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Abstract
We investigate the effect of training NMTmodels on multiple target languages. We hypoth-

esize that the integration of multiple languages and the increase of linguistic diversity will lead
to a stronger representation of syntactic and semantic features captured by the model. We test
our hypothesis on two different NMT architectures: The widely-used Transformer architecture
and the Attention Bridge architecture. We train models on Europarl data and quantify the level
of syntactic and semantic information discovered by the models using three different methods:
SentEval linguistic probing tasks, an analysis of the attention structures regarding the inherent
phrase and dependency information and a structural probe on contextualized word represen-
tations. Our results show evidence that with growing number of target languages the Attention
Bridge model increasingly picks up certain linguistic properties including some syntactic and
semantic aspects of the sentence whereas Transformermodels are largely unaffected. The latter
also applies to phrase structure and syntactic dependencies that do not seem to be developing
in sentence representationswhen increasing the linguistic diversity in training to translate. This
is rather surprising and may hint on the relatively little influence of grammatical structure on
language understanding.

1. Introduction
There have been indications that explicitly modeling linguistic information can

help performance of neural machine translation (NMT) models (Aharoni and Gold-
berg, 2017; Nadejde et al., 2017). Conversely, there is evidence that encoder-decoder
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NMTmodels also discover linguistic propertieswithout overt supervisionwhile learn-
ing to translate (Conneau et al., 2018a; Mareček and Rosa, 2019). This paper provides
a newperspective on the topic of linguistic information that is captured byNMTmod-
els. Specifically, we investigate the effect of training NMT models on multiple target
languages using the assumption that the integration of multiple languages and the
increase of linguistic diversity will lead to a stronger representation of syntactic and
semantic features captured by the model. Indeed, our experiments show evidence
that increasing the number of target languages forces the NMT model to generate
more semantically rich representations for input sentences. However, our results do
not provide strong support for the integration of additional syntactic properties in
latent representations learned by multilingual translation models.

In a bilingual translation setting, especially when the source and target language
are related, an NMT model can focus on shallow transformations between the input
and output sentences. We hypothesize that this strategy is not sufficient anymore
when the number and diversity of the target languages grow. Encoder representa-
tions for input sentences in a multilingual setup need to support a mapping to vari-
ous target language realizations displaying a range of different linguistic properties.
In other words, when faced with substantial linguistic diversity, the model will need
to create additional abstractions reflecting syntactic and semantic structure that is es-
sential for proper understanding and meaningful translation. In our research, we are
interested in finding out what kind of structure is needed in such a setup and what
kind of linguistic properties are picked up by current models of attentive neural ma-
chine translation.

In order to model a challenging level of linguistic coverage, we, therefore, apply
a diverse set of target languages: Czech, Finnish, German, Greek and Italian. Each
of these languages exhibit significantly different properties ranging from the com-
plexity of their morphological system and rigidity of word order and syntactic struc-
ture up to differences in tense, aspect and lexical meaning. The source language is
always English. Based on our experimental setup we now attempt to quantify and
compare the semantic and syntactic information discovered by models with increas-
ing amount of target language diversity and we test our hypothesis on two different
NMT architectures: The widely-used Transformer architecture (Vaswani et al., 2017),
a multi-headed attention based model, and the Attention Bridge architecture (Cífka
and Bojar, 2018; Lu et al., 2018), an RNN-based model, which produces fixed-sized
cross-lingual sentence representations.

In order to measure linguistic properties discovered by the models, we apply the
following three methods: (1) the SentEval linguistic probing tasks on sentence repre-
sentations, (Conneau et al., 2018a), (2) an analysis of the attention structures regard-
ing the inherent phrase and dependency information (Mareček and Rosa, 2019), and
(3) the structural probe on contextualizedword representations proposed by (Hewitt
and Manning, 2019).
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2. Related Work

We learn sentence representations in a multilingual setting. In their seminal pa-
per on multi-lingual neural machine translation, Johnson et al. (2017) show evidence
that sentence representations learned for different source languages tend to cluster
according to the semantics of the source sentence rather than its language. Schwenk
and Douze (2017) train encoder-decoder systems on multiple source and target lan-
guages and investigate source sentence representations w.r.t. cross-lingual represen-
tation similarity.

