
1.  Introduction
Land-climate thermal interactions are of fundamental relevance to a diverse set of biophysical and bioge-
ochemical functions near the land surface as well as human activities, such as water resources, ecosystem 
carbon balance, vegetation growth, and infrastructure stability (Hjort et  al.,  2018; Jia et  al.,  2019; Jiang 
et al., 2016; Kurylyk et al., 2014; Porter & Gawith, 1999). Air temperature predominantly determines soil 
temperature, and the coupling (β) between mean annual air (MAAT) and soil (MAST) temperatures varies 
with depth and is mitigated by other environmental variables, such as seasonal snow cover, soil moisture, 
and vegetation (García-García et  al.,  2019; Grundstein et  al.,  2005; Karjalainen et  al.,  2019; Lesperance 
et al., 2010; Tingjun, 2005). However, due to limitations in paired long-term observations, especially re-
garding multilayer soil temperatures, which are costly and time-consuming, interannual variability of β has 
been rarely addressed and has remained elusive at large spatiotemporal scales.

Northern Eurasia has recently undergone drastic climatic changes (Blunden & Arndt,  2019; Chen 
et al., 2021b; Groisman et al., 2017). Regional warming has been faster than the global average since the 
1970s and is projected to continue in the future (Cohen et al., 2014; IPCC, 2013; Zhou et al., 2018), caus-
ing alterations in, for example, precipitation (Bintanja & Andry, 2017), snow cover characteristics (Zhong 
et al., 2018), soil moisture (Dai et al., 2004), and vegetation (Piao et al., 2020). The environmental changes 
not only mask or even decouple the soil-air temperature relationship but also have a buffering effect due 
to the soil’s thermal inertia, causing less temporal variability of temperature changes in soil than in air 
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(Ashcroft & Gollan, 2013; Cheruy et al., 2017). On a seasonal basis, snow cover retreat can enhance β due 
to a reduced insulation effect in winter, whereas rising air temperature during the snow-free season may 
dampen β because abrupt air temperature change is likely to be filtered as depth increases in soil (Cheruy 
et al., 2017; Tingjun, 2005; Zhan et al., 2019). Furthermore, with significant increases in the number of hot 
days and nights since the 1950s and alterations in other climate extremes (IPCC, 2013), the status of the 
annual soil-air temperature tracking ability remains uncertain. Hence, it seems reasonable to suppose that 
compound environmental and climatic changes should mediate β, whereas there are so far only limited 
examples of the dynamics of β at an interannual timescale. Nevertheless, evidence from local and regional 
studies has hinted that the response of soil temperature to air temperature changes might not be constant 
over the long term (Fang et al., 2019; Romanovsky et al., 2007; Zhan et al., 2019; Way et al., 2018). For in-
stance, Beltrami et al. (2003) and Chen et al. (2021a) both highlighted that long-term trends in air and soil 
temperature were inconsistent, leading to an interannual variation of air and soil temperature difference, 
which suggests that the coupling between air and soil temperature may not be stable.

Accessing variations of the tracking ability of soil-air temperature is critical for the parameterization of 
land surface models (LSMs). The soil temperature simulated by LSMs has been evaluated extensively and 
behaves differently from diurnal to decadal timescales. In particular, previous studies have pointed to the 
limitation in capturing the interannual variability of simulated soil temperature by various LSMs2018 
(Decharme et al., 2016; Orth et al., 2017; Yang et al., 2020; Yang & Zhang, 2018). In this regard, assessing 
the interannual variability of β by using in situ, independently observed soil and air temperature data could 
provide new insights into the evaluation of simulated soil temperature over a long-term period. It is also 
imperative to test the stability of β to better understand land-atmosphere thermal interactions and to fur-
ther assess related ecosystem functions such as soil carbon stock given other environmental changes in the 
future (Aalto et al., 2018; Fernández-Martínez et al., 2019; Loranty et al., 2018).

Here, we investigate the interannual variability of soil-air temperature coupling during 1984–2013 over 
northern Eurasia by analyzing paired observations of climatic variables. We began by showing that interan-
nual variability of β in the region was not stable by running 15-year moving windows over the period. We 
then examined the potential mechanisms of decreased β.

