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Abstract—The increasing number of privately owned vehicles
in large metropolitan cities have contributed to congestion,
increased energy waste due to congestion, raised CO2 emissions,
and impacted our living conditions negatively. Analysis of data
representing human mobility and citizens’ driving behavior can
provide insights to reverse these conditions. This article presents
a large-scale driving status and trajectory dataset consisting
of 426,992,602 records collected from 68,069 vehicles over a
month. From the dataset, we analyze the driving behavior and
produce random distributions of trip duration and millage to
characterize the car trips. We have found that a private car has
more than 17% probability to make four trips per day, and a
trip has more than 25% probability to last 20-30 minutes and
33% probability to travel 10 Kilometers during the trip. The
collective distributions of trip mileage and duration follow Weibull
distribution, whereas the hourly trips follow the well known
diurnal pattern and so the hourly fuel efficiency. Based on these
findings, we have developed an application which recommends
the drivers to find the nearby gas stations and possible popular
places from the historical trips. We further highlight that our
dataset can be applied for developing dynamic Green maps for
fuel efficient routing, modeling efficient Vehicle-2-Vehicle (V2V)
communications protocols, verifying existing V2V protocols, and
understanding user behavior in driving their private cars.

Index Terms—Green Map, Trajectories, Fuel Efficiency, Vehic-
ular Communications, CO2 emission.

I. INTRODUCTION

The continuously increasing number of automotive vehicles
in the cities have been changing the travel experience of
citizens. On one hand, they have become a daily necessity
that facilitates people’s modern lives. On the other hand,
their fastest growth has caused a series of problems in urban
areas, such as increased traffic accidents, traffic jams, and
environmental pollution. These severe problems have triggered
multiple actions of urban planning and governmental regula-
tions, and both the research community and the industry have
been looking for opportunities to solve these problems [1–3].

Although fast-growing vehicles bring lots of problems for
modern big cities, their produced vast volumes of trajectory
data provide valuable information to investigate and understand
driving behavior and bring a new opportunity and perspective
to solve these tricky problems. For example, Wang et al., [4]
collected 4.8 TB taxi GPS data from 2013 to 2018 and

comprehensively investigated the evolving patterns of electric
taxi networks and paved the way for future shared autonomous
vehicles to mitigate traffic jams and air pollution in urban areas.

Nevertheless, the existing datasets are merely based on data
collected from public transport or floating cars, e.g., buses and
taxis [4–6]. These datasets are constrained by predetermined
trajectories (buses) or points of interest (taxis). Based on these
existing datasets, we cannot grasp the typical driving behavior
of citizens, i.e., the owners of private cars. The private cars
refer to a class of small motor vehicles that are registered
by individuals and for personal use. In some cities, private
cars account for 80% of vehicles in China [7]. In terms
of a report from the University of Michigan Transportation
Research Institute, the average number of private cars per
household is up to 1.97 in US [8]. Although private cars take
the most significant part of automotive vehicles in modern
cities, rare studies focus on this ‘elephant in the room.’

A high-quality private car trajectory dataset has important
application values, since it offers an effective way to under-
stand not only the traffic dynamics in cities to improve the
transport services but also the driving behavior of individuals.
In this work, we first build a platform to collect the trajectory
data for privately owned vehicles (POVs). Specifically, we use
GPS trackers and on-board diagnostics (OBD) monitors to
record trajectories and driving status of POVs. Up to now, our
platform supports over 68,069 POVs in the mainland of China.
We present and analyze a subset of our whole dataset, which
covers one month from 1st of July 2016 to 31st of July 2016. In
detail, we compare citizen’s driving behavior during weekdays
and weekends. We find that the number of trips on weekdays
is less than that on weekends, while there is no big difference
regarding trip durations and trip mileage between weekdays
and weekends. We further extract the probability distributions
regarding the characteristics of the recorded trips. Both the
duration and mileage of all trips follow Weibull distributions,
while they follow Gaussian distribution for each user. These
distributions also suggest that a private car has more than 17%
probability to make four trips per day, and a trip has more than
25% probability to last 20-30 minutes and 33% probability to
travel 10 Kilometers during the trip. The average fuel efficiency
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V. Finally, we conclude the paper in Section VI.

