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Abstract: Let sγ be a link in a Seifert-fibered space M over a hyperbolic 2-orbifold O
that projects injectively to a filling multi-curve of closed geodesics γ in O. We prove that
the complement M

sγ of sγ in M admits a hyperbolic structure of finite volume and give
combinatorial bounds of its volume.

1. Introduction

Let Σ be a hyperbolic surface of finite type. In the projective unit tangent bundle PT 1(Σ)
there is a very special family of links γ̂

.
= (γ, γ̇) coming from canonical lifts of a geodesic

multi-curve γ in Σ. These links correspond to the image under the map T 1Σ → PT 1(Σ)
of a collection of periodic orbits of the geodesic flow. Foulon and Hasselblatt [FH13] gave
a topological criterium, depending only on the immersion of γ in Σ, that guarantees the
existence of a complete hyperbolic metric of finite volume in the canonical lift complement
of γ in PT 1(Σ).

Theorem 1.1 (Foulon-Hasselblatt,[FH13]). Let γ be a closed geodesic on a hyperbolic sur-
face Σ. Then, the complement of the canonical lift admits a finite volume complete hyperbolic
structure if and only if γ is filling.

In [FH13] the previous theorem was stated in a more general setting. The authors
considered any embedded lift sγ in the unit tangent bundle of the hyperbolic surface as
long as the projection was injective outside the double points of the closed geodesic γ. After
reading their proof carefully, we noticed that an argument relative to the atoridality of these
knot complements was only stated for the particular case of knots coming from periodic
orbits of the geodesic flow; on the other hand, the arguments for the other cases worked in
greater generality.

This paper aims to prove the missing argument for the atoroidality of these link comple-
ments. This question was posed in a beautiful blog-post of Calegari [Cal] where he gives
a geometric proof of Theorem 1.1. We also extend results of the second author from the
unit tangent bundle to this setting. Moreover, we give sequences of closed filling geodesics
{γn}n∈N in Σ and topological lifts {sγn}n∈N in PT 1(Σ) whose associated knot complement
volume is bounded linearly in terms of the self-intersection number of the closed geodesic.

One of the steps of the proof of the hyperbolicity of Mγ̂
.
= PT 1(Σ) \ γ̂ is to show that

no essential torus T ⊂ M
sγ is null-homotopic in PT 1(Σ). To do so, the authors of [FH13]

argue that since the geodesic flow is product covered in the universal cover ˜PT 1(Σ) the
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complement of all the lifts
{˜̂γ} of γ̂ is homeomorphic to

(
R2 \X

)
×R, for X a discrete set.

Since π1

((
R2 \X

)
× R

)
is free and the essential torus T lifts to ˜PT 1(Σ) \

{˜̂γ} we reach

a contradiction. This is because a free group does not contain any Z2 subgroup. To avoid

using the geodesic flow we will directly show that π1( ˜PT 1(Σ) \
{

s̃γ
}

) is free for any lift sγ in

PT 1(Σ) of a geodesic multi-curve on Σ:

Theorem 1.2. Let M be a Seifert-fibered space over a hyperbolic surface Σ. Let sγ be a link

in M projecting injectively to a filling multi-curve γ ⊂ Σ of closed geodesics. Let q : M̃ →M
the universal covering map of M and

{
s̃γ
}

the total preimage of the link γ under q. Then,

the group π1

(
M̃ \

{
s̃γ
})

is free.

By adding our argument to their proof we obtain a version of Theorem 1.1 in the more
general setting of link complements in Seifert-fibered spaces, whose projection to their
hyperbolic 2-orbifold base is a filling geodesic multi-curve. Our main result is:

Theorem 1.3. Suppose O is a hyperbolic 2-orbifold and γ a link in an orientable Seifert-
fibered space M over the orbifold O projecting injectively to a filling geodesic multi-curve γ
in O. Then, the complement of γ in M, denoted by Mγ , is a hyperbolic manifold of finite
volume.

Once the hyperbolicity of M
sγ is settled, by the Mostow’s Rigidity Theorem [BP91], we

can pursue the problem of estimating the volume of M
sγ . The volume invariant has been

studied in the particular case of canonical lifts of geodesics in the projective unit tangent
bundle PT 1(Σ) of a hyperbolic surface Σ or the modular orbifold. Upper bounds have been
found in terms of the geodesic length in [BPS17] and a combinatorial lower bound by the
second author in [RM17].

In [RM17, Sec. 5] the second author noticed that the behaviour of the volume of M
sγ

among different lifts of γ does not depend on the diagram given by the couple (γ,O). More
precisely the second author proved that:

Proposition 1.4. For any hyperbolic metric X on Σ, there exists a sequence of {γn}n∈N
filling closed geodesics and respective lifts {γn}n∈N in PT 1(Σ) with `X(γn)↗∞, such that,

kX`X(γn) ≤ Vol(Mγn),

where kX is a positive constant that depends on the metric X. Moreover, there exists a
constant V0 > 0 such that Vol(Mγ̂n) < V0 for every n ∈ N, where γ̂n is the canonical lift of

γn on PT 1(Σ).

By constructing a particular ideal triangulation on M
sγ one can give a volume upper

bound to M
sγ , independent of the lift sγ, which is linear in terms of the self-intersection

number of γ.

Theorem 1.5. Let M be a Seifert-fibered space over a hyperbolic 2-orbifold O. Then, for
any link sγ ⊂M projecting injectively to a filling geodesic multi-curve γ on O:

Vol(Mγ) < 8v3i(γ, γ).

Where v3 is the volume of the regular ideal tetrahedron and i(γ, γ) the self-intersection
number of γ.
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Furthermore, by [HP18, Thm. 1.1] one can construct a continuous lift inside the pro-
jective unit tangent bundle of a punctured hyperbolic surface over some closed geodesics
such that the knot complement’s hyperbolic volume is, up to a multiplicative factor, the
self-intersection number of the geodesic multi-curve. The sequences of geodesics, lifts and
estimate of the volume’s lower bound of the corresponding knot complements is proven in
the following result:

Corollary 1.6. Let Σg,n be an n-punctured hyperbolic surface, n ≥ 1, then there exists a
sequence of {γn}n∈N filling closed geodesics with i(γn, γn)↗∞, and respective lifts {γn}n∈N
in PT 1(Σg,n) such that,

v8

2
(i(γn, γn)− (2− 2g)) ≤ Vol(Mγn) < 8v3i(γn, γn),

where v3 (v8) is the volume of the regular ideal tetrahedron (octahedron) and i(γn, γn) is the
self-intersection number of γn.

The previous result shows that self-intersection is the optimal bound when considering
general topological lifts. By generalising arguments of the second author [RM17, Theorem
1.5] to the Seifert-fibered setting we also give a combinatorial lower bound:

Theorem 1.7. Given a pants decomposition Π on a hyperbolic 2-orbifold O, a Seifert-fibered
space M over O, and a filling geodesic multi-curve γ on O, for any closed continuous lift sγ
we have that :

v3

2

∑
P∈Π

(]{ isotopy classes of sγ-arcs in p−1(P )} − 3) ≤ Vol(M
sγ),

where v3 is the volume of a regular ideal tetrahedron.

