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Abstract

Lecithin:cholesterol acyltransferase protein (LCAT) promotes the esterification reaction

between cholesterol and phospholipid-derived acyl chains. Positive allosteric modulators

have been developed to treat LCAT deficiencies and, plausibly, also cardiovascular dis-

eases in the future. The mechanism of action of these compounds is poorly understood.

Here computational docking and atomistic molecular dynamics simulations were utilized to

study the interactions between LCAT and the activating compounds. Results indicate that

all drugs bind to the allosteric binding pocket in the membrane-binding domain in a similar

fashion. The presence of the compounds in the allosteric site results in a distinct spatial ori-

entation and sampling of the membrane-binding domain (MBD). The MBD’s different spatial

arrangement plausibly affects the lid’s movement from closed to open state and vice versa,

as suggested by steered molecular dynamics simulations.

Author summary

High-density lipoprotein (HDL) particles play a crucial role in reverse cholesterol trans-

port, whose efficiency is linked to the development of coronary heart disease (CHD), a

global health threat showing an increased prevalence in industrial as well as in developing

countries. While many drugs for treating CHD exist, e.g., the cholesterol-lowering statins,

a substantial residual vascular risk remains, thus calling for novel therapeutic interven-

tions. One of these approaches is to elevate the activity of lecithin:cholesterol acyltransfer-

ase (LCAT) enzyme by, e.g., positive allosteric modulators. However, although

modulators’ allosteric binding site is known, it is not understood how these compounds

can promote the activity LCAT. Therefore, in this article, we aimed to clarify how a set of

positive allosteric modulators affect the structural and dynamical properties of LCAT uti-

lizing atomistic molecular dynamics simulations and free energy calculations. Shortly, our

findings suggest that the reorientation and the different energetic landscape of the MBD

induced by the allosteric compounds may facilitate the lid’s opening, therefore providing

a plausible explanation of why the set of positive allosteric modulators promote the
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Citation: Niemelä A, Koivuniemi A (2021) Positive

allosteric modulators of lecithin: Cholesterol

acyltransferase adjust the orientation of the

membrane-binding domain and alter its spatial free

energy profile. PLoS Comput Biol 17(3): e1008426.

https://doi.org/10.1371/journal.pcbi.1008426

Editor: Alexander MacKerell, University of

Maryland School of Pharmacy, UNITED STATES

Received: October 22, 2020

Accepted: February 27, 2021

Published: March 15, 2021

Copyright: © 2021 Niemelä, Koivuniemi. This is an
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activity of LCAT. Besides, this finding is also insightful when deciphering how apoA-I, the

principal LCAT activating apolipoprotein in HDL particles, facilitates the activation of

LCAT.

Introduction

Lecithin:cholesterol acyltransferase (LCAT) is an enzyme that is responsible for producing

cholesterol esters (CEs) in circulation by linking the acyl chains of phospholipids to cholesterol

(CHOL) molecules. LCAT mediated CE formation predominantly occurs in high-density lipo-

protein (HDL) particles in which apolipoprotein A-I (apoA-I) serves as a cofactor for the reac-

tion. After the formation of CEs, the morphology of HDL particles transforms from discoidal

to spherical by the creation of a non-polar CE phase, which is shielded from aqueous sur-

roundings by an amphiphilic monolayer comprised of phospholipids, CHOL, and apolipopro-

teins. Owing to this, the action of LCAT is an essential step in HDL-mediated reverse

cholesterol transport (RCT), in which intracellular CHOL and phospholipids are transported

from extrahepatic tissues to the liver. Importantly, HDL particles also remove CHOL from

lipid droplet-laden macrophages that are the hallmark of early atherosclerotic lesions in the

arterial intima [1]. For this reason, chiefly, RCT’s efficiency is hypothesized to be associated

with the progression of coronary heart disease (CHD) [2–4].

The normal functioning of LCAT is reduced or completely lacking in individuals suffering

from the autosomal recessive disorders familial LCAT deficiency (FLD) and fish-eye disease

(FED) [5–7]. The clinical manifestations of LCAT deficiency include diffuse corneal opacities,

target cell hemolytic anemia, and kidney failure. While the role of LCAT deficiencies and

activity in CHD progression is currently far from understood, multiple ongoing research pro-

grams are attempting to shed light on LCAT activity’s boosting therapies in this context. These

therapeutic approaches include recombinant human LCAT (rhLCAT) injections, biologics

such as peptides and antibodies, and small molecular activators [8–11]. The rhLCAT