II. RELATED WORKS

There has been a lot of works investigating the trajectory
of moving objects. For example, [8] focused on the geocast
in bus-based VANETs and presented a geocast routing
mechanism with historical bus trajectories. Likewise, 6,868
normal taxis were used in [9] to identify unlicensed taxis. In
[10], the authors studied the problem of efficient similarity
search on activity trajectory database. An efficient algorithm
was presented to compute the minimum match distance and
minimum order-sensitive match distance between a query
and a trajectory.

In [11], the authors investigated visual analysis of urban
traffic congestion based on trajectory data and proposed an
interactive system. Their experiments are mainly based on
taxi GPS trajectories collected in Beijing in which irrelevant
data was filtered out in order to improve the road network
quality. [12] studied the planning profitable customized bus
lines, on the basis of a large scale real taxi trajectory data
set collected in Nanjing, China from June 1st to 29th,
2010.The proposed method was used to discover similar
travel demands and generate a customized bus lines. In their
experiments, 5456051 passenger trajectories were extracted
by detecting the pick-up and drop-off activities. The data
was divided into two subsets as considering the difference
of travel between weekdays and weekends & holidays.

In addition to the vehicle trajectory, the human trajectory
was investigated [13-15], in which the trajectory data were
collected from mobile phone and cellular communication
systems. The authors in [13] discovered human mobility pat-
terns on both global and individual levels, and a parameter-
free method was used to detect hotspots. Trajectory data for
3474 individuals collected by a large Chinese 4G service
provider during 22 days (October 10th 2013 to October
31th 2013) was used in their experiments. In [14], the
authors proposed a method of quantifying the regularity of
an individual’s visits to a location. And experiments were
performed on three datasets including Foursquare Checkins,
Dartmouth Wireless LAN Access Point Logs and London
Underground Journeys. The paper [15] studied individual
mobility patterns with the mobile phone trace data and
vehicle safety inspection data in the Boston Metropolitan
Area.

To conclude, the vehicle-related data used in most of
literatures are collected from public vehicles. For instance,
data created by bus or taxies was used in [8], [9], [10],
[11] and [12]. As we all know, there are notable differences
between private cars and buses or taxis in some aspects.
First, private cars hold a large proportion in the total amount
of automobiles in urban road network, especially in China
[3]. Second, private cars are used with a clear purpose
and that can directly reflect the personal travel demand.
Third, unlike the buses or taxis, private cars move without

predefined route, and the travel of private cars are not
completely random since there are regular patterns which
can be retrieved from their trajectory. Compared with the
existing studies on public vehicles or floating cars [8, 9, 10,
11, 12], the study on trajectories of private cars is still rare.
Our work is to fill this blank and bring a new perspective
for the study on trajectory data mining and the analysis on
driving pattern and travel behavior.

III. PRIVATE CAR TRAJECTORY COLLECTION
FROM REAL URBAN ENVIRONMENT

In order to study the travel regularity of private cars, we
first collected a large number of private car’s trajectory data.
In this section, we present the method and device used for
collecting trajectory data.

Figure 1: The device installed on private cars.

Table I: The information about the location, status and
timestamp of vehicles

Field definition Note

ObjectID The ID number of the vehicle

StartTime The time of starting the vehicle

StartLon The longitude of starting the vehicle

StartLat The latitude of starting the vehicle

StartPos The position of starting the vehicle

StopTime The time of turning off the vehicle’s engine

StopLon The longitude of turning off the vehicle’s engine

StopLat The latitude of turning off the vehicle’s engine

StopPos The position of turning off the vehicle’s engine

Lon The longitude of the current position

Lat The latitude of the current position

Startmileage The mileage of staring the vehicle

OilNum The current fuel consumption of the vehicle

Speed The instantaneous speed of the vehicle

Direct The current direct of the vehicle’s steering

GPSTime The time of positioning

TravelMileage The current mileage of the vehicle

theDay The time of uploading this record

We have installed the device on private cars to collect
trajectory data. As shown in Fig. 1, the equipment mainly
includes three modules, namely GPS module, OBD reading
module which can read vehicle sensor information from the
vehicle’s OBD interface, and the communication module
with a SIM card. Two types of trajectory information, name-
ly the position of vehicle, driving status such as velocity and
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(b) Hardware instruments

Fig. 1: The MAS framework and hardware instruments installed in the private cars.

