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The emergence of the global pandemic caused by the novel SARS-CoV-2 virus has motivated scientists to find a
definitive treatment or a vaccine against it in the shortest possible time. Current efforts towards this goal remain
fruitless without a full understanding of the behavior of the virus and its adaptor proteins. This review provides
an overview of the biological properties, functional mechanisms, and molecular components of SARS-CoV-2,
along with investigational therapeutic and preventive approaches for this virus. Since the proteolytic cleavage
of the S protein is critical for virus penetration into cells, a set of drugs, such as chloroquine, hydroxychloroquine,
camostat mesylate have been tested in clinical trials to suppress this event. In addition to angiotensin-converting
enzyme2, the role of CD147 in the viral entrance has also been proposed.Mepolizumab has shown to be effective
in blocking the virus's cellular entrance. Antiviral drugs, such as remdesivir, ritonavir, oseltamivir, darunavir,
lopinavir, zanamivir, peramivir, and oseltamivir, have also been tested as treatments for COVID-19. Regarding
preventive vaccines, the whole virus, vectors, nucleic acids, and structural subunits have been suggested for vac-
cine development. Mesenchymal stem cells and natural killer cells could also be used against SARS-CoV-2. All the
above-mentioned strategies, as well as the role of nanomedicine for the diagnosis and treatment of SARS-CoV-2
infection, have been discussed in this review.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The harm wreaked by infectious agents, particularly viruses, among
theworld's population has a very long history and has periodically chal-
lenged human life every few years. Viral infections (especially respira-
tory viruses) have accounted for a large proportion of epidemics and
pandemics to date. Discovering an effective vaccine and implementing
a correct vaccination program has led many of these viruses to be erad-
icated or at least severely restricted. Following the outbreak of any
widespread viral disease, studies from around the world should be ini-
tiated to undertake the design of an effective vaccine. One of the most
important viral families, which have always been a major concern for
researchers in vaccine design, is the Coronaviridae family. Viruses of
this family can periodically infect humans, causingmainly severe respi-
ratory syndromes, ranging from Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV), and the Middle East Respiratory Syndrome
Coronavirus (MERS-CoV), to the novel pandemic coronavirus SARS-
CoV-2, the causative agent of Coronavirus Disease 2019 (COVID-19).

Coronaviridae family contains RNA viruses that usually infect the re-
spiratory tracts of mammals and birds, and can cause several illnesses,
which so far have rarely resulted in death. Although coronaviruses
have infected different animal species for a long time, the first coronavi-
rus with the ability to infect humanswas only identified in the 1960s [1].
Further studies revealed that twohuman coronaviruses, HCoV-229E, and
HCoV-OC43 were able to cause a common cold syndrome with symp-
toms akin to colds caused by rhinoviruses [2]. The severe morbidity of
coronaviruses in humans became more evident after the identification
of SARS-CoV in 2003, HCoV-NL63 in 2004, HKU1 in 2005 [3], MERS-
CoV in 2012 [4], and finally SARS-CoV-2 in 2019 [5], which all cause se-
vere respiratory tract infections with the danger of wide-scale mortality.

The COVID-19 and its causative infectious agent, SARS-CoV-2, be-
came a global problem in early 2020, and this horrible disease has threat-
ened the survival ofmillions of people around theworldwith amortality
rate of approximately 5–10% [6]. So, there is an urgent need to findways
either to confine the spread of the virus or effectively treat its complica-
tions. Among our options, vaccination seems to the best route to our sal-
vation. Due to the genomic and proteomic features of the virus such as
the “template switching” (i.e. viral RNA mutations even in the amino
acid stage) and despite numerous international efforts to design a vac-
cine to prevent the infection by this novel human virus, we still face
many challenges to supply an effective vaccine, especially on a global
scale [7]. The ongoing research into COVID-19 vaccines could light the
road ahead for further studies aimed at finding an effective and afford-
able vaccine for preventing this novel dreadful disease. The present re-
view focuses on these efforts and provides several insights into the
accomplishments, failures, and risks of developing SARS-CoV-2 vaccines.

2. Origin and evolution of highly pathogenic coronaviruses

Coronaviruses are zoonotic viruses that naturally infect animals, but
can be transmitted from animals to humans and have a powerful ability
19
to infect human cells. Taxonomically, the highly pathogenic
coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2) are classified
into the Nidovirales order, Coronaviridae family, Coronavirinae sub-
family, and also into the Betacoronavirus genus (International Commit-
tee on Taxonomy of Viruses).

Human angiotensin-converting enzyme II (ACE2) is themain recep-
tor for SARS-CoV, bywhich the SARS-CoV S protein enters the host cells.
The viral attachment protein or Spike protein binds to ACE2 via the
receptor-binding domain (RBD) located on the surface of S protein [8].
Interestingly, structural analysis of the RBDs from S proteins derived
from different strains of SARS-CoV has shown that the RBDs have a dif-
ferent affinity for theACE2 receptor in several animalmodels. For exam-
ple, the strain hTor02 of SARS-CoV (the epidemic strain) contains RBDs
which have a high affinity for human ACE2, and enable the virus to in-
fect human cells easily [9].

The structural and genomic analysis of SARS-CoV-2 with the viruses
isolated from other different species showed that another probable host
of the SARS virus might be the pangolin. However, it is hard to be sure
whether bats are the primary host or pangolins (Fig. 1a) [10].

3. Structural and immunological characterization

The complete structure of the coronavirus virion, as the largest
known RNA virus, contains a positive-sense, non-segmented, single-
stranded RNA combined with the nucleocapsid (N) proteins assembled
into a helical shape. A phospholipid bilayer structure similar to a mam-
malian cell membrane covers the RNA, and a high number ofMproteins
and S proteins are located in this layer. Themembrane (M) and envelop
(E) proteins can be found among these S proteins (Fig. 1d) [11]. When
this virus infects a human cell, the immune system is triggered into ac-
tion to eliminate the virions, and destroy infected cells. As the first line
of defense against viral infections, the innate immune response starts
its fight against the virus by producing inflammatory cytokines and
chemokines. The most important innate immune response mediators
involved in the initial defense against coronavirus include RIG-I-like re-
ceptors (RLRs), C-type lectin-like receptors (CLRs), toll-like receptors
(TLRs), NOD-like receptors (NLRs), and also cytoplasmic receptors
such as cGAS, IFI16, STING, and DAI [11]. However, although the activa-
tion of the innate immune response is designed to clear infected tissue
from the virus, it can also be dangerous and harmful for healthy tissues
[12]. Natural killer (NK) cells are the crucial immune cells of the innate
immune response, with the ability to deal with the viral infections and
kill infected cells by producing perforin or inducing IFN-γ. It has been
reported that NK cells are decreased in the serum level of patients
with SARS-CoV infection [13]. To prove this concept, a mouse model of
SARS was used to show that NK cells were not necessary for the clear-
ance of SARS-CoV [14]. On the other hand, plasma analysis of SARS pa-
tients showed that mannose-binding lectins (MBLs) and serum
amyloid A (both acute-phase proteins) were elevated in a calcium-
dependent manner and MBLs could bind to the S proteins of SARS-
CoV to exert their protective effects [15]. The production of IFNs is an



Fig. 1. Coronavirus pathophysiology. (a) Animal (natural and intermediate hosts) origin of human coronaviruses; Pangolinsmay be intermediate hosts for transmission of the new SARS-
CoV-2 from bats to humans. Although cats can be infectedwith the SARS-CoV-2, and can spread it to each other, dogs have only a low susceptibility to this virus. However, the existence of
intermediate animal host(s) of SARS-CoV-2 is still likely. (b) Clinical presentation of patients with SARS-CoV-2, including common, uncommon, and severe symptoms of SARS-CoV-2.
(c) Human Coronavirus Types: common human coronaviruses; 229E (alpha coronavirus), NL63 (alpha coronavirus), OC43 (beta coronavirus), HKU1 (beta coronavirus) and other
human coronaviruses; MERS-CoV (the beta coronavirus that causes Middle East Respiratory Syndrome, or MERS), SARS-CoV (the beta coronavirus that causes the severe acute
respiratory syndrome, or SARS), SARS-CoV-2 (the novel coronavirus that causes coronavirus disease 2019, or COVID-19); d) Diagram of coronavirus virion structure showing genome
and structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N).
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essential antiviral mechanism functioning as a chemo-attractant mech-
anism to attract immune cells to eliminate infected cells, as well as to
protect non-infected-cells. SARS-CoV inhibits the function of IFN via
hindering its related pathways; for example, this virus increases the nu-
clear transport of IFN regulatory factor 3 (IRF3) to repress the IFN re-
sponse [16]. Regarding the inflammatory functions of macrophages
and dendritic cells (DCs), SARS-CoV non-specifically infects these im-
mune cells, as well as peripheral blood mononuclear cells (PBMCs) giv-
ing rise to the production of several chemokines, including IFN-
inducible protein 10 (IP-10), RANTES (CCL5), macrophage inflamma-
tory protein 1 α (MIP-1α), and monocyte chemoattractant protein 1
(MCP-1), all of which subsequently increase the level of inflammation
in SARS-CoV-infections [17,18].

During a viral infection, and especially a coronavirus infection, not
only is there an innate immune response, but the adaptive immune re-
sponse is also activated in the host. Cytotoxic T lymphocytes mostly
function during cellular immunity to eliminate the virally infected
cells. The S proteins of SARS-CoV have two HLA-A2-restricted T cell epi-
topes that can activate T cells responses in SARS-positive patients [19].
Surprisingly, lymphopenia has been observed during SARS-CoV infec-
tion, and this reduction was more pronounced in CD4+ T cells com-
pared to CD8+ T cells [20]. It has been demonstrated that an IgG
against the N protein of SARS-CoV is the first antibody produced after
primary infection [21]. However, antibodies against the S protein have
been reported to have neutralization effects on SARS-CoV virions [22].
These antibodies could also trigger the phagocytosis of infected-cells
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by MΦs, leading to an elevated level of proinflammatory cytokines
and chemokines, and subsequent tissue injury due to excessive inflam-
mation [23].

The exact immunopathology mechanisms of SARS-CoV-2 and its re-
lated disease, COVID-19, are still under investigation. Indeed, the cyto-
kine storm and incidence of inflammation in lungs have been found to
be the leading causes of acute respiratory distress syndrome (ARDS)
in COVID-19 patients just like it occurs with SARS patients (Fig. 2) [24].

4. Cell entry mechanism and therapeutic implications

An understanding of SARS-CoV-2 cell entry mechanisms will facili-
tate the design of effective therapeutics that could target this critical
step in the viral life cycle. The host cell membrane is essential to prevent
infection, acting as a barrier between the viral particle and the intracel-
lular site of viral replication [25]. Although not a guarantee of successful
infection, the binding and passage of the virus through the cell mem-
brane barrier is a critical step in the life cycle of a virus [26], especially
for coronaviruses. Coronavirus entry into a host cell is a dynamic,
multi-step cascade process. These viruses access target cells by binding
to cell surface receptors, followed by membrane fusion mediated by a
multifunctional fusion protein [27,28]. Although there is evidence im-
plicating cellular endocytic pathways for entry of viruses into host
cells, the exact mechanisms of entry for many viruses, including
coronaviruses, have yet to be fully characterized [29]. Identification of
the host cell receptors, the structural binding mechanism, and the



Fig. 2. Transmission and pathology of the SARS-Cov-2 virus. After transmission via droplets from an infected person (a), the virus particles infect and replicate in type 2 pneumocytes (b),
which finally results in inflammation of alveoli (recruitment of inflammatory cells and secretion of inflammatory mediators) (c) and disruption of respiratory and blood circulation
systems. Finally, multi-organ dysfunction occurs due to the severe hypoxia and lack of perfusion (d). Reduction in PO2 and fluid accumulation in alveoli further aggravates the clinical
condition and leads to pulmonary, as well as cerebral manifestations (e). SIRS: systemic inflammatory response syndrome; RDRP: RNA-dependent RNA polymerase.
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virus trafficking pathway will support the development of therapeutic
agents against SARS-CoV-2.