Outline: In section 2 we recall some basic facts about Seifert-fibered spaces and orbifolds.
In section 3 we prove Theorem 1.3 and Theorem 1.2. In section 4 by using results in [HP18]
and [RM17] we prove some volume bounds.

Acknowledgments: The second author would like to express his gratitude to the Uni-
versity of Rennes I and the University of Helsinki for creating an attractive mathematical
environment. The second author also thanks Juan Souto for discussions on these topics.
The first author would like to thank Ian Biringer and Martin Bridgeman for helpful discus-
sions. Both authors would like to express their gratitude to Andrew Yarmola for stimulating
conversations. Moreover, we would like to thank the anonymous referee for many helpful
comments and suggestions.

2. Seifert-fibered spaces and orbifolds

In this section, we recall some known facts about the topology of Seifert-fibered spaces
and orbifolds. For more details see [Jac80, Hem76].

Definition 2.1. A compact 3-manifold M is a Seifert-fibered space if M is the union of
a collection {Cα}α∈A of pairwise disjoint simple closed curves called fibers such that every
fiber Cα has a closed neighbourhood Vα homeomorphic to a solid torus and a covering map
pα : D2 × S1 → Vα satisfying:

(i) for all x ∈ D2 we have that pα({x}× S1) = Cβ for some β ∈ A so that Vα is a union
of fibers;

(ii) p−1
α (Cα) is connected;
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(iii) the group of covering transformation is generated by rn,m for n,m relatively prime
integers such that:

rn,m(reiθ, eiφ)
.
= (rei(θ+2m

n
π), ei(φ+ 2π

n
))

If |n| = 1 we have that pα is a homeomorphism and we say that Cα is a regular fiber,
otherwise we say it is a singular fiber.

Note that whenever |n| > 1 by (ii) Cα = pα({0} × S1) and for x 6= 0 we have that
p({x}×S1) is mapped to a fiber Cβ which crosses the meridional disk pα(D2×{1}) n times
and wraps m times around Cα. Also, since every fiber in a neighbourhood of a singular
fiber is regular we get that if M is compact it has finitely many singular fibers.

Definition 2.2. We say that a Hausdorff topological space O is an orbifold if we have a
covering U .

= {Ui}i∈N, closed under finite intersections, and continuous maps: φi : Vi → Ui,

for Vi open subsets of R2, invariant under a faithful linear action of a finite group Γi such
that φi : Vi/Γi → Ui is a homeomorphism. Moreover, we say that the charts {Ui}i∈N form
an orbifold atlas if:

• for Ui ⊂ Uj we have a monomorphism fij : Γi ↪→ Γj ;
• for Ui ⊂ Uj we have a Γi-equivariant homeomorphism ψij , called a gluing map, from
Vi to an open subset of Vj ;
• for all i, j we have φj ◦ ψij = φi;
• the gluing maps are unique up to compositions with group elements.

Remark. Even though a general orbifold can have reflections in the rest of this work we
will only consider orbifolds with conical points. Therefore, the set of singular points in any
orbifold O will always be a discrete set.

If M is a Seifert-fibered space we have a natural projection map: π : M → O obtained
by mapping every fiber Cα to a point, the space O is called the orbit-manifold. Given a
neighbourhood of Cα the map π ◦ pα : D2 × {1} → O is an embedding if Cα is a regular
fiber and is equivalent to the projection onto the orbit space of D2 × {1} under a periodic
rotation otherwise. Therefore, the quotient space O is naturally an orbifold with discrete
singular locus.

Remark. From the classification Theorem of Seifert-fibered spaces, see [Sei33], follows
that any Seifert-fibered space M is homeomorphic to an S1-bundle over a compact surface
S where we glue some singular neighbourhoods along some tori boundary components.
Equivalently, we can think of a Seifert-fibered space as an orientable S1-bundle over a
compact orbifold O.

3. Hyperbolicity of lift complements

The aim of this section is to prove Theorem 1.3:

Theorem 1.3. Suppose O is a hyperbolic 2-orbifold and γ a link in an orientable Seifert-
fibered space M over the orbifold O that projects injectively to a filling geodesic multi-curve
γ in O. Then Mγ is a hyperbolic manifold of finite volume.

Definition 3.1. Given a Seifert-fibered space M with its bundle map p : M → O we say
that a link sγ ⊂ M projects injectively to a multi-curve γ ⊂ O if distinct components of sγ
map, under p, to distinct components of γ and such that the projection p is injective except
at self-intersection points of γ which have two pre-images.
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Let M be a Seifert-fibered space over a hyperbolic 2-orbifold O, γ a geodesic multi-curve
on O and γ a link in M projecting injectively to γ under p. Then we have the following
commutative diagram:

M

p

��∐n
i=1 S1
- 

γ
;;

γ
// O

From now on we denote by Mγ the complement of a normal neighbourhood of γ in M.

Definition 3.2. For a hyperbolic 2-orbifold O with a discrete set of singular points S we
say that a multi-curve γ of closed geodesics is filling if γ is disjoint from S and if O \ γ is a
collection of disks, once-puncture disks or disks with one conical point.

2π/k

Figure 1. A filling geodesic on a 2-orbifold.

In order to prove Theorem 1.3 we will first reduce it to the case in which the orbifold O
is a surface, i.e. to the case where the Seifert-fibered space has a hyperbolic surface Σ as
base.

Lemma 3.3. If Σ
q→ O is a finite cover from a surface Σ and γ is a filling geodesic multi-

curve in the orbifold O then the union of all lifts γ0 is also a filling geodesic multi-curve on
Σ.

Proof. Let Σ0
.
= O\S, then γ is filling in Σ0. Consider the induced cover q : q−1(Σ0)→ Σ0

for q−1(Σ0) a connected subsurface of Σ. Then q−1(γ) is filling in q−1(Σ0). However,
Σ = q−1(Σ0) ∪ D for D a collection of disks each covering a disk with a cone point. Thus
q−1(γ) is filling in Σ and since q−1(γ) = γ0 we are done. �

Lemma 3.4. Given a finite cover π : M̂
Ďγ0 →M

sγ we have that if M̂
Ďγ0 is atoroidal so is M

sγ.

Proof. Given an essential torus T ⊂ M
sγ the restriction π : π−1(T ) → T is a finite cover

hence, every component of π−1(T ) is an essential torus T̂ ⊂ M̂
sγ0 . Thus, since M̂

sγ0 is

atoroidal the essential torus T̂ is homotopic into a torus component Ŝ of ∂M̂
Ďγ0 . The torus

component Ŝ must cover a torus component S of ∂M
sγ . By pushing the homotopy via π we

see that T is also homotopic into a torus component π(T̂ ) of ∂M
sγ . �

We now reduce the proof of the main theorem to the case in which the orbifold is an
actual surface.