Conneau et al. (2018b) trainmultilingual sentence representations for cross-lingual
natural language inference by aligning source and target language representations in-
stead of directly training the system to translate. Artetxe and Schwenk (2019) learn
massivelymultilingual sentence representation on a training set encompassing 93 lan-
guages and show good performance on a number of downstream tasks.

Interpretation and evaluation of sentence representations has recently become a
very active research area. Conneau et al. (2018a) investigate several ways to learn
sentence representations for English and present a benchmark of probing tasks for
syntax and semantics.

The structural probe presented by Hewitt and Manning (2019) investigates the
relation between the syntax tree of a sentence and its contextualized word embed-
dings derived fromamodel. They show thatmonolingual English ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2018) embeddings encode syntactic structure whereas
baselines do not. This approach is attractive because it directly investigates syntactic
information captured by representations in contrast to probing, where an additional
classifier is trained. We apply the structural probe as one of our evaluation methods.

Chrupała and Alishahi (2019) use representational similarity analysis to compare
themetrics induced by sentence representations and syntactic dependency trees. This
approach is more flexible than the structural probe because it can compare metrics
in unrelated spaces (for example continuous sentence representations and symbolic
representations like syntax trees).

Another approach to investigate the syntactic information captured by transformer
models is to relate self attentions to syntactic phrase or dependency structures. This
approach was pioneered by Raganato and Tiedemann (2018), who analyze self at-
tentions in terms of the dependency tree structures and Mareček and Rosa (2019),
who train parsers based on self attentions of transformer models in monolingual and
multilingual settings.

Whereas there is a large body of related work on interpretation of sentence repre-
sentations learned by NMT models, few studies directly investigate the effect of mul-
tilinguality on sentence representations. Closely related to our work is the work by
Ravishankar et al. (2019)which extends the probing tasks presented byConneau et al.
(2018a) into the multilingual domain. They train multilingual sentence representa-
tions for NLI by training an English NLI system and mapping sentences from other
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languages into the English representation space following Conneau et al. (2018b).
They then conduct probing experiments on a multilingual dataset. Ravishankar et al.
(2019) notice that, quite surprisingly, transferred representation can deliver better
performance on some probing task than the original English representations.

Kudugunta et al. (2019) investigatemassivelymultilingual NMT on a combination
of 103 languages. In contrast to this paper, they investigate language representations
using Singular Value Canonical Correlation Analysis. They show that encoder rep-
resentations of different languages cluster according to language family and that the
target language affects source language representations in a multilingual setting. In
contrast to Kudugunta et al. (2019), our work investigates sentence representations
instead of language representations and we investigate the impact of multilinguality
on learning syntax and semantics.

To the best of our knowledge, this paper presents the first systematic study of the
effect of target language diversity on syntactic and semantic performance for sentence
representations learned by multilingual NMT models.

3. Data and Systems

In all our experiments, we use a multi-parallel1 subset of the Europarl corpus
(Koehn, 2005) spanning 391,306 aligned sentences in six languages: English, Czech,
Finnish, German, Greek, and Italian. We choose these languages in order to include
one representative from each of the major language families in the Europarl dataset
allowingmaximal diversity among target languages. Themulti-parallel corpus is ran-
domly divided into training (389,306 examples), development (1000 examples) and
test (1000 examples) sets.

We always use English as the source language, while we vary the number of tar-
get languages. Specifically, we set up a systematic study starting with a single target
language out of our set, and combining one additional target language at a time, until
we reach the exhaustive combination of all the five target languages. Table 1 depicts
all our settings. Note that we balance the number of occurrences of each language
over training configurations in order to avoid biasing combinations toward particular
languages.2

We use a multi-parallel corpus in order to avoid injecting additional source lan-
guage information when increasing the number of target languages. Even when the
number of target languages grows, the English source language data remains the
same. The only difference is that each source sentence in the training data is paired
with multiple translations in each of the target languages. This ensures that any addi-

1We took the intersection over the five parallel corpora.
2This means that each language occurs twice in 2-combinations, three times in 3-combinations and four

times in 4-combinations of languages.
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Source Target

{En}

1 tgt {Cs}, {De}, {El}, {Fi}, {It}
2 tgts {Cs, De}, {De, El}, {El, Fi}, {Fi, It}, {It, Cs}

3 tgts {Cs, De, El}, {De, El, Fi}, {El, Fi, It}, {Fi, It, Cs},
{It, Cs, De}

4 tgts {Cs, De, El, Fi}, {De, El, Fi, It}, {El, Fi, It, Cs},
{Fi, It, Cs, De}, {It, Cs, De, El}

5 tgts {Cs, De, El, Fi, It}

Table 1. The configurations of the 21 different training scenarios. English is the source
language in all configurations, while the combination of the target languages differs

between scenarios.

tional syntax awareness inmodels trained on higher combinations of target languages
cannot be due to additional English language data.