TABLE I: The important attributes of private car trips collected by the MAS platform.

Item Description Data type Responsible device

Trips Trajectories Driving status OBD GPS SIM Card

ObjectID ID of the vehicle X
StartTime Local time when start engine X X X
StopTime Local time when stop engine X X X
StartLon Longitude of the vehicle when engine starts X X X
StartLat Latitude of the vehicle when engine starts X X X
StopLon Longitude of the vehicle when engine stops X X X
StopLat Latitude of the vehicle when engine stops X X X
TripMileage Mileage of the trip X X X
TripOil Fuel consumption of the trip X X X
TripPeriod Duration of the trip X X X
Lon Longitude of the vehicle X X
Lat Latitude of the vehicle X X
GPSStatus Status of GPS signal X X
GPSTime Local time X X
Speed Instantaneous speed of the vehicle X X
Direct Current direction of the vehicle X X
Mileage Current mileage of the vehicle X X
OilNum Current volume of vehicle fuel X X
AlarmDesc Description of alarms X X
RPM Revolutions per minute of the vehicle X X
AccPos Position of the accelerator pedal X X

of the trips peaks at around 5 AM while is of the minimum at
near 10 AM.

We also developed an application which recommends the
nearby gas stations and possible popular places. The recom-
mendation is based on the recent fuel status of the car and
the historical trips of an individual. We further discuss that
our datasets can be applied for developing dynamic Green
maps for fuel efficient routing, modeling efficient Vehicle-
2-Vehicle (V2V) communication protocols, verifying V2V
protocols through simulation, and understanding user behavior
in driving their private cars. It is worth mentioning that the data
collection process is ongoing and we present only a fraction
of the total dataset in this work.

The rest of this paper is organized as follows. We present
the data collection process in the Section (Section II). Next,
in Section III we list the basic characteristics of the dataset
presented in this work, and we discuss the driving behavior
of the users and characterize the fuel efficiency of the trips.
After that, in Section IV we describe the applicability of
the introduced dataset and present three use cases. Section V
concludes this work.

II. DATA COLLECTION, ATTROBUTES, AND PRIVACY

To collect the trajectories of POVs, we cooperate with Map-
goo1 and build a cloud platform, called Mapgoo Automotive
Services (MAS), for vehicle networks.

A. Car Instrumentation

Fig. 1(a) depicts the MAS platform. MAS collects data from
both hardware, i.e., OBD and GPS trackers, and software, i.e.,
a smartphone app. They upload data to the MAS server via
cellular networks.

Up to now, MAS platform covers 68,069 cars. As shown
in Fig. 1(b), each car is installed with a lightweight and low-
cost On-board Diagnostics (OBD) monitor which is compatible
with ISO 14230 (KWP2000) and Society of Automobile Engi-
neers (SAE) protocols [9]. OBD monitors are in the charge of
recording the status of vehicle subsystems, such as the engine,
braking system, cooling system, and the electronic control
module. In addition, we have installed a Global Positioning
System (GPS) tracker which is a cheap commercial GPS
receiver (ublox LEA-6T) [10] and a communication unit with

1http://www.mapgoo.net/html/MAS.aspx



TABLE II: A sample trip record in the dataset.

ObjectID StartTime StopTime StartLon StartLat StopLon StopLat TripMileage TripOil TripPeriod

556605 01/07/2016
09:27:33

01/07/2016
11:10:00

109.822249 40.641596 110.522649 40.597578 85,611 6,979 6,147

TABLE III: A sample trajectory and the driving condition record in the dataset.