4.1. Host membrane proteins render cells susceptible to SARS-CoV-2

In the classical pathway, viruses enter host cells via endocytosis, fol-
lowing binding to cell surface receptors. Viruses can physically pene-
trate cells by endocytic cellular uptake in a process usually referred to
21
as receptor-mediated endocytosis [30]. Angiotensin-converting enzyme
2 (ACE2) is a critical type 1 integral membrane protein, which is
expressed in most human and some animal tissues. ACE2 is highly
expressed in the endothelium, the lungs, and the heart [31]. When
this cell surface protein was discovered three decades ago, neither of
the research groups involved could have appreciated the large number
of distinct functions this receptor plays in biology, from viral infection to
cardiovascular regulation [32]. ACE2 is the first known host receptor for
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SARS-CoV-2 [33], and it was found that SARS-CoV-2 does not use other
host cell membrane proteins, such as dipeptidyl peptidase 4 (DP IV,
CD26) or aminopeptidase N (APN, CD13) [34]. Cao et al. systematically
searched for variants of ACE2, which could affect the pathogenesis of
SARS-CoV-2 among different populations. Their results showed that
was little evidence of genetic variations supporting the existence of sus-
ceptibility or resistance in diverse populations. East Asian populations
had much higher frequencies in the eQTL allele variants, which may
govern different responses to SARS-CoV-2 in different populations
[35]. In addition to ACE2, Wang et al. reported that SARS-CoV-2 could
enter target cells through a novel interaction of the viral proteins with
CD147 [36]. CD147, also known as basigin or extracellularmatrixmetal-
loproteinase inducer (EMMPRIN), is expressed in a variety of human
cells. CD147 regulates extracellular matrix remodeling during many
critical biological processes, including cancer, inflammatory disease,
and wound healing [37]. It could be the case that some SARS-CoV-2 re-
ceptor variants and expression levels in different patients may be asso-
ciated with more severe forms of the infection.

Increased viremia (level of viruses in the bloodstream and other
bodily fluids) leads to higher severity of infection [38]. During viremia,
the human circulatory system facilitates the transport of viruses
throughout the entire body. Coronavirus viremia mainly appears one
week after the onset of symptoms. Viremia then decreases gradually
over a week, becoming undetectable in the bodily fluid samples of con-
valescent patients [39]. ACE2 is widely expressed in other tissues and
cell types, such as cardiomyocytes, cardiofibroblasts, and coronary en-
dothelial cells [40]. CD147, in a similar manner to ACE2, is expressed
in many different epithelial, neuronal, lymphoid, and myeloid cell
types [41]. Over-expression of these receptors in different tissues and
cell types could explain subsequent syndromes such as myocarditis or
encephalopathy. Therefore, ACE2/CD147-based therapeutics could in-
hibit the binding of SARS-CoV-2 to its receptors and prevent the corona-
virus from invading its target cells, possibly providing a strategy for the
development of anti-SARS-CoV-2 drugs.

4.2. The spike protein of SARS-CoV-2 promotes cell entry

Coronavirus cell entry relies on an interaction between the surface
receptor of target cells and the spike (S) proteins of coronaviruses,
which mediates viral entry [42]. The Coronavirus S protein is a trimeric
type I transmembrane protein with 1160 to 1400 amino acid residues.
SARS-CoV and S SARS-CoV-2 proteins are highly glycosylated at 21 to
35 sites, which all have 76.5% identity in amino acid sequences and a
high degree of homology (Fig. 3a) [43,44]. These glycoproteins assemble
on the coronavirus surface, forming a crown-like array that gives this
virus its name (crown = corona). The crystallization of the S protein
of SARS-CoV-2 and examination by cryo-electron microscopy showed
the role of these sites in the interplay between SARS-CoV-2 S and its tar-
get cell receptors [45]. Interestingly, these coronaviruses contain a crit-
ical loop with flexible residues. Replacing this loop with other amino
acid residues, such as those from SARS-CoV using molecular modeling,
showed that the receptor-binding domain has a higher affinity for
host cell receptors compared with other coronavirus S proteins
(Fig. 3b right) [46].

Recent publications have reported that coronavirus entry is a multi-
step process requiring several domains in the S protein [21]. An inter-
play between a single region of the SARS-CoV-2 S protein called the
receptor-binding domain (RBD), and the protease domain (PD) of
ACE2 [47] prompts endocytosis of the virus. This interaction thenmedi-
ates the fusion between the viral particle and the target cell membrane,
allowing endocytosis into the cytosol [26] (Fig. 2c). Structures of PD
(alone and in complex with the RBD) have revealed the molecular de-
tails of the interaction between the RBD and PD [48,49]. Yan et al. dem-
onstrated the three-dimensional structure of ACE2 in a dimeric
assembly. Molecular docking studies suggested the simultaneous bind-
ing of the ACE2 dimer to two coronavirus S protein trimers [33]. The S
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protein RGD binds to the RBD at the border of the subdomain (amino
acids 437 to 508) [44,50,51]. Residue 479 in SARS-CoV RBD corresponds
to residue 394 in the SARS-CoV-2 RBD, and is recognized by the critical
residue 31 in the ACE2 enzyme [52,53]. This interaction is now known
to trigger a conformational change within the viral S protein, which
then mediates fusion of the host cell membrane and the SARS-CoV-2
viral membrane allowing the genetic material to be introduced into
the target cell.

4.3. SARS-CoV-2 uses multiple pathways for S protein activation

Viruses deliver their genetic material into target cells using a variety
of strategies and molecules [54]. The viral S glycoprotein contains mul-
tiple cleavage sites. S glycoproteins contain two domains: a C-terminal
S2 domain and an N-terminal domain named S1 (Fig. 2a and c). When
the S1 subunit binds to ACE2, the S2 cleavage site is then cleaved by
host proteases [33]. The coronavirus fusion peptide is located down-
stream from the S2 N terminus. This critical peptide forms a loop and
a short helix, and contains nearly all the hydrophobic residues buried in-
side the prefusion structure [42,55]. Following host cell binding, the co-
ronavirus S proteins undergo conformational changes exposing
hydrophobic domains and the fusion peptide, which becomes embed-
ded into the host cell cytoplasmic membrane. The pre-fusion to post-
fusion transition in the S protein is irreversible and is regulated during
the cell entry [42,56]. In the next stage, S protein subdomains become
refolded into a heptad repeat 1 (HR1), which initiates the endocytosis
of coronaviruses (Fig. 4) [57].

Different co-receptors have been identified to be involved in virus
entry into the host cells and control the efficiency of cell entry [58].
When S proteins bind to host cell receptors, they encounter cellular
co-receptors and activators. These co-receptors and activators may be
membrane receptors, transmembrane receptors, proteases, or cations,
which facilitate viral fusion protein refolding into an active form that
catalyzes host cellmembrane coalescence [59].Many of thesemolecules
are cellular proteases that cleave and activate the S proteins inways that
expose the essential domain for virus fusion [60]. These host cell prote-
ases include trypsin, cathepsins, elastase, thermolysin, furin, the
proprotein convertase family, and transmembrane protease/serine
(TMPRSS) [61]. TMPRSS11d and TMPRSS2 can both induce coronavirus
fusion. When host cells express TMPRSS2, infection of pulmonary cells
with coronavirus S-pseudotyped particles was less sensitive to inhibi-
tors of cathepsins B and L. In pulmonary cells, coronavirus S protein em-
ploys TMPRSS2 for S protein priming, and the endosomal cathepsins B
and L are not essential for viral entry [62–64]. Therefore, further work
is needed to assess which co-receptors and activators can enhance the
entry of SARS-CoV-2 at the level of S protein.

4.4. SARS-CoV-2 cell entry inhibitors

SARS-CoV-2 entry into cells is a critical step of its life cycle that can
be used as a target for treatment. Antiviral molecules that inhibit the
host cell entry of coronaviruses have been reported. For example,
Adedeji et al. identified compounds that could inhibit coronavirus cell
entry through different mechanisms. The first identified inhibitor of
SARS-CoV-2 cellular entry was SSAA09E2 (N-[[4-(4-methylpiperazin-
1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide) that acted through
prevention of the ACE2–RBD interaction. SSAA09E1 [(Z)-1-thiophen-
2-ylethylideneamino]thiourea, was the second identified compound,
which inhibited cathepsin L, and SSAA09E3, [N-(9,10-dioxo-9,10-
dihydroanthracen-2-yl)benzamide], suppressed the fusion of the viral
particles with the target cells [65]. For human coronaviruses, some
other peptides have been reported to inhibit host cell entry through dif-
ferent mechanisms. For instance, Struck et al. demonstrated that a
hexapeptide that bound to the ACE2 receptor, could block viral infection
of host cells [66].



Fig. 3.Molecular detail of coronavirus S proteins and host cell ACE2 protein. a) Phylogenetic analysis of SARS-CoV and SARS-CoV-2 S proteins. b) Structural alignment and structure of RBD
for the SARS-CoV and SARS-CoV-2 [33]. c) SARS-CoV-2 S protein cleavage sites and its interaction with the PD of ACE2 (Protein Data Bank ID: 6VYB and 1R42).
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As mentioned, SARS-CoV-2 uses specific receptors, ACE2, and
CD147, which are expressed on human airway epithelial cells and
lung parenchyma. Compounds that act as angiotensin receptor blockers
have been in clinical use since 1995, and are known to be effective anti-
hypertensive agents with excellent tolerability profiles [67]. Many anti-
ACE agents that can inhibit the renin-angiotensin system, such as
losartan, rifampin, fluconazole, candesartan cilexetil, eprosartan,
irbesartan, telmisartan, valsartan, azilsartan medoxomil, and
olmesartan medoxomil, have been tested as treatments for hyperten-
sion. Other agents thatmay block the progression of the SARS-CoV-2 in-
fection are angiotensin receptor 1 blockers, such as losartan [68].
Furthermore, anti-CD147 antibodies, such asmepolizumab, could effec-
tively prevent the coronaviruses from invading target cells by blocking
the CD147 receptor. These strategies may be reliable and safe without
being affected by virus variation and mutation [36]. Interestingly,
23
Hoffmann et al. reported that target cell entry of SARS-CoV-2 could be
blocked by camostat mesylate, an inhibitor of TMPRSS2, which is
employed for S protein priming [62]. A summary of the clinical trials
against SARS-CoV-2, using hydroxychloroquine, chloroquine, losartan,
mepolizumab, camostat mesylate, and other compounds is provided
in Table 1.

5. Small molecule antiviral agents

The development of antiviral drugs against SARS-CoV-2 is difficult.
Several clinical trials of antiviral agents have been started as of May
2020, now amounting to a total of 306 active trials. Up to now, protease
inhibitors, including ritonavir, oseltamivir, darunavir, and lopinavir,
have been the most frequently tested class of drugs for the treatment
of COVID-19. Lopinavir and ritonavir are HIV protease inhibitors,



Fig. 4. SARS-CoV-2 cell entrymechanisms and subsequent intracellular trafficking. a) Role of host cell proteases in the cellular entry of SARS-CoV-2. Host cell entry of SARS-CoV can proceed
via two distinct routes; in the absence of SARS-S-activating protease, the virus is internalized via the binding of SARS-S to ACE2 on the surface of host cells. Within the endosomes, the
SARS-S is then cleaved and activated by cathepsin L, a pH-dependent cysteine protease. The SARS-S may also be activated by TMPRSS2 on the membrane surface of host cells when
this protease is expressed along with ACE2 allowing the fusion of two membranes (i.e., host and the virus) and viral entrance. b) The role of class I transmembrane proteins expressed
on the surface of SARS-CoV-2 in promotingmembrane fusion. Conformational changes of these proteins before and after fusion have been shown. c) The conformation of the viral S2 pro-
tein has also been indicated in vitro (left) and in vivo (right). Abbreviations: FP, fusion peptide;HR-N, heptad repeat regionN;HR-C, heptad repeat regionC; IC, intracellular tail; SARS-CoV-
2, severe acute respiratory syndrome coronavirus; TM, transmembrane anchor.
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which have shown somepromise in the treatment of SARS-CoV-2 infec-
tion [69], andhave been tested in trials in COVID-19patients [70,71]. For
example, the third patient diagnosed with SARS-CoV-2 in Korea was
treated with lopinavir and ritonavir starting from hospital day 8. After
treatment, very low coronavirus titers were observed compared with
a control group of untreated patients [72]. Cao et al. conducted a clinical
trial using a combination of lopinavir with ritonavir as a potential treat-
ment for hospitalized COVID-19 patients. However, these drugs showed
no significant effect beyond standard care [70]. In addition, anti-
influenza drugs that are routinely used in clinical practice, including
neuraminidase inhibitors (zanamivir, peramivir, oseltamivir, etc.), acy-
clovir, ribavirin, ganciclovir, and methylprednisolone [73,74], have
been studied as anti-SARS-CoV-2 drugs in clinical trials. Darunavir is a
24
protease inhibitor primarily targeting the HIV-1 virus, which is being
tested in clinical trials for SARS-CoV-2 treatment. Future clinical trials
of protease inhibitors in patients with severe viral respiratory infections
may help to exclude or confirm the possibility that they could be bene-
ficial agents.