To preprocess our data, we first run a truecaser (Lita et al., 2003) before splitting
into subword units using BPE (Lita et al., 2003). For the latter we train a model with
100k merge operations on the concatenation of all source and target language data.

3.1. Transformer

The first model architecture in our experimental setup is the widely used Trans-
former model by Vaswani et al. (2017). The Transformer is a multi-headed attention-
based, feed-forward architecture. Each head can freely attend to any position, result-
ing in greater flexibility then competing sequential RNNs. Typically, several layers
are stacked on top of each other, and each layer incorporates its own dedicated atten-
tion heads. Furthermore, the output from this attention mechanism is averaged with
the original input vector via residual connections.

For the Transformer architecture we use a single encoder and decoder even in a
multilingual setting using target language labels for informing the translation sys-
tem about the language to be generated. Following (Artetxe and Schwenk, 2019), we
add those labels to the beginning of target sentences rather than source sentences,
which effectively hides target language information from the encoder guaranteering
a unified source sentence representation. During test time, we force-decode the initial
target language label before continuing the standard decoding process that generates
the translation in the desired language.
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Figure 1. NMT architecture with the attention bridge (Cífka and Bojar, 2018)

3.2. Attention Bridge

Almost all recent NMT architectures (Bahdanau et al., 2015; Vaswani et al., 2017)
utilize some kind of cross language attention that directly connects encoder with de-
coder representations. Cífka and Bojar (2018) introduced the idea of an attention
bridge as it is depicted in Figure 1. Here, the whole sentence is encoded into one
fixed-size matrix M that serves as an intermediate abstraction layer between atten-
tive encoders and decoders. Sharing this layers across languages enables the effective
combination of language-specific encoder and decodermodules to build an extensible
multilingual translation architecture. A similar idea was proposed by Lu et al. (2018)
but with a slightly different recurrent architecture in the intermediate layer.

In our experiments, we use a variant of the Attention Bridge re-implemented by
Raganato et al. (2019) in the OpenNMT-py framework.3 In this setup we have exactly
one encoder for English and one to five separate decoders for our target languages.
We run experiments for four different numbers of attention bridge heads: 10, 20, 40,
and 80.

3Network parameters: 2 bidirectional GRU encoder layers of size 512, MLP attention bridge, 2 GRU
decoder layers.
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4. Evaluation of Syntax and Semantics

4.1. SentEval Probing Tasks

Our firstmeasure for the degree of semantic and syntactic information captured by
sentence representations is a set of ten linguistic classification tasks, so called probing
tasks, presented by Conneau et al. (2018a) that look at different syntactic and seman-
tic aspects of a sentence. We conduct experiments using the SentEval toolkit (Con-
neau and Kiela, 2018) which trains and evaluates models for each of them. Training,
development and test data are provided by the SentEval toolkit and we extract the
necessary representations for all sentences in those data sets from our Transformer
and Attention Bridge models.

Three of the ten SentEval tasks probe for structural properties of the sentence and
its syntax tree: Depth (depth of the syntax tree), Length (binned length of the in-
put sentence) and TopConsitutents (the top-most non-root constituents in the syn-
tax tree, for example NP VP). Three tasks probe for semantic properties of its main
syntactic components: SubjectNumber (grammatical number of the subject), Ob-
jectNumber (grammatical number of the object) and Tense (tense of the main verb).
Three of the tasks perturb parts of the original sentences and ask the classifier to iden-
tify which of the sentences have been scrambled: BigramShift (recognize whether
two tokens in the sentence have been transposed),CoordinationInversion (recognize
whether two coordinated clauses have been transposed) and SemanticOddManOut
(recognize whether a token in the sentence has been replaced by a random vocab-
ulary item). Finally, WordContent is the task of predicting which of around 1,000
mid-frequency words occurs in the input sentence.