ObjectID Lon Lat GPSStatus GPSTime Speed Direct Mileage AlarmDesc RPM AccPos

556605 109.822249 40.641596 Strong (9) 01/07/2016 09:27:33 0 10 6,383 None 0 0

a SIM card. The GPS receiver is responsible for collecting
vehicle trajectories, and the communication unit is used to
upload the data collected by the OBD monitor and GPS
receiver to the MAS servers. Thanks to the development of
cellular networks. These data can be uploaded real time and
with low latency. The International Mobile Equipment Identity
(IMEI) number is used as the unique ID for each vehicle
and is one-to-one mapped to a bit string as an anonymized
ID (ObjectID) for privacy protection. We also developed a
smartphone application to help the users to manage their trips
and fuel consumption efficiently (Section III-B).

B. Dataset Attributes

In detail, we capture three types of data, trips, trajectories,
and driving status, which are summarized in Table I.

1) Trips. Both OBDs and GPS trackers collect the trips
data which include information of the start and stop time
(StartTime, StopTime) the start and stop locations
(StartLon, StartLat, StopLon, and StopLat),
the millage (TripMileage) in meters, the dura-
tion (TripPeriod) in seconds, and fuel consumption
(TripOil) in milliliters.

2) Trajectories. The trajectories are collected by the GPS
trackers and uploaded to the MAS cloud server after
every 30 seconds. Apart from vehicle locations (Lon,
Lat), GPS trackers also upload the time (GPSTime)
and the status of the GPS signals (GPSStatus) that can
help us to detect the outliers and improve the accuracy of
the collected trajectories. The trajectory dataset provides
the most detailed and comprehensive records of POV
movements, even user behavior.

3) Driving status. Driving status data are collected by the
OBD module every 30 seconds, and include the vehicle
speed (Speed), the driving direction (Direct), the
current mileage (Mileage), the revolution per minute
(RPM), the accelerator pedal position (AccPos) and the
description of activated alarms (AlarmDesc).

Table II contains an example of a trip entry and Table III
shows a sample of a trajectory data point and the driving status.

C. Privacy Protection Measures

We have received the approval from every POV owner
to collect data from their cars. Additionally, they gave their
consent to educational institutions to study their data for
research purposes. We are very aware of their privacy and have
taken active steps to protect the MAS platform users. First,
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Fig. 2: Driver participation in MAS framework during July
2016.

the vehicle ID has been anonymized (as a bit string) by our
collaborating company, and we do not have access to the true
vehicle ID or even vehicle model. Second, all the researchers
are regulated by a strict non-disclosure agreement. The dataset
is stored in a server protected by authentication mechanisms
and firewalls in our collaborating company’s network. Our
collaborator overlooks the data processing on their servers.

III. DRIVING BEHAVIOUR ANALYSIS

The collected dataset is composed of 68,069 unique vehicles
that conducted 4,844,563 trips in 12 cities during the July of
2016. The total records from the OBD and GPS devices (i.e.,
the trajectories and the driving status records) are 426,992,602.
Fig. 2(a) shows the exact number of vehicles per day. The
number of active vehicles participated in the data collection
varies per day, and the average is 47,211. Fig. 2(b) shows



TABLE IV: Characteristics of the collected dataset.

Vehicles Trips Cities Collection Period Trajectory and driving status records
68,069 4,844,563 12 1/07/2016 - 31/07/2016 426,992,602

City Vehicles Records Size (km2) City Vehicles Records Size (km2)
Shenzhen 11,403 36,808,679 2,050 Guangzhou 9,617 43,089,864 7,433
Shanghai 6,062 41,525,996 6,340 Changsha 4,647 22,091,783 11,819
Zhengzhou 4,273 17,661,095 7,507 Wuhan 4,055 16,102,250 8,494
Xiamen 3,113 10,676,474 1,699 Xian 2,900 17,096,606 10,097
Kunming 2,666 11,094,456 21,501 Nanning 2,360 9,819,783 22,189
Chongqing 1,692 7,544,379 82,300 Chengdu 1,640 5,756,221 14,378
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Fig. 3: Characteristics of trips.

the distribution of drivers based on their participation. The
percentage of vehicles (i.e., participating drivers) that provided
data every day of that month is 15% (i.e., 10,210).