RNA-dependent RNA polymerase (RdRp) inhibitors are the second
most frequently used class of drugs in the treatment of SARS-CoV-2 pa-
tients. Compared to the conserved sequence of RdRp in coronaviruses,
SARS-CoV-2 and SARS-CoV have similar sequences and structures of
RdRp [75]. Nucleoside analogs are generally adenine or guanine deriva-
tives, which block viral RNA synthesis through targeting the RdRp in a
broad spectrum of viruses, including human coronaviruses [76,77].
Both approved nucleoside analog drugs in clinical use (sofosbuvir,



Table 1
Selected therapeutic agents as inhibitors of SARS-CoV-2 cell entry currently in clinical trials.

Phase Responsible party Interventions Recruitment
status

Population
(enrollment and
age)

NCT number

2 GlaxoSmithKline ● GSK2586881 Completed 44
18–80

NCT01597635

2 University of Minnesota ● Losartan Recruiting 516
≤18

NCT04311177

4 Ruijin Hospital ● Arbidol
● Basic treatment

Not yet
recruiting

380
18–75

NCT04260594

4 Beijing YouAn Hospital ● Carrimycin
● Lopinavir with ritonavir tablets or arbidol or
chloroquine phosphate
● Basic treatment

Not yet
recruiting

520
18–75

NCT04286503

2, 3 Bassett Healthcare ● Lopinavir with ritonavir
● Hydroxychloroquine sulfate
● Losartan

Recruiting 4000
≤18

NCT04328012

4 Instituto de Investigación Marqués de Valdecilla ● Hydroxychloroquine
● Control group

Not yet
recruiting

800
18–75

NCT04330495

4 Wroclaw Medical University ● Chloroquine phosphate
● Telemedicine

Not yet
recruiting

400
≤18

NCT04331600

3 Massachusetts General Hospital ● Hydroxychloroquine Recruiting 510
≤18

NCT04332991

1 University of Washington ● Hydroxychloroquine sulfate
● Vitamin C

Not yet
recruiting

2000
18–80

NCT04328961

2 Asan Medical Center ● Lopinavir with ritonavir
● Hydroxychloroquine sulfate

Recruiting 100
18–99

NCT04307693

2, 3 Oslo University Hospital ● Hydroxychloroquine
● Remdesivir
● Standard of care

Recruiting 700
≤18

NCT04321616

3 Rajavithi Hospital ● Protease inhibitors, oseltamivir, favipiravir, and
chloroquine

Not yet
recruiting

80
18–100

NCT04303299

3 Shanghai Public Health Clinical Center ● Hydroxychloroquine Completed 30
≤18

NCT04261517

3 Population Health Research Institute ● Azithromycin
● Chloroquine

Not yet
recruiting

1500
18

NCT04324463

3 Hospital do Coracao ● Hydroxychloroquine oral product
● Hydroxychloroquine with azithromycin

Recruiting 630
18

NCT04322123

2 Fundació Institut de Recerca de l'Hospital de la Santa
Creu i Sant Pau

● Tocilizumab
● Hydroxychloroquine
● Azithromycin

Recruiting 276
≤18

NCT04332094

3 University Hospital, Angers ● Hydroxychloroquine Recruiting 1300
≤18

NCT04325893

3 University of Minnesota ● Hydroxychloroquine Recruiting 3000
≤18

NCT04308668

Not
applicable

University of Oxford ● Chloroquine Not yet
recruiting

10,000
≤16

NCT04303507

1 Sanofi ● Hydroxychloroquine SAR321068 Recruiting 210
≤18

NCT04333654

2 Fundação de Medicina Tropical Dr. Heitor Vieira
Dourado

● Chloroquine diphosphate Recruiting 440
18–100

NCT04323527

3 Institut National de la Santé Et de la Recherche
Médicale, France

● Remdesivir
● Lopinavir with ritonavir
● Interferon beta-1A
● Hydroxychloroquine
● Standard of care

Recruiting 3100
≤18

NCT04315948

3 Hospital Israelita Albert Einstein ● Hydroxychloroquine with azithromycin
● Hydroxychloroquine

Recruiting 440
≤18

NCT04321278

4 Chronic Obstructive Pulmonary Disease Trial
Network, Denmark

● Azithromycin
● Hydroxychloroquine

Recruiting 226
All

NCT04322396

2, 3 Columbia University ● Hydroxychloroquine Not yet
recruiting

1600
≤18

NCT04318444

3 National Institute of Respiratory Diseases, Mexico ● Hydroxychloroquine Recruiting 400
18

NCT04318015

2 University of Pennsylvania ● Hydroxychloroquine Sulfate Recruiting 400
≤18

NCT04329923

Early 1 Rambam Health Care Campus ● Hydroxychloroquine Not yet
recruiting

1116
≤18

NCT04323631

3 Barcelona Institute for Global Health ● Hydroxychloroquine Recruiting 440
≤18

NCT04331834

Early phase
1

Azidus Brasil ● Hydroxychloroquine sulfate
● Azithromycin tablets

Not yet
recruiting

400
≤18

NCT04329572

3 Gangnam Severance Hospital ● Hydroxychloroquine as post-exposure prophylaxis Not yet
recruiting

2486
18–99

NCT04330144

3 National Institute of Respiratory Diseases, Mexico ● Hydroxychloroquine Recruiting 500
18–80

NCT04315896

(continued on next page)
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Table 1 (continued)

Phase Responsible party Interventions Recruitment
status

Population
(enrollment and
age)

NCT number

3 Centre Hospitalier Universitaire de Saint Etienne ● Hydroxychloroquine
● Lopinavir and ritonavir

Recruiting 1200
≤18

NCT04328285

2 Korea University Guro Hospital ● Ciclesonide metered dose inhaler [Alvesco]
● Hydroxychloroquine

Not yet
recruiting

141
18–80

NCT04330586

2 Intermountain Health Care, Inc. ● Hydroxychloroquine
● Azithromycin

Recruiting 300
≤18

NCT04329832

2 Oxford University Clinical Research Unit ● Chloroquine phosphate Not yet
recruiting

250
≤18

NCT04328493

3 University of Calgary ● Hydroxychloroquine Recruiting 1660
≤18

NCT04329611

3 Ayub Medical College, Abbottabad ● Hydroxychloroquine
● Azithromycin
● Dietary supplement: glucose tablets

Not yet
recruiting

75
18–50

NCT04328272

Not
applicable

Renmin Hospital of Wuhan University ● DAS181 Recruiting 4
18–70

NCT04324489

Not
applicable

Neuromed IRCCS ● ACE inhibitors Not yet
recruiting

5000
All

NCT04318418

Not
applicable

Istinye University ● Hydroxychloroquine Recruiting 80
20–90

NCT04326725

2 Ansun Biopharma, Inc. ● DAS181 Not yet
recruiting

280
18

NCT04298060

1, 2 Tang-Du Hospital ● Meplazumab (a humanized anti-CD147 antibody)
for injection

Recruiting 20
18–75

NCT04275245

3 Ansun Biopharma, Inc. ● DAS181
● DAS181 SARS-CoV-2
● DAS181 OL

Recruiting 250
All

NCT03808922

4 Tongji Hospital ● Abidol hydrochloride
● Abidol hydrochloride combined with interferon
atomization

Recruiting 100
18–80

NCT04254874

4 NCT04255017 ● Abidol hydrochloride
● Oseltamivir

Recruiting 400
≤18

NCT04255017

F. Oroojalian, A. Haghbin, B. Baradaran et al. International Journal of Biological Macromolecules 165 (2020) 18–43
favipiravir, ribavirin, and tenofovir) and experimental drugs (galidesivir
and remdesivir) may have potential therapeutic effects against SARS-
CoV-2 RdRp (Fig. 5). Remdesivir is an adenosine analog pro-drug with
a broad-spectrum antiviral activity that has been shown to inhibit the
replication of a wide array of RNA viruses [78,79]. For instance,
remdesivir was in clinical trials for the treatment of male Ebola virus
disease survivors [80,81]. Remdesivir is presently in clinical trials for
the COVID-19 outbreak (Table 2), and in one completed clinical trial
showed promising antiviral activity against SARS-CoV-2 infection. Al-
though the FDA has approved only a few antiviral combination treat-
ments for a relatively small number of viral diseases, several
combinations of antiviral agents with activity against SARS-CoV-2 are
currently being assessed (Table 2). Among the clinical trials in progress,
some are testing antiviral agents, such as lopinavir plus ritonavir, as the
most common drug combination. Overall, among the new antiviral tri-
als that were commenced in 2020, remdesivir has attracted themost at-
tention for the treatment of SARS-CoV-2.

Azithromycin is a 15-membered macrolide antibiotic, that is distin-
guished from other macrolides by its extensive and rapid penetration
into biological compartments, accompanied by an acceptable serum
half-life and a prolonged concentration in tissue [82]. Azithromycin
has been effective in vitro against Ebola and Zika viruses [83–85], and
some other viral infections of the lower and upper respiratory tracts
[86]. Gautret et al. evaluated the effect of azithromycin plus
hydroxychloroquine on the respiratory SARS-CoV-2 viral load. The re-
sults suggested a positive effect of the combination of azithromycin
and hydroxychloroquine [87]. Azithromycin is currently under study
for treating hospitalized patients with moderate to severe SARS-CoV-2
infection.

Nevertheless, even after several months from the first appearance of
SARS-CoV-2, we still have no definitive drugs to combat the infection. In
fact, we are still testing drugs already known to target similar RNA vi-
ruses. These drugs have been proposed to interferewith the progression
of the SARS-CoV- 2 infections by a multitude of mechanisms. One class
26
of these drugs interferes with the penetration of the virus into cells by
inhibiting either membrane attachment (ACE2) or membrane fusion
(TMPRSS2). Someother drugs alsoprevent the formation of endosomes.
Nevertheless, after penetration of the viral particles, it is necessary to
use agents that inhibit basic biological functions such as protein synthe-
sis (CLpro and PLpro) or DNA replication (RdRp). Furthermore, it may
be possible to usemodulators of the immune system to increase the an-
tiviral response (e.g., IL-6R). Care should be taken using such drugs as
theymayworsen clinical symptoms in severely ill SARS-CoV-2 patients,
in whom immunosuppressive drugs may actually be more effective
(Fig. 6). None of these potential drugs (either alone or in combinations)
can be considered definitive treatments without passing extensive and
well-designed clinical trials, which are fortunately underway.

In recent studies, it has been stated that dexamethasone, a cortico-
steroid that has been effective in treating autoimmune diseases (e.g.
multiple sclerosis, rheumatoid arthritis) as well as inflammatory and
hepatic disorders and cancer, may be effective in reducing mortality in
patients with COVID-19 infection [88,89].

In fact, this corticosteroidwas thefirstmedication that brought hope
for saving the lives of severely affected patients with the infection. The
efficiency of dexamethasone in improving the clinical condition of
COVID-19 patients is currently under investigation along with four
other drugs (hydroxychloroquine, azithromycin, lopinavir–ritonavir
combination, and tocilizumab) and plasma therapy (the RECOVERY
trial) [90]. Giving the ability of nanomaterials to be accumulated inmac-
rophages, Lammers et al. suggested that usingnano-forms of dexameth-
asone may augment its impact on the clinical progression of COVID-19
infection [90,91] a notion which certainly needs more evidence.

