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ABSTRACT
◥

Purpose: Molecular tumor heterogeneity may have important
implications for the efficacy of targeted therapies in metastatic
cancers. Inter-metastatic heterogeneity of sensitivity to anticancer
agents has not been well explored in colorectal cancer.

Experimental Design: We established a platform for ex vivo
pharmacogenomic profiling of patient-derived organoids (PDO)
from resected colorectal cancer liver metastases. Drug sensitivity
testing (n ¼ 40 clinically relevant agents) and gene expression
profiling were performed on 39 metastases from 22 patients.

Results:Three drug–response clusters were identified among the
colorectal cancer metastases, based primarily on sensitivities to
EGFR and/or MDM2 inhibition, and corresponding with RAS
mutations and TP53 activity. Potentially effective therapies, includ-
ing off-label use of drugs approved for other cancer types, could be
nominated for eighteen patients (82%). Antimetabolites and tar-
geted agents lacking a decisive genomic marker had stronger

differential activity than most approved chemotherapies. We found
limited intra-patient drug sensitivity heterogeneity between PDOs
frommultiple (2–5) liver metastases from each of ten patients. This
was recapitulated at the gene expression level, with a highly pro-
portional degree of transcriptomic and pharmacological variation.
One PDO with a multi-drug resistance profile, including resistance
to EGFR inhibition in a RAS-mutant background, showed sensi-
tivity toMEKplusmTOR/AKT inhibition, correspondingwith low-
level PTEN expression.

Conclusions: Intra-patient inter-metastatic pharmacological
heterogeneity was not pronounced and ex vivo drug screening
may identify novel treatment options for metastatic colorectal
cancer. Variation in drug sensitivities was reflected at the
transcriptomic level, suggesting potential to develop gene
expression–based predictive signatures to guide experimental
therapies.

Introduction
Colorectal cancer accounts for about 10% of all cancer cases and

deaths worldwide (1). More than half of all patients with colorectal
cancer developmetastatic disease and livermetastasis is themain cause
of death (2). Systemic treatment for metastatic colorectal cancer

(mCRC) is primarily based on combination chemotherapies with
5-fluorouracil (5-FU), oxaliplatin, and/or irinotecan, with the addition
of a few biologically targeted agents such as monoclonal anti-EGFR
antibodies in KRAS/NRAS wild-type (wt) cancers, anti-angiogenic
agents targeting VEGF (3, 4), as well as the multi-kinase inhibitor
regorafenib (5). These expanded treatment options have improved the
median overall survival from approximately one year with 5-FU alone
to approximately two–three years with current standard therapies (6).
However, almost all patients develop resistance to available
therapies (7), and there is an unmet need for more effective therapies
and stratified treatment options (8). The potential for this has pri-
marily been documented by the high response rates and durable
responses to immune checkpoint inhibitors in the small subgroup of
mCRCs with microsatellite instability (9), as well as with targeted
combination therapies against BRAFV600E mutations (10) and HER2
overexpression (11).

Patients with mCRC commonly present with multiple metastatic
sites, including multiple lesions in the liver. A high level of intra-
patient inter-metastatic genomic heterogeneity may be a poor prog-
nostic factor after hepatic resection (12). Clonal expansion is also a
major cause of treatment failure, and this has been well documented in
mCRC by the emergence of resistant subclones during EGFR inhibi-
tion (13). However, it is not well documented to which extent
anticancer therapies have the same level of activity in distinct meta-
static lesions of each patient, and whether potentially heterogeneous
responses may affect patient outcome. Heterogeneous responses both
to palliative chemotherapy (14) and to neoadjuvant chemotherapy in
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patients with resectable colorectal cancer liver metastasis (CRLM;
ref. 15) may be associated with a worse survival. Furthermore, there
is also evidence of heterogeneous responses to molecularly targeted
therapies againstHER2 (16) andEGFR, the latter being associatedwith
genomic heterogeneity (17).

The use of genomics to guide cancer therapies has been less
successful than anticipated, and less than 7% of patients in 2018 were
estimated to benefit from such precision oncology (18). Drug testing of
the patient's own tumor cells offers a complementary approach (19).
These patient-derived organoids (PDO) recapitulate the genomic and
histopathological characteristics of colorectal cancers (20–22). Impor-
tantly, several studies have demonstrated that PDOs are amenable to
drug screening within a clinically relevant timeframe (20, 23–25), and
itwas recently shown that PDOs canpredict clinical responses (25–27),
including to standard combination chemotherapies in a patient with
mCRC (28). The pharmacological landscape of PDOs from colorectal
cancers has been investigated in a few studies (22, 25, 28), and there is
evidence of intra-tumor heterogeneity in responses to selected
drugs (29, 30). However, the level of intra-patient inter-metastatic
pharmacological heterogeneity is largely unknown. To this end, we
have generated a living biobank of PDOs derived frommultiple lesions
from patients treated for resectable CRLM in an observational study.
Our main objective in this pre-clinical phase of the project was to
explore intra-patient relative to inter-patient variation in drug sensi-
tivities and gene expression ex vivo.