(MEDI6012, formerly ACP-501) is particularly of note as during recent phase II trials, it was

shown not to cause any serious adverse events in the 48 participants, and its administration led

to a dose-dependent increase in HDL-cholesterol (HDL-C) concentration [12]. Intriguingly, a

recent HDL particle lipidomics study in which a subsequently defined non-equilibrium reac-

tion quotient describing global CHOL homeostasis in circulation was established suggests a

deficient conversion of CHOL to CE in CHD patients when compared to controls [13]. Nota-

bly, the deficient CHOL to CE conversion was determined without utilizing LCAT activity

assays or plasma concentration measurements. Hence, this approach might provide a more

reliable means to assess LCAT mediated CHOL to CE conversion that considers the effect of

native lipid compositions better than exogenous plasma assays that are based on, e.g., the addi-

tion of labeled CHOL molecules into the plasma of individuals with differing amount of

CHOL in different lipoprotein pools.

Because of the reasons above, it would be valuable to develop LCAT activity promoting

therapeutics, firstly, for the treatment of different LCAT deficiencies and, secondly, for provid-

ing additional ways to elucidate the impact of LCAT based therapeutics on the functional qual-

ity of HDL particles in the context of RCT and CHD. In this respect, a set of promising LCAT

activity-promoting compounds was developed by Daiichi Sankyo [14–17]. Recently, out of

this set of compounds, the piperidinyl-pyrazolopyridine derivatives (compounds 1, 2, 3, 6, 8,

and 9) were further investigated by Manthei et al., showing that the compounds increase the

activity of LCAT up to 3.7-fold [18]. In the same study, an X-ray structure for LCAT was
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solved, with both bound activator compound 1b and inhibitor isopropyl dodecyl fluoropho-

sphonate (IDFP), revealing that compound 1b resides in the cleft of the membrane-binding

domain (MBD, see Fig 1). Although the MBD has been shown to interact with lipids when

LCAT is bound to lipid bilayers or HDL particles [19–22], it became evident based on binding

studies that the activators do not alter the association of LCAT with discoidal HDL particles

[18]. In addition, the X-ray structure revealed that compound 1b forms hydrogen bonds with

MET49, TYR51, ASP63, and ASN78 residues (Fig 1) and possesses the enantiomeric R state

(compound 1b in Fig 2).

Interestingly, previous hydrogen-deuterium exchange (HDX) studies indicated that the α-

helical folds a1 and a2 (comprised of amino acids 63–75) in the MBD and the lid loop region

are more dynamic when compared to the rest of the LCAT structure (Fig 1). It was further

demonstrated that the binding of IDFP decreased HDX in the a1-a2 region. While the X-ray

Fig 1. The structure of LCAT with compound 1b bound to the allosteric site. The α/β hydrolase domain is colored as purple, the cap

domain as gray, and the membrane-binding domain as green. The a1-a2 region of the MBD (amino acids 63–75) is marked with

orange. The protein is rendered as a cartoon secondary structure representation and the compound as blue sticks. The compound

(hued blue) and the amino acids ASN78, ASP63, TYR51, and MET49 are rendered with sticks and colored according to the element

types. Carbon atoms are cyan, oxygen red, nitrogen blue, fluorine pink, and sulfur yellow.

https://doi.org/10.1371/journal.pcbi.1008426.g001
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structure of LCAT with bound compound 1b and IDFP also indicated that the temperature

factors are slightly decreased in the a1-a2 site when compared with LCAT structures without

drugs, it is impossible to determine what is the impact of compound 1b alone on the dynamics

of the a1-a2 region and the whole MBD in general. Besides, the constraints imposed by differ-

ent crystal lattices might not reveal real conformational preferences for the local structural

domains of enzymes compared to conditions in which the enzymes are in fully aqueous sur-

roundings and under the influence of the Brownian motion. Significantly, this might be the

case when highly mobile regions of proteins are considered. Nevertheless, the binding of IDFP

alone might induce the opening of the lid as was suggested by the HDX data [23] and, there-

fore, the conformation of the lid loop in the X-ray structure of LCAT with bound compound

1b might not resemble the case when compound 1b is solely present. However, as compound

1b forms hydrogen bonds with the two amino acids located in the a1-a2 region, namely with

ASP63 and ASN78, it might have an additional effect on, e.g., the rigidity of the region that

may play an essential role in the activation of LCAT.