2.  Data and Methodology
2.1.  Data Compilation

The study region encompasses most land in northern Eurasia at latitudes from 42° to 70°N and longitudes 
from 28° to 170°E (Figure 1a). Daily meteorological (including soil and air temperature, snow depth, and 
precipitation) data collected during 1984–2013 were extracted from the All-Russia Research Institute of 
Hydrometeorological Information–World Data Center. Extensive quality control checks were undertaken 
on all data sets before publication (Bulygina & Razuvaev, 2012; Sherstiukov, 2012), and only qualified data 
were used in our analyses. Furthermore, daily measurements were computed into annual attributes: MAAT 
and MAST (°C); freezing and thawing degree days (FDD and TDD, °C, a sum of daily degrees below and 
above 0°C for a year); annual rainfall (mm), annual mean of daily snow depth (AMSD, cm), and snow cover 
duration (SCD, a sum of the days on which snow cover exists for a year). A minimum of 300 days of data was 
required for computing annual attributes and, on average, more than 362 days of data in a year were availa-
ble across data sets (Table S1). Apart from the in situ observations, we also extracted monthly gridded data 
(9 km resolution) from the ERA5–Land product (Hersbach et al., 2020), which were then computed into 
annual attributes: net surface solar radiation (SolarRad, W/m2) and volumetric water content (VWC, %).

2.2.  Analysis Method

β between MAAT and MAST was calculated as the slope of the ordinary least squares regression, in which 
MAST was regressed against MAAT for a specified period (Lenoir et al., 2017). A slope value close to one 
corresponds to high coupling, whereas low coupling has a slope value close to zero. First, we calculated β 
for each 15-year running window from 1984 to 2013. Then, interannual variation of β at each station was 
investigated using the linear trend of βs from the running windows (in total, 16 windows over the period). 
Before the regression analyses, all variables were detrended by removing linear trends for each window. 
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We also analyzed Pearson’s correlation (R) between MAAT and MAST to test the robustness of the results 
(Benesty et al., 2009).

To examine the potential mechanisms of change in β, we first divided each 20-year running window from 
1984 to 2013 into two 10-year groups based on the magnitude of the investigated variables (AMSD, FDD, 
TDD, etc.): one group consists of 10 years with greater values, while another group includes the remaining 
10 years with smaller values. As such, each of the two groups has the same set of stations, and values of 
βs from the two groups are fully comparable. Then, the values of βs from the two groups were compared to 
gain insights into the potential mechanisms of decreased β throughout the region. Likewise, to examine 
the potential impacts of climate extremes, we compared β and its change in the two 10-year groups divided 
based on hot and cold, rainfall, and snow cover extremes. Following Seneviratne et al. (2014) method for 
computing annual extreme weather frequency (days per year), the days with extreme snow cover (Snow90P, 
the number of days in a year with snow depth higher than the 90th percentile of the daily snow depth dur-
ing 1984–2013), hot (Hot90P) and cold (Cold90P) weather, and rainfall (Rain90P) extremes were computed for 
analysis.

Over the period, in situ observations at some stations and depths were inconsistent. Thus, we focused on 
the depths of 0.2 and 1.6 m and excluded the stations with less than 24 years of qualified data from the 
analyses. Figure S1 shows that an average of 27.6 and 28.1 years of data are available across 181 and 183 
stations pairing all variables at 0.2 and 1.6 m, respectively. In total, the study involves 4,998 and 5,148 annual 
observations at 0.2 and 1.6 m, respectively, during the period (Table S1).
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Figure 1.  Maps of observational stations and corresponding mean annual air and soil temperature coupling (β). (a) β at depths of 0.2 and 1.6 m at the stations. 
There are 181 and 183 stations at 0.2 and 1.6 m, respectively. (b) Spatially averaged β during 1984–2013. Averaged β values for the first (1984–1998) and last 
(1999–2013) 15 years are reported accordingly. The 5th and 95th percentiles of variables are depicted with colored bands. Permafrost zonation (continuous 
permafrost region (extent of permafrost ≥ 90%), discontinuous permafrost region (0% < extent of permafrost < 90%) is derived from the International 
Permafrost Association map (Brown et al., 1997).
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3.  Results
3.1.  Decreased Mean Annual Air and Soil Temperature Coupling