Proposition 3.5. If Theorem 1.3 holds for hyperbolic surfaces then it holds for orbifolds.
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Proof. By the Geometrization Theorem, see [Sco83], the Seifert-fibered space M over a

compact hyperbolic orbifold O has a geometry modelled on either H2 × R or S̃L2 .

Assume that G ∼= π1(M) is a discrete group of isometries of H2 × R that acts freely and
has quotient an orientable S1-bundle M. Notice that the isometry group of H2 × R can be
naturally identified with Isom(H2)× Isom(R) and we regard the factors as subgroups in the
usual way. As G is discrete and M is a Seifert bundle, then G∩ Isom(R) = Z. Let Γ denote

the image of the projection G
p−→ Isom(H2). Then we have the exact sequence:

1→ Z→ G→ Γ→ 1.

where Γ is a discrete group of isometries of H2.

On the other hand, if G is a discrete group of isometries of S̃L2 acting freely and with
quotient an orientable S1-bundle M we have the following exact sequence:

0→ R→ Isom(S̃L2)
p−→ Isom(H2)→ 1.

If Γ denotes p(G), we have the exact sequence:

1→ Z→ G→ Γ→ 1.

for Γ a discrete group of isometries of H2.

In either case Γ is a finitely generated subgroup of Isom(H2), thus by [Bau62] Γ is residu-

ally finite. Hence, Γ has a torsion free subgroup Γ̂ of finite index. Let Ĝ be the subgroup of

G projecting onto Γ̂ and let M̂
.
= S̃L2 /Ĝ or (H2×R)/Ĝ. By the first isomorphism Theorem

[DF04] we have that: G/Ĝ ∼= Γ/Γ̂ hence Ĝ is also finite index in G. Therefore, we have the
following commutative diagram:

M̂
π //

p̂
��

M

p

��
Σ
.
= H2/Γ̂

π̂ // H2/Γ
.
= O

where π : M̂ →M is a finite index cover. Thus, by lifting sγ ⊂M to sγ0
.
= π−1(sγ) ⊂ M̂, we

get a finite cover:

π : M̂
Ďγ0 →M

sγ

Moreover, by the commutativity of the previous diagram the link sγ0 projects injectively onto
the filling multi-curve γ0 = π̂−1(γ). By Lemma 3.3 we get that γ0 satisfy the conditions of

1.3 for Σ. Then by Proposition 3.5 if M̂
Ďγ0 is atoroidal, we get that M

sγ is also atoroidal. �

Therefore, to show Theorem 1.3 it suffices to prove:

Theorem 3.6. Suppose Σ is a hyperbolic surface and γ is a link in a orientable Seifert-
fibered space M over Σ that projects injectively to a filling multi-curve γ of closed geodesics
in Σ. Then Mγ is a hyperbolic manifold of finite volume.

3.1. Proof of Theorem 3.6. Before proving Theorem 3.6 we need to introduce some
objects.

Definition 3.7. We say that a triangulation τ
.
= {Ti}1≤i≤m of a hyperbolic surface Σ is

simple for a geodesic multi-curve γ if:
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(1) the punctures of Σ are contained in the vertices of τ and every triangle T ∈ τ has
at most one puncture;

(2) the edges and vertices of each element in τ are distinct;
(3) each edge of τ is a geodesic arc (or geodesic ray if one vertex is a puncture) transver-

sal to γ;
(4) in every triangle T ∈ τ we have that if γ ∩ T 6= ∅ then it contains either two

intersecting sub-arcs of γ or a single sub-arc of γ (see Figure 2).

Figure 2. Two possible γ-arcs configuration inside T.

Lemma 3.8. Let γ be a filling geodesic multi-curve in a hyperbolic surface Σ. Then, there
exist a simple triangulation of Σ relative to γ.

Proof. We will build the triangulation in 4 steps.

(1) We start our triangulation around the self-intersection points of γ. Let x ∈ γ be
a self-intersection point and consider a small piece-wise geodesic disk D around
it such that it contains only two intersecting γ-arcs and no punctures. Choose 4
vertices in ∂D, one in each quadrant relative to the pair of γ-arcs, and the corre-
sponding embedded geodesic quadrangle such that one of the diagonals does not
pass through x. The quadrangle, with this diagonal, gives a triangulation τ around
all self-intersection points x of γ. Since γ is filling, all connected components C of
Σ \ γ are punctured disks or disks and they all contain k > 0 vertices of τ , where k
equal to the number of geodesic arcs of ∂C. We denote by M all components that
are monogons or bigons. In either case, every component C ⊂M is homeomorphic
to a punctured disk.

(2) Consider a connected component C of M. If the component of Σ \ γ is a monogon
we add an extra vertex v′ on the interior so that now we have 3 marked points in
C: the ideal vertex, a vertex of τ and v′. Then, we extend τ as in Figure 3.c).

For bigons we have already two vertices of τ and one ideal vertex, so we extend
τ as in Figure 3.b). We still denote this triangulation by τ and we note that all
components of Σ \ γ that are not triangulated are n-gons, with n ≥ 3, containing n
vertices of τ .

(3) Let C be a connected n-gon, n ≥ 3, in Σ \ γ. Then, we connect the n-vertices of τ
in C by geodesic arcs to form a simple loop α isotopic, in C to ∂C. If C does not
contain an ideal vertex w we add a vertex v and cone the vertices of α to either v
or w. We still denote this triangulation τ .
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(4) The components of Σ\τ that have not been triangulated are regular neighbourhoods
of γ-subarcs of the edges of the graph induced by γ and can be triangulated by
geodesic arcs as in Figure 3.a).

a) b) c)

Figure 3. Triangulation τ of Σ along an embedded γ-arc, in red, of a a)
(2 + k)-gon, b) bigon, and c) monogon.

Notice that by construction our triangulation satisfies the properties of a simple triangula-
tion in Definition 3.7. �

We will now build a partition, relative to a geodesic multi-curve γ, of the universal cover

M̃ of M induced by a given simple triangulation τ on Σ. In our setting we have:

M̃
q
�M

p
� Σ

Since p is a bundle map we have that for all Ti ∈ τ , 1 ≤ i ≤ m, the preimage: p−1(Ti) is
homeomorphic to a solid torus VTi

∼= S1 × D2. Moreover, the solid torus VTi inherits from
the triangulation {Ti}1≤i≤m a decomposition of ∂VTi into:

(1) three loops w1
i , w

2
i , w

3
i corresponding to the pre-images of the vertices v1

i , v
2
i , v

3
i of

Ti;
(2) three faces F 1

i , F
2
i , F

3
i homeomorphic to annuli I × S1 and corresponding to the

pre-images of the edges e1
i , e

2
i , e

3
i of Ti.