Consequently, our aim in this study was to computationally characterize how the set of pos-

itive allosteric modulators previously investigated by Manthei et al. [18] interact with the MBD

and if they alter its conformation and dynamics. This, particularly, without the presence of the

inhibitor IDFP. Firstly, we utilized molecular docking calculations and atomistic molecular

dynamics simulations to show that the compounds interact with LCAT through a varying

number and network of hydrogen bonds, which presumably stabilizes the MBD. Secondly,

Fig 2. (A) The chemical structures of the compounds studied. (B) The docking poses of the compounds bound (hued purple) in the MBD cleft of LCAT and the co-

crystallized compound 1b (PDB accession code 6MVD; hued blue) compared to its position docked back the structure (hued red). The allosteric site of LCAT is

rendered as a cartoon secondary structure representation and shown as green. The compounds and the significant amino acids are rendered as sticks and are colored

according to different elements. Carbon atoms are cyan, oxygen red, nitrogen blue, fluorine pink, and sulfur yellow.

https://doi.org/10.1371/journal.pcbi.1008426.g002
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simulations highlight that the drugs adjust the MBD’s spatial orientation with respect to the lid

in its open state. Meanwhile, accelerated weight histogram-based free energy simulations dem-

onstrate that the compounds modify the MBD’s energetic landscape.

Further, steered molecular dynamics simulations reveal that enforcing the lid loop to a

close state is accompanied by a retraction of the MBD away from the lid binding cavity. To

conclude, our findings suggest that the reorientation and the different energetic landscape of

the MBD induced by the allosteric compounds may facilitate the lid’s opening, therefore pro-

viding a plausible explanation of why the set of positive allosteric modulators studied here pro-

mote the activity of LCAT. Besides, this finding may be insightful when deciphering how

apoA-I facilitates the activation of LCAT. In general, the results provided here pave the way

for the design of new therapeutic approaches against LCAT deficiencies and for scrutinizing

the HDL quality hypothesis in the context of RCT and CHD.

Materials and methods

Construction of the LCAT structure

The X-ray structure of LCAT with bound molecular activator compound 1b [18] was acquired

from the Brookhaven databank (PDB ID code:6MVD). The missing two amino acid residues

located at the lid region of LCAT were incorporated into the structure with the Modeller

homology modeling package, as described earlier [19,24]. The standard parameters were used

in the incorporation, and the structure with the lowest DOPE score was selected for the further

modeling stages.

Docking calculations

The molecular structures and initial coordinate files for all compounds were built with the

Avogadro molecular editor and visualizer software [25], after which the compounds were

docked to the membrane-binding domain of LCAT utilizing the Autodock Vina version 1.1.2

[26]. The size of the docking grid was set big enough to cover the membrane-binding domain

of LCAT. The number of grid points was set to 80 in the X, Y, and Z dimensions when the grid

points’ distance was 0.375 Å. The exhaustiveness was set to 100. Nine docking configurations

with the lowest binding free energies were produced, and the lowest one was selected as a start-

ing point for molecular dynamics simulations.

Force fields and parametrization of drug compounds for molecular

dynamics simulation purposes

The AMBER99SB-ILDNS force field parameter set was used to describe the LCAT protein

[27]. Water was described by the TIP3P parameters [28]. The initial structures for the drug

compounds were built with the Avogadro program, after which the geometries of the com-

pounds were optimized with the Gaussian software version 16 revision A.03 [29]. Hartree-

Fock method and 6-31G� basis set were used in the optimization procedure. The partial char-

ges were derived by first determining the electrostatic potential around each molecule with the

Gaussian program utilizing the Merz-Kollman scheme [30]. The same method and basis set

was employed in this stage as in the geometry optimization step. This was followed by the deri-

vation of partial charges utilizing the restrained electrostatic potential (RESP) method to pro-

duce the QM-derived electrostatic potentials around the molecules. The antechamber

program included in the Amber18 modeling package was used for this purpose [31]. The Len-

nard-Jones and bonded parameters for the compounds were taken from the GAFF force field

[32].
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Simulated systems and simulation parameters

The structure of LCAT with and without drugs was placed into the center of a box with dimen-

sions of 10 x 10 x 10 nm. Two replicates were run for the LCAT system without drugs. The

compounds were incorporated into the allosteric binding site of the MBD domain based on

the docking results. Each system was solvated, resulting in 14597 water molecules per system.

Ions were added to neutralize the total charges of the systems. All simulations were coupled to

a temperature bath of 310 K utilizing the v-rescale thermostat with a coupling constant of 0.5

ps [33]. The 1.013 bar pressure was described as isotropically using the Parrinello-Rahman

barostat with a coupling constant of 10 ps [34]. To handle electrostatics, the Particle-Mesh

Ewald (PME) summation scheme was employed with a real-space cut-off of 1.0 nm [35]. The

Lennard-Jones interaction cut-off was set to 1.0 nm. All systems were first energy minimized

utilizing the steepest descent method followed by molecular dynamics simulations up to 1 μs

with the GROMACS simulation package [36,37].