We first look into the geographical distribution of the col-
lected data. Since the exact location of the cars had been chang-
ing during the data collection period, we first define the typical
location of each collected private car. The typical longitude
and latitude are the private car’s StartLon and StartLat
whose average dissimilarity to all the other StartLon and
StartLat of this car is minimal. Hence, the typical location
of each collected car can be mathematically expressed as,

Llon ← arg min
StartLon

∑
(StartLon− StartLoni) ,

Llat ← arg min
StartLat

∑
(StartLat− StartLati) ,

(1)

where Llon and Llat are the typical longitude and latitude
respectively. Using this information we counted the number of
vehicles and records in each of the twelve identified Chinese
cities. Table IV presents the characteristics of the collected
dataset in detail. Over 20,000 collected private cars are located
in the Pearl River Delta region including Guangzhou and
Shenzhen, which accounts for the significant part of our
dataset. In addition, there are still some cars distributed in
other big cities in the mainland of China, such as Shanghai,
Xian, Zhengzhou Changsha, and Wuhan.

It is worth to note that our MAS platform is live and the
number of cars using our platform is increasing every day.

A. Trip Patterns

We next focus on understanding users’ driving behavior
from the characteristics of the recorded trips. We initially
categorize the trips according to the ones conducted on the
weekdays and the ones conducted on the weekends. As shown
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Fig. 4: Distributions of duration and millage characteristics of
the trips.

in Fig. 3(a), the average number of trips in a weekday is higher
than the ones in a weekend, but the standard deviation is higher
on the weekends. This is explained by the fact that during
weekdays drivers follow their routines while they are more
unpredictable during the weekends. Further, in this direction,
we calculate the distributions of duration and millage of the
trips on weekdays and weekends. As shown in Figs. 3(b)
and 3(c), both the distributions for weekdays and weekends
are very close with each other, while the trip duration and the
mileage on weekdays are slightly longer. The candlesticks in
the box-plots of Figs. 3(b) and 3(c) depict the bottom 10% and
the upper 90% of the collected values while the sketched area
contains the values between 25% and 75%. The horizontal line
inside the box depicts the median of the distribution.

To further investigate the characteristics of trips, we produce



the plots of Fig. 4. In Fig. 4(a) we depict the long tail
distribution of trip duration which can be approximated by
the following Weibull distribution2,

P (TD) = 0.0754 · T−0.0724D exp(−0.0813 · T 0.9276
D ), (2)

with Root Mean Square Error (RMSE) 0.002485. TD denotes
the trip duration and is in minutes. P (·) represents the proba-
bility. As expected, most of the trips are shorter than an hour,
but also there are trips with a duration of more than two hours.

Next, Fig. 4(b) depicts the distribution of the trip mileage.
Most trips are shorter than 25 kilometers, but there exist trips
of more than 75 kilometers. This distribution can also be
approximated by a Weibull distribution. The formula is,

P (TM ) = 0.2782 · T−0.1715M exp(−0.3358 · T 0.8285
M ), (3)

where TM is the trip mileage and in kilometers. The RMSE
is 0.002485.

We then calculate the distribution of the number of trips
per day for all of the registered users, as shown in Fig. 5(a).
For one user, he/she is of the highest probability around
0.17 to take four trips per day. This distribution also can
be approximated with a Weibull distribution with a negligible
RMSE of 0.005564,

P (NT ) = 0.0376 ·N1.3540
T exp(−0.0160 ·N2.3540

T ), (4)

where NT stands for the average number of trips per day.
The distribution of the average trip duration and the average

trip mileage for each user are depicted in Fig. 5(b) and 5(c), re-
spectively. We notice that a trip has more than 25% probability
to last 20-30 minutes and around 33% probability to travel 10
KM during the trip. Nevertheless, both of these distributions
can be approximated with a Gaussian distribution3.

The distribution of average trip duration for each user is
approximated by,

P (TD) = 0.3062 · exp

(
−
(
TD − 11.42

8.786

)2
)
, (5)

with RMSE of 0.01778. Here, TD is the average trip duration
for each user.

The distribution of average mileage for each user is approx-
imated by,

P (TM ) = 0.2761 · exp

(
−
(
TM − 28.61

18.03

)2
)
, (6)

with RMSE of 0.01917. TM is the average trip mileage for
each user.

