for state management without the need of major refactoring
while allowing NFs to approach line-rate performance. How-
ever, the choice of applying partitioning to manage NF state
may limit the scenarios in which FlexStatecan be used. In
Section VI-Awe discuss these limitations and howwe plan to
address them. Moreover, we have discussed how FlexState-
supports name-value pairs and collections. However, these
features correspond to only two of the features we have
identified in Table 1. So, in Section VI-B we elaborate on
how FlexStatecan support the remaining features. For com-
pleteness, we finally discuss our future work in Section VI-C.

A. LIMITS OF PARTITIONING
We identified two major issues that may arise when applying
partitioning to manage the state of NFs.

The first issue is that the thresholds originally imposed on
the entire state of the NF, such as the maximum size of a
table, are enforced on a per-NF-instance, per-core level with
partitioning, and consequently monitoring the status of the
NF requires additional maintenance. For example, the pool
of (IP address, port) pairs to masquerade new flows in a NAT
is divided among the NF instances, as well as among the cores
of each NF instance, so only a limited number of pairs is
available for each core. A temporary, uneven distribution of
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the traffic among the cores of a NAT instance may result in
one core running out of (IP address, port) pairs despite the
NAT still having spare pairs distributed over other cores.

The second issue is that NFs may require to know in
advance the number of NF instances and the number of cores
of each NF instance to prepare the data store properly. Con-
sidering the NAT example again, the pool of (IP address, port)
pairs must be divided according to the pre-planned number of
NF instances and cores before the NAT is run. This require-
ment limits the flexibility of the system because the network
operator must know the maximum number of instances that a
NF will require in advance, as well as the number of cores of
the physical nodes running the NF instances.

Both issues highlight a need for complementing FlexState-
with flexible mechanisms to reorganize the state information
in the data store, for example, according to run time events
such as thresholds being hit or new NF instances joining.
More generally, these mechanisms fall into the group of
techniques that researches have been developing to enable
more flexibility in partitioning, for example by configuring
the forwarding of the incoming requests to the cores based
on the size of the request [38]. In the NAT example, there is a
need for redistributing the (IP address, port) pairs when one
core exhausts the pairs allocated to it. Defining the complete
list of run time events such mechanisms should react to, and
making sure that their actions do not corrupt the local cache
of state information, requires further investigation.

B. CONSIDERATIONS ABOUT OTHER FEATURES
CONSISTENCY TUNING
Some state management systems support consistency tuning,
i.e.,the NF developer can set the consistency of the state
information using the API [5]. FlexStateremoves the need for
this feature by applying partitioning: state information is not
shared between executors, i.e.,cores or NF instances, so the
state information is always up-to-date for each executor.

LOCKS
Despite the advantages of partitioning, certain networking
tasks may require sharing the state among several cores or
even several instances [39]. For example, an IDS based on
Finite State Machine (FSM) models will require maintaining
the state information about a group of flows [40], but such
flows are not guaranteed to be processed by the same core.
In this case, the FlexStateAPI can be extended to support
two additional calls, acquireLock and releaseLock,
which are translated by the drivers into data-store-specific
mechanisms for acquiring and releasing locks respectively.
For example, both Redis and Cassandra can make use of
the IF NOT EXIST clause to mimic a lock acquisition. A
NF could use such calls on any piece of state information
to globally grant exclusive access to the state information.
Nevertheless, making use of a locking mechanism in a dis-
tributed scenario is known to be a performance killer [9]. Our
recommendation is to use locks only as a last resort.

TIMERS
Some NFs use timers to carry out their tasks. For example,
when a new flow arrives, a malware detector performs a query
to a registry for malware signatures, and it arms a timer to be
able to react in case no reply is provided [14]. For this reason,
some state management systems offer explicit support for
storing timers and notifying the NF in case of expiration [1],
[4]. FlexStatecan be extended to support timers by leveraging
the Time-To-Live (TTL) property offered by data stores.
FlexStateassociates a TTL to a record in the data store, and
the NF arms the timer locally. In this way, even in case of
failure of the instance handling the timer, a newly launched
instance can query the data store for the timer record. In case
the record is not in the data store anymore, then the timer has
expired. Otherwise, the current TTL of the record can be used
to arm a timer locally again.

MERGING FUNCTIONS
Partitioning makes it more difficult to have a comprehensive
view of the status of the network function. For instance, when
considering a load balancer, there is no single information
representing the total load of the servers. Nevertheless, this
drawback can be mitigated by introducing merging functions,
i.e.,functions that merge scattered data to provide unitary
information [1], [2], [5], [41]. Considering the example of
the load balancer, a merging function retrieves the load of the
servers for each core of each instance of the load balancer and
sums them together, thus providing the user with a unitary
value. Network operators can obtain a comprehensive view
of the status of the network by running these functions in a
cyclic fashion.

C. FURTHER EVALUATION AND FUTURE WORK
MULTIPLE NF INSTANCES
Our evaluation shows that FlexStateis able to scale with the
number of cores assigned to it. Note that FlexStateis designed
to scale with the number of instances as well. Indeed, in the
same way cores of a network function instance are not
required to synchronize with each other, different instances
of the same NF are not required to communicate with each
other. Network operators only have to assign a unique id to
each instance by writing it in the configuration file. We plan
to evaluate the scalability across several instances as future
work.