6. SARS-CoV-2 vaccine platforms

Several preclinical and clinical trials are now underway testing can-
didate vaccines against SARS-CoV-2. Vaccination against infectious dis-
eases can be a powerful tool for preventing potential outbreaks of
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Fig. 5. Potential protease inhibitors and RdRp inhibitors in clinical trials for SARS-CoV-2.
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epidemic diseases before they becomepublic health problems [92]. Vac-
cine strategies are considered as a critical component of SARS-CoV-2
prevention, especially since therapeutic agents are unavailable or inef-
fective, and that rapid clinical deterioration may limit the effectiveness
of any treatment options. The lack of therapeutic vaccines for clinical
use against such viruses, makes the coronavirus pandemic a serious
global threat [93]. In addition, timely development of SARS-CoV-2 vac-
cines is needed as soon as possible, not only for controlling the SARS-
CoV-2 infection but also for stabilizing the global outlook and bringing
the world economy back on track [94]. A number of approaches have
been proposed to develop vaccines against coronaviruses [95–98].
SARS-CoV-2 vaccines based on the whole inactivated virus, non-
replicating viral vectors, replicating viral vectors, nucleic acids, and sub-
units, have been tested in preclinical and clinical trials (Tables 3–6).
The World Health Organization (WHO) has provided an overview of
SARS-CoV-2 candidate vaccines in preclinical trials [99]. However,
the enthusiasm for a rapid deployment of SARS-CoV-2 vaccines is
tempered by the reality of the experience of developing previous co-
ronavirus vaccines. Although vaccine development against SARS-
CoV-2 is under development, manufacturing at scale will take a
long time, probably at least 12 to 18 months away from scaled-up
vaccine production [100]. Hopefully, SARS-CoV-2 vaccine develop-
ment can be even faster and more efficient compared to previous ex-
perience, and possibly using newer technologies. SARS-CoV-2
vaccine development is still in the early stages. To date, very few
SARS-CoV-2 vaccine candidates have been tested in clinical trials
(Table 3).
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A variety of technological platforms have been exploited in different
studies; some of them are briefly described here [101,102] (Fig. 7):

Live attenuated vaccines: Modifying the SARS-CoV-2 virus in a way
that reduces its pathogenicity and virulence can assist us in produc-
ing a live but weakened virus. Codon deoptimization or introducing
a mutated E protein is amongmethods for making incapable viruses
[103]. Although this method can draw a fast and potent immune re-
sponse, it may not be applicable in immunosuppressed individuals.
Viral-vector based vaccines: Other viruses (e.g., adenovirus) can be
used as vectors to carry SARS-CoV-2 genes into cells. This method
delivers good immunogenicity even in the absence of an adjuvant.
A robust cytotoxic T cell (CTL) response is ensured using such vac-
cines to remove virus-infected cells.
Recombinant protein-based vaccines: In this approach, a recombi-
nant protein is constructed by adjoining SARS-CoV-2 proteins (such
as S protein) with adjuvants. Incorporating adjuvants promote the
immune response against the viral antigen.
DNA vaccines: Potentially, we can use plasmid DNA to incorporate
target viral genes,which are then expressed to SARS-CoV-2 proteins.
By using this method, antigens can be efficiently delivered to host
cells. Nevertheless, no approved DNA vaccines are currently avail-
able to be used in humans.
mRNA vaccines: Transcripts of SARS-CoV-2 genes (i.e., mRNAs)
enclosed in structures such as liposomes can carry viral antigens



Table 2
Selected small molecule therapeutic agents as inhibitors of SARS-CoV-2 in clinical trials.

Phase Responsible party Interventions Recruitment
status

Population
(enrollment
and age)

NCT number

2 Sunnybrook Health Sciences Centre ● Lopinavir with ritonavir Recruiting 400
≤6 months

NCT04330690

– Gilead Sciences ● Remdesivir Available –
≤18

NCT04323761

Not applicable Peking University First Hospital ● Favipiravir with tocilizumab
● Favipiravir
● Tocilizumab

Recruiting 150
18–65

NCT04310228

3 St. Michael's Hospital, Toronto ● Lopinavir with ritonavir Not yet
recruiting

1220
≤18 months

NCT04321174

– U.S. Army Medical Research and Development
Command

● Remdesivir Available – NCT04302766

3 China-Japan Friendship Hospital ● Remdesivir Terminated 453
≤18

NCT04257656

3 China-Japan Friendship Hospital ● Remdesivir Suspended 380
≤18

NCT04252664

3 Tongji Hospital ● ASC09F with oseltamivir
● Ritonavir with oseltamivir
● Oseltamivir

Recruiting 60
18–55

NCT04261270

3 Gilead Sciences ● Remdesivir
● Standard of care

Recruiting 600
≤18

NCT04292730

3 Shanghai Public Health Clinical Center ● Darunavir and cobicistat Recruiting 30
≤18

NCT04252274

3 Gilead Sciences ● Remdesivir
● Standard of care

Recruiting 400
≤18

NCT04292899

3 Germans Trias i Pujol Hospital ● Antiviral treatment and prophylaxis
● Standard public health measures

Recruiting 3040
≤18

NCT04304053

2 National Institute of Allergy and Infectious
Diseases (NIAID)

● Remdesivir Recruiting 440
≤18

NCT04280705

2 The University of Hong Kong ● Lopinavir with ritonavir
● Ribavirin
● Interferon Beta-1B

Completed 70
≤18

NCT04276688

4 The Ninth Hospital of Nanchang ● Ganovo with ritonavir with/and interferon
nebulization

Completed 11
18–75

NCT04291729

Not applicable First Affiliated Hospital of Zhejiang University ● ASC09 with ritonavir group
● Lopinavir with ritonavir group

Not yet
recruiting

180
18–75

NCT04261907

Not applicable Jiangxi Qingfeng Pharmaceutical Co. Ltd. ● Lopinavir with ritonavir tablets combined with
xiyanping injection
● Lopinavir with ritonavir treatment

Not yet
recruiting

80
18–100

NCT04295551

1, 2 University of Aarhus ● Camostat mesilate Not yet
recruiting

180
18–110

NCT04321096
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into host cells. However, no approved mRNA vaccines are yet
available.
An mRNA vaccine by Moderna (NCT04283461) and a vector-based

vaccine (using adenovirus type 5) by CanSino Biologicals
(NCT04341389) have been developed, which are passing phase I and
II clinical trials to confirm their safety and efficiency. Furthermore, re-
combinant S-protein based vaccines conjugated with conventional ad-
juvants (AS03 and MF59) have advantages such as enhanced
immunogenicity, requiring lower doses, and being applicable in large
populations. An efficient vaccine should be able to induce adequate spe-
cific antibodies to neutralize the SARS-CoV-2 viruses. As we have
learned from studies on the SARS and MERS, vaccines may be poten-
tially associated with unwanted immune enhancement effects. There-
fore, enough care should be taken before releasing any COVID-19
vaccine.

We describe below the different platforms of SARS-CoV-2 vaccines
based on the WHO landscape and clinical trials.

Interestingly, children appear to suffer from amuch less severe form
of the SARS-CoV-2 infection. Thismay be related to differences in innate
immunity evident at a young age, as applies to the use of vaccines such
as Bacille Calmette-Guerin (BCG) [104,105].

Various strategies have been tried by researches for this purpose.
Using alive attenuated virus is one of the options. Alongside this, there
are ongoing efforts to develop viral-vector and recombinant protein-
based vaccines to deliver viral antigens such as spike (S) protein to
antigen-presenting cells. Nucleic acid-based vaccines (viral DNA and
28
mRNA) have also been tried. Because the viral S protein is critical for
the entrance of the virus into target cells, this protein has been under at-
tention as an optimal candidate for developing vaccines. To be efficient,
a vaccine must be able to trigger the production of adequate anti-virus
antibodies. Simultaneously, it should possess a low risk of complica-
tions, such as unwanted immune reactions. One potentially threatening
phenomenon to be avoided is known as antibody-dependent enhance-
ment (ADE), which can result in exaggerated uptake of viral particles.
Furthermore, unprotective Th2 responses,which lead to allergic inflam-
matory reactions, should be kept minimal following vaccination.

6.1. Whole-virus vaccines

A whole-virus vaccine is based on a physically or chemically
inactivated virion, which is the entity that causes the entire disease.
The inactivatedwhole-virus approach offers several advantages, includ-
ing a good safety profile, cost-effective production, high productivity,
and no need for genetic modification [95,106]. An inactivated SARS-
CoV vaccine is probably the easiest and most practical for developing a
coronavirus vaccine by analogywith available vaccines, including rabies
and polio vaccines [107]. Whole vaccines may be more reactogenic to
confer protective immunity against coronaviruses [108]. One investiga-
tion used an inactivated coronavirus (performed with formaldehyde
after preparation in Vero cells) that was intramuscularly injected into
rhesus monkeys to promote protective immunity. After three weeks,
this vaccine preferentially induced Th1-type inflammatory responses,
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Fig. 6.Mechanisms of various drugs proposed to combat SARS-CoV-2 infection. Chloroquine inhibits the attachment of the virus to its receptor ACE2. Nafamostat and Camostat interfere
with membrane fusion, which employs TMPRSS2 on the cell surface. Imatinib suppresses endocytosis and hydroxychloroquine induces degeneration of virus-containing endosomes.
Remdesivir, Favipiravir, and Cyclosporin A interfere with the replication of the viral genome. Other drugs (Lopinavir, Ritonavir, and Disulfiram) suppress the formation of peptides
needed for assembly of virus replicatory machine (RdRp) by deactivating viral proteases (3CLpro and PLpro). Finally, Sarilumab and Tocilizumab mitigate hyper-inflammatory
responses by suppressing IL-6 interaction with its receptor and inhibiting signaling pathways.
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in addition to other beneficial cellular immune responses [107]. More-
over, a live-attenuated virus vaccine is generated by a variety of tech-
niques to significantly reduce the virulence of a virus while retaining
its immunogenicity. Compared with inactivated whole-virus vaccines,
live-attenuated virus vaccines can stimulate an adaptive long-term im-
mune response. However, higher immunogenicity is usually associated
with a lower safety profile [109,110]. So far, one inactivated virus and
five live attenuated whole-virus vaccines, prepared by different devel-
opers, have progressed into human pre-clinical trials. Potential whole-
virus vaccine candidates against SAR-CoV-2 are summarized in Table 4.
29
6.2. Viral vector-based vaccines

Multiple vector-based vaccines are in clinical and preclinical trials
for developing potential immunity against SARS-CoV-2, and these vac-
cines could likely be an important tool to control the new coronavirus.
These vectors are regarded as powerful tools for vaccination and for
gene therapy. In general, their advantages include highly specific deliv-
ery of genes to target cells, high-efficiency gene transduction, and in-
duction of robust cellular and humoral responses [111]. Replicating
and non-replicating forms of viral vectors that are available include



Table 3
Vaccine candidates in clinical trials against SARS-CoV-2.

Phase Responsible party Interventions Recruitment
status

Population
(enrollment
and age)

NCT number

1 Shenzhen Geno-Immune Medical Institute ● Pathogen-specific aAPC Recruiting 100
6 months to 80 years

NCT04299724

3 Murdoch Childrens Research Institute ● BCG vaccine Recruiting 4170
≤18

NCT04327206

1, 2 University of Oxford ● ChAdOx1 nCoV-19 Recruiting 510
18–55

NCT04324606

1 CanSino Biologics Inc. ● Recombinant novel coronavirus vaccine
(adenovirus type 5 vector)

Active, not
recruiting

108
18–60

NCT04313127

1 National Institute of Allergy and Infectious
Diseases (NIAID)

● mRNA-1273 Recruiting 45
18–55

NCT04283461

1, 2 Shenzhen Geno-Immune Medical Institute ● Injection and infusion of LV-SMENP-DC vaccine
and antigen-specific CTLs

Recruiting 100
6 months to 80 years

NCT04276896

1, 2 Shenzhen Geno-Immune Medical Institute ● Injection and infusion of LV-SMENP-DC vaccine and
antigen-specific CTLs

Recruiting 100
6 months to 80 years

NCT04276896
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adenoviruses and poxviruses [112]. Zhao et al. found that immunization
with a nucleocapsid (N) protein-based vaccine protectedmice from this
coronavirus through activation of CD4+ T IFN-γ- and cell-dependent
immunity [113]. Furthermore, the modified viral vector Ankara was
modified to encode theMERS-CoV Sprotein, and induced CD8+T cell re-
sponses and neutralizing antibodies in pre-clinical studies [114]. The
third type of viral vector-based vaccines is adenoviruses, and immuni-
zation of mice with a vector expressing S/N proteins led to the produc-
tion of antibodies [115]. In addition, both Ad5- and Ad41-MERS-CoV S
vaccines were shown to induce immune responses in mice [116]. By
profiting from lessons learned in previous coronavirus vaccines, vaccine
scientists have beenworking on developing SAR-CoV-2 vaccines within
the shortest time frame possible [117]. A number of viral vector-based
vaccines have progressed into human pre-clinical trials. The viral
vector-based platformsused in SARS-CoV-2 vaccine studies are summa-
rized in Table 4.

