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1 Introduction 
 

 

 

Oil spills in aquatic environments are devastating disasters with both biological and economic impacts. 

Human activities, such as offshore oil drilling and transportation of oil, expose aquatic environments to 

oil spill impact risks. For managing these risks, it is important to be able to assess oil spill impacts, both 

from the past and into the future.  

 

Fish populations will most likely become subjects to the impacts of oil after it has been spilled into 

water. Effects of past oil spills on fish population abundance and dynamics have been assessed in 

numerous studies. (e.g., Rahikainen et al. 2017; Muradian et al. 2017; Ward et al. 2017; Lecklin et al. 

2011; Langangen et al. 2017; Brown et al. 1996). The assessed past effects vary from minor to more 

severe. Each oil spill is unique in its characteristics including, for example, the type of spilled oil, 

volume of spilled oil, concentration of toxic compounds in water after a spill, and prevalent weather 

conditions during and after the spill (Fingas et al. 2011). Each of