CARRIER-GRADE DATA STORES
A key advantage of FlexStateis that any data store can be
adopted for state management provided that the driver for
it has been developed. Instead of using ad-hoc data stores,
network operators can use carrier-grade data stores for man-
aging the state of their network functions. Carrier-grade data
stores offer several advantages in terms of cost, maintain-
ability and support given their typically large community of
users. While they might not be suitable for all use cases,
we believe network operators can benefit from this possibility
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in specific contexts. Inspired by similar projects [42], we aim
to complement FlexStatewith a range of drivers for the most
widely used data stores.

IMPROVING EFFICIENCY
Use cases such as Augmented Reality (AR) require both high
performance and high availability [7], [43]. While we have
shown that high performance can be achieved by decoupling
the packet processing loop from state management, high
availability can be approached by increasing the frequency
of the updates to the data store and mirroring the data store in
multiple locations. In its current stage, FlexStatepushes the
updates to the data store without performing any optimiza-
tion. For example, FlexStateinserts new entries in a map one
at a time, while inserting multiple entries using a single query
would reduce the volume of traffic towards the data store.
We are planning to complement FlexStatewith techniques
that allow representing state changes in an efficient way; for
instance, the approach of Nobach et al. [44].

D. Other Related Works
ABSTRACTION LAYERS
In recent years, we have witnessed how researchers have
solved key problems in computer science by leveraging
abstractions [18]. Focusing on the networking domain,
the most glaring example is the introduction of Open-
Flow [45], which abstracts out the details of the network
equipment while providing a simple interface to network
administrators. Similarly, the FlexStateAPI abstracts out the
details of a single data store and provides a unified interface
by which NF developers can write the packet processing
logic. The FlexStateAPI resembles a Database Abstraction
Layer (DBAL), a well-known and mature concept in software
engineering [46]. Researchers and software developers have
proposed several DBALs throughout the years [47], [48]
but, to the best of our knowledge, none of them provide
the features required to manage the NF state as described
in Table 1.

CONCURRENCY
Reducing contentions between threads is critical to the per-
formance of networked system [49]. FlexStateleverages par-
titioning to essentially eliminate the communication between
different threads; still, there are instances in which applying
a partitioning model is infeasible because of the need for
having data shared between threads (cf. Section VI). An
alternative is to apply a different concurrency model, e.g.,the
actor model [50], according to which the operations on a
data structure are executed in strict sequence. This guarantees
that data corruption cannot occur, regardless of the thread
that actually carries out the operations. NFVActor [51] is a
system for managing NFs that leverages the actor model,
nevertheless the system has limited support for shared state
between NF instances.

OTHER NETWORK LAYERS
State management is a thorny problem at every layer of the
network stack. While FlexStatedeals mostly with L3/L4 NFs,
the problem appears in both lower, e.g.,L2, and upper layers
in the stack, e.g.,the application layer, although the require-
ments are more homogeneous in these cases. Systems such as
EP2 [52] and SNAP [53] focus on relieving the NF developer
from the burden of handling NF state while maintaining high
performance by keeping state locally to the NFs. Instead,
availability is more relevant than performance at the applica-
tion layer. This led to the spread of data-centric paradigms,
such as serverless computing, according to which applica-
tions have no own state but state is stored in a remote data
store [54], [55]. An example of such serverless systems is
Conductor from Netflix [56].

VII. CONCLUSION
The systems that manage the state of network functions (NFs)
are tightly coupled to the specific data store implemented
internally, so NFs relying on the APIs of such systems are
also tied to the specific data store. As a consequence, network
operators cannot easily upgrade data stores or adopt new
ones that are more suitable for specific use-cases or cus-
tomer requirements without incurring high refactoring costs.
Inspired by projects in the cloud domain, we propose an
abstraction layer that decouples NF state management from
the underlying data store, in a way that the data store adop-
tion becomes a configuration parameter. FlexStateimple-
ments this abstraction layer while scaling with the resources
available to minimize the performance costs of decoupling.
Our experiments show that FlexStateenables NFs to process
packets approaching the line rate. While further efforts are
required to address the limitations identified in Section VI,
we believe that the results of our research represents a
significant step in bringing flexibility to network function
development.

.

APPENDIX A STATE IDENTIFICATION EXAMPLE
We write the packet processing logic of a simple NF which
counts the total number of packets going through it. The pseu-
docode of the packet processing logic using FlexStateAPI
follows:

Note that the NF developer has assigned the id pktCounter
to the variable. The id also corresponds to the name the
variable has in the code, but this is not required by FlexState.
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A network operator who wants to run the NF compiles
the following information in the configuration file fed to
FlexState:

The network operator runs FlexState, which initiates the
NF instance. The network operator assigns a number of
cores to FlexState. Let us focus on core 0. FlexStateneeds to
uniquely identify the counter being used by core 0 in the data
store. The key that FlexStatebuilds combines the information
as shown:

The data store driver uses the information in the key to
identify the counter within the data store (Section IV-B). The
presented schema for identifying state information allows
distinguishing a) state information of different NFs, b) state
information of different NF instances, c) state information of
different cores in the same NF instance, and d) different data
structures that are labeled with the same id.

APPENDIX B AVAILABILITY
The source code of FlexStateis available at the following
URL: https://version.helsinki.fi/matteo.pozza/flexstate.
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