6.3. Nucleic acid vaccines

Several nucleic acid-based vaccines for coronavirus have been re-
ported to date. Nucleic acid-based vaccines combine the positive attri-
butes of both subunit vaccines and live-attenuated vaccines, and there
has been substantial research into this type of vaccine for diverse dis-
eases, over the last three decades [118]. These vaccines involve direct
immunization through the delivery of DNA or RNA sequences encoding
the antigen, and have as their main advantages, their purity and the
simplicity by which this type of vaccine can be produced [119,120]. In
addition, nucleic acid-based vaccines can be manufactured rapidly on
a large scale and are relatively low-cost [95,121]. Furthermore, the use
of these vaccines that combine the benefits of subunit and inactivated
Table 4
Recently whole-virus-based vaccine and viral vector-based vaccine candidates against SARS-C

Developer Platform

Sinovac Inactivated
Codagenix/Serum Institute of India Live attenuated virus
Codagenix/Serum Institute of India Live attenuated virus
GeoVax/BravoVax Non-replicating viral vector
Janssen Pharmaceutical Companies Non-replicating viral vector
University of Oxford Non-replicating viral vector
Altimmune Non-replicating viral vector
Greffex Non-replicating viral vector
Vaxart Non-replicating viral vector
CanSino Biologics Non-replicating viral vector
Zydus Cadila Replicating viral vector
Institute Pasteur Replicating viral vector
Tonix Pharma/Southern Research Replicating viral vector
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vaccines has been a critical advance [122]. The enhanced humoral and
cellular immune response against SARS-CoV were elicited by a DNA-
based vaccine encoding S protein, or the S1 fragment. This vaccine in-
duced T-cell responses, as well as neutralizing antibodies [115]. Simi-
larly, a nucleic acid-based vaccine encoding the S protein or the
shorter S1 fragment, was developed for MERS-CoV. pVax1™ is a nucleic
acid-based vaccine against MERS-CoV, that encodes the S protein plus
an IgE leader sequence and a codon to promote expression and mRNA
export [123]. Another nucleic acid-based vaccine encoding a full-
length S protein against MERS-CoV strain England1, used intramuscular
administration and induced neutralizing antibodies in rhesus monkeys
[124]. Currently, the safety and immunogenicity of coronavirus nucleic
acid-based vaccines are being evaluated in clinical trials. There are a
few nucleic acid-based vaccines in the pipeline against SARS-CoV-2 in
pre-clinical and clinical trials. For example, an mRNA-based vaccine
against SARS-CoV-2 (INO-4800-DNA) was prepared by the US National
Institute of Allergy and Infectious Diseases (NIAID) and is currently in
phase 1 clinical trials. This vaccine will soon be ready for human testing
in additional clinical trials. In addition, it was reported that Stermirna
Therapeutics is working to develop an mRNA-based vaccine for
human studies [125]. Some potential nucleic acid vaccine candidates
against SAR-CoV-2 are summarized in Table 5.

6.4. Subunit vaccines

These vaccines are produced using recombinant or synthetic virus
subunits. The viral nucleocapsid (N), spike (S) or envelope
(E) subunits are obtained through proteolysis or chemical hydrolysis
to prepare the subunit vaccines. By using one viral protein subunit,
this type of vaccine activates an immune response without inducing
oV-2.

Type of candidate vaccine Current stage

Formaldehyde inactivated with alum Pre-clinical
Deoptimized live attenuated vaccines Pre-clinical
Deoptimized live attenuated vaccines Pre-clinical
MVA encoded VLP Pre-clinical
Ad26 (alone or with MVA boost) Pre-clinical
ChAdOx1 Pre-clinical
Adenovirus-based NasoVAX Pre-clinical
Ad5 S (GREVAX™ platform) Pre-clinical
Oral vaccine platform Pre-clinical
Viral-vectored based Pre-clinical
Measles vector Pre-clinical
Measles vector Pre-clinical
Horse-pox vector Pre-clinical

ctgov:NCT04288102
ctgov:NCT04252118
ctgov:NCT04293692
ctgov:NCT04302519
ctgov:NCT04269525
ctgov:NCT04299152
ctgov:NCT04276987


Table 5
Recently nucleic acid vaccine candidates against SARS-CoV-2.

Developer Platform Type of candidate vaccine Current stage

Inovio Pharmaceuticals DNA DNA plasmid vaccine electroporation device Pre-clinical
Takis/Applied DNA Sciences/Evvivax DNA DNA Pre-clinical
Zydus Cadila DNA DNA plasmid vaccine Pre-clinical
Fudan University/Shanghai JiaoTong University/RNACure Biopharma RNA LNP-encapsulated mRNA cocktail encoding VLP Pre-clinical
Fudan University/Shanghai JiaoTong University/RNACure Biopharma RNA LNP-encapsulated mRNA encoding RBD Pre-clinical
China CDC/Tongji University/Stermina RNA mRNA Pre-clinical
Moderna/NIAID RNA LNP-encapsulated mRNA Phase 1
Arcturus/Duke-NUS RNA mRNA Pre-clinical
Imperial College London RNA saRNA Pre-clinical
Curevac RNA mRNA Pre-clinical
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the production of antibodies against unrelated antigens [110]. Although
these vaccine platforms have the highest safety profile among all other
platforms, they have been considered to beweakly immunogenic [126].

Subunit vaccines are of great interest in the treatment and preven-
tion of coronavirus diseases. Several subunit vaccines have been intro-
duced against coronavirus targeting the S glycoprotein. Of note, the
full-length S protein or its fragments, including RBD, NTD, S1 subunit,
and S2 subunit, can be used as immunogens for the development of
these vaccines against coronaviruses [127]. For example, a polypeptide
of the SARS-CoV S glycoprotein has been successfully expressed in
baculovirus vectors [128]. The recombinant proteinwas purified and in-
fused intomice using Ribi or saponin as an adjuvant, and induced higher
antibody titers and better protection against SARS-CoV [129]. Modified
Ankara virus vaccines were developed to express the full length S pro-
tein [130]. RBD in the S1 subunit comprises the critical neutralizing frag-
ment of MERS-CoV S protein without the non-neutralizing
immunodominant domain. This type of subunit vaccine is limited to
producing RBD-dependent immune responses, and these vaccines are
unable to induce harmful nonspecific antibodies [95,124,131]. A se-
quence engineered RBD-based vaccine allowed the production of
three-fold greater neutralizing antibody titers [132,133]. The N protein
may provide an ideal target for the development of vaccines against co-
ronavirus. Of note, the N protein cannot elicit antibodies to block the in-
teraction of the virus with host cells and subsequently neutralize viral
infection. Nevertheless, it may still induce cellular immune responses
and specific antibodies [134,135]. M protein is a major structural pro-
tein, which could serve as a potential target for the development of sub-
unit vaccines. In fact, SARS-CoV M subunits have high immunogenicity
and can trigger high-titer antibody responses [136]. Several subunit
vaccines against SAR-CoV-2 have progressed into human pre-clinical
trials. Potential subunit vaccine candidates against SAR-CoV-2 are sum-
marized in Table 6.

7. Passive immunotherapy for SARS-CoV-2

Our current knowledge of specific immune reactions against the
novel SARS-CoV-2 is mainly based on previous findings with similar
Table 6
Recent subunit-based vaccine candidates against SARS-CoV-2.

Developer Platform

ExpreS2ion Protein subunit
WRAIR/USAMRIID Protein subunit
Clover Biopharmaceuticals Inc./GSK Protein subunit
Vaxil Bio Protein subunit
AJ Vaccines Protein subunit
Generex/EpiVax Protein subunit
EpiVax/Univ. of Georgia Protein subunit
Sanofi Pasteur Protein subunit
Novavax Protein subunit
Heat Biologics/Univ. Of Miami Protein subunit
University of Queensland/GSK Protein subunit
Baylor College of Medicine Protein subunit
iBio/CC-Pharming Protein subunit
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viruses like MERS-CoV [101]. In this regard, it is assumed that pattern
recognition receptors (PRRs) such as Toll-like receptors (TLRs) and
RIG-I-like receptors (RLRs) will play a central role in sensing viral RNA
or its replication intermediates. Within the alveolar epithelium,
endosomal single-stranded (ss)RNA, TLR7/8, and the cytosolic double-
stranded (ds) RNA sensor; RIG-I/MDA-5, seem to be first PRRs that de-
tect the virus particles. After recognition of the virus by these sensors,
MyD88 and MAVS adaptor proteins are activated, which subsequently
induce IRF3/7 and NF-κB transcription factors. As a result, the expres-
sion of type I interferons (IFN-α and IFN-β) and proinflammatory cyto-
kines (e.g., IL-6 and TNF-α) is increased [137]. On the other hand, the
secretion of the inflammatory mediator IL-1β, and the induction of
pyroptosis (an inflammatory form of cell death) mediated by the
NLRP3 inflammasome, aggravate the inflammatory process. Indeed,
the E and 3a proteins derived from the SARS-CoV-2 are involved in
the induction of the NLRP3 inflammasome [138]. Our understanding
of the recognition mechanisms of the SARS-CoV-2 is still incomplete
(Fig. 8).

Immunotherapy potentially overcomes one problem of SARS-CoV-2
treatment. Various host factors in the human immune system are re-
sponsible for SARS-CoV-2 progression or regression. Immunotherapy
is defined as a therapeutic intervention that targets or manipulates
these immune system factors [139]. Numerous investigations have
shown that increased amounts of inflammatory factors are associated
with pulmonary inflammation and subsequent lung damage, first in
SARS-CoV patients [140], next in MERS-CoV infections, and most re-
cently in SARS-CoV-2. These factors include MIP-1A, G-CSF TNFα,
MCP-1, IL-7, IL-10, IL-2, and IP-10 [141]. This so-called “cytokine
storm” can initiate inflammation-induced lung injury and cause viral
sepsis, which leads to acute respiratory distress syndrome (ARDS), re-
spiratory failure, pneumonitis, organ failure, and potentially death
[117]. Furthermore, severe cases of SARS-CoV-2 tend to have lower lym-
phocyte counts, higher leukocyte counts, and an altered neutrophil-
lymphocyte-ratio, as well as smaller percentages of eosinophils, baso-
phils, and monocytes. In contrast, the number of both helper T cells
and suppressor T cells is significantly decreased in severe cases. How-
ever, the percentage of memory helper T cells is reduced, and that of
Type of candidate vaccine Current stage

Drosophila S2 insect cell expression system VLPs Pre-clinical
S protein Pre-clinical
S-Trimer Pre-clinical
Peptide Pre-clinical
S protein Pre-clinical
Ii-Key peptide Pre-clinical
S protein Pre-clinical
S protein (baculovirus production) Pre-clinical
Full length S trimers/nanoparticle with Matrix M Pre-clinical
gp-96 backbone Pre-clinical
S protein clamp Pre-clinical
S1 or RBD protein Pre-clinical
Subunit protein, plant produced Pre-clinical



Fig. 7. Attempts for developing efficient vaccines to cope with the infection of SARS-CoV-2.
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naive helper T cells is increased in severe patients. These patients also
have lower levels of regulatory T cells andmore noticeable lung damage
in acute cases [142]. These immune responses could be modified by
drugs, cytokines, monoclonal antibodies, antisera, vitamins and min-
erals, transplantation, and immunization.