Accelerated weight histogram simulations

The accelerated weight histogram method is an adaptive biasing method implemented in the

GROMACS package that can be employed to calculate the potential mean force profiles as a

function of reaction coordinates [36,37]. The approach flattens the free energy barriers along a

reaction path by introducing potentials that elevate free energy minima resulting in unre-

stricted diffusion of the selected atoms or molecules along the reaction coordinate. Therefore,

the system’s sampling is artificially enhanced, and the spatial free energy can be explored,

unlike in non-adaptive biasing simulations [38]. In this study, the AWH method [38,39] was

employed to probe the free energy profile when the MBD domain of LCAT changes its orien-

tation with respect to the lid. The α-carbon atoms of amino acids I231 and M66 were chosen

as the reference and pull groups, respectively. The reaction coordinate was defined as the dis-

tance between these two atoms, with the largest distance being 1.1 nm and the smallest 0.5 nm.

The AWH potential was set to the umbrella, and the force constant and initial error for AWH

calculations were set to 128000 kJ/mol/nm2 and 5 kJ/mol, respectively. The estimated diffusion

parameter of 0.0001 nm2/ps was used for the coordinate dimension. The AWH systems were

simulated up to 500 ns. The convergence of free energy profiles and distribution profiles were

registered to take place after 300 ns (Fig D in S1 Text). The free energy profiles after 500 ns

simulations were constructed utilizing the gmx awh program included in the GROMACS sim-

ulation package.

Steered molecular dynamics simulations

To monitor the movement of the MBD domain of LCAT during the conformational change of

the lid from the open to a closed state, we carried out steered molecular dynamics simulations

during which the lid was pulled to a closed state. The center of mass α-carbon atoms of amino

acids 110–130 was used as a reference group during the pulling simulation, whereas the α-car-

bon atom of amino acid 219 was pulled towards the center of mass of the reference group. The

pulling force constant and the rate was set to 5000 kJ/mol�nm2 and 0.0001 nm/ps, respectively.

The steered MD simulations were run up to 25 ns, after which the distance between the α-car-

bon of LEU239 and the reference group was approximately 1 nm. The distance of MET66 Cα
atom from its initial position was monitored as a function of simulation time to reveal the

retraction distance of MBD when the lid is pulled to a closed state. During the pulling, the pro-

tein’s rotational and translational movement was kept fixed by spatially restraining the refer-

ence group’s backbone atoms.
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Analysis

Hydrogen bonds and distances were calculated using the gmx hbond and gmx mindist tools,

respectively, that are included in the GROMACS package. The default hydrogen bond parame-

ters were used in determining the number of hydrogen bonds formed between the drugs and

LCAT. The number of hydrophobic interactions between the drugs and relevant amino acids

was measured with gmx mindist using carbon-carbon or carbon-fluorine pairs and a cut-off of

0.4 nm. The accessible surface areas (ASA) of drugs were calculated with gmx sasa using the

standard van der Waals volumes and radii [40]. The surface areas between the drugs and the

binding cleft were further determined by subtracting the solvent ASAs from the drugs’ total

ASAs. The Visual Molecular Dynamics (VMD) program was used to visualize and render the

figures [41].

Results and discussion

All compounds bind similarly into the allosteric cleft located in the MBD of

LCAT

In order to investigate the differences between the binding poses of different compounds and to

produce starting configurations for atomistic molecular dynamics simulations, all compounds

were docked to the MBD of LCAT (PDB accession code: 6MVD, co-crystallized with com-

pound 1b) utilizing the AutoDock Vina docking software [26]. The chemical structures for all

drug compounds are shown in Fig 2A. Firstly, compound 1b was docked back into the MBD to

validate the parameters and the scoring function used in the docking. As seen in Fig 2B, the

Autodock program was able to find the correct pose for compound 1b, with only small differ-

ences seen mainly in the water-exposed part of the drug. It is also good to note that in the X-ray

structure of LCAT bound to compound 1b (6MVD), compound 1b interacts with the neighbor-

ing LCAT enzyme in the crystal lattice. This likely also affects the orientation of the water

exposed part of the compound in the allosteric site. After this, the rest of the compounds (2a,

2b, 3, 6, 8, and 9) were docked similarly to the MBD. In the case of compound 6 both the neutral

and charged form were investigated (Fig 2A). Afterward, we docked the compounds again into

the allosteric site after 1 μs of atomistic simulations to see if carrying out the simulations would

improve binding as far as the Autodock derived binding free energies are concerned.

As expected, the results in Fig 2B point out that the preferred orientation of molecules in

the allosteric site is similar in each case. While tiny differences in the spatial arrangement are

seen, this is expected since the chemical groups, and their spatial regions are also different

between the molecules. We found out that 1 μs simulations increased the negative binding free

energies in all cases except in the case of compound 6 (Table 1). Namely, the negative binding

free energy change of compound 6 decreased (neutral form) or stayed the same (charged

Table 1. The calculated binding free energies for the compounds docked either to the X-ray structure or the simu-

lated structure of LCAT (after 1 us).