WordContent andLength represent surface properties of the sentence; BigramShift,
Depth and TopConstituents are purely syntactic tasks; and SubjectNumber, Object-
Number and Tense are semantic tasks which are related to the syntactic structure of
the sentence. Finally, SemanticOddManOut and CoordinationInversion are purely
semantic tasks.

We process the training, development and test data for probing tasks identically
to the data used for NMT models: we use the same truecasing and BPE models for
preprocessing. Subsequently, we extract sentence representations for the sentences
to train the SentEval multi-layer perceptron classifier for each task and setting hyper-
parameters using grid search. Finally, the toolkit provides the classification accuracy
on the test set.

4.2. Evaluating Transformer’s Self-Attentions

Another way of measuring the amount of syntax captured by the translation en-
coder is to analyze its self-attention mechanisms and compare them to linguistically
motivated syntactic trees (Raganato and Tiedemann, 2018; Mareček and Rosa, 2019).
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For this, we partially adapted the approach used byMareček andRosa (2019). During
the translation of the test data, we extract theweights of the self-attentions of all the at-
tention heads from all six encoder layers, and compare them to syntactic structures of
the source sentences automatically created by the Standford Parser (Klein and Man-
ning, 2003) (for phrase-structure trees) and by UDPipe (Straka and Straková, 2017)
(for syntactic dependency trees).

An example of typical distributions of weights in one encoder attention head is
shown in Figure 2. For our parameter setting,4 the attentions are very sharp and very
often focused on just one token in the previous layer and we observe a kind of con-
tinuous phrase attending the same token from the previous layer. Such phrases may
then be compared to the syntactic phrases we obtain by a syntactic parser.

The evaluation procedure is the following: First, we “sharpen” the soft attention
matrix by only keeping the maximal attention weight on each row of the attention
matrix, setting the weights on all other positions to 0:

Ao,i =

{
A ′

o,i if A ′
o,i = maxj∈[1,N] A

′
o,j

0 otherwise,
(1)

where A ′ is the original self-attention weight matrix, i and o is the input and output
state index respectively, and N is the length of the sentence. Second, we compute the
weights for each possible continuous phrase by averaging the individual weights:

wa,b =

∑
i∈[1,N]

∑
o∈[a,b] Ao,i

b− a+ 1
, (2)

where a and b is the beginning and the end of the phrase. Suchweights are computed
for each attention head and for each layer. Then, we can compute layer-wise precision
and recall:

PhrPrecL =

∑
h∈HL

∑
[a,b]∈P wh

a,b∑
h∈HL

∑
[a,b] w

h
a,b

(3)

PhrRecL =

∑
h∈HL

∑
[a,b]∈P wh

a,b

|P| · |H|
(4)

Where wh are the phrase weights from attention head h which is chosen from the
heads HL on layer L. P are the phrases present in the constituency tree created by the
Stanford Parser.

We can also evaluate the attention matrices with respect to a dependency trees.
We simply take the pixels of the attention matrix corresponding to the dependency
edges of the dependency tree obtained by UDPipe parser. Since it is not clear whether

4layers: 6, heads: 16, ff-size: 4096, normalization: tokens
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Figure 2. Example of a self-attention head (this one is head 4 on the 3th layer) in
transformer encoder. Such continuous phrases attending to the same token are typical

for many of the attention heads through all layers.

the dependents should attend to their governors or vice versa, we count both the pos-
sibilities. The precision is computed as sum of all “dependency” attention weights
divided by the sum of all attention weights.

DepPrecL =

∑
[i,j]∈D

∑
h∈HL

Ah
i,j +Ah

j,i∑
h∈HL

∑
i∈[1,N]

∑
j∈[1,N] A

hi, j
(5)

The recall is computed as an average weight of “dependency” attention.

DepRecL =

∑
[i,j]∈D

∑
h∈HL

Ah
i,j +Ah

j,i

|D| · |H|
(6)
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4.3. Evaluating Attention Bridge Cross-Attentions

In the attention-bridge architecture, there is one fixed-size vector representation
of the input sentence M divided into n vectors composed by the individual attention
bridge heads (see Figure 1). Each of them can possibly attend to all sentence tokens
but, in practice, they tend to focus on continuous parts of the sentence. An example
is included in Figure 3.
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Figure 3. Example of distribution of weights in a 10-headed attention bridge.