The majority of stations had positive β during 1984–2013, except for two and six negative stations at depths 
of 0.2 and 1.6 m, respectively (Figure 1a). The spatially averaged β0.2, which was 0.48 ± 0.18 (mean ± stand-
ard deviation) for 1984–1998 (the first 15 years), decreased to 0.36 ± 0.25 for 1999–2013 (the last 15 years) 
(Figure 1b). Likewise, at deeper ground, β1.6 decreased from 0.30 ± 0.16 for the first 15 years to 0.19 ± 0.20 
for the last 15 years. Across the stations, β decreased at more than 70% of the stations (Figure 2a). The trends 
in β varied spatially, and a significant (P < 0.05) decrease in β was uniformly observed in the western part of 
the region affected by the seasonal frost. However, compared with the seasonal frost area, there was a less 
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Figure 2.  Change in β during 1984–2013 over the region. (a) The spatial pattern of trend in β during 1984–2013 (left panel). Black-edged circles indicate that 
trends are statistically significant (P < 0.05). The right panel shows the difference in β between the last and the first 15 years (b) Dynamics of the spatially 
averaged β. The x-axis is the last year of the 15-year running window (e.g., 2013 stands for a running window from 1999 to 2013). The bars and diamonds 
represent the mean and median β, respectively. The dashed lines depict the least squares linear regressions of β. The numbers at the top of each bar are the 
percentage of significant stations.
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clear pattern of β changes for the stations located in the permafrost area, which may be attributable to the 
more complex and significant land–atmosphere–snow cover interactions (Grundstein et al., 2005; Hender-
son et al., 2018; Jia et al., 2019).

In the region as a whole, β derived from the total 16 running windows significantly decreased at 0.009 and 
0.007 per window at depths of 0.2 and 1.6 m, respectively (Figure 2b). Notably, 80% of stations had signif-
icant β0.2 during 1984–1998, while β0.2 remained significant at 53% of stations during 1999–2013. At 1.6 m, 
over half of significant stations for the first 15 years (67%) became insignificant for the last 15 years (33%). 
To test the robustness of decreased β, we alternatively examined R between MAAT and MAST. A decrease 
in R was also found, and the loss of significant stations from the first to the last 15 years was substantial 
(Figure S2). Hence, all these results confirm that the recent weakening relationship between soil and air 
temperatures at the continental scale is not an artifact but a real phenomenon.

3.2.  Key Mechanisms of Decreased β

The factors associated with decreased β may vary at different spatiotemporal scales and cannot be elucidat-
ed from statistical analyses alone. Here, we mainly focus on mechanisms of the compound effects of altered 
FDD, TDD, and snow cover conditions throughout the period. It was found that β for the group with greater 
TDD was systematically lower than that for the smaller TDD group (Figure 3). Notably, the decrease in β0.2 
for the greater TDD group (−0.0048/year) was more significant and the decrease was accelerating faster 
than for smaller TDD years (−0.0002/year), while the situation for β1.6 was similar (Figures 3b and 3c). 
Although FDD decreased across most stations, there was less difference between βs for two groups divided 
based on FDD compared with TDD, indicating the insulating function of seasonal snow cover.

Snow has been widely addressed as a key in mediating soil-air temperature tracking behaviors at different 
spatiotemporal scales (e.g., Tingjun, 2005; Zhang et al., 2018; Way et al., 2018). β0.2 for the group with great-
er AMSD (Group 1) was systematically lower than for the group with smaller AMSD (Group 2), while the 
difference in β1.6 between the two groups was smaller compared with β0.2 (Figures 3b and 3c). Unlike AMSD, 
there was no significant difference in β between the two groups divided based on SCD. This is partly because 
SCD is less informative than AMSD, which is jointly determined by SCD, timing, and daily depth variations. 
Furthermore, no major difference in β was found between two groups divided based on Rain and VWC 
(Figure S3). From 1984 to 2013, changes in AMSD and SCD were inconsistent at some stations (Figure 3a), 
suggesting more frequent snow cover extremes at these stations. It is also noted that the change in snow 
cover extreme days (Snow90P) is spatially heterogeneous (Figure 4a). Hence, we also tested whether β varied 
with Snow90P and found that β was, in general, lower for the greater Snow90P group (Group 1) than for the 
smaller (Group 2) (Figures 4b and 4c). Although Hot90P increased at most stations, there was no significant 
difference in β between groups divided based on Hot90P. Likely, the differences in β between the two groups 
divided based on Rain90P and Cold90P were mostly insignificant.