Materials and Methods
Patients and tissue sampling

Twenty-nine patients treated for resectable CRLM within fifteen
months of an ongoing observational study at Oslo University Hospital,
from September 2017 to November 2018, were included. All patients,
except for patient 28, had received standard combination chemothera-
pies with or without targeted agents before the liver resection from
which the studied tumors were sampled and PDOswere derived, either
as a part of a prior treatment regimen (n ¼ 6) or as neoadjuvant
treatment (n ¼ 15; Supplementary Table S1). Parallel tissue samples
were immediately frozen (�80�C) formolecular profiling or submitted
to organoid cell culture within 1 to 18 hours. Samples for PDO cell
culture were transported on ice in basal culture media (Advanced
DMEM/F-12 #12634028 supplemented with 10 mmol/L HEPES
#15630080, 2 mmol/L GlutaMAX #35050061, and 100 U/mL penicil-
lin-streptomycin #15140122, all from Thermo Fisher Scientific/Gibco).

The study was approved by theNorwegian Data Protection Author-
ity and the Regional Committee for Medical and Health Research
Ethics, SouthEastern Norway (2010/1805; 2017/780). Written
informed consent was obtained from all patients included in the

study. The research performed was consistent with the Declaration
of Helsinki, and the research biobanks were constructed in compliance
with national legislation.

Organoid cell culture
Organoid cell culture was based on the methods described by Fujii

and colleagues (refs. 22, 31; Supplementary Methods). All PDO
cultures were periodically tested forMycoplasma contamination using
the MycoAlert Mycoplasma Detection Assay (Lonza #LT07-518) and
their identities verified by short tandem repeat profiling according to
the AmpF‘STR Identifiler PCR Amplification Kit (Thermo Fisher
Scientific).OnePDOculture did notmatch the patient's original tumor
profile and was discarded from further analyses.

Drug library and sensitivity screening
A customized drug library was designed for drug response profiling

of the PDOs, including a total of 40 anticancer agents either used as
standard of care to treat colorectal cancer, drugs approved for other
indications, drugs under development (in clinical trials for colorectal
cancer), or agents identified from high-throughput drug screening of
colorectal cancer cell lines (ref. 32; Supplementary Table S2). Drugs (at
nine concentrations typically ranging from 1 to 10,000 nmol/L) and
controls (100 mmol/L benzethonium chloride in nine wells as positive
control and 0.1% DMSO in 13 wells as negative control) were pre-
printed onto 384-well tissue culture plates (Corning 3707 clear black
flat-bottom microplates) using liquid acoustic dispensing technology
(Echo 550, Labcyte Inc.; printed at the High Throughput Biomedicine
Unit at the Institute for Molecular Medicine Finland), except for the
monoclonal antibody cetuximab which was added manually at two
concentrations (5 and 50 mg/mL) immediately before screening. Two
replicate 384-well plates were screened per sample. Using an Integra
Voyager electronic multichannel pipette, 10 mL of Matrigel was added
to the bottom of each well before seeding 450–600 organoids (strained
with a 40-mmpore size mesh fromVWR, #734-0002) to a final volume
of 40 mL in 3% Matrigel/ENAS media supplemented with 10 mmol/L
ROCKi, and incubated at 37�C in a humidified 5% CO2 atmosphere.
Viability was measured after 96 hours of drug exposure using the
CellTiter-Glo 3D Cell Viability Assay (Promega) according to the
manufacturer's instructions and measured on a Victor 3 microplate
reader (PerkinElmer).

CellTiter-Glo luminescence (lum) readouts were rescaled to relative
viability (~E, measured viability) based on the median of the control
wells with 0.1% DMSO as negative control (NC, viability ¼ 1) and
100mmol/L benzethonium chloride as positive control (PC, viability¼
0). Thus for drug j at concentration x, viability was defined as follows

~Ej;x ¼ 1� lumNC � lumj;x

lumNC � lumPC

Technical replicates were rescaled separately and data com-
bined to estimate dose–response curves. ~Ej was truncated to lie
between 0 and 1 and we fitted logistical models using the function
logLogisticRegression in the R package PharmacoGx (v1.14.2; ref. 33).

E x; slope; E¥;EC50ð Þ ¼ E¥ þ 1� E¥
1þ x

EC50

slope

Here, E refers to the modeled viability and x refers to the drug
concentration [all values in nanomolar (nmol/L) if not otherwise
specified]; slope refers to the Hill coefficient (steepness) of the curve;
E¥ refers to the asymptote as x tends to infinity; and EC50 refers to the
concentration at half maximum effect [i.e., EðEC50Þ ¼ 1

2 ð1þ E¥Þ].

Translational Relevance

The majority of patient-derived organoids from colorectal liver
metastases were sensitive to anticancer drugs in clinical use and/or
under development in late-phase clinical trials. Together with only
a modest level of intra-patient inter-metastatic pharmacological
heterogeneity, this reinforces a potential benefit from off-label use
of drugs guided by both pharmacological profiling and established
molecular markers. Correlation in the overall variation at the drug
sensitivity and gene expression levels supports the relevance of
transcriptomic profiling in pharmacogenomic assessments.
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Emax is defined as the modeled viability at the maximum assayed drug
concentration. Drug sensitivity scores (DSS) were calculated using the
function DSS in the R package DSS (v1.2) with the following param-
eterization: IC50¼ EC50; SLOPE¼ slope; MIN¼ 0; MAX¼ (1�E¥)�
100; y¼ 10; type¼ 2 (34). All dose–response models [n¼ (40 drugsþ
1 combination) � 39 samples ¼ 1,599] were visually assessed and for
problematic fits manually set to either the result from the higher-
quality replicate (n ¼ 2) or NA if ambiguous (n ¼ 32). For disulfir-
amþCu, five concentrations were excluded due to printing errors
whereas for olaparib and erastin the highest concentration was
excluded due to noise, possibly due to precipitation, and dose–
response models were refitted. For SN-38, four concentrations were
discarded due to loss of activity on one of two source plates (dose–
response curveswere fitted on the basis of concentrations 1, 3, 100, 300,
and 10,000 nmol/L). 2-methoxyestradiol and sirolimus were discarded
due to batch effects (loss of activity).