Once in a while, we can find more then one phrase per head. However, we treat
such cases as one long phrase. For each head we simply take the beginning of the
phrase as the leftmost token with weight higher than a threshold t and the end of
the phrase as the rightmost token with weight higher than t. We set the threshold t

to 0.1. We also tested other thresholds controlling the phrase lengths, but the final
results were all very similar and, therefore, we keep the original setting in the results
presented hereafter.

Having the set of phrases extracted from the attention bridge, we can now compare
it to the phrases of constituency trees obtained by Stanford parsermeasuring precision
in the usual way.
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4.4. Structural Probe

We also attempt to evaluate the syntax our representations store by extending He-
witt andManning’s (2019) probe to amultilingual domain. The probe they describe is
capable of learning to reliably extract some form of dependency structure, via a com-
bination of two independent distance and depth components. For a detailed math-
ematical description of either component, we refer the reader to the original paper.
Whilst the original probe returns undirected edge weights and depths separately, we
(trivially) combine these by forcing edges to point from shallower to deeper nodes.
We employ Chu-Liu/Edmonds’ algorithm (Chu and Liu, 1965;McDonald et al., 2005)
to extract the minimum spanning arborescence of this graph, which is equivalent to
a conventional dependency tree.

5. Results

SentEval Probing Tasks: The results of SentEval evaluations are illustrated in Fig-
ure 4. For the Attention Bridge, accuracy on all probing tasks except WordContent
and SemanticOddManOut generally improves when the number of target languages
goes up. The same trend can be seen with all sizes of the attention bridge.

For the Transformer, the effect of adding more target languages does not result in
a clear change in probing task accuracy. For Length and Tense, we can discern a small
improvement but for the other tasks, performance seems largely independent of the
number of target languages. Interesting is that the performance of higher layers is
better than for lower layers in almost all cases. SemanticOddManOut is a clear excep-
tion. Furthermore, we can also see that the Attention bridgemodel performs better on
most of the probing tasks when adding multiple target languages and increasing the
size of the attention bridge. This especially true with the semantic tasks in SentEval.

Syntactic Evaluation of Attentions: Next, we try to assess the attention vectors
from the two models in terms of the syntactic information they include. Figure 5
shows the precision and recall results for the phrase trees and the dependency re-
lations. We observe almost no changes or even a slight decreases for the Attention
Bridge model when adding more languages to the model. For the Transformer mod-
els, we see a slight increase of Phrase precision and recall on the last two layers (4 and
5), whereas the measures on the lower layers are slightly decreasing with the number
of target languages.

Structural Probe: Finally, we perform an analysis of the contextualizedword repre-
sentations of the Transformer.5 Figure 6 describes the variation in UAS with sentence

5Note that the Attention Bridge does not produce a per-token representation, and, therefore, this part
of the analysis is not applicable for that model.
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Figure 3: Example of distribution of weights in a 10-
headed attention bridge.

attention weights divided by the sum of all attention
weights.

DepPrecL =

P
[i,j]2D

P
h2HL

Ah
i,j +Ah

j,iP
h2HL

P
i2[1,N ]

P
j2[1,N ]A

hi, j

(5)
The recall is computed as an average weight of
“dependency” attention.

DepRecL =

P
[i,j]2D

P
h2HL

Ah
i,j +Ah

j,i

|D| · |H| (6)

5.3 Evaluating Attention Bridge

In the attention-bridge architecture, there is one
fixed-size vector representation of the input sen-
tence M divided into n smaller vectors. There are
n attention heads, each one resulting in Mn can
possibly attend to all sentence tokens. Practically,
it attends a continuous part of the sentence in many
cases. One example is given in Figure 3.

In many of the cases, one attention head covers
a continuous part of the source sentence. In some
cases we can find more then one phrase per one
head. For example, the head ‘2’ in Figure 3 seems
to focus on the word ‘are‘ and then on the words
‘to be’, whereas the word in between ‘made out’ are
less attended. However, we treat such cases as one
long phrase ‘are made out to be’. For each head
we simply take the beginning of the phrase as the
leftmost token with weight higher than a threshold
t and the end of the phrase as the rightmost token
with weight higher than t. We set the threshold
t to 0.1. We tested another values of thresholds
controlling the phrase lengths, but the final results
were all similar.

having the set of phrases extracted form the at-
tention bridge, we can compare it to the phrases

Figure 4: AttBridge - SentEval

constituency trees obtained by Stanford parser. We
measure the precision and the recall.