Molecule DGbind(X-ray) [kJ/mol] DGbind (Sim.) [kJ/mol]

Compound 1b -37 -41

Compound 2a -34 -42

Compound 2b -39 -40

Compound 3 -35 -38

Compound 6 -34 -32

Compound 6 (charged) -33 -33

Compound 8 -34 -39

Compound 9 -36 -41

https://doi.org/10.1371/journal.pcbi.1008426.t001
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form) after the simulation and is lower than those of the rest of the compounds (-32 kJ/mol vs.

-38 to -42 kJ/mol, respectively). This finding follows the previous experimental findings show-

ing that compound 6 does not activate LCAT since its binding, for some reason, is abolished

[18]. However, our docking calculations and simulations (in the later chapter) imply that com-

pound 6 can favorably interact with the allosteric site if it can access it. As the binding free

energies change somewhat after the 1 μs simulations (except for compound 6), it also suggests

that the compounds and the allosteric site become better adapted to each other during the sim-

ulations. The binding free energies of the compounds do not correlate with the experimental

fold activities produced with MUP esterase assays, implying that the strength of binding does

not explain the different fold activities [18].

All drug compounds form a stable hydrogen bonding network in the

allosteric site

The binding free energies derived from the docking calculations do not reveal if there are free

energy barriers along the pathway which the drugs take when entering the allosteric site. Yet,

the free energy barrier along the entry pathway could explain the abolished binding of com-

pound 6 registered in experiments. To investigate this, we carried out umbrella sampling simu-

lations to reveal possible barriers for compounds 6 (abolished binding) and 8 (the highest fold

activity). We calculated PMF profiles for both the neutral and charged forms of compound 6.

Indeed, the results indicated that there exist free energy barriers with heights of 10 ± 4 kJ/mol,

20 ± 5 kJ/mol, and 6 ± 3 kJ/mol at the allosteric site opening for neutral compound 6, charged

compound 6, and compound 8, respectively (Fig A in S1 Text).

However, we are not certain if the free energy barrier of 20 kJ/mol is sufficient to kinetically

prevent the charged form of compound 6 from binding to the allosteric site at the physiological

pH of 7.4, since e.g. the dissociation constants and corresponding binding free energies of -20

kJ/mol for compounds can be determined by experimental methods (such as surface plasmon

resonance technique) in which association and dissociation rates are utilized to derive the dis-

sociation constants for biomolecular complexes. That is, in certain experimental settings the

free energy barrier of 20 kJ/mol does not kinetically prevent the dissociation of molecular com-

plexes when the strength of binding is determined. To verify the existence of such a high free

energy barrier in the case of compound 6 association rate constants could be determined as a

function of temperature after which the Arrhenius law could be employed to estimate the acti-

vation energy which should be comparable to the free energy barrier. Nonetheless, the

umbrella sampling derived binding free energies were similar, and the difference was not sig-

nificant between compounds 6 and 8: -43 ± 3 kJ/mol (neutral compound 6) and -38 ± 3 kJ/

mol (charged) compound 6 vs. -40 ± 3 kJ/mol (compound 8). Thus, the binding of both com-

pounds is thermodynamically favored but could be kinetically too slow to occur and to be reg-

istered in experiments. In addition, it should be mentioned here that the basic functional

amine group of piperidine is exposed to the water phase when both forms (neutral and

charged) of compound 6 are bound to the allosteric site. Namely, the charged group will not

become buried during the binding and, thus, should not considerably affect the binding free

energy of compound 6 as can be seen from the binding free energies derived by docking calcu-

lations and free energy simulations. Thus, the notably larger free energy barrier for the charged

form of compound 6 was not expected.

To gain more insight into how the LCAT activators interact with the MBD domain of

LCAT, we analyzed the average number of hydrogen bonds formed between the compounds

and LCAT. Besides, we identified the critical amino acid residues taking part in the formation

of the hydrogen bonds with the different functional groups of the drug compounds.
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Fig 3A shows the average number of hydrogen bonds between the compounds and the dif-

ferent residues in the MBD domain. Based on the data, it is evident that mainly ASP63,