The quality of each drug screen plate was evaluated on the basis of
the strictly standardized mean difference (SSMD) metric and a single
sample (two technical replicates) with SSMD < 3 was discarded and
repeated. For the remaining screens themedian SSMDwas 9.25 (range,
3.03–34.3). Drug variability was evaluated on the basis of the standard
deviation (SD) of the differences in DSS for technical replicates
(Supplementary Fig. S4C). Drugs with SD > 3.1 (n¼ 3) were excluded
from principal component analyses. For the remaining drugs, the
median SD was 1.41 (range, 0.16–3.01).

Drug synergy screening
On the basis of the single-agent results, a customized combination

screen was designed for drug synergy profiling of one PDO. Drug
combinations were printed on a 384-well plate with each assay
covering 48 wells and forming a (7 � 7)�1 dose–response matrix.
As for the initial screen, relative cell viabilities were assessed using the
CellTiter-Glo 3D Cell Viability Assay (Promega) following 96-hour
incubation. The highest concentration combinations were imputed
with the maximum for a full 7 � 7 matrix. Following normalization,
the resulting data were used as input for the SynergyFinder web
application https://synergyfinder.fimm.fi (accessed 2019 June 12) and
drug interaction landscape probed using a zero interaction potency
(ZIP) model that captures the drug interaction relationships by
comparing the change in the potency of the dose–response curves
between individual drugs and their combinations (35).

Gene expression analyses
Gene expression profiles were generated for the 39 PDOs that were

successfully screened for drug sensitivities using theGeneChipHuman
Transcriptome Array 2.0 according to the manufacturer's instructions
(Thermo Fisher Scientific). Parallel tissue samples for a subset of 18 of
the metastases were also analyzed, including two tissue samples from
each of 3 metastases (total of 21 samples). Raw intensity data stored in
CEL files were background corrected, quantile normalized, and sum-
marized at the gene level according to the robust multi-array average
(RMA) approachwithRpackage affy (v1.62.0) and independentlywith
modified Signal Space Transformation implemented in the Affymetrix
Expression Console 1.1 software. For comparison, the gene expression
datasets for PDOs and tumor tissue samples were merged by batch
correction usingComBat (36) implemented in theRpackage SVA (37).
Before pair-wise correlation analyses between samples, the expression
level of each gene was centered and scaled using the mean expression
level and standard deviation among all samples, respectively. For the
tumor tissue samples, a liver enrichment score was calculated on the
basis of a set of genes (n¼ 157) with expression enrichment in the liver

(downloaded from The Human Protein Atlas; https://www.proteina
tlas.org/humanproteome/tissue/liver) using the R package GSVA (38).

A gene expression signature for TP53 mutations was generated by
differential expression analyses between mutated and wild-type
tumors in our previously published gene expression dataset of 409
primary colorectal cancers (GEO accession numbers GSE24550,
GSE29638, GSE69182, GSE79959, GSE97023, and GSE96528) using
the R package limma. Sample-wise gene set enrichment scores for
TP53wt signature were calculated using the “gsva” function in the R
package GSVA based on the 5 most differentially expressed genes
ranked by P value (all downregulated in TP53 mutated tumors;
MDM2, SPATA18, FAS, DDB2, HSPA4L). The same function was
used to calculate single-sample enrichment scores for 14 gene sets
assembled fromdifferent databases (39). EGFRi- andMEKi-responder
signatures were retrieved from ref. 23 (16 genes) and ref. 40 (66 genes),
respectively.

DNA/RNA isolation and gene mutation analyses are described in
Supplementary Methods and Supplementary Table S1.

Immunostaining
All PDOs were paraffin embedded and stained for hematoxylin and

eosin, as well as the epithelial colorectal cancer markers caudal type
homeobox 2 transcription factor (CDX2), cytokeratin 7 (CK7), and
cytokeratin 20 (CK20; details in Supplementary Methods).

Statistical analyses
All statistical analyses were performed in R (version 3.6.2), includ-

ing unsupervised principal component analyses of gene expression
data [based on the genes (n ¼ 2,000) with highest cross-sample
variance] using the package FactoMineR or stats, correlation analyses
using the function “cor,” linear models using the function “lm,” and
two-samples t test using the function “t.test” and Wilcoxon rank sum
test using the function “wilcox.test”.

Binomial confidence intervals were calculated using the function
“binconf” in the R package Hmisc (v4.2-0). Heatmaps were prepared
using the R package heatmap3 with clustering and agglomeration as
indicated in captions. To account for multiple drugs with a similar
mechanism of action (e.g., afatinib/cetuximab/erlotinib/lapatinib and
binimetinib/trametinib) in the overall sensitivity analysis, the function
“findCorrelation” in the R package caret (v6.0-84) was used to filter
drugs with absolute pair-wise correlation above 0.75 (n ¼ 3).