By going to the universal cover M̃ of M each VTi lifts to a collection:
∐
α∈Ai T

α
i × R, with

Tαi
∼= D2, and the previous decompositions of VTi induces a decomposition of each Tαi × R

into:

(1) three edges w̃1
i , w̃

2
i , w̃

3
i each one homeomorphic to R and corresponding to the pre-

images of the vertices v1
i , v

2
i , v

3
i of Ti;

(2) three loops F̃ 1
i , F̃

2
i , F̃

3
i homeomorphic to I ×R and corresponding to the pre-images

of the edges e1
i , e

2
i , e

3
i of Ti.

Remark 3.9. By the above the discussion using the composition M̃
q
� M

p
� Σ we have

the following decomposition of M̃ into thick cylinders:

M̃ =

m⋃
i=1

(p ◦ q)−1(Ti) =

m⋃
i=1

∐
α∈Ai

Tαi × R

Lemma 3.10. Let M̃
q
�M be the universal covering map of the Seifert-fibered manifold M

and M
p
� Σ be the Seifert map, for Σ not a sphere. Given any simple triangulation τ on Σ
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we have that M̃ = ∪∞n=1Kn where each Kn is simply connected and Kn = Kn−1∪Sn Tαnjn ×R
for Sn either one or two faces of Tαnjn × R.

Proof. By remark 3.9 we have the following decomposition of M̃ =
⋃m
i=1

∐
α∈Ai T

α
i × R.

Claim 1: For i 6= j the thick cylinders T iα × R and T jβ × R are either disjoint, share at

most two faces or share only one edge.

Proof of Claim: Suppose that they are not disjoint so that Ti = p ◦ q(T iα × R) and

Tj = p◦ q(T jβ ×R) intersect in Σ. Then, since they are distinct elements of the triangulation

τ they must intersect in their boundary. Since Σ is not a sphere it follows that Ti and Tj
either intersect in a vertex or they share at most two edges and the result follows. �

We now claim:

Claim 2: There are nested simply connected subsets {Kn}n∈N of M̃ such that M̃ =
∪∞n=1Kn and Kn = Kn−1 ∪Sn Tαnjn ×R where Sn is at most two faces of Tαnjn ×R sharing an
edge.

Proof of Claim: Pick T1 ∈ τ and let K1 be any component Tα1 × R of (p ◦ q)−1(T1)

in M̃ . Then, mark the edges w̃1, w̃2, w̃3 in ∂K1 and develop around them. That is, let{
Tαkik × R

}
1≤k≤n1

be the finitely many components of the decomposition of M̃ containing

w̃1 as an edge. By Claim 1 at least one of the
{
Tαkik × R

}
1≤k≤n1

, say Tαki1 × R, shares

one or two faces S with K1. We then let K2
.
= K1 ∪S Tαki1 × R. By repeating this for all{

Tαkik × R
}

1≤k≤n1

we have added all solid tori Tαj ×R having w̃1 as an edge to K1. The sets

{Kn}1≤n≤n1+1 so constructed are all homeomorphic to D2 × R, hence simply connected.
This is because at every stage we glue a thick cylinder to another thick cylinder along a
simply connected subset of their boundary.

By repeating this with w̃2, w̃3 we get new simply connected subsets {Kn}n1+2≤n≤m,

m ∈ N (see Figure 4).

w̃1

K1

w̃2

w̃3

Figure 4. Schematic of the simply connected subset Km engulfing K1

.
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Moreover, all theKn, n ≤ m, so constructed are simply connected and properly embedded

in M̃ and w̃1, w̃2, w̃3 are contained in the interior of Km. We then mark all edges w̃m1 , . . . w̃
m
nm

of ∂Km and repeat the previous construction by first adding all the thickened cylinders
sharing an edge with w̃m1 and so on.

This yields a collection {Kn}n∈N of properly embedded nested simply connected subset

of M̃ such that for all n ∈ N : Kn+1 = Kn ∪ T
αkn
in
× R, for some αkn , in. �

Moreover, since each Tαi ×R is in ∪∞n=1Kn and the universal cover M̃ =
⋃m
i=1

∐
α∈Ai T

α
i ×R

we have that M̃ = ∪∞n=1Kn. �

We now prove a key Lemma:

Lemma 3.11. Let M be a Seifert-fibered space over Σ with projection p : M → Σ and let
sγ be a link in M such that sγ projects injectively to a filling geodesic multi-curve γ ⊂ Σ.

Let τ be a simple triangulation for γ in Σ and let
{

s̃γ
}

be all the lifts in M̃ of the link γ.

Then, for every T ∈ τ, we have that π1

(
p̃−1(T ) \

{
s̃γ
})

is a free group. Moreover, the set

of
{

s̃γ
}

-arcs in p̃−1(T ) forms a free basis.

Proof. We claim:

Claim. For each T ∈ τ, there exists a smooth lift T of T embedded in p−1(T ) ⊂ M such
that γ ∩ T = ∅.

Proof. Suppose γ0 and γ1 are two γ-arcs contained in T with unique intersection point
x
.
= γ1(t) = γ0(s). Consider a new lift γ′0 of the arc γ0 in p−1(T ) which is at positive

constant S1-fiber distance from γ0 and does not intersect γ1. Let γ′1 be the unique lift
passing through y = γ′0 ∩ p−1(x) and at S1-fiber distance dS1(y, γ1(s)) from γ1. Consider
any smooth lift T of T which contains γ′1 ∪ γ′0. As γ′1 ∪ γ′0 does not intersect γ and the
projection of T \ (γ′1 ∪ γ′0) under p is disjoint from γ ∩ T thus, γ ∩ T = ∅. The case of only
one γ-arc inside T follows similarly from the previous case. �

By cutting p−1(T ) along the lift T coming from the previous claim we can associate to
p−1(T ) \ (T ∪ γ) a string diagram DT on T such that DT has at most one self-crossing.
Following Wirtinger, ([Rol76], Chap.3 Sec.D), we can give a presentation of the fundamental
group π1(p−1(T ) \ (T ∪ γ)) using DT and show that: π1(p−1(T ) \ (T ∪ γ)) is a free group.
Moreover, the generators are in bijection with the γ-arcs inside p−1(T ) \ T . Equivalently
the bijection is with γ-arcs inside T .

Lastly, since p̃−1(T ) \
{

s̃γ
}

is obtained by translating one lift of p−1(T ) \ (T ∪ γ) in M̃
under the fiber action, meaning that we are gluing consecutive lifts along the common lift
of T inside each one of them, and each lift of T is simply connected, by the Van Kampen

Theorem, we have that: π1

(
p̃−1(T ) \ {γ̃′}

)
is a free product of free groups. Moreover, by

the Van Kampen Theorem the generators are in a 1-1 correspondence with the
{

s̃γ
}

-arcs

inside p̃−1(T ). �

We can now prove:

Theorem 1.2. Let M be a Seifert-fibered space over a hyperbolic surface Σ. Let sγ be a link

in M projecting injectively to a filling multi-curve γ ⊂ Σ of closed geodesics. Let q : M̃ →M
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the universal covering map of M and
{

s̃γ
}

the total preimage of the link γ under q. Then,

the group π1

(
M̃ \

{
s̃γ
})

is free.