5.4 Syntactic Probing
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Figure 7: AttBridge – SubjNumber

Figure 8: Transformer - SentEval

Figure 9: Transformer – Attentions vs. Sytnactic trees

Figure 10: Transformer – Averaged BLEU score
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Figure 3: Example of distribution of weights in a 10-
headed attention bridge.

attention weights divided by the sum of all attention
weights.

DepPrecL =

P
[i,j]2D

P
h2HL

Ah
i,j +Ah

j,iP
h2HL

P
i2[1,N ]

P
j2[1,N ]A

hi, j

(5)
The recall is computed as an average weight of
“dependency” attention.

DepRecL =

P
[i,j]2D

P
h2HL

Ah
i,j +Ah

j,i

|D| · |H| (6)

5.3 Evaluating Attention Bridge

In the attention-bridge architecture, there is one
fixed-size vector representation of the input sen-
tence M divided into n smaller vectors. There are
n attention heads, each one resulting in Mn can
possibly attend to all sentence tokens. Practically,
it attends a continuous part of the sentence in many
cases. One example is given in Figure 3.

In many of the cases, one attention head covers
a continuous part of the source sentence. In some
cases we can find more then one phrase per one
head. For example, the head ‘2’ in Figure 3 seems
to focus on the word ‘are‘ and then on the words
‘to be’, whereas the word in between ‘made out’ are
less attended. However, we treat such cases as one
long phrase ‘are made out to be’. For each head
we simply take the beginning of the phrase as the
leftmost token with weight higher than a threshold
t and the end of the phrase as the rightmost token
with weight higher than t. We set the threshold
t to 0.1. We tested another values of thresholds
controlling the phrase lengths, but the final results
were all similar.

having the set of phrases extracted form the at-
tention bridge, we can compare it to the phrases

Figure 4: AttBridge - SentEval

constituency trees obtained by Stanford parser. We
measure the precision and the recall.

5.4 Syntactic Probing

6 Results

6.1 Transformer

6.2 Attention Bridge
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Figure 7: AttBridge – SubjNumber

Figure 8: Transformer - SentEval

Figure 9: Transformer – Attentions vs. Sytnactic trees

Figure 10: Transformer – Averaged BLEU score

BigramShift          

CoordinationInversion Length                 

ObjectNumber

SemanticOddManOutSubjectNumber

Tense           TopConstituents

  WordContent            

Depth               

ObjectNumber   WordContent            

Depth               BigramShift          

Tense             TopConstituents

SubjectNumber SemanticOddManOut

 Length                 CoordinationInversion

Attention Bridge Transformer

Figure 4. SentEval results for all probing tasks for both the Attention Bridge and
Transformer models. The average classification accuracies on the corresponding
SentEval task for increasing number of target languages in the models (x-axis) are

depicted. For Attention Bridge models, different plot colors indicate different numbers of
heads (10, 20, 40, or 80). For Transformer models, different plot colors indicate the layer

number (from 0 to 5).
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Figure 9: AttBridg

Figure 10: Transformer – Attentions vs Syntactic trees

Transformer - Dependencies

Figure 7: AttBridge – Attentions vs. Phrase trees

Figure 8: AttBridge – Averaged BLEU score

Figure 9: AttBrid

Attention Bridge - Phrases

Transformer - Phrases

Figure 5. The precision and recall graphs for the continuous phrases extracted from the
attention vectors of Attention Bridge and for the continuous phrases and dependency
relations form the Transformer models. X-axis denotes the number of target languages.
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length for increasing number of languages, and Figure 7 shows UAS variation per
token, for three token ‘categories’ based on their POS.

Figure 6. UAS plotted against sentence length. Lines represent trend lines.

6. Discussion

Our results support a connection between the number of target languages in an
NMT model and the linguistic properties it picks up at least in the Attention Bridge
model as evidenced by the SentEval probing tasks. In thatmodel, all probing tasks ex-
ceptWordContent and SemanticOddManOut significantly increasewhen the number
of target languages in the model grows.