We further explore the variance of car usage between
weekdays and weekends, as shown in Fig. 6. We consider
trips to represent the car usage and employ StopTime to
describe the temporal feature of each trip. From the results,
we observe that the use of private cars decreases during the
night and increases during the daytime, due to drivers’ daily
routines. At about 5 AM, the usage of cars is the lowest since

2The general form of Weibull distribution is: y = a · b · xb−1e−a·xb

3The general form of Gaussian distribution is: y = a · e−( x−b
c
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Fig. 5: Distributions of trips’ characteristics for users.

most drivers are sleeping and their vehicles are inactive. The
vehicle usage first peaks during the morning rush hour, i.e.,
10 AM, on weekdays. Further, the vehicle usage reaches its
maximum at evening rush hour, i.e., 7 PM, both on weekdays
and weekends since most people start their leisure time at that
time and drive their private cars to go outside. We also notice
that the vehicle usage on weekdays is higher in the morning
than on weekends. Also, on the weekends, vehicles are more
active until later in the night than during the weekdays. This
may be explained as people going to bed later and sleeping
longer during the weekend. We can see there are two small
peaks at about 0.30 AM and 1.30 AM on weekends. We
infer that after entertainment people return home at that time.
Similar patterns also exist in our other aspects of life, such as
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the mobile data usage of smartphone users over a day [11].

B. Fuel Efficiency of the Trips

Fuel consumption of the cars is an important metric in
describing the driving behavior. Therefore, we try to under-
stand the fuel efficiency of the recorded trips. We compute the
amount of fuel used per unit distance. For example, liters per
100 kilometers, i.e., Fuel Efficiency = (L/100 km). Therefore,
the lower the value, the less fuel is required to travel a certain
distance. These numbers can be mapped to compute the fuel
efficiency of a trip as well, which also encompass the contri-
bution of other practical factors such as traffic congestion, the
speed limit of the roads, users’ driving behavior. All the cars
in our dataset use Gasoline as fuel. Fig. 7 demonstrates the
average fuel efficiency of daily trips regarding L/100km for
all trips in the dataset. We notice that fuel efficiency begins
to degrade as the amount of traffic starts to increase after 6
AM, i.e., when the rush morning hour begins. As soon as
the rush hour ends, namely after 10 AM, the fuel efficiency
of the trips increases implying less traffic. Fuel efficiency is
correlated with the time and the volume of trips. This is clearly
depicted in Fig. 7, and we notice that weekends are more fuel
efficient than weekdays. Fuel efficiency also depends on the
car model, however, it is not possible to find the contribution
of a car itself from our dataset, as we do not collect the car
model for privacy reasons.

We then further investigate the application of this dataset by
utilizing the historical data about the trips from a vehicle’s per-
spective. This application recommends places and fuel stations
from individuals past trips. We conduct the approach shown in
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Fig. 9: Popularity and Remaining fuel-based PoI recommen-
dation framework, and other use cases of private car dataset.

Fig. 9. In this approach, we feed the information about the car,
i.e., remaining fuel and current location, and the related car’s
past trips along with the list of positions of the petrol stations.
Afterward, we calculate the fuel consumption of this car from
the historical traces. For efficient calculation, we classify these
trips according to the day of the week (weekday, weekend) and
time of the day (rush hour or usual traffic hour), and select the
one that best fits the current day and time. More specifically,
construct fuel efficiency profile of a car for every visited route
in the history. Fig. 8 shows an example profile for all the
trips in the dataset, which infers citizens drive long-distance
trips at night while short-distance trips during the daytime.
We then calculate the maximum reachable distance based on
the remaining fuel and recommend the locations of reachable
stops and petrol stations starting from the current location. A
car can simply request the backend server with the remaining
fuel and present location. This application can be packaged
as a smartphone application as well. For faster response, the
backend can be commissioned at the base stations.

IV. USE CASES FOR THE DATASET

Many applications can employ the up-to-date version of this
dataset. Fig. 9 illustrates a framework to utilize it efficiently.
To better assist drivers, some applications can retrieve the past
trips and trajectories to recommend an optimal route during



an ongoing trip, as discussed in Section IV-A, or find the
economic path regarding fuel, or even analyze the driver’s
behavior for safety concerns real time and provide feedback.
In this section, we list three promising use cases which also
are our potential future researches of the dataset.