4.  Discussion
The results highlight that coupling of MAAT-MAST was not stable at an interannual timescale and de-
creased from 1984 to 2013 in northern Eurasia. Meanwhile, the number of stations with significant β re-
duced substantially during the period, which was related to the environmental changes. Among the investi-
gated attributes, the changes in TDD, FDD, and AMSD played vital roles in the decreased β.

During the period, the air temperature in the snow-free season (TDD) significantly increased, which 
masked β due to the soil’s thermal inertia and filtering functions with depth, such that MAST was unable 
to fully track the changes in MAAT (Figure 3) (Cheruy et al., 2017). Moreover, β for warmer snow-free sea-
sons (TDD, Group 1) showed a more notable trend than for the cooler seasons (−0.0048 and −0.0002 per 
year, respectively), which may imply a decoupling consequence of the MAAT-MAST relationship if climate 
warming in spring and summer continues in the future (Blunden & Arndt, 2019). This sensitivity of β to the 
air temperature change during the thermal growing season is of great relevance for temperature-sensitive 
processes near the land-atmosphere interface, such as plant growth, soil carbon decomposition, and the 
hydrological cycle (Davidson et al., 2000; Fernández-Martínez et al., 2019; Sistla et al., 2013).
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However, compared with TDD, FDD changes were less influential on the interannual variability of β due to 
the insulating function of seasonal snow cover in winter attenuating the sensitivity of β to FDD variations 
(Figures 3b and 3c) (Decharme et al., 2016; Tingjun, 2005). Nevertheless, it is found that β1.6 tended to be 
significantly lower for the groups with smaller FDD than the groups with greater FDD after 2011 (represent-
ing the running window of 1992–2011 and afterward), which potentially implies the enhanced sensitivity 
of β to FDD. This rising sensitivity of β to FDD variations is closely related to the dynamics of snow cover 
characteristics (e.g., onset, duration, and thickness) and may continue with the ongoing snow cover retreat 
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Figure 3.  Change and comparison of β in different climatic and environmental conditions. (a). Difference in the climatic variables between 1999–2013 and 
1984–1998. The sub-density plots depict the distribution of the variables’ differences, while the black dashed and solid orange lines represent the null (meaning 
no change) and mean values, respectively. (b and c). Comparison of the changes in β in different climatic conditions. The x-axis shows the last year of each 20-
year running window (e.g., 2013 stands for a running window from 1994 to 2013). For each 20-year window, we divided the 20 years into two groups based on 
the magnitudes of TDD, FDD, AMSD, SCD, and SolarRad: one group consists of 10 years with greater values (red, Group 1), while the other group (blue, Group 
2) includes the remaining 10 years with smaller values. The difference between the two groups was assessed by the paired t-test and indicated with asterisks 
(P < 0.05) at the top. The numbers in b and c are linear regression slopes, and the asterisks indicate the significance level of the regressions (one for P < 0.05, 
two for P < 0.001).
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by removing the attenuating effect of snow cover on the sensitivity of β to FDD (Brutel-Vuilmet et al., 2013; 
Pulliainen et al., 2020). Hence, future climate warming in winter may overall positively contribute to β in 
combing positive FDD-snow cover feedback (Brown & Mote, 2009; Diro & Sushama, 2020).

The frequency and intensity of extreme weather events (such as extreme precipitation, hot temperature) 
have increased at some stations (Figure  4a) (IPCC,  2013; Stott,  2016). The extreme snow cover events 
showed significant impacts on β, while other extreme attributes were less influential (Figures 4b and 4c). 
Of note, the rate of decrease in β for the greater Snow90P group (Group 1) was faster than for the smaller 
group (Group 2), implying a potential loss of the significant relationship between MAST and MAAT if more 
frequent snow cover extreme events emerge in the future.