Proof. By Lemma 3.8, let τ be a simple triangulation of Σ and let ∪∞i=1Kn be the induced

decomposition of M̃ coming from Lemma 3.10. We define: CTαi
.
= Tαi × R \

{
s̃γ
}

and let

Cn
.
= Kn \

{
s̃γ
}
.

Claim: For every n ∈ N, we have that π1(Cn) is free. Moreover, the generators are in
bijection with the

{
s̃γ
}

-arcs inside Cn.

Proof of Claim: The proof is by induction over n, where the base case is Lemma 3.11.
Suppose that the claim is true for Cn. We will show it is also true for Cn+1 = Cn ∪Zn CTαj .
By Lemma 3.10 the intersection of Cn with CTαj is either one or two punctured faces

Zn = Sn \
{

s̃γ
}

such that each puncture comes from a subset of
{

s̃γ
}

-arcs inside Cn and the
same holds for CTαj . The natural inclusions:

(i1)∗ : π1

(
CTαj ∩ Cn

)
→ π1

(
CTαj

)
and (i2)∗ : π1

(
CTαj ∩ Cn

)
→ π1(Cn)

map generators to generators. Thus, by Van Kampen’s Theorem π1(Cn+1) is also free
because the new relations are given by:

(i1)∗(s)((i2)∗(s))
−1 = 1

where s is a generating element of π1

(
CTαj ∩ Cn

)
. Thus, we are just pairing the genera-

tors of the two free groups. Therefore, the new relations either rename the generators of

π1

(
CTαj

)
with generators of π1(Cn) or reduce the number of generators of π1(Cn). �

By the previous claim each π1(Cn) is free and the inclusion jn : Cn → Cn+1 induce maps
(jn)∗ : π1(Cn) → π1(Cn+1) mapping generators to generators. Therefore, the free basis of
Cn is extended to a free basis of Cn+1, thus:

lim−→
(jn)∗

π1(Cn) ∼= π1

(
M̃ \

{
s̃γ
})

is a free group as well. Moreover, the set
{

s̃γ
}

forms a generating set for π1(M̃ \
{

s̃γ
}

). �

We say that a properly embedded arc α in R3 is unknotted if for any thickened cylinder
V such that α ⊂ int(V ) we have that ∂V is isotopic to ∂Nε(α) in V . As a consequence of
the previous proof we obtain:

Corollary 3.12. Given a component α ∈
{

s̃γ
}

then α is unknotted in M̃ ∼= R2 × R.

We can now show:

Theorem 3.6. Suppose Σ is a hyperbolic surface and sγ is a link in an orientable Seifert-
fibered space M over Σ projecting injectively to a filling multi-curve γ of closed geodesics
in Σ. Then, the complement of γ in M, denoted by M

sγ , is a hyperbolic manifold of finite
volume.

Proof. By Thurston geometrization Theorem [Thu82] it suffices to show thatM
sγ is atoroidal,

irreducible and with infinite π1. The last two claims follow from standard arguments com-
ing from 3-dim topology using the fact that γ 6= 0 in π1(Σ) and that Σ is not a 2−sphere,
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respectively. Thus, since M
sγ is irreducible and π1(M

sγ) is infinite we only need to prove
the atoroidality condition. The proof involves three cases, each of which will be proven by
contradiction. Let T ⊂M

sγ be an incompressible torus not parallel to the boundary of M
sγ .

Then, for ι : M
sγ ↪→M the subgroup π1(ι(T )) has either rank zero, one or two in π1(M).

Case 1: The rank of π1(ι(T )) is zero.

This means that ι(T ) is null-homotopic in M . Hence, the map: ι : T → M lifts to an

embedded torus T̃ in M̃ . Moreover, for
{

s̃γ
}

the lifts of γ̃ ⊂ M we get that T̃ ⊂ M̃ \
{

s̃γ
}

is essential. However, by Theorem 1.2 π1(M̃ \
{

s̃γ
}

) is a free group which does not contain

any Z2 subgroup, giving us a contradiction ⇒⇐.

Case 2: The rank of π1(ι(T )) is one.

If rank(π1(ι(T )) = 1 it means that ι(T ) is compressible in M . Therefore we have a
compression disk D such that compressing ι(T ) along D gives us a 2-sphere S2 ↪→M . Since
M is irreducible it means that S2 bounds a 3-ball B ⊂ M . Thus, we see that ι(T ) bounds
a solid torus V in M and by incompressibility of T in M

sγ we must have that sγ ∩ V 6= ∅.
Since T ∩sγ = ∅ we have that every component sγi ∈ π0(sγ) intersecting V is contained in V .

Claim: There is a unique component sγi ∈ π0(sγ) contained in V and it is a generator of
π1(V ).

Proof of Claim: Let α be a generator of π1(V ) in π1(M). Then every component sγi ⊂ V
of sγ is homotopic, in V , to αni for some ni ∈ N. But every sγi is the lift of a geodesic in Σ
and so it is primitive. Hence, every sγi ⊂ V generates π1(V ). Thus, any two sγi, sγj in V must
be homotopic contradicting the fact that sγ projects injectively to a geodesic multi-curve on
Σ. Thus there is a unique component sη ∈ π0(sγ) contained in V and [sη] generates π1(V ). �

Claim: The torus T is boundary parallel in M
sγ .

Proof of Claim: Consider a lift Ṽ of V in M̃ . Then Ṽ is homeomorphic to D2 ×R and it

contains s̃η. If Ṽ is not boundary parallel in M̃ \
{

s̃γ
}

we have that the lift s̃η is knotted in

Ṽ contradicting Corollary 3.12. Therefore, the infinite cylinder ∂Ṽ is isotopic into ∂Nε(s̃η).
Thus, π1(T ) is conjugated into π1(∂Nε(sη)) contradicting the fact that T was not parallel to
the boundary of M

sγ ⇒⇐. �

Case 3: The rank of π1(ι(T )) is two.

If ι(T ) is essential in M , by Proposition [Hat07, 1.11], we must have that ι(T ) is isotopic
to either a horizontal surface or a vertical surface in M . If ι(T ) is horizontal it means
that the hyperbolic surface Σ is covered by a torus which is impossible. Therefore, ι(T ) is
isotopic to a vertical torus T ′. Then if we consider the projection p : M → Σ we see that
p(T ′) is an essential simple closed curve α ⊂ Σ. Moreover, since T ′ ∩ γ̃ = ∅ we have that
α ∩ γ = ∅. However, this contradicts the fact that γ is a filling multi-curve, giving us a
contradiction ⇒⇐.

Thus, M
sγ is atoroidal and hence admits a complete hyperbolic metric of finite volume. �
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4. Volume of M
sγ

Once the hyperbolicity of M
sγ is settled then by Mostow’s Rigidity we can pursue the

problem of estimating geometric invariants in terms of topological relations between the
multi-curve γ and the hyperbolic orbifold O.