A. Collaborative Route Recommendations

The collected dataset can be utilized to provide a personal-
ized travel route recommendation and plan the optimal travel
route between two geographical locations [12, 13]. Since we
have the whole historical trajectories of each car for each trip,
we can get the driving profile of each user, specifically the
trip duration, distance, and fuel consumption. Similar to [14],
we can design the personal driving assistant for each driver
and utilize this extracted knowledge to recommend the best
route based on community preferences like the one of less fuel
consumption, less time or more popularity [15]. Moreover, we
can feed remaining fuel and the location of the gas stations to
improve the recommendation by considering the situation that
whether remaining fuel can support the planned trip or not.

B. V2V Communications

Vehicle-to-Vehicle (V2V) communications as a networking
paradigm enable vehicles with network interfaces that are able,
apart from connecting to Internet services, to interconnect.
Such connected vehicles can securely assist each other on
V2V applications [16]. Example V2V applications are collision
avoidance, content and route sharing, and remote vehicle soft-
ware updates and diagnosis [17]. All these enable road safety,
efficient traffic management for reducing congestion and CO2

emission, pedestrian safety, and other urban developments.
In practice, however, it is difficult to evaluate the perfor-

mance of such applications or new models in a large scale
deployment. The collected dataset can be used to identify
the obstacles towards efficient V2V networks by modeling
automobile and communication networks in twelve Chinese
cities. Additionally, the dataset also can be used for trace-
driven simulation to evaluate the performance of various V2V
protocols and applications.

C. Profiling Driver’s Behavior

Aggressiveness driving behavior have been identified as a
critical risk factor in road traffic injuries [18], which accounts
for 14% of all crashes resulting in death and influences both
the risk of an accident and the severity of the injuries [19]. As
introduced in Section II, we have comprehensive information
about the car motion, namely the items related to trajectories
such as Lat, Lon, GPSTime, and speed. We can match that
into the Google map to get the information about the road,
for instance, the speed limit, the location and the environment
of this road. Since the majority of private cars are connected
with their drivers, we can compare both the data obtained in
the dataset with the information getting from Google map,
and assess the behavior of the driver. For instance, if the
driver changes lanes abruptly, veering left or right in the lane,
or takes a different route instead of talking the pre-specified
route to follow, where this can be detected by checking the
trajectory of the car. This use case aims to assess the quality

of driving and check the likelihood of being high-risk driving.
Automobile insurers consider many factors when calculating
your car insurance premiums and such use case helps them
to assess the risk taken by a specific car, where good driving
record decreases the premium and risky driving increases it.

V. DISCUSSION AND CONCLUSIONS

The number of datasets related to vehicular studies are
limited. The most popular datasets are related to taxi trips
or shared riding in New York city4. The datasets contain
pickup and drop off events, trip duration, fair, the number
of passengers, payment methods, and trajectory information.
These datasets are constrained by predetermined trajectories
(buses) or points of interest (taxis). Therefore, previous studies
mostly developed tools for exploring the datasets [20] and
investigated the congestion pattern, predicted the travel time
in New York city, and presented novel methods to improve the
traffic congestion [21, 22]. Nevertheless, the amount of private
cars are significant in different countries and increasing. Every
US household has almost two cars and 80% of the transport
vehicles are private cars in China. Based on the existing taxi
datasets, we cannot grasp the typical driving behavior of private
car owners and their contributions in our urban lives.

In this paper, we formally introduced MAS platform, the tra-
jectory, driving status, and other trip-related information from
more than 68 thousand private cars in 12 cities of mainland
China. Along with the detailed trip related information, the
dataset contains fuel and car related information. We analyzed
the dataset and exported random distribution patterns of various
features that characterize drivers’ behavior. We investigated the
fuel efficiency of the trips and highlighted many interesting
and promising use cases, i.e., applications or systems, that
can benefit from our dataset. The dataset provides a highly
comprehensive view of driving behavior and our findings may
have very practical implications for other metropolitan cities.
It is very likely that we will find a similar distribution of the
trips, and the usage pattern of private vehicles. Therefore, from
partial information about those cites, we can infer other useful
information.
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