Results
Drug sensitivity and gene expression profiling of PDOs from
resected CRLMs

An overview of the ex vivo pharmacogenomic platform for analysis
of PDOs derived from resected CRLMs is shown in Fig. 1A. Tumor
cells were isolated frommultiple CRLMs (n¼ 75 lesions) from twenty-
nine patients and cultured ex vivo. PDOs were successfully established
for 39 lesions (lesion-wise success rate 52%) from twenty-two patients
[patient-wise success rate 76%; 95% binomial proportion confidence
interval (CI): 58%–88%; Supplementary Table S1], including five
distinct metastatic lesions from one patient, three lesions from four
patients, two lesions from another five patients, and one lesion from
twelve patients (Fig. 1B). There was a moderate correlation between
the number of lesions attempted to culture per patient and the
numbers of successfully established PDOs (r ¼ 0.39, P ¼ 0.035,
Pearson's correlation test, Fig. 1B), indicating that successful culture
was not only dependent on the number of sampled tumors per patient,
but also on the biological traits of the sampled cancer cells. Most PDOs
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Figure 1.

A living biobank of colorectal cancer livermetastases (CRLM).A, Included patients and study overview.B,PDOgrowth success rate and the number of lesions.C,PDO
growthmorphologies and epithelialmarkers. CDX2, caudal type homeobox 2 transcription factor; CK7, cytokeratin 7; CK20, cytokeratin 20.D,Representativeness of
the PDO cohort. Unsupervised principal component analysis of gene expression data highlighting lesions from patients with successful PDO cultures (black, n ¼ 31
tumors from 14 patients) in the context of the in-house consecutive cohort of surgically treated patientswith colorectal livermetastases (n¼ 290 tumors and n¼ 174
patients). E, Principal component analysis plot showing correspondence between gene expression from individual PDOs and their respective tumors. Multiple-lesion
CRLMs and corresponding PDOs from five patients are indicated with colors and numbers inside the plot, whereas single-lesion CRLMs and corresponding PDOs are
shown in the legend. Distributions of Spearman's correlation coefficients are from matched and non-matched PDOs and tumors. For twenty-one PDOs analyzed,
corresponding tumor tissue was not analyzed. p, patient; PC, principal component.
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had an epithelial architecture and presentedwith a lumen enclosed by a
single epithelial cell layer (Fig. 1C left and Supplementary Fig. S1).
Epithelial colorectal cancer tissue origin was assessed by immunos-
taining of the proteins CDX2, CK7, and CK20 (Fig. 1C right and
Supplementary Fig. S2). The PDOs exhibited large differences in
growth rates and the time from tumor resection to completed drug
screening varied from 3.7 to 25 weeks (median ¼ 9.2 weeks).

Representativeness of the PDOs for the resected CRLMs was
evaluated by gene expression profiling. Principal component analysis
(PCA) of a subset of the corresponding tissue samples showed that the
tumors grown as PDOs were representative of a large in-house
consecutive cohort of resected CRLMs (n¼ 290 tumors; 174 patients,
1–15 tumors per patient, unpublished data; Fig. 1D). Furthermore,
gene expression profiles of these PDOs and their original tumors
showed an overall fair clustering (Fig. 1E). The mean Spearman's
correlation coefficient between matched PDOs and tumors was sig-
nificantly higher than themean between unmatched PDOs and tumors
(difference in mean Spearman's correlation ¼ 0.27, P ¼ 1.3 � 10-9).
Principal component (PC) 2 of the tumor samples (but not PC1)
correlated with a gene expression–based enrichment score for liver-
specific genes (Supplementary Fig. S3), showing that infiltration of
non-malignant cells in the tumormicroenvironment has an important
impact on gene expression signals in the tissue samples, and this is a
likely explanation for deviations between some of the tumors and the
corresponding PDO.

All PDOs were evaluated for sensitivities to thirty-eight clinically
relevant drugs (Supplementary Table S2) and sensitivities were
calculated as DSS values (34), representing the area over the
dose–response curve across nine different concentrations of each
drug. Replicate screens for each PDO showed a high technical
reproducibility, with a median Pearson's correlation coefficient
across samples of 0.98 (range 0.87–0.99, Supplementary Fig. S4A
and S4B). Notably, the reproducibility varied among the different
drugs and two drugs (ipatasertib and linsitinib) had a particularly
high variability between technical replicates (SD ¼ 5.5 and 6.4,
respectively; Supplementary Fig. S4C). Replicate screens of ten PDOs
performed from 1 to 17 months apart and following a freeze/thaw
cycle showed strong biological reproducibility, with Pearson's cor-
relations ranging from 0.81 to 0.93 (Supplementary Fig. S4D). Also,
drugs with a similar mechanism of action clustered together in
hierarchical clustering based on Pearson's correlations (Supplemen-
tary Fig. S5). Comparisons of the three drugs targeting EGFR
(afatinib, cetuximab, and erlotinib) showed Pearson's correlation
coefficients ranging from 0.86 to 0.94, and the two drugs targeting
MEK (binimetinib and trametinib) had a correlation of 0.80. Resis-
tance to EGFR inhibition was confirmed in PDOs with RAS muta-
tions (KRASmut¼ 14,NRASmut¼ 3, RASwt¼ 22; Fig. 2A; ref. 41),
and the median DSS for cetuximab in RAS-mutated PDOs was 5.0
(range, 0–19), compared with 21 (range, 5.2–29) for wild-type PDOs
(P ¼ 0.002, Wilcoxon rank-sum test). Pharmacological associations
were also found for a few targeted drugs with differentmechanisms of
action, such as between idasanutlin (MDM2/TP53i) and palbociclib
(CDKi; Pearson's correlation 0.61) or alisertib (Aurorai; Pearson's
correlation 0.51; Supplementary Fig. S5).