Specifically we will show our volume upper bounds in terms of self-intersection and extend
the lower bound of the second author. Moreover, we will also construct continuous lifts inside
the projective unit tangent bundle of a punctured hyperbolic surface over some closed
geodesics such that the knot complement’s hyperbolic volume is, up to a multiplicative
factor, given by the self-intersection number of the geodesic multi-curve.

4.1. Lifts sγ whose volume complement is linear in ι(γ.γ). Recall the following defi-
nition:

Definition 4.1. Given a connected, orientable 3-manifoldM with boundary we let Sk(M ;R)
be the singular chain complex of M. That is, Sk(M ;R) is the set of formal linear combina-
tion of k-simplices, and we set as usual Sk(M,∂M ;R) = Sk(M ;R)/Sk(∂M ;R). We denote

by ‖c‖ the l1-norm of the k-chain c. If α is a homology class in Hsing
k (M,∂M ;R), the

Gromov norm of α is defined as

‖α‖ = inf
[c]=α
{‖c‖ =

∑
σ

|rσ| such that c =
∑
σ

rσσ}.

The simplicial volume of M is the Gromov norm of the fundamental class of (M,∂M)

in Hsing
3 (M,∂M ;R) and is denoted by ‖M‖. In the special case in which ∂M has only

tori boundary components there is another similar definition of ‖M‖0 which coincides with
‖M‖ whenever M is hyperbolic and has the property that for any Seifert-fiebered space N :
‖N‖0 = 0.

and the following results:

Proposition 4.2. [Thu78, 6.5.2] Let (M,∂M) be a compact, orientable 3-manifold with
∂M consisting of tori. If (N, ∂N) is obtained from M by gluing pairs of tori in ∂M then:

‖N‖0 ≤ ‖M‖0
Lemma 4.3. [Thu78, 6.5.4] Let M be a complete hyperbolic manifold of finite volume.
Then, v3‖M‖ = v3‖M‖0 = Vol(M).

Then, we have:

Theorem 4.4. Let Σg,n be a hyperbolic surface and M ∼= Σg,n × S1, then there exists a
sequence of filling closed geodesic {γn}n∈N with i(γn, γn)↗∞, and respective lifts {γn}n∈N
in M such that,

v8

2
(i(γn, γn)− (2− 2g)) ≤ Vol(Mγn),

where v8 is the volume of the regular ideal octahedron and i(γn, γn) the self-intersection
number of γn.

Proof. For the sake of concreteness, we will first prove the result for the once-punctured
torus Σ1,1. Let γn be constructed as in Figure 5. That is, fix a simple closed geodesic s
on Σ1,1, and pick two distinct points p1, p2 on s. Let α1, β1 be two essential arcs linking
in Σ1,1 \ s linking p1 with p2 and such that ι(α1, β1) = 1. Note, that α1 ∪ β1 gives us an
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a) b)

c) d)
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Figure 5. a)s on Σ1,1, b) γ1, c) γ2, and d) γ3.

essential loop in Σ1,1. Let γ1 be the closed geodesic representative of α1 ∪ β1. Then, γn is
obtained from γ1 by Dehn-twisting β1 2n-times along s.

Since M ∼= Σ1,1×S1, consider a global section S1,1 embedded in M. Let γn be constructed
in Nε(S1,1), a normal ε-neighbourhood of S1,1, such that its corresponding diagram on S1,1

is the alternating diagram in Figure 6.

a) b)

Figure 6. An alternating diagram for a) γ1, and b)γ2.

By making trivial Dehn filling around the torus coming from the puncture of Σ1,1, the
manifold (M,S1,1) becomes (Σ1 × S1, S1) and the position of our knot γn does not change.
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By using [Thu78, 6.5.4], [Thu78, 6.5.2] and the fact that a solid torus V has ‖V ‖0 = 0 we
get:

v3‖(Σ1 × S1)γn‖0 ≤ v3‖(Mγn)‖0 = Vol(Mγn)

where the last equality comes again from [Thu78, 6.5.4].
Notice that (Σ1 × S1)γn is not hyperbolic, however it contains an hyperbolic piece given

by Nε(S1) \ γn. Since, Nε(S1) \ γn is (Σ1 × S1)γn split along an essential torus by [Thu78,
6.5.2]:

Vol(Nε(S1) \ γn) = v3‖Nε(S1) \ γn‖0 ≤ v3‖(Σ1 × S1)γn‖0
Furthermore, the projection of γn has a weakly twist-reduced, weakly generalised alternating
diagram on a generalised projection surface, see [HP18, Sec.2], S1 in Nε(S1). Since, Nε(S1)\
N ε

2
(S1) is atoroidal, and ∂-anannular1, Nε(S1) is boundary incompressible in Nε(S1) \

N ε
2
(S1), and γn is filling in Σ1, we can apply [HP18, Thm.1.1]:

v8

2
(tw(γn)− χ(Σ1)) ≤ Vol(Nε(S1) \ γn),

where tw is the number of twisting regions of the link diagram [HP18, Def.6.4]. In the case
of closed geodesics in minimal positions we do not have bigons in its diagram. Therefore,
tw is equivalent to the self-intersection number of the corresponding geodesic.

To generalise this result to any hyperbolic surface Σg,n notice that:

(1) The number of connected components of the sequence of {Σ1,1 \ γk}k∈N tends to
infinity. Then, the previously constructed sequence has a sub-sequence {γk} such
that Σ1,1 \ γk has more than n connected components. Then, by removing one
puncture in n simply connected components of Σ1,1 \ γk we can think of {γk} as in
Σ1,n.

(2) It is a straightforward exercise to show that any projection of a link on the 2-sphere
can be made alternating by changing crossings. Then any closed geodesic in Σ0,n

admits an alternating diagram.

Given α1 and α2 be a filling closed geodesics on Σg,1 and Σ1,2 respectively. Let α1s?α2 be the
closed geodesic homotopic to a closed curve obtained by surgering α1 and α2 along a simple
arc meeting transversely one boundary component in each surface, see [RM17, Subsec. 4.2].
To prove the Σg,1 case with g ≥ 2 we can proceed by induction on the genus, using the
following claim:

Claim: Let α1 and α2 be a filling closed geodesics admitting an alternating diagram
on Σg,1 and Σ1,2 respectively. Then α1s?α2 is filling and admits an alternating diagram on
Σg+1,1 = Σg,1 ∪∂ Σ1,2.

Proof of Claim: The filling property is proven in ([RM17], Claim. 4.13) and the existence
of an alternating diagram follows from fixing an alternating diagram on each α1 and α2.

If after connecting both geodesics the corresponding diagram is not alternating (see Figure
7) then, by changing the crossing orientation of all crossings in one of the sub-arcs αi making
the diagram of the geodesic corresponding to α1s?α2 alternating. �

Finally to find the sequences of geodesics for general hyperbolic surface Σg,n we use
the analog argument used for the case of Σ1,n in (1), so that we could add or remove
punctures. �

1This means that it has no essential annulus whose boundary is not contained in the boundary components
isotopic to the removed fiber.
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a)

b)

c)

Figure 7. a) α1 and α2 in a neighbourhood of the glued boundary compo-
nent, b) The induced projection diagram of α1s?α2 around a neighbourhood
of the glued boundary component, c) Changing to the opposite crossing
projection on one of the α2 subarcs (green) to obtain an alternating diagram.