At the same time, BLEU scores for translation performance actually degrade for
smaller models (Attention Bridge with 10 and 20 heads) and remains constant for
larger models (Attention Bridge with 40 and 80 heads, as well as Transformer), see
Figure 8. Degradation of translation performance in itself is not unusual. For example,
Kudugunta et al. (2019) notice that performance of high resource languages degrades
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Figure 7. UAS for different groupings of (dependent) tokens by POS. Mappings are the
same as in universaldependencies.org/u/pos/

in multilingual models. However, it is very interesting that this is accompanied by
improved performance on linguistic probing tasks.

For the Transformermodel, only the Tense and Length probing tasks seem to show
consistent improvement when the number of target languages increases. In general,
higher layers tend to deliver a better performance. The overall result for the Trans-
former model is lower on SentEval tasks than for the Attention Bridge model. This
is consistent with some earlier observations, eg., (Tran et al., 2018) who show that
RNN-based models tend to outperform the Transformer in subject-verb agreement.

The WordContent task shows a clearly degrading performance when the number
of target languages increases. The SemanticOddManOut task in turn shows a very
diffuse picture. Those trends are visible in both model architectures, However, these
probing tasks differ from all the other ones in the sense that the output label is a word
type rather than a category from a limited set or a small integer value as explained in
Section 4.1. We believe that the confusionmight be due to the BPE segmentation of the
input data which generates sub-word level tokens and thus increases the difficulty of
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Attention Bridge                   Transformer736
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740
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Figure 8. Averaged BLEU scores for Attention Bridge and Transformer. x-axis denotes the
number of target languages. Evaluation was done on the test part of our data.

the classification task. Furthermore, we note that (Conneau et al., 2018a) also report
fluctuating performance for WordContent, which reduces the trust in this particular
probing task.

Applying a structural probe to our representations results in several interesting ob-
servations. Figure 7 seems to indicate that the jump in median syntactic performance
is largest when as few as two languages are used as target languages; indicating that
the marginal value of further target languages is, as far as syntax is concerned, min-
imal. Figure 6 also seems to indicate that this holds true across all sentence lengths
although the gap widens slightly for longer sentences. We also observe that the in-
crease inmedian performance is greater for open-classwords than closed-classwords;
this intuitively makes sense, as open-class terms are likelier to have a broader range
of semantic values, which are likelier to be better defined with multiple target tokens.
Moreover, this observation further corroborates our other results, that exhibit more
noticeable improvements in semantic-level tasks than syntactic ones: tokens that re-
ceive more reference translations are more likely to be able to better contextualise a
broader range of semantic values, particularly from a perspective of lexical disam-
biguation.

Results for generating syntax trees seem to be largely negative. There is no dis-
cernible tendency for the precision or recall on phrase structure for the Attention
Bridge model. For the transformer, we see a slight increasing trend in the precision
and recall when the number of target languages grows both for phrase structure and
dependency parsing for the final layer in the model. There is no clear tendency for
the other layers.

An important question our results raise is why the Attention Bridge model shows
a muchmore clear on probing tasks as compared to the Transformer. We hypothesize
that this difference may be due to the much greater number of parameters that the
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Transformer employs. As a result of having access to a much larger representational
space, the Transformer may not have needed to abstract so drastically over several
target languages, resorting instead to dedicate some specific part of the representa-
tional space to each language. In contrast, the Attention Bridge model with a much
more restricted parameter space might have been under more pressure to abstract
useful syntactic representations when confronted with a large number of different
languages.

7. Conclusion

In this paper, we investigate the impact of additional target languages in multi-
lingual NMT systems on syntactic and semantic information captured by its sentence
representations. We analyze two models, the Attention Bridge and the Transformer,
using three different evaluationmethods. We show evidence that performance on lin-
guistic probing tasks improve for the Attention Bridgewhen the number of target lan-
guages grows. We also show that a transition from a bilingual to amultilingual setting
improves performance for the structural probe presented by (Hewitt and Manning,
2019). While we find evidence for improved performance on probing tasks, many of
which are related to the semantics of the sentence, our results on syntax performance
are inconclusive.

Several interesting unresolved questions remain. Although we tried to cover sub-
stantial linguistic variety by using languages from different families, the effect of an
even larger typological diversity is still an open question. Additionally, wewould also
like to knowhowmultiple source languageswould affect the results andwhether they
depend on other latent variables and parameters in the model.
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