Most CRLMs have strong ex vivo vulnerabilities to selected
clinical drugs

A heatmap of sensitivities to the thirty-eight evaluated drugs
(drug-wise median-centered DSS values; Fig. 2B) showed that the
PDOs formed clusters based primarily on the sensitivity to EGFR
and/or MDM2 inhibition, as well as to SN-38 and nucleosides. The

difference in sensitivity to MDM2 inhibition was defined by TP53
activity (Fig. 2C), and the four PDOs (from three patients) with the
most “TP53 wild-type–like” phenotype (based on a gene expression
signature of the five most upregulated genes in TP53 wild-type
compared with mutated primary colorectal cancers) had outlier
sensitivity to idasanutlin (P ¼ 0.0071, Wilcoxon rank-sum test).
TP53 mutation analyses confirmed wild-type status for two of the
sensitive PDOs, but identified heterozygous mutations in the two
PDOs with the strongest sensitivity (both from patient 18), and
additionally indicated wild-type status in a PDO with only inter-
mediate sensitivity (TP53 wild-type versus mutated: P ¼ 0.012,
Wilcoxon rank-sum test; Fig. 2C; Supplementary Fig. S6). Notably,
the third PDO from patient 18 was completely resistant to MDM2
inhibition by idasanutlin.

In contrast with EGFR inhibition, sensitivity toMEK inhibition was
not associated with RASmutation status (P¼ 0.97 for binimetinib and
P¼ 1.0 for trametinib,Wilcoxon rank sum test; Fig. 2A) and twoRAS-
mutated lesions from each of two patients (patient 3, KRAS mutated
and patient 10, NRAS mutated) showed apparent intra-patient het-
erogeneity in MEK inhibitor sensitivities (patient 3: DDSS ¼ 7 for
trametinib and 6 for binimetinib; patient 10: DDSS¼ 9 for trametinib
and 4 for binimetinib). Notably, the RAS wild-type PDO derived from
patient 1 was resistant to both EGFR and MEK inhibitors. This PDO
harbored the rare BRAFD594G mutation and was also resistant to the
BRAFV600 inhibitor encorafenib (Fig. 2B).

For approved drugs other than those targeting EGFR or MEK, we
observed mostly moderate differences in drug sensitivity among the
PDOs (Fig. 2B). The activity of 5-FU and the multi-kinase inhibitor
regorafenib was generally low, although we observed fair differential
drug responses below the reported maximum blood plasma concen-
trations (Cmax; Supplementary Fig. S7). Encorafenib showed no activ-
ity, consistent with wild-type BRAF codon 600 status in all PDOs. No/
limited activity was also found for oxaliplatin and TAS-102, but this
was likely due to too low drug concentrations. In contrast, the active
metabolite of irinotecan, SN-38, showed high activity in nearly all the
PDOs with a moderate to strong differential activity. Fifteen of the
twenty-two patients were treated with neoadjuvant combination
therapies (5-FU, oxaliplatin, irinotecan, bevacizumab, cetuximab, and
panitumumab combinations) and the PDOs showed ex vivo sensitiv-
ities to 5-FU, SN-38, and EGFR inhibitors corresponding with the
tumor responses according to RECIST, implying recapitulation of
pharmacological responses in the pre-clinical models (oxaliplatin was
not compared due to low activity at the tested concentrations; Sup-
plementary Table S3).

Strong differential drug sensitivities among the PDOs were
observed for the antimetabolites methotrexate and gemcitabine
(Fig. 3A; Supplementary Figs. S8 and S9), as well as for a number
of targeted drugs that have no decisive genomic markers, but that
are currently tested in late-phase clinical trials in patients with mCRC
and/or other cancer types. These targeted agents included the Aurora
A kinase inhibitor alisertib (phase 3), the Bcl inhibitor navitoclax
(phase 2), the HSP90 inhibitor luminespib (phase 2), the dual PI3K/
mTOR inhibitor gedatolisib (phase 3), and the PLK1 inhibitor vola-
sertib (phase 3; Fig. 3B; Supplementary Figs. S8 and S9). There were no
clear responders to crizotinib (ALK inhibitor) or LGK974 (PORCN
inhibitor), likely related to the low frequency in mCRC of the genomic
aberrations associated with sensitivity to these agents. In accordance,
no outlier expression profiles were observed for the corresponding
target genes (Supplementary Fig. S10).

Promising therapies could be nominated for eighteen (82%) of
the patients based on the ranked relative DSS values and Emax (%
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Pharmacological patterns of PDOs from colorectal cancer liver metastases. A, Pharmacogenomic relationship between RASmutation status and response to EGFR
inhibition and MEK inhibition.B, Relative drug sensitivities across the PDO cohort. Heatmap visualizes drug-wisemedian-centered DSS values, with higher (red) and
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viability) across all drugs (Table 1; Supplementary Fig. S11). The
PDOs from three metastatic lesions from patient 29 (Fig. 3C)
illustrate the several heuristic parameters used for drug nomina-
tions (unambiguous dose–response curves, Emax < 50% viability,
median-centered DSS > 5, and low DSS variation among metastases
from the same patient). PDOs from seven of the patients (patients 6,
7, 9, 11, 13, 20 and 21) were generally sensitive to several drugs,

including standard of care therapies (Table 1). PDOs derived from
patients 25 and 29 were sensitive to drugs approved for other
indications and drugs in phase 2/3 clinical trials, and PDOs from
patients 1, 18, and 28 were sensitive only to drugs in development
(in phase 2/3 trials). No drug candidates could be nominated for
four (18%) of the patients (patients 3, 10, 12 and 23) according to
the defined criteria. However, based on absolute (in contrast with
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Approved drugs (A) and investigational
drugs (B) in late-phase clinical studies with
strong differential activity across the PDO
cohort. C, Illustration of use of ex vivo drug
response profiling to nominate potential
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relative) drug activity, the three RAS wild-type PDOs from patient
12 were all sensitive to EGFR inhibition (Fig. 2B).