TYR51, and ASN78 form hydrogen bonds with the compounds. However, the backbone

amine of MET49 showed a stable hydrogen bond with compounds 1b and 2b throughout the

simulations. In the case of ASP63 and ASN78, the side chain amine and carboxyl groups were

involved in forming hydrogen bonds with the hydroxyl and carbonyl groups of the com-

pounds, respectively (Fig 3C). TYR51 formed hydrogen bonds through the backbone amine

and carboxyl groups. MET49 utilized the backbone carboxyl oxygen to bond with the amine

groups of compounds 1b and 2b. Compound 2a did not form a hydrogen bond with MET49,

which can be traced to the changed amine hydrogen position, which abolishes the hydrogen

bond interaction with MET49. Instead, compound 2a forms a hydrogen bond with TYR51. In

addition, the amine hydrogen hopping increases the average number of hydrogen bonds

formed with TYR51 above all other compounds, as seen in Fig 2A. Compound 9 also forms a

more significant number of hydrogen bonds with TYR51 and this, in turn, arose from the

close location of two hydrogen acceptors, ring oxygen and nitrogen of compound 9, which

enabled them to bond with the backbone amine of TYR51 at the same time.

Our simulations show that all drug compounds form hydrogen bonds similarly with

ASP63, ASN78, and TYR51, consistent with the X-ray structure of LCAT co-crystallized with

compound 1b. However, in addition to compound 1b, only compound 2b formed a hydrogen

Fig 3. (A) The average number of hydrogen bonds formed between the MBD amino acids and drug compounds during the whole simulation trajectory. (B) The

average number of hydrophobic interactions between drugs and amino acids showing the most variation for compound 8 relative to other compounds. (C) Visualization

of the primary hydrogen bonding pairs between compounds and LCAT. Snapshots from Drug-1B (Top) and Drug-2A (Bottom) simulations showing the conformations

of compounds 1b and 2a in the cleft of MBD. The hydrogen bonds between drugs and amino acids are marked with black dashed lines. Compounds 1b and 2a are

rendered as sticks and are colored according to the element types. Compound 1b is hued purple and 2a orange. The MBD cleft is rendered as a cartoon representation

and colored green. Amino acids forming hydrogen bonds with compounds are rendered as sticks and colored according to the element types. Carbon atoms are cyan,

oxygen red, nitrogen blue, fluorine pink, and sulfur yellow.

https://doi.org/10.1371/journal.pcbi.1008426.g003
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bond with MET49. Therefore, it seems that the amine group with a hydrogen donor at site 1

(Fig 3A) is required for the formation of an efficient hydrogen bond with the backbone carbonyl

group of MET49. Without hydrogen at site 1, the amine group forms a hydrogen bond with the

backbone amine of TYR51. The compounds studied here were partly chosen to explain the

MUP esterase assay’s differences conducted by Manthei et al. 2018 [18]. Out of these, the lack of

activity of compound 6 was of particular interest. As seen in our simulation analysis, compound

6 formed hydrogen bonds with the same amino acids (ASP63, TYR51, and ASN78) as the other

compounds. Besides, no significant differences were detected in the average hydrogen bond

numbers between compound 6 and the rest of the compounds, indicating that the hydrogen

bonds are equally stable. Furthermore, according to the MUP esterase activity assays, com-

pounds 1b, 2b, 3 had the same fold activities (2.3–2.4), whereas compounds 8 and 9 possessed

the highest and lowest activation potencies (3.7 vs. 1.6), respectively. Based on our hydrogen

bonding results here, we cannot argue the reason behind the different potencies.

In addition to the hydrogen bonds, the average number of hydrophobic interactions was

also determined between the drugs and all relevant nearby amino acid residues. Once more a

direct connection to the fold activities was not discovered, but compound 8 (highest fold activ-

ity) separated significantly from the rest. The differences were most visible in contacts to

ASP63, MET66, GLY71, and TRP75, measured for all drugs at Fig 3B. This is naturally due to

the lack of a hydroxyl-group and the presence of a double bond in compound 8, which forces

the trifluoromethyl-group towards different residues. Whether this phenomenon is the cause

of a higher fold activity, or merely benefits drug entry into LCAT is impossible to say, as com-

pound 8 doesn’t induce a different conformational change compared to the other compounds

as discussed later. The full data is available in Table A in S1 Text. Hydrophobic interactions

were further analyzed with accessible surface areas, but nothing relevant was discovered

(Table B in S1 Text).

Positive allosteric modulator binding induces a conformational change

which distances the MBD from the lid residing cavity

Next, we aimed to investigate if the compounds change the spatial arrangement of the MBD of

LCAT. We calculated distances between the backbone α-carbon atoms of the MBD and the lid

loop to determine if the compounds rearrange the MBD with respect to the rest of the enzyme.