Remark 4.5. Not every closed geodesic on a surface of genus greater or equal than 1 admits
an alternating diagram (see Figure 8.b). Even though, for each hyperbolic surface, one can
find an infinite number of distinct types of closed geodesics which admit an alternating
diagram, see Figure 8.c.

a)

b) c)

Figure 8. a) Pants decomposition on Σ2, b) Closed geodesic not admitting
an alternating diagram, c) Closed geodesic with an alternating diagram.
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We show now a general volume’s upper bound for any lift complement on Seifert-fibered
spaces over a filling geodesic multi-curve:

Theorem 4.6. Let M be a Seifert-fibered space over a hyperbolic 2-orbifold O. Then, for
any link sγ ⊂M projecting injectively to a filling geodesic multi-curve γ on O:

Vol(Mγ) < 8v3i(γ, γ).

Where v3 is the volume of the regular ideal tetrahedron and i(γ, γ) the self-intersection
number of γ.

Proof. The idea is to build a hyperbolic link Lγ inside M that reduces the complexity of
sγ, in the sense that M

sγ is obtained by performing Dehn filling along some components
of Lγ . Since Dehn filling does not increase the volume [Thu78, Theorem 6.5.6] and the
fact that the number of tetrahedra in any ideal tetrahedra decomposition of a finite volume
hyperbolic manifold is an upper bound for its volume [Thu78, Theorem 6.1.7], we have that:

Vol(M
sγ) ≤ Vol(M \ Lγ) ≤ v3]TLγ ,

where TLγ is a decomposition of M \ Lγ into ideal tetrahedra. That is, the vertices corre-
sponds to the cusps of M \ Lγ . After constructing the link Lγ , we will argue that there
exist TLγ with the number of tetrahedra comparable to the self-intersection number of γ.

Let F be the collection of fibres of M projecting under p to conical points of O. For
every simply connected region D of O \ γ not containing a conical point we pick a regular
fibre FD whose projection lies in D and call this collection of fibres D. Let us denote by
N the Seifert-fibered space obtained by removing F ∪D from M . Since N has no singular
fibres let Σ be the Seifert surface of N . Note that, Σ is homeomorphic to O minus the set
of conical points and minus one point for each simply connected component of O\ γ. Then,
we define Lγ

.
= sγ ∪ F ∪ D. By construction N

sγ = M \ Lγ , and by Theorem 1.3 it admits a
finite volume hyperbolic structure.

To give a decomposition of N
sγ into ideal tetrahedra, we start by taking a pair of ideal

vertices in each fibre that projects to a self-intersection points of γ such that they connect
the two points on sγ (see Figure 9). Moreover, let Gγ be the 4-valent graph induced by γ
on Σ and let Aα ∼= S1 × I, for α an edge of Gγ be the pre-image under p|N .

Figure 9. Triangulation of the fibres coming from self-intersection points of γ.

We extend this graph to an ideal triangulation of the CW-complex p|−1
N (γ) = ∪α∈E(Gγ)Aα

by triangulating each annulus Aα. We do this by adding an ideal edge, which is an embedded
arc connecting the other vertices in each boundary fibre that do not intersect the embedded
sγ-arc in the annulus (up to isotopy this arc is unique) and then collapsing the sγ-arc in the
annulus to a point. This induces an ideal triangular decomposition of each annulus by two
ideal triangles (see Figure 10).
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α

p

α

~

Figure 10. Triangular ideal decomposition of p−1
|N (α) where the sγ-arc is in blue.

Let H ⊂ N be a regular neighbourhood of the triangulated CW-complex p−1|N (γ).
Then, H has a natural prism-decomposition induced by the ideal triangulation of p−1|N (γ),
where some vertices correspond to sγ. Since γ fills Σ and we added a puncture in every
complementary disk region we have that N is homeomorphic to the interior of H. Moreover,
the prism-decomposition of H induces a triangulation of ∂H, which are tori corresponding
to fibres of punctures of Σ. Therefore, by collapsing the boundary components of H to an
ideal vertex we obtain an ideal triangulation of N

sγ , because the ideal vertices of our ideal
triangulation project precisely to the cusps of N

sγ .
Finally, the number of ideal tetrahedra used in this triangulation is four times the number

of edges in the graph associated to γ. The number of edges is at most two times the self-
intersection number of γ. Hence, we have at most eight ideal tetrahedra for each self-
intersection point of γ. �

As a corollary of Theorems 4.4 and 4.6, and the fact that Seifert-fibered spaces over
punctured surfaces are homeomorphic to trivial circle bundles we obtain:

Corollary 1.6. Let Σg,n be an n-punctured hyperbolic surface, n ≥ 1, then there exists a
sequence of {γn}n∈N filling closed geodesics with i(γn, γn)↗∞, and respective lifts {γn}n∈N
in PT 1(Σg,n) such that,

v8

2
(i(γn, γn)− (2− 2g)) ≤ Vol(Mγn) < 8v3i(γn, γn),

where v3 (v8) is the volume of the regular ideal tetrahedron (octahedron) and i(γn, γn) the
self-intersection number of γn.

Similarly to [RM17], given any geodesic multi-curve γ and any continuous lift sγ, one has
a combinatorial lower bound for the volume of M

sγ . Recall that a pants decomposition on
an orbifold O, is a maximal family of disjoint simple closed geodesics on the underlying
topological surface ΣO which do not intersect the singular points of O. We will show:

Theorem 1.7. Given a pants decomposition Π on a hyperbolic 2-orbifold O, a Seifert-fibered
space M over O, and a filling geodesic multi-curve γ on O, for any closed continuous lift sγ
we have that:

v3

2

∑
P∈Π

(]{isotopy classes of sγ-arcs in p−1(P )} − 3) ≤ Vol(M
sγ),

where v3 the volume of the regular ideal tetrahedron.
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Given a pair of pants P, we say that two arcs sα, sβ : [0, 1] → p−1(P ) with sα({0, 1}) ∪
sβ({0, 1}) ⊂ ∂(p−1(P )) are in the same isotopy class in p−1(P ), if there exist an isotopy
h : [0, 1]1 × [0, 1]2 → p−1(P ) such that:

h0(t2) = sα(t2), h1(t2) = sβ(t2) and h([0, 1]1 × {0, 1}) ⊂ ∂(p−1(P )).

Remark 4.7. Up to isotopy, for a family of simple arcs without intersection there are only
six configurations of arcs in P . These are shown in Figure 11. The 3 in the lower bound
of Theorem 1.7 comes from the fact that there are at most 3 isotopy classes of sγ-arcs on
p−1(P ) projecting to such a configuration.

Figure 11. The projection on P of the only six sγ-arcs configuration, up
to isotopy, whose sγ-arcs project to pairwise disjoint simple arcs in P.