There was large variation among the PDOs in the overall level of
drug sensitivities and the number of strong drug vulnerabilities
(Fig. 4A). The two PDOs from patient 26 showed an overall strong
sensitivity pattern [median DSS 8.2 and 7.2; interquartile range (IQR):
13 and 14 for t1 and t2, respectively; Fig. 4A], whereas the PDO from
patient 8 was resistant to all drugs beyond the few vulnerabilities listed
in Table 1 (median DSS 2.3; IQR: 0.3–8.9). This latter PDO also had
mesenchymal-like gene expression characteristics that have been
linked to drug resistance, including upregulated expression of gene
sets related to “TGFb,” “EMT,” “LGR5 stem cells,” and “WNT,” as well
as downregulation of the “differentiation” and “CDX2” gene sets
(Fig. 4B). Reduced CDX2 and CK20 protein expression further
supported a poorly differentiated phenotype (Fig. 4B). To explore

the potential for more efficient growth inhibition of this multi-drug–
resistant and KRASG12V-mutated PDO, we designed a combination
screen based on the strongest observed vulnerability: sensitivity to
inhibition of the PI3K/AKT/mTOR pathway (Fig. 4C), which was
associated with the apparent loss of PTEN expression (Fig. 4D).
Combined mTOR or AKT inhibition with MEK inhibition may be
synergistic in this genetic background (42, 43), and both combination
screens with everolimus (mTOR) or ipatasertib (AKT) plus trametinib
suggested a synergistic negative effect on PDOviability, as evaluated by
a zero interaction potency model (Fig. 4E).

Intra-patient inter-metastatic pharmacotranscriptomic
heterogeneity is not pronounced

Comparisons of the pharmacological profiles of PDOs from mul-
tiple CRLMs from each of ten patients showed strong intra-patient

Table 1. Therapy nominations for patients based on ex vivo drug screen.

Patients
(�multi-met)

RAS/RAF and
TP53 gene
mutations Standard of care

Approved therapies
non-CRC

Emerging therapies
selected phase 2 and 3

p6 KRASG13D SN-38/irinotecan Atorvastatin; tretinoin Alisertib Approved
TP53G187splice

p7 KRASG12D SN-38/irinotecan Methotrexate LCL161; idasanutlin; erastin
p8 KRASG12V SN-38/irinotecan Napabucasin; ipatasertib

TP53R248W

p9 TP53R248W Cetuximab Gemcitabine; methotrexate;
trametinib; afatinib; erlotinib

Alisertib; pevonedistat; volasertib;
AZD7762; linsitinib

p11 Cetuximab; (5-FU) Afatinib Idasanutlin; navitoclax; gedatolisib
p13 TP53R213L Cetuximab Lapatinib; afatinib;

erlotinib;trametinib
Gedatolisib; alisertib

p15 KRASG13D SN-38/irinotecan
TP53R158L

p17� TP53R213
�

Cetuximab Afatinib; erlotinib
p20 KRASG12D Regorafenib; (5-FU) Binimetinib Idasanutlin; navitoclax;

luminespib; alisertib; LCL161
p21 NRASQ61A SN-38/irinotecan;

regorafenib
Binimetinib; trametinib; metho-
trexate; gemcitabine þ 5-FUTP53R223del

p24� TP53R249W Cetuximab (Erlotinib) Alisertib
p26� Cetuximab (Afatinib; erlotinib) Linsitinib
p30 TP53V157G Regorafenib Binimetinib, atorvastatin
p25 KRASG13D Gemcitabine þ 5-FU Navitoclax; alisertib; LCL161 Off-label

TP53R175H

p29� TP53W146del (Atorvastatin; erlotinib) Navitoclax
p1 BRAFD594G Alisertib; volasertib Investigational

TP53R273H

p18� KRASG12V Navitoclax; alisertib; luminespib;
palbociclibTP53R158H

p28� KRASG13D Ipatasertib
TP53M237I

p3� KRASG12D None
TP53P152del

p10� NRASG12D

TP53P301ins

p12� TP53N200del (Cetuximab) (Afatinib; erlotinib)
p23� TP53R248W

Note: Candidateswere selected among approved drugs anddrugs in phase 2/3 clinical studies and showed (i) at least 50% reduction in viability, (ii) 5 DSS higher than
median, and (iii) high-quality dose-responseprofiles. For patientswithmultiple lesions screened (indicated by asterisk), an additional drug selection criterionwas low
intra-patient inter-metastatic heterogeneity. The standard-of-care drugs SN-38 (active metabolite of irinotecan) and 5-fluorouracil (5-FU) that did not satisfy the
second criterion, but nevertheless showed activity among the top 30th percentile across all patients are indicated in parentheses. Likewise, for anti-EGFR, the number
of responders likely renders themedian-center approach too strict andpatients fromwhich thePDOs hadDSS> 10 are indicatedwith parentheses.Notably, patient 29
showed clear outlier sensitivity to atorvastatin, although the third PDO did not satisfy the second nomination criterion (indicated in parentheses).
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correspondences in drug sensitivities to the majority of the tested
drugs. The multiple PDOs largely clustered patient-wise, both in
hierarchical clustering and PCA (Figs. 2B and 5A). By careful eval-
uation of all dose–response curves we observed convincing inter-
metastatic heterogeneity (not associated with technical variability in
replicate screens) in less than one tenth of all the 38� 10 drug–patient
comparisons, including in patient 3 (MEKi), patient 10 (MEKi and