It may be possible to treat SARS-CoV-2 patients using convalescent
plasma obtained from recovered patients, and this approach is being
considered for several emerging virus outbreaks. A meta-analysis of
studies using convalescent plasma for managing severe acute respira-
tory infections suggests that the appropriate use of these products re-
sults in reduced mortality risk [143]. Convalescent plasma was used
for treating SARS-CoV patients with potentially promising results. How-
ever, in the absence of suitable clinical trials, the results remain contro-
versial [144]. In addition, Zhao et al. published results showed the
therapeutic and prophylactic efficacy of camel serum-containing
MERS-CoV neutralizing antibodies in reducing weight loss, viral load,
and improving pulmonary function in MERS patients [145]. Recently,
in a preliminary non-controlled case series of 5 severe patients, the ad-
ministration of convalescent plasma collected from patients who had
recovered from SARS-CoV-2 containing antibodies was followed by an
improved clinical outcome [146].

Humoral immune responses to infection, especially the rapid pro-
duction of neutralizing antibodies, have a protective effect against infec-
tion and prevent reinfection. Epitopes of T and B cells were extensively
mapped for the main SARS-CoV proteins, N, E, S, and M protein [147].
Furthermore, previous infection with non-SARS-CoV viruses may have
caused many people (including children) to already have some levels
of protective antibodies against the novel virus [148,149]. For example,
Shanmugaraj et al. summarized the potential neutralizing antibody-
based therapeutic strategies for SARS-CoV-2 including the neutralizing
antibodies against SARS-CoV (80R, CR3014, CR3022, F26G18, F26G19,
m396, 1A9, 201, 68 and S230) and MERS-CoV (MERS-4, MERS-27,
4C2, m336, G4, D12, JC57-14, MERS-GD27, MERS-GD33, LCA60, MCA1,
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CDC2-C2, 7D10, and G2) [150]. A list of possible therapies for SARS-
CoV-2 based on neutralizing antibodies, convalescent plasma, and
other immunotherapies that have been tested in ongoing and com-
pleted human clinical trials, is provided in Table 7.

Exaggerated immune and inflammatory responses are considered to
be responsible for the severity of symptoms and a poor clinical outcome
of coronavirus infections. Interferons have shown to play a crucial role
in the defense against coronavirus diseases. A less efficient interferon-
mediated immune response can explain the increased mortality rates
in the elderly. Earlier induction of interferons in children and their less
developed immune system could be the reasons behind their zero or
near to zero fatality rate. Administration of interferon-inducing agents
could reduce the mortality of SARS at a very early stage of the disease.
Adding interferon-γ to an interferon-I, as a synergistic combination
therapy, mightmaximize the benefits [151]. There are currently several
interferons employed in clinical settings that could provide a therapy for
SARS-CoV-2. Furthermore, nitric oxide (NO) is a selective pulmonary
vasodilator and holds promise as an anti-inflammatory agent [152].
NO is a critical cellular signaling molecule synthesized by nitric oxide
synthase (NOS). In the pulmonary airways, NOS is present in a variety
of cells, including neurons, macrophages, airway epithelial cells, and
vascular endothelial cells. NOS activity is critical to mediate smooth
muscle relaxation, neurotransmission, mucin secretion, and is also a
well-known mediator in the cellular response to microbial infection
[153]. Various inflammatory factors, such as cytokines and LPS, can in-
duce high and sustained NO production. Inducible nitric oxide synthase
activity can result in anti-inflammatory or pro-inflammatory responses,
cytoprotection, or cytotoxicity, depending on the circumstances [154].
Inhaled NO results in a transient improvement in systemic oxygenation.
There are no published data from trials that describe the use of pulmo-
nary vasodilators in COVID-19 patients. However, a previous review
showedARDS treatment by inhaledNOhadno significant effect onmor-
tality and increased the likelihood of acute kidney injury [155]. Several



Fig. 8. Possible immune reactions induced by the SARS-CoV-2. The predictions are based on studies of SARS-CoV and MERS-CoV viruses. Non-specific recognition by innate immune
receptors (e.g., RNA sensors, TLR7/8, RIG-I/MDA-5, and NLRP3 inflammasome) seems to be the first effect of the virus within alveolar epithelial cells. The main transcription factors in-
volved in the induction of inflammatory mediators (e.g., IL-1β, IL-6, and type I IFNs) are NF-κB and IRF3/7. The antiviral activity of type I IFNs is augmented by many ISGs such as
RNAse L. Cell-based immunity is based on macrophages, B cells, and T cells, which directly eliminate viral particles. However, hyper-inflammation resulting from an unbalanced action
of the immune system could exacerbate COVID-19 outcomes.
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clinical trials are underway to determine whether inhaled NO can im-
prove oxygenation in SARS-CoV-2 patients (Table 6). In addition, it
was proposed that treatment with statins, a multifunctional class of
drugswith several potential applications, could inhibitMyD88 signaling
and NF-κB response. This could inhibit inflammatory responses that
would lead to ameliorated disease progression in COVID19 patients.
There is evidence that down-regulation of NF-κB signaling could in-
crease survival in mouse models of SARS-CoV infection [156,157]. A
number of immunotherapies that have been proposed as a treatment
for SARS-CoV-2 are currently undergoing clinical trials (Table 6).

Melatonin is a neurohormone produced by the pineal gland. This
molecule has many beneficial activities, including immunomodulatory,
anti-inflammatory, antioxidant properties within the body [158,159].
Because of these functions, some researchers have proposed this agent
could be a therapeutic option for treating viral infections and respiratory
diseases, including ARDS and acute lung injury (ALI) [160]. The mecha-
nisms of action of melatonin (which has an excellent safety profile) in-
clude, at least in part, reducing anxiety, improving sleep, and
modulating vascular permeability, which may be useful in improving
prognosis of SARS-CoV-2 patients [161].

8. Cell-based therapies

ARDS is amedical condition characterized by severe uncontrolled in-
flammation in the lungs, which causes disturbances in the surfactant
and the pulmonary capillary endothelial cells, resulting in fluid accumu-
lation in the distal parts of the lung [162]. The beneficial effects of using
mesenchymal stem cells (MSCs), including their immunomodulatory,
antimicrobial, and antiapoptotic properties, have been reported in pre-
vious studies. In particular, the immunomodulatory functions of these
33
cells are among their most relevant properties. It has been shown that
although histocompatibility complex (MHC) class I molecules are
expressed on humanMSCs, they lack class II MHCmolecules, rendering
these cells hypoimmunogenic or “immune-privileged” properties.
Through this property, MSCs can escape immune recognition by T
helper (CD4+) lymphocytes and immune destruction by natural killer
cells. MSCs can regulate the activity of both the innate and adaptive im-
mune responses through either cell-cell interaction, secretion of trophic
factors, or activation of regulatory T cells. In animal models and in vitro
studies, MSCs have been shown to promote non-specific immune reac-
tions (i.e., innate immunity) through either directly killing bacteria or
engaging multiple antimicrobial mediators such as LL-37, lipocalin-2,
and beta-defensin-2 via the toll-like receptor 4 signaling pathway
[163]. MSCs are also capable of fighting microbial agents by activating
tryptophan metabolism by increasing indoleamine 2,3-dioxygenase ac-
tivity [164]. They are known to support the survival and function of neu-
trophils andmacrophages. This activity is mediated by transforming the
macrophage phenotype to the anti-inflammatory (type 2) from the pro-
inflammatory (type 1). MSCs mediate many processes, including secre-
tion of growth factors that target vascular cells, hepatocytes, neurons,
and other cells, altering the balance of anti/proapoptotic genes, chang-
ing mitochondrial biology, and microvesicle transfer [165]. MSCs can
trigger antiapoptotic proteins both in vivo (animal models of renal, ce-
rebral, and cardiac injuries) and also in vitro. On the other hand, MSCs
can promote autophagy, another form of programmed cell death,
through the phosphoinositide 3-kinase/protein kinase B signaling path-
way. This function, along with another phenomenon known as
mitophagy (i.e., selective degradation of mitochondria), has been
shown to be important for MSCs to carry out their protective role
against oxidative damage to the lungs. Xu et al. reported the



Table 7
Passive immunotherapy for SARS-CoV-2 in clinical trials.

Phase Responsible party Interventions Recruitment
status

Population
(enrollment
and age)

NCT number

Early 1 Tongji Hospital ● Recombinant human interferon α1β Not yet
recruiting

328
≤18

NCT04293887

2 First Affiliated Hospital of Wenzhou Medical
University

● Thalidomide Not yet
recruiting

100
≤18

NCT04273529

Not
applicable

Tongji Hospital ● Tocilizumab
● Standard of care
Procedure: continuous renal replacement therapy

Recruiting 120
18–80

NCT04306705

2 First Affiliated Hospital of Fujian Medical
University

● Fingolimod Recruiting 30
≤18

NCT04280588

2, 3 Fasa University of Medical Sciences ● Levamisole pill with budesonide with formoterol
inhaler
● Lopinavir with ritonavir with hydroxychloroquine

Not yet
recruiting

30
18–100

NCT04331470

2 First Affiliated Hospital of Wenzhou Medical
University

● Thalidomide Not yet
recruiting

40
≤18

NCT04273581

2, 3 Qilu Hospital of Shandong University ● Bevacizumab injection Recruiting 20
≤18

NCT04275414

2, 3 Peking Union Medical College Hospital ● Methylprednisolone therapy
● Standard care

Recruiting 80
≤18

NCT04244591

3 Tongji Hospital ● Sildenafil citrate tablets Recruiting 10
≤18

NCT04304313

4 Tongji Hospital ● Methylprednisolone Recruiting 100
≤18

NCT04263402

Not
applicable

Beijing Chao Yang Hospital ● Methylprednisolone Recruiting 400
≤18

NCT04273321

– Hudson Medical ● Eculizumab Available –
≤18

NCT04288713

4 University Hospital, Ghent ● Usual care
● Anakinra
● Siltuximab
● Tocilizumab

Not yet
recruiting

342
18–80

NCT04330638

2 Southeast University, China ● PD-1 blocking antibody with standard treatment
● Thymosin with standard treatment
● Standard treatment

Not yet
recruiting

120
≤18

NCT04268537

Not
applicable

University of Palermo Dietary supplement: vitamin C Recruiting 500
All

NCT04323514

Not
applicable

Peking Union Medical College Hospital ● Intravenous immunoglobulin
● Standard care

Not yet
recruiting

80
≤18

NCT04261426

2 Assistance Publique - Hôpitaux de Paris ● Tocilizumab Not yet
recruiting

240
≤18

NCT04331808

Not
applicable

Shanghai Public Health Clinical Center ● Inactivated convalescent plasma Recruiting 15
All

NCT04292340

2 Xijing Hospital ● Nitric oxide gas Not yet
recruiting

104
≤18

NCT04290871

2 Massachusetts General Hospital ● Nitric oxide Not yet
recruiting

240
≤18

NCT04305457

Not
applicable

Foundation IRCCS San Matteo Hospital ● Hyperimmune plasma Active, not
recruiting

49
≤18

NCT04321421

2 Southeast University, China ● PD-1 blocking antibody with standard treatment
● Thymosin with standard treatment
● Standard treatment