Upon examining the distance matrix, a conformational change was discovered where systems

with drugs had the MBD pushed further from the lid loop and cavity (Fig 4A). Since the dis-

tance matrix analysis showed the average distances over the whole simulation trajectories, we

examined how consistent the conformational shift was by monitoring the distance between

the backbone α-atoms of M66 and I231 as a function of time (Fig 4B). It was found that the

distance between the backbone α-atoms was persistently more considerable in the simulations

with drug compounds bound, except in the case of charged compound 6, to the allosteric site

than in simulations without allosteric modulators. This conformational shift is illustrated in

Fig 4C with two snapshots with and without drug molecules. To ensure that our shift is genu-

inely dependent on whether a compound is bound to the allosteric site or not, we removed

compound 2a from the LCAT structure after an 800 ns simulation. As seen in Fig 4D, the dis-

tance between the α-atoms decreased from 0.9 to 0.7 nm in 50 ns, indicating that the MBD

shifts its orientation closer to the lid cavity in the absence of the drug.

We also determined the energetics of the MBD movement by utilizing the accelerated

weight histogram method to calculate the free energy profiles as a function of the distance

between the α-carbon atoms of M66 and I231. Free energy simulations were carried out with

and without compound 2a. Fig 5 shows that the free energy minima at the distances of 0.7 and
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Fig 4. (A) The average distances between the relevant residues mapped as a distance matrix plot. Drug 2a is used as an example as the rest of the compounds induced

a similar change. (B) The distance between the α-carbon atoms of M66 and I231 as a function of time in Drug-2a and Nodrug-2 simulations (Left). The average

distances between the α-carbon atoms of M66 and I231 for all simulated systems (Right). (C) Snapshots from Drug-2a and Nodrug-2 simulation showing the maxima

and minima of the detected conformational change. The proteins are rendered as cartoons and the marker residues’ α-carbons as red spheres. (D) The distance plot

derived from the simulation where compound 2a was removed from the allosteric site after 800 ns (Left). Two simulation snapshots superimposed showing the

orientation of the MBD domain before (0 ns; green) and after the removal of compound 2a (120 ns; blue) (Right).

https://doi.org/10.1371/journal.pcbi.1008426.g004

Fig 5. (Left) Spatial energetics of the MBD. The free energy profiles as a function of the distance between M66 and

I231 α-carbon atoms with and without compound 2a. (Right) A blue cartoon presentation of LCAT showing the

ILE231 and MET66 Cα atoms (red spheres) that were used to determine the conformational free energy as a function

of distance.

https://doi.org/10.1371/journal.pcbi.1008426.g005
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0.9 nm agree with the distance analysis. Interestingly, the profiles show that when compound

2a is bound to the allosteric site, ~10 kJ/mol of energy is needed to move the MBD domain

closer to the lid residing cavity. However, the energy required to move the MBD away from

the lid cavity is smaller (~6 kJ/mol). This finding indicates that the drugs are hindering the

MBD movement closer to the lid-residing cavity, which results in the broader cavity. Centered

on this finding, we hypothesize that the wider cavity promotes the lid movement from a closed

state to an open one and vice versa due to lessened steric hindrance. To shed more light on

this, we transformed the lid loop from the open state to a closed state by slowly pulling the lid

loop towards the active site tunnel opening. At the same time, we monitored the distance of

the α-carbon atom of M66 from the initial position as a function of pulling time. As seen in

Fig 6, the MBD domain moves away from the initial position (~0.3–0.5 nm) when the lid

changes its conformation from an open to a closed state. The use of a lower force constant dur-

ing pulling did not affect the results (Fig C in S1 Text). However, we must remark that our

pulling experiments do not necessarily resemble the correct conformational change pathway

for the lid as the lid’s exact folding pathway during the transition is not known. Nevertheless,

our pulling results further support the hypothesis that the MBD needs to shift its orientation to

render the lid’s conformational shift possible.

In the light of these findings, it is tempting to hypothesize that the MBD’s reangling is

responsible for the increased activity of LCAT bound with different drugs in the MUP esterase

assays reported by Manthei et al. [18]. Intriguingly, while the neutral form of compound 6

induced the same orientational change of the MBD when compared to the other drug com-

pounds, the charged form did not. While it was shown in experiments that compound 6

(charged at the physiological pH of 7.4) did not bind to LCAT in experiments, our results sug-

gest that even if the charged form of compound 6 could bind to the allosteric site it cannot pro-

mote the activity of LCAT. Regarding this, our docking calculations showed highly favorable

binding energies for compound 6 in both forms and were comparable to the binding free ener-

gies of other compounds. However, as docking calculations do not consider the drug’s intro-

duction into the allosteric site, we conducted free energy simulations with results indicating

that compound 6’s entry is accompanied by a relatively high free energy barrier when com-

pared to compound 8, which showed the highest fold activity in LCAT assays in previous

experiments. Therefore, plausibly, the relatively high free energy barrier can kinetically prevent

Fig 6. (Left) Steered molecular dynamics analysis showing the distance of the α-carbon atom of MET66 from the initial position as a function of time. (Right)

Superimposed snapshots illustrating the pulling pathway of the lid loop. The light red and blue cartoon or van der Waals renderings mark the lid loop’s open and

closed states, respectively. The rest of the LCAT enzyme is rendered as a grey cartoon representation. The black arrow indicates the movement of the lid loop during

the pulling simulations. The active site tunnel opening is marked with a yellow sphere.

https://doi.org/10.1371/journal.pcbi.1008426.g006
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compound 6’s interaction with the allosteric site of LCAT even if its entry is thermodynami-

cally favorable.