navitoclax), patient 18 (idasanutlin), patient 23 (EGFRi/MEKi) and
patient 29 (LCL 161). The differential response to idasanutlin in
patient 18 was associated with heterozygous versus homozygous TP53
mutation status in the sensitive versus resistant PDOs, but all PDOs
from this patient had a TP53 wild-type–like phenotype by gene
expression. Furthermore, although a gene expression signature of
sensitivity to EGFR inhibition (23) was correlated with erlotinib
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Pharmacogenomic relationships for
PDOs.A,Distribution of drug activities
in PDOs ranked by 75th percentile. B,
Gene set enrichment analysis of PDOs
showing median-centered scores for
fourteen pre-specified gene sets (see
Materials and Methods). Samples and
gene sets were clustered according to
correlation distance and average link-
age. Protein expressions for CDX2
(caudal type homeobox 2 transcrip-
tion factor) andCK20 (cytokeratin 20)
are shown below. C, Waterfall plot of
median-centered DSS for patient 8.
Higher values indicate higher activity
relative to other PDOs. The four drugs
with cross-dataset range in DSS
<5were excluded.D, PTEN expression
in PDOs, showing particularly low
expression levels for patients 8, 15,
and 30. E, Drug synergy testing
between MEK inhibition and mTOR or
AKT inhibition in PDO with PTEN loss.
cDSS, median-centered drug sensi-
tivity score; DAB, 3,30-diaminobenzi-
dine; p, patient; ssGSEA, single-
sample gene set enrichment analysis;
ZIP, zero interaction potency. �The
ipatasertib plus trametinib combina-
tionwas performed in replicate due to
the overall technical variability
observed for ipatasertib (Supplemen-
tary Fig. S4C), showing comparable
results (ZIP ¼ 5, ZIPmax ¼ 10).
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sensitivity across all PDOs, this could not explain the inter-metastatic
pharmacological heterogeneity to EGFRi/MEKi among five RAS/
BRAF wild-type PDOs from patient 23 (Supplementary Fig. S12).

Gene expression profiles were similarly compared to investigate the
extent to which the variation in drug sensitivities was recapitulated at
themRNA level. Gene set analyses in PDOs confirmed that PDOs from
the same patients clustered more closely in hierarchical clustering
analyses than unrelated PDOs also at the gene expression level
(Fig. 4B). Furthermore, PCA comparisons showed a significant
correlation of PC1 values at the gene expression and drug sensitivity
levels (Spearman's r 0.48, P ¼ 0.002), largely with sample-wise
clustering of PDOs in both dimensions (Fig. 5A). Intra-patient
correspondence was further confirmed by comparisons of pairwise
Spearman's correlation coefficients for either drug sensitivity or gene

expression between different tumors from the same patient and
between tumors from different patients (Fig. 5B). PDOs from the
same patients had stronger correlations at both levels, indicating lower
intra-patient compared with inter-patient heterogeneity. Pairwise
comparisons of Spearman's correlation coefficients for DSS and gene
expression between PDOs demonstrated that both unrelated and
related PDOs were correlated at the two different data levels, although
PDOs from different lesions from the same patient had the strongest
correlation (Fig. 5C).

Discussion
In this study, we have established a platform for ex vivo pharma-

cogenomic profiling ofmetastatic tumors frompatients with colorectal
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Correspondence between drug sensitivity and gene expression variation. A, Principal component analyses of drug sensitivity (y-axis) and gene expression profiles
(x-axis) of PDOs. PDOs derived frommultiple CRLMs from each of ten patients are color coded and indicatedwith patient numbers. All other PDOs are shown in gray.
Two drugs with frequent NAs (linsitinib and ipatasertib), and the seven drugs with lowest cross-sample variance (vitamin C, oxaliplatin, encorafenib, disulfiram,
crizotinib, TAS-102, and tretinoin)were excluded fromPCA analyses of drug sensitivity.B,Distributions of Spearman's correlation coefficients for drug sensitivity and
gene expression separately. Correlations for related and unrelated PDOs are indicated.C, Scatterplot of Spearman's correlation coefficients between pairs of PDOs at
the drug sensitivity (horizontal axis) and gene expression (vertical axis) levels. Linsitinib and ipatasertib were excluded also from analyses in (B) and (C) due to
frequent NAs. Each dot represents one comparison between two PDOs, and comparisons of PDOs from the same patient are color coded, whereas comparisons of
unrelated PDOs are shown in gray. Note: the PCA function does missing value imputation (by mean of variable). Abbreviations: p, patient; PC, principal component.
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cancer, acknowledging the strong association between metastasis and
cancer-associated mortality (44), as well as the potential difference in
biology and target modulation between primary and metastatic
tumors. Patients with mCRC have relatively few treatment options,
and development of resistance to systemic therapies almost invariably
occurs (8). We showmarked variation among patients in sensitivity to
several anticancer agents not currently approved for colorectal cancer,
and identified patients with strong differential sensitivity to both
chemotherapies and targeted agents. Antimetabolites (gemcitabine
and methotrexate) and several targeted agents with no clear genomic
marker, such as the mitotic inhibitor alisertib and the apoptosis
inducer navitoclax, showed stronger inter-patient heterogeneity of
anticancer activities than most of the approved chemotherapies. This
underscores the opportunity for successful off-label drug prescription
in colorectal cancer, although it should be noted that the moderate
differential activities observed for commonly used chemotherapies
may reflect prior treatments given to the patients included in this
observational study.