Not yet
recruiting

120
≤18

NCT04268537

2, 3 Regeneron Pharmaceuticals ● Sarilumab Recruiting 400
≤18

NCT04315298

4 Negrin University Hospital ● Dexamethasone Not yet
recruiting

200
18

NCT04325061

2 Università Politecnica delle Marche ● Tofacitinib Not yet
recruiting

50
18–65

NCT04332042

3 Assistance Publique - Hôpitaux de Paris ● Discontinuation of RAS blocker therapy
● Continuation of RAS blocker therapy

Not yet
recruiting

554
≤18

NCT04329195

3 OncoImmune, Inc. ● CD24Fc Not yet
recruiting

230
≤18

NCT04317040

Not
applicable

University Health Network, Toronto ● Ruxolitinib Not yet
recruiting

64
≤12

NCT04331665

2 National and Kapodistrian University of Athens ● Colchicine
● Standard treatment

Not yet
recruiting

180
≤18

NCT04326790

3 Assistance Publique - Hôpitaux de Paris ● Usual practice with SYMBICORT RAPIHALER
● Usual practice

Not yet
recruiting

436
18–75

NCT04331054

Not
applicable

Wuhan Union Hospital ● Immunoglobulin of cured patients
● γ-Globulin

Not yet
recruiting

10
≤18

NCT04264858

3 Shanghai Jiao Tong University School of
Medicine

● Recombinant human interferon alpha-1b
● Thymosin alpha 1

Recruiting 2944
18–65

NCT04320238

3 Misr University for Science and Technology ●Dietary supplement: natural honey
● Standard care

Not yet
recruiting

1000
5–75

NCT04323345

1, 2 Chinese Academy of Sciences ● CAStem Recruiting 9 NCT04331613
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Table 7 (continued)

Phase Responsible party Interventions Recruitment
status

Population
(enrollment
and age)

NCT number

18–70
2 Sidney Kimmel Comprehensive Cancer Center at

Johns Hopkins
● Anti-SARS-CoV-2 plasma
● SARS-CoV-2 non-immune plasma

Not yet
recruiting

150
≤18

NCT04323800

2 Universidad del Rosario ● Plasma Not yet
recruiting

10
18–60

NCT04332380

3 Assistance Publique - Hôpitaux de Paris ● Naproxen
● Standard of care

Not yet
recruiting

584
≤18

NCT04325633

2, 3 Universidad del Rosario ● Plasma
● Hydroxychloroquine
● Azithromycin

Not yet
recruiting

80
18–60

NCT04332835

3 Estudios Clínicos Latino América ● Colchicine
● Local standard of care

Not yet
recruiting

2500
≤18

NCT04328480

Not
applicable

Mazandaran University of Medical Sciences ● Convalescent plasma Enrolling by
invitation

30
30–70

NCT04327349

2 Zhongnan Hospital ● Vitamin C
● Sterile water for injection

Recruiting 140
≤18

NCT04264533

3 Hospital Sirio-Libanes ● Dexamethasone Not yet
recruiting

290
≤18

NCT04327401

3 Hospital of Prato ● Baricitinib Recruiting 60
18–80

NCT04320277

Not
applicable

Jiangxi Qingfeng Pharmaceutical Co. Ltd. ● Xiyanping injection
● Lopinavir with ritonavir, alpha-interferon
nebulization

Not yet
recruiting

348
18–70

NCT04275388

2, 3 University of Trieste ● Methylprednisolone
● Standard care

Recruiting 104
18–80

NCT04323592

2 Mayo Clinic ● Convalescent plasma Not yet
recruiting

20
≤18

NCT04325672

2 Upinder Singh, Stanford University ● Peginterferon lambda-1a
● Standard of care treatment

Not yet
recruiting

120
18–64

NCT04331899

3 Montreal Heart Institute ● Colchicine Recruiting 6000
≤40

NCT04322682

2 Lucio Manenti, Azienda
Ospedaliero-Universitaria di Parma

● Colchicine Not yet
recruiting

100
18–85

NCT04322565

2 National Cancer Institute, Naples ● Tocilizumab injection Recruiting 330
All

NCT04317092

3 Hoffmann-La Roche ● Tocilizumab (TCZ) Not yet
recruiting

330
≤18

NCT04320615

2 Università Politecnica delle Marche ● Tocilizumab Not yet
recruiting

30
18–90

NCT04315480

1 Hospital San Jose Tec de Monterrey ● Convalescent plasma Not yet
recruiting

20
≤18

NCT04333355

2 Massachusetts General Hospital ● Nitric oxide gas Recruiting 220
18–99

NCT04306393

Not
applicable

Beijing 302 Hospital ● Conventional medicines and traditional Chinese
medicines granules
● Conventional medicines and lopinavir with
ritonavir

Not Applicable 150
14–80

NCT04251871

2 Frederiksberg University Hospital ● RoActemra iv
● RoActemra sc
● Kevzara sc
● Standard medical care

Not yet
recruiting

200
≤18

NCT04322773

2, 3 Assistance Publique - Hôpitaux de Paris ● Sarilumab Recruiting 240
≤18

NCT04324073

2 University of British Columbia ● Nitric oxide 0.5% with nitrogen 99.5% gas for
inhalation

Active, not
recruiting

20
≤14

NCT03331445

3 Université de Sherbrooke ● Vitamin C
● Control

Recruiting 800
≤18

NCT03680274

2, 3 Swedish Orphan Biovitrum ● Emapalumab
● Anakinra

Not yet
recruiting

54
30–79

NCT04324021
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pathological characteristics of a biopsy sample obtained at autopsy from
a SARS-CoV-2 patient with severe ARDS [166]. Unfortunately, age-
related loss of the capacity of the lung tissue to self-repair may explain
the progressive age-related mortality reported in older SARS patients
with ARDS [167,168]. No therapeutic drugs have yet been approved
for the treatment of ARDS [169]. Hence, current treatment strategies
are mainly based on supportive care, such as prone positioning, conser-
vative fluid replacement, and lung-protective ventilation [170]. There-
fore, the utilization of stem cells in experimental protocols may be
considered for coronavirus diseases, including SARS, MERS, and SARS-
CoV-2 in human medicine.
35
Cell-based therapies, especially stem cells, could have both curative
and preventive potential in COVID19. Cell-based therapiesmay be an in-
novative treatment for ARDS through several pathways that may aug-
ment recovery from lung injury and reduce the magnitude of lung
damage [171]. Several types of stem cells have been considered for clin-
ical use, such as cord blood mesenchymal stem cells (CBMSCs) [172],
umbilical cord mesenchymal stem cells (HUCMSCs) [172,173], umbili-
cal cord Wharton's Jelly derived-mesenchymal stem cells
(UCWJDMSCs) [174], umbilical cord-derived mesenchymal stem cells
(UCMSCs) [175], umbilical cord blood mononuclear cells (UCBMCs)
[176], and human menstrual blood-derived stem cells (HMBSCs)
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[177]. MSC-based treatment could help ARDS through inhibition of col-
lagen accumulation, reducing alveolar cell apoptosis, and preventing
the collapse of lung airways. Some of the most attractive properties of
MSCs are the ability to modulate immune responses, antimicrobial
properties, anti-apoptotic effects, and robust regenerative potential
(Fig. 9). It remains highly controversial as to which of several MSC me-
diators are involved in the therapeutic response [178]. MSC secreted
factor candidates for ARDS treatment, include angiopoietin-1 [179], he-
patocyte growth factor (HGF) [180], keratinocyte growth factor (KGF)
[181], insulin growth factor (IGF) [182], interleukin 1 receptor antago-
nist (IL-1RN) [183], interleukin 10 (IL-10) [184], interleukin 6 (IL-6),
tumor necrosis factor-stimulated gene 6 (TSG-6) [185], lipoxin A4
[186], prostaglandin E2 (PGE2) [175], lipocalin-2 [187], β-defensin-2
[188], stanniocalcin-1a [189] and extracellular vesicles [190]. Recent
studies have suggested that there is a direct correlation between the
regulation of these bioactive factors after engraftment of MSCs in the
lungs after ARDS [178]. In summary, a large body of preclinical and clin-
ical evidence is accumulating on the use of MSCs for the treatment of
ARDS.

Stem cell therapy, especially MSCs, has been shown to reduce pul-
monary inflammation and affect pulmonary tissue regeneration. There-
fore, it is investigated in ARDS patients. Wilson et al. found that the
administration of allogeneic MSCs to ARDS patients resulted in no pre-
specified adverse events, including ventricular tachycardia, hypoxemia,
and cardiac arrhythmia [191]. Recently, results from Chen et al. sug-
gested that MSCs could notably improve the survival rate of influenza
virus subtype H7N9-induced ARDS, which provides a theoretical basis
for the treatment of ARDS patients [192]. Of note, coronavirus-induced
ARDS shares similar complications and corresponding organ failure to
influenza H7N9, so MSCs therapy could be a possible alternative for
treating COVID19 patients. Clinical and pre-clinical trials conducted in
China have demonstrated that MSCs are naturally resistant to SARS-
CoV-2 infection, and transplantation of these cells could improve the
outcome in SARS-CoV-2 patients. For instance, Leng et al. investigated
whether MSC transplantation affected the outcome of SARS-CoV-2 pa-
tients in Beijing Youan Hospital, China. The results showed that MSC
therapy could remarkably improve the outcome of SARS-CoV-2 patients
without any adverse events (Fig. 10). After MSC therapy, the C-reactive
protein (CRP) levels decreased, the peripheral blood lymphocytes were
increased, and the over-activated cytokine-secreting immune cells
CXCR3+ CD8+ T cells and CXCR3+ NK cells CXCR3+ CD4+ T cells disap-
peared within one week. Moreover, the level of IL-10 increased, while
plasma inflammatory factor TNF-α was significantly decreased com-
pared to the control group. Furthermore, MSCs do not express TMPRSS2
and ACE2, explaining whyMSCs are resistant to infection by SARS-CoV-
2 [193]. Although various clinical trials have been commenced to test
the effects of MSCs in severe SARS-CoV-2 patients, convincing positive
results have yet to be reported. The upcoming clinical trials to evaluate
the safety and effectiveness of MSCs for the treatment of SARS-CoV-2
patients are summarized in Table 8.

9. The emergence of nanomedicine as a new therapeutic strategy in
SARS-CoV-2 treatment

Treatment of pulmonary infectious diseases using nanoparticles has
recently attracted significant attention [194,195]. Small molecule drugs
have disadvantages such as lack of targeting to lungs, difficulties with
stability during storage and administration, and considerable expense
[196,197]. Upon reaching the lungs, drugs may be enzymatically de-
graded by pulmonary enzymes. In addition, the pulmonary airways
are a mucus-covered epithelial bed, which can act as a barrier
preventing the penetration of drugs into the lungs [198]. However, ther-
apeutic nanoparticles may act as an alternative delivery platform to the
lungs, depending on physiological parameters (respiratory rate and
lung volume) and the pathophysiological state (disease nature). Consid-
ering the particle size, the target tissue, and respiratory rate, various
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mechanisms can be employed to deliver therapeutic agents into the
lungs. In the pulmonary alveoli, the clearance rate of particles is mainly
determined by the size [199]. Furthermore, vaccines must be equipped
with efficient molecules (i.e., new generation composite vaccines) to
potentiate their immunogenic and adjuvant activities [200]. To address
someof these issues, nano-delivery platforms could provide a viable op-
tion as they are designed to allow protection against biological degrada-
tion, better stability, and higher efficiency (synergistic effects)
[201,202], to improve the effectiveness of therapeutic agents [203].
Therefore, nanoparticles (NPs) are being investigated as carriers for
targeting drugs to treat a variety of pulmonary infectious diseases.

To develop effective vaccines for coronavirus diseases (in particular
the novel COVID-19), we can use NPs as targeted carriers. Furthermore,
NPs have the potential to be employed to develop therapeutic and diag-
nostic (i.e., biosensor) systems. Recent global pandemics caused by
coronaviruses (SARS-CoV, MERS-CoV, and now COVID-19) have
underlined the necessity of rapidly developing effective vaccines.
Using a novel procedure involving protein-protein micellar NPs,
Coleman et al. produced an adjuvant-conjugated vaccine against
SARS-CoV S and MERS-CoV S proteins. These researchers used first cul-
tured Baculovirus insect cells to produce the complete S protein, which
was then self-assembled into NPs. For potentiating the production of
neutralizing antibodies by immune cells, they used adjuvants (alumi-
num hydroxide (alum) or Matrix M1) [204]. Anti-MERS-CoV immuno-
globulins (recognizing MERS-CoV S protein) were detected in the
mice treated with MERS-CoV S NPs. The immune response was aug-
mented by using the Matrix-M1 adjuvant triggering the high produc-
tion of anti-S neutralizing antibody conferring immune protection
against MERS-CoV infection in mice [205]. Jung et al. also produced a
NP based vaccine with the MERS-CoV S protein gene (Ad5/MERS) and
MERS S protein, using a heterologous prime-boost immunization strat-
egy. They used a recombinant adenovirus serotype 5 to conjugate the
antigens to the NPs. The vaccines were proved to be able to activate
Th1/Th2 lymphocytes in an appropriate ratio [206]. In another study,
Roh et al. used a combination of SARS-CoV N protein inhibitors and
NP-based RNA oligonucleotides to develop a vaccine against the virus.
By applying RNA oligonucleotide conjugated to QDs on a biochip, they
showed that the SARS-CoV N protein was effectively suppressed by
(−)-catechin gallate and (−)-gallocatechin gallate through a dose-
dependent attenuation of its binding affinity [207].