The differences in β between groups divided based on other investigated factors were relatively minor, sug-
gesting that the decrease in β at interannual timescales was mainly attributable to the compound influences 
of spring and summer air temperature warming, and snow cover changes (Figures 3 and S3). Nevertheless, 
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Figure 4.  Change and comparison of β in different climate extremes. (a). The difference in extreme weather events between 1999–2013 and 1984–1998. The 
sub-density plots depict the distribution of the differences, while the black dashed and solid orange lines represent the null (meaning no change) and mean 
values, respectively. (b and c). Comparison of the changes in β in different extreme weather conditions. The x-axis shows the last year of each 20-year running 
window (e.g., 2013 stands for a running window from 1994 to 2013). For each 20-year window, we divided 20 years into two groups based on the magnitudes 
of Hot90P, Cold90P, Snow90P, and Rain90P: one group consists of 10 years with greater values (red, Group 1), while the other group (blue, Group 2) includes the 
remaining 10 years with smaller values. The difference between the two groups was assessed by the paired t-test and indicated with asterisks (P < 0.05) at the 
top. The numbers in b and c are linear regression slopes, and the asterisks indicate the significance level of the regressions (one for P < 0.05, two for P < 0.001).
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it is worth being aware that other factors (such as vegetation, rainfall, and soil moisture) can be essential in 
reducing the soil-air temperature relationship at finer spatial and temporal scales (Aalto et al., 2018; Fisher 
et al., 2016; Luo et al., 2020). However, we note that the use of less than 200 stations may hinder the mech-
anisms that underlie the observed weakening in β over regions with heterogeneous biogeophysical and cli-
matology conditions, such as landscape, vegetation, and soil characteristics (Groisman et al., 2017; Monier 
et al., 2017). Nevertheless, snow cover retreat and warming in winter have been demonstrated to enhance β 
but warming in spring and summer to attenuate β. Since the mean air temperature is projected to increase 
both during snow-free and winter seasons incorporating snow cover retreat (Callaghan et al., 2011; Meehl & 
Tebaldi, 2004; Russo et al., 2014), the future dynamics of β are largely dependent on the net impacts of these 
factors. As such, compound effects of the individual factors on the variation of β will be uncertain under a 
changing climate. Thus, a continuous and effective observation network, more robust LSMs, and further 
in-depth studies on the dynamics of land-atmosphere thermal interactions are needed.

5.  Summary and Conclusions
Multilayered soil temperature and paired air temperature observations provide evidence of an overall weak-
ening interannual variability of air-soil temperature coupling during 1984–2013 over northern Eurasia. 
Such a decline mainly relates to an air temperature increase in spring and summer, and snow cover retreat, 
but we also note that winter air temperature warming appears to play a positive role in β incorporating snow 
cover retreat since the latter part of the study period.

The distribution of observation stations is irregular, especially over the high Arctic permafrost area, where 
the pattern of β change is not as clear as over the seasonal frost area, which may cause uncertainties in the 
results. Meanwhile, it remains uncertain whether the observed weakening in the interannual relationship of 
soil-air temperature reflects decadal variations of the relation to climate warming and other environmental 
shifts because of the relatively short run of the analyses. Further, some studies concluded that no simulated 
soil temperature outperforms across LSMs and time spans due to the distinct structures and parameteriza-
tion schemes of the models (Rodell et al., 2004; Wang et al., 2016). Hence, this work also can be referred 
to as an indirect way of evaluating simulated soil temperature and the soil-air temperature relationship at 
an interannual scale, which will help in assessing long-term land-climate thermal interactions, which will 
be relevant to various biogeochemical and biophysical processes near the land-atmosphere interface in the 
future climate. Moreover, with the wide-ranging decline in usable weather stations at regional and global 
scales since the 1980s (Lawrimore et al., 2011; Sun et al., 2018), all our results demonstrate the value of long-
term in situ soil temperature observations for understanding land-climate thermal interactions.

Data Availability Statement
The wind and temperature data can be downloaded from the following URL (https://atmos.nmsu.edu/
data_and_services/atmospheres_data/INSIGHT/insight.html#Selecting_Data). The soil, air temperature, 
and snow depth data can be downloaded from the following URL (http://meteo.ru/english/climate/cl_data.
php). The gridded data can be downloaded from the ERA5–Land product (https://cds.climate.copernicus.
eu/cdsapp#!/home).
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