Clustering analyses of the drug sensitivity data demonstrated three
main response groups among the PDOs, defined by sensitivity to
EGFR and/orMDM2 inhibition, or resistance to both. Although likely
influenced by the inclusion of several agents targeting EGFR in the
drug testing panel, this separation was also reflected on the genomic
and transcriptomic levels, specifically by the well-knownmarkers RAS
mutation and TP53 activity. Notably, the “double-resistant” subgroup
with RAS and TP53 co-mutations has known poor prognostic associa-
tions after hepatic resection (45, 46), reinforcing the challenge of
adequate management of these patients. On the basis of pre-defined,
although not yet clinically validated drug nomination criteria, we could
suggest potentially effective therapies for eighteen of the twenty-two
patients, including seven of the nine patients with RAS and TP53 co-
mutations. Prospective validation in co-clinical trials is necessary to
evaluate the clinical utility of this drug nomination strategy. We are
continuing prospective patient inclusion in the observational study,
and are currently planning an interventional study for clinical trans-
lation of our ex vivo pharmacogenomics platform for patients with
relapse after hepatic resection and/or non-resectable CRLM. A step
forward was taken last fall, when Ooft and colleagues (47) showed that
ex vivodrug screen of PDOs correctly predicted response of irinotecan-
based chemotherapy in patients with mCRC.

By inclusion of multiple distinct metastatic lesions from each of ten
patients, we show that intra-patient inter-metastatic pharmacological
heterogeneity is not pronounced for the thirty-eight evaluable drugs in
this study. The consistent intra-patient response pattern for the
majority of drugs is highly encouraging with respect to development
of novel therapies for patients with mCRC. Intra-patient inter-
metastatic heterogeneity in clinical responses to both molecularly
targeted agents (16, 48) and chemotherapies (14, 15) have been
reported in mCRC, the latter in subgroups of approximately 10% to
25% of patients (14, 15). Furthermore, acquired resistance during
treatment is a major challenge for treatment efficacy (13, 49),
highlighting the relevance of longitudinal pharmacogenomic
profiling. Demonstration of pharmacological diversification on the
single-cell level (29) also suggests potential development of indepen-
dent resistance mechanisms in different metastatic lesions from
individual patients. In our study, clear instances of intra-patient
heterogeneous responses were relatively uncommon with less than
one tenth of all drug/patient pairs showing convincing inter-metastatic
variation, even less if the similar mechanism of action of several of the
drugs was taken into account. It should be noted that our study neither
provided single-cell resolution nor evaluated pharmacological profiles

in extra-hepatic tumors for patients with widespread dissemination,
and this may impact the estimates of intra-patient pharmacological
heterogeneity.

With the exception of RAS mutations and TP53 activity, there was
an evident lack of molecular markers for most of the drugs with
differential activity amongpatients in this study. This is associatedwith
the low prevalence of most known drug targets in mCRC, including
BRAFV600E mutations and kinase gene fusions (50), for which the
matched drugs showed no activity in any of the PDOs. Although the
number of samples was insufficient to develop robust molecular
prediction signatures in this initial phase of the project, “pharmaco-
transcriptomic” integration analyses showed that gene expression
profiles recapitulated much of the variation in pharmacological pro-
files. This “co-variation” in pharmacological and transcriptomic pro-
files is in accordancewith an anticipated close relationship between cell
phenotypes and drug responses (51), but has to our knowledge not
been previously characterized in the intra-patient inter-metastatic
setting. This suggests that drug response prediction could be improved
by incorporating transcriptomic profiling in addition to genomic
predictive markers, a strategy that was recently assessed in the
WINTHER trial (52). Furthermore, gene expression characteristics
of a mesenchymal phenotype, which has repeatedly been linked to
drug resistance (53, 54), were found in a RAS-mutated multi-drug
resistant PDO with loss of PTEN expression. Increased sensitivity to
combined treatment with trametinib and ipatasertib or everolimus in
this PDO also suggests that ex vivo pharmacotranscriptomic profiling
might prove useful to guide the development of targeted combination
therapies.

We detected a rare class 3 BRAFD594G mutation in both the CRLM
and PDO from patient 1. This mutation leads to RAS-dependent
kinase inactivation and has been reported to associate with a different
histopathology and a markedly longer overall patient survival than
class 1 BRAFV600E mutations (55). The mutation is not a target for
approved BRAF inhibitors, and accordingly the PDOdid not show any
response to encorafenib. Available data with respect to prediction of
sensitivity to EGFR inhibition with this mutation class are inconclu-
sive, but the PDO was resistant to both EGFR and MEK inhibition
despite wild-type RAS status, highlighting the current lack of an
optimal strategy to target cancers with this mutation. The PDO had
a median overall level of drug sensitivities compared with other PDOs
included in this study, and the strongest robust responsewas to the oral
inhibitor alisertib, targeting the mitotic regulator Aurora A kinase.

The PDOs differed noticeably in their growth rate, but the median
time from surgery to completed drug screen was two months, indi-
cating that pharmacological profiling of PDOs can be performed
within a clinically relevant timeframe for patients with resected CRLM,
for which the relapse rate is approximately 70% to 80% (56). We also
showed that the functional screen was robust by demonstrating high
reproducibility of replicate and repeated screens, strong correlation
between drugs of a similar functional class, and recapitulation of
known pharmacogenomic associations. We are planning a study for
clinical translation of this pharmacogenomic platform and to inves-
tigate its potential to guide experimental therapies for patients with
mCRC.
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