Biosensors are used to detect and quantify biological responses and
are now widely used in medical diagnostic procedures as point-of-
care instruments [208,209]. Biosensor-based systems are effective, sim-
ple, reliable, and relatively inexpensive platforms that can be used in
clinical settings. Using these systems, the sensitivity and reproducibility
of clinical analysis can be maximized [210,211]. Nanobiosensors were
first applied to detect antibodymimicking proteins (AMPs) by Ishikawa
et al. who configured In2O3 nanowire based-biosensors with an antimi-
crobial peptide (fibronectin, Fn). Using bovine serum albumin (44 μM)
as the control, this system was able to detect sub-nanomolar levels of
SARS-CoV nucleocapsid (N) protein [212]. In addition, point-of-care
fluorescent and colorimetric systems have been designed to detect
DNA and RNA molecules, especially in less equipped laboratories. In
this regard, MERS-CoV DNA was successfully detected using a colori-
metric assay (AgNPs were served as a colorimetric agent). In this
assay, the viral DNAwas detected based on acpcPNA-induced NP aggre-
gation, which was highly sensitive, and did not bind non-
complementary nucleic acids (either single, two, or full-length mis-
match) [213]. Moreover, Kim et al. developed a colorimetric-based
method which was able to detect MERS-CoV DNA (length of 30 bp) as
low as 1 pmol/μL using self-complementary double-stranded DNA
(dsDNA) shielded with gold NPs [214]. Thesemedical diagnostic strate-
gies could provide cheap and disposable alternatives to detect and
screen for the presence of coronaviruses.

Because NPs-based vaccines can effectively trigger the humoral im-
mune response and act as a versatile antigen-presenting system, they



Fig. 9. The therapeutic effects of MSCs and their secreted factors for SARS-CoV-2-related ARDS. The diverse immunological and biological function of mesenchymal stem cells. MSCs
promote anti-apoptotic effects mainly by inducing growth factors and directly or indirectly reducing factors that damage cells (ROS, etc.). A primary function of MSCs is to modulate
immune responses by activating effector T cells (either CD4+ or CD8+) and regulating the function and proliferation of regulatory T (Tregs) cells. MSCs also affect cellular adaptors of
the innate immune response (mainly neutrophils and macrophages). In particular, in response to induction by MSCs, macrophages are phenotypically transformed from a pro- to anti-
inflammatory state. All immunomodulatory functions of MSCs finally result in a potent anti-microbial response resulting in microbial clearance in part by activation of lipocaline-2 and
cathelicidin. By inducing the secretion of a variety of growth factors, MSCs can potentiate the regeneration of pulmonary alveoli and reduce lung fibrosis. Molecular adaptors of these
effects of MSCs are shown. MSCs: mesenchymal stem cells; M1 and M2: M1 and M2 macrophages; B: bacteria; N: neutrophil; D: dendritic cell; NK: natural killer cell; EP: epithelial
cell; EN: endothelial cell; EVs: extracellular vesicles; PGE2: prostaglandin E2; HGF: hepatocyte growth factor; IL-1ra: interleukin 1 receptor antagonist; IL-10: interleukin 10; IL-6:
interleukin 6; TSG-6: tumor necrosis factor-inducible gene 6 protein; IGF: insulin growth factor; STC-1: stanniocalcin 1; Ang-1: angiopoietin 1; KGF: keratinocyte growth factor; ROS:
reactive oxygen species.
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can be effectively used to increase immunity against the viruses that
cause acute respiratory syndromes [215]. Vaccines that have been de-
veloped using mRNAs benefit from advantages, such as mimicking nat-
ural infection and triggering a more potent immune response. In
addition, there is a possibility to incorporate multiple mRNAs into a sin-
gle vaccine. The SARS-CoV-2 S protein (140 kDa) is a peptidewith 1273
residues [216], and its respective mRNA has been employed to develop
an effective vaccine. In this approach, liquid NPs and chemical modifica-
tion were used to stabilize an injectable form of the mRNA-based vac-
cine using soluble nanoparticles. This lipid nanoparticle (LNP)-
encapsulated mRNA vaccine is being tested in Phase 1 clinical trial
(NCT04283461) sponsored by the National Institute of Allergy and In-
fectious Diseases (NIAID) of the National Institutes of Health (NIH) in
the US. This novel vaccine was designed by Moderna in collaboration
with investigators at the NIAID Vaccine Research Center to identify an
antigen linked to the SARS-CoV-2 prefusion-stabilized S protein [217].
In February 2020, the Novavax Company, which had already worked
onMERS and SARS, also announced the start of animal studies on poten-
tial candidates to produce a SARS-CoV-2 vaccine. They used SARS-CoV-2
derived S protein alongwithMatrix-M adjuvant in a recombinant nano-
particle technology [217]. A trial for the efficacy of adipose mesenchy-
mal stem cell-derived exosomes (MSCs-Exo) (through inhalation of an
aerosol) in the treatment of severely ill patients with SARS-CoV-2 infec-
tion is underway (NCT04276987). These exosomes are known to miti-
gate lung inflammation and reduce injury in various pathological
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conditions, as well as to increase the phagocytic activity and killing po-
tency of macrophages.
10. Concluding remarks

This review has provided an overview of therapeutic agents de-
signed to target SARS-CoV-2 based on an extensive search of
ClinicalTrials.gov and medical databases, with a focus on clinical trials.
Considering the rapid progression of research in this field, it will be dif-
ficult to remain completely up to date. However, the effectiveness of the
most recent clinical trials have been collected and potential research
areas have been proposed to extend the range of therapeutic candidates
against SARS-CoV-2. Most antiviral strategies against SARS-CoV-2,
which have been studied in pre-clinical and clinical trials, are already
used medicines against other RNA viruses, such as SARS-CoV, MERS-
CoV, influenza, HCV, and Ebola. In addition, this reviewhas also included
an overview of SARS-CoV-2 biology and antiviral therapies that have
exploited several nanoscale agents were explored. Nanomedicine-
based therapies (bioengineered and vectored antibodies, cytokines,
and vaccines) have shown some promise for the treatment of SARS-
CoV-2 infections.We further discussed the complex cellular interactions
responsible for SARS-CoV-2 cell entry and replication, as well as drugs
that can target these pathways. Vaccine platforms, passive immuno-
therapy, and cell-based therapies were also covered.

http://ClinicalTrials.gov


Fig. 10. MSCs improve the outcome of SARS-CoV-2 patients with ARDS. a) Chest computed tomography images of the severe SARS-CoV-2 patient. b) The pattern of serum cytokine/
chemokine/growth factors. c) The profile of the over-activated NK cells and T cells of SARS-CoV-2 patients.
Reproduced with permission from [193].
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Currently in use or investigational agents for SARS-CoV-2 target ei-
ther the virus or host-derived molecules (e.g., interferons, glucocorti-
coids). The combination of lopinavir and ritonavir might treat the
specific virus, and SARS-CoV-2 receptor inhibitors may be helpful in re-
ducing lung cell viral entry and improve lung function in COVID19 pa-
tients. Some patients infected with SARS-CoV-2 were significantly
improved after treatment with the lopinavir in combination with rito-
navir. However, other case reports showed that treatment with
lopinavir and ritonavir did not significantly alleviate SARS-CoV-2 re-
lated pneumonia [218]. Although there were no reports of acute respi-
ratory failure in these patients, it is questionable whether this was
solely related to the antiviral drugs or not [69]. Regardless, lopinavir
plus ritonavir is still considered a viable treatment for SARS-CoV-2 in-
fection. Cell entry-based therapeutics, such as chloroquine,
hydroxychloroquine, anti-ACE2, and anti-CD147 antibodies could also
guide us towards the discovery of new treatments for SARS-CoV-2 in-
fection. These therapeutic modalities could also be useful to reveal the
fundamental pathways of SARS-CoV-2 replication.

There is also interest in testing whether immunotherapy or biologi-
cal therapies, such as convalescent plasma and hyperimmune globulin,
containing antibodies isolated from blood donated by people who
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have recovered from COVID19, could shorten the length or reduce the
severity of the illness. Furthermore, by studying the protective function
of memory immune cells from recovered patients, it may be possible to
develop prophylactic and therapeutic approaches to cope with future
coronaviruses outbreaks. Treatment of SARS-CoV-2 infection with
antibody-based and vaccine-based therapies requires an understanding
of how neutralizing antibodies identify and eliminate the virus. The role
of humoral immune responses in preventing SARS-CoV-induced lung
damage is controversial. In fact, there have been reports of SARS-
related mortality in patients who have developed strong neutralizing
antibodies. Because these antibodies have been associated with the se-
cretion of proinflammatory cytokines in the lungs, it has been hypothe-
sized that theymay be linked to fatal acute inflammatory lung injury. In
addition, SARS-CoV-2 may be effectively treated with the administra-
tion of MSCs, which are supposed to possess paracrine and immuno-
modulatory effects on immune cells. It will be necessary to perform
randomized clinical trials to assess the effects of MSCs as a potential
treatment for COVID19. The immunomodulatory and anti-
inflammatory effects of MSCs could be enhanced by pre-exposure to
factors such as IFNγ in the presence or absence of TNF-α or IL-1
(i.e., licensing-approach). This is important because T cells are generally



Table 8
Selected cell-based therapies against SARS-CoV-2 in clinical trials.

Phase Responsible party Interventions Recruitment
status

Population
(enrollment
and
age)

NCT number

1, 2 Beijing 302 Hospital ● MSCs
● Saline containing 1% human serum albumin (solution of
MSCs)

Recruiting 90
18–75

NCT04288102

1 Beijing 302 Military Hospital ● MSCs Recruiting 20
18–70

NCT04252118

Not
applicable

Puren Hospital Affiliated to Wuhan University
of Science and Technology

● UC-MSCs Recruiting –
18–75

NCT04293692

Early 1 CAR-T (Shanghai) Biotechnology Co., Ltd. ● Dental pulp MSCs Not yet
recruiting

24
18–75

NCT04302519

2 Zhongnan Hospital Biological: UC-MSCs Recruiting 10
18–75

NCT04269525

2 Tianhe Stem Cell Biotechnologies Inc. Combination product: stem cells and mononuclear cells isolated
by apheresis

Not yet
recruiting

20
18–60

NCT04299152

1 Ruijin Hospital ● MSCs-derived exosomes Not yet
recruiting

30
18–75

NCT04276987

1 Azidus Brasil ● NestCell® Not yet
recruiting

66
≤18

NCT04315987

Not
applicable

Wuhan Union Hospital ● UC-MSCs Not yet
recruiting

48
18–60

NCT04273646

1, 2 Chongqing Public Health Medical Center ● NK cells, IL15-NK cells, NKG2D CAR-NK cells, ACE2 CAR-NK
cells and NKG2D-ACE2 CAR-NK cells

Recruiting 90
≤18

NCT04324996

1 Stem Cells Arabia ● WJ-MSCs Recruiting 5
≤18

NCT04313322

1 Xinxiang medical university ● NK cells Recruiting 30
18–65

NCT04280224
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poorly activated in patients with SARS-CoV-2 infection, and therefore
stimulating factors, such as interferons, may be low in these patients.
The cytokine-licensedMSCs can effectively inhibit hyperactive immune
responses and promote tissue repair.

In conclusion, despite many studies in humans, there is not yet an
optimal treatment for SARS-CoV-2 infection. Detailed laboratory studies
and further clinical trials will be required to establish evidence-based
treatment for patients with SARS-CoV-2 as well as ARDS.
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