Before stating the main result to prove Theorem 1.7 we recall some definitions.

If N is a hyperbolic 3-manifold and S ⊂ N is an embedded incompressible surface, we
will use N |S to denote the manifold obtained from N by cutting along S. The manifold
N |S is homeomorphic to the complement in N of an open regular neighbourhood of S. If
one takes two copies of N |S, and glues them along their boundary by using the identity
diffeomorphism, one obtains the double of N |S, which we denote by D(N |S).

Definition 4.8. Let p : N → O be a Seifert-fibered space. Let P be a pair of pants
belonging to a pant decomposition of a orbifold O and let γ be a closed geodesic in O that
is not isotopic into P . Moreover, assume that P ∩ γ is a finite set of geodesic arcs {αi}nPi=1
connecting boundary components of P. We define P

sγ to be the set:

p−1(P ) \
nP⋃
i=1

sαi.

We also define D(P
sγ), as the gluing, via the identity homeomorphism, of two copies of

P
sγ along the punctured tori coming from:

∂(p−1(P )) \
nP⋃
i=1

sαi.

Moreover, D(P
sγ) is a link complement in the Seifert-fibered space D(p−1(P )), described

as :

D(p−1(P )) \
nP⋃
i=1

D(sαi),

where the projection orbifold of D(p−1(P )), whose underlying surface will be denoted by
S0, is one of the following:
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(1) either a genus two surface (if ](∂(ΣO) ∩ ∂P ) = 0);
(2) a surface of type (1, 2)2 (if ](∂(ΣO) ∩ ∂P ) = 1);
(3) a surface of type (0, 4) (if ](∂(ΣO) ∩ ∂P ) = 2).

Each D(sαi) is a knot in D(p−1(P )) obtained by gluing sαi along the two points ∂(p−1(P ))∩
sαi via the identity. See Figure 12.

a)

c)

b)

Figure 12. a) A pair of pants and a set of geodesic arcs connecting the
boundary. b) P

sγ associated to a), and c) D(Pγ) with the induced projection
to S0.

The key ingredient to prove Theorem 1.7 is the following result due to Agol, Storm and
Thurston, see [AST07, Theorem 9.1]:

Theorem (Agol-Storm-Thurston). Let N be a compact manifold with interior a hyperbolic
3-manifold of finite volume. Let S be a properly embedded incompressible surface in N ,
then:

v3

2
‖D(N |S)‖ ≤ Vol(N)

We now prove the lower bound for the volume of the canonical lift complement:

Proof of Theorem 1.7. Let {ηi}3g+n−3
i=1 be the simple closed geodesics inducing the pants

decomposition Π. Consider the incompressible surface S
.
=
⊔3g+n−3
i=1 (Tηi)sγ in M

sγ , where
(Tηi)sγ is the incompressible punctured torus defined by p−1(ηi)) \ (p−1(ηi)∩ sγ), see [RM17,
Lemma 2.5]. From [AST07, Theorem 9.1] we deduce that:

v3

2

∑
P∈Π

‖D(P
sγ)‖ =

v3

2
‖D(M

sγ |S)‖ ≤ Vol(M
sγ)

2By a surface of type (n,m) we mean a genus n surface with m punctures.
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For each pair of pants P we have:

v3]{cusps of D(P
sγ)hyp} ≤ Vol(D(P

sγ)hyp) ≤ v3‖D(P
sγ)hyp‖ = v3‖D(P

sγ)‖

where D(P
sγ)hyp is the atoroidal piece of D(P

sγ), i.e., the complement of the characteristic
sub-manifold, with respect to its JSJ-decomposition. The first and second inequality come
from [Ada88] and [Gro82] respectively.

Let Ω be the subset of γ-arcs on P having one arc for each isotopy class of sγ-arcs on
p−1(P ). This means that D(P

sγ)hyp ∼= D(PΩ)hyp. Moreover, D(PΩ) can be seen as a link
complement in D(p−1(P )), see Definition 4.8, whose projection to S0 is a union of closed
loops transversally homotopic to a union closed loops in minimal position. The atoroidal
piece of D(PΩ) corresponds to the subsurface of S0 which D(Ω) fills (Theorem 1.3).

(1) If the Ω-arc configuration on P is in the list of Remark 4.7, then by Theorem 1.3
we have that D(P

sγ)hyp = ∅ and Remark 4.7 also gives us:

v3

2
(]{isotopy classes of sγ-arcs in p−1(P )} − 3) ≤ v3]{cusps of D(P

sγ)hyp}.

(2) If the Ω-arc configuration on P is not in the list of Remark 4.7, then there is at least
one geometric intersection point on the projection of the link complement D(PΩ) to
S0.

=

a)

b)

Figure 13. The JSJ-decomposition of D(Pγ) of Figure 12.c.

By Theorem 1.3 we conclude that D(P
sγ)hyp 6= ∅. We will now define an injective function:{

sγ-arcs in
p−1(P )

}
ϕ−→
{

cusps of
D(P

sγ)hyp

}
where the target can be decomposed as:{

cusps of
D(P

sγ)hyp

}
=

 splitting tori of the
JSJ-decomposition of

D(P
sγ)

q
{

cusp in
D(P

sγ) ∩D(P
sγ)hyp

}
The function ϕ is defined as follows: if the cusps in D(P

sγ) are induced by the sγ-arc in
p−1(P ) belonging to the characteristic sub-manifold of D(P

sγ), ϕ maps it to a splitting
tori connecting the hyperbolic piece with the component of the characteristic sub-manifold
where it is contained. Otherwise, the cusp belongs to D(P

sγ)hyp and ϕ sends it to itself, see



Figure 13. Assume that there are more isotopy classes of sγ-arcs in p−1(P ) than the number
of cusps of D(P

sγ)hyp. Then, there are two tori, associated with non-isotopic sγ-arcs in
p−1(P ), that belong to the same connected component of the characteristic sub-manifold.
Since each component of the characteristic sub-manifold is a Seifert-fibered space over a
punctured surface we have that all such arcs correspond to regular fibres. Thus, they are
isotopic in the corresponding component hence isotopic in p−1(P ), contradicting the fact
that they were not isotopic. �

This result implies that there exist a filling geodesic multi-curve γ on O with bounded
components such that Vol(M

sγ) can be as large as we want. Let us fix a pants decomposition
on O, then for any N ∈ N there exist a closed geodesic with at least N homotopy classes of
geodesic arcs in one pair of pants. This is constructed by taking N non-homotopic geodesic
arcs in a pair of pants and linking them to form a filling geodesic multi-curve on O.

The lower bound of the volume of M
sγ obtained in Theorem 1.7 does not have control on

the length of the geodesic multi-curve, even if each homotopy class of γ-arcs contributes to
the length of γ.

Question 4.9. Given a hyperbolic orbifold, estimate the volume of M
sγ among the filling

geodesic multi-curve γ whose length is bounded by a fixed constant.
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