Nevertheless, our results suggest that the introduction of a pyrazine ring along with a charge

neutralization, is required for the entry into the allosteric site of LCAT, but it is not maybe crit-

ical when the activation of LCAT is mechanistically considered as indicated by compound 6’s

ability (in the neutral form) to induce an orientational change in the MBD. Therefore, the vari-

ation of chemical groups of the pyrazine ring or testing charge neutralizing modifications to

compound 6 might be the most effective avenues to improve the potencies of the current set of

positive allosteric modulators.

In addition to the existence of a higher free energy barrier, another speculative cause for

compound 6’s lack of binding could be its inability to participate in a favorable inter-protein

interaction. A pseudo-2-fold interface was detected in the crystal structure, where the tail

rings of compound 1b formed a bridge to the opposing LCAT [18]. Therefore, the forma-

tion of a homodimer could promote the binding of compounds with pyrazine rings by help-

ing them overcome a free energy barrier in the vicinity of the allosteric site. In addition, the

pyrazine ring may play a role in the binding of LCAT to the surface of HDL particles, as

recent structural evidence regarding the LCAT-HDL complex suggests that when bound to

the MBD the tail of compound 1b can interact with lipids or apoA-I at the surface of HDL

[42]. This in turn may affect the orientation and activity of LCAT at the lipid-water

interface.

More research needs to be done to elucidate the positive effect of the pyrazine ring on the

entry into LCAT, which would further characterize an optimal allosteric modulator. Regard-

less, although we could not establish a clear connection between the compounds’ binding ener-

gies or induced effects and their experimental potencies, the conformational change

discovered here provides a plausible explanation of the mechanism of the effect the com-

pounds elicit in LCAT. This is significant as the observed conformational change can be used

as a computational screening tool to discover and develop new positive allosteric modulators

for LCAT, benefiting the pharmaceutical research on LCAT related diseases.

Conclusions

In this research study, we aimed to characterize how a set of positive allosteric modulators

interact with LCAT, firstly, to produce new insights on how these modulators mechanistically

promote the activity and, secondly, shed light on the general activation mechanism of LCAT

mediated by different apolipoproteins, chiefly apoA-I. While no apparent differences in bind-

ing or mode of interaction were registered between the allosteric modulators that could

explain their different fold activities, we found out that all molecules, expect the charged form

of compound 6, can realign the MBD of LCAT. Further, our steered molecular dynamics sim-

ulations suggest that the MBD needs to retract away from the lid binding cavity during the

lid’s conformational shift from the closed to the open state and vice versa. Thus, we hypothe-

size that the realignment and the altered free energy landscape of the MBD induced by the pos-

itive allosteric modulators facilitate the activation of LCAT by making it easier for the lid loop

to alternate between open and closed conformations. This is because the MBD’s realignment

may either simply lessen the steric hindrances associated with the change or modulate the

transitional folding pathway’s energetics. The findings presented in this study can be possibly

validated by nuclear magnetic resonance studies or by producing crystal structures for LCAT

with solely an allosteric compound bound to LCAT without IDFP. To sum up, our findings

provide a plausible explanation of why the set of positive allosteric modulators studied here

increases the fold rate of LCAT. This information can be exploited to design new LCAT
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activating drug molecules to treat LCAT deficiencies and CVDs or further understand the acti-

vation mechanism of LCAT mediated by apoA-I.

Supporting information

S1 Text. Supporting Tables and Figures Table A The average number of hydrophobic inter-

actions between drugs and nearby amino acids as mean (SD). Table B Accessible surface areas

(ASA) of drugs in relevant contexts as mean (SD). Fig A The free-energy profiles (top) and

umbrella sampling converge (bottom) for compounds 6 and 8 calculated by utilizing the

umbrella sampling technique. Fig B The umbrella sampling histogram overlaps for compound

6 (10–50 ns) and 8 (50–90 ns). Fig C Steered molecular dynamics analysis with the force con-

stant of 500 kJ/mol�nm showing the distance of the α-carbon atom of MET66 from the initial

position as a function of time Fig D The converge of AWH simulations analyzed using simula-

tion intervals of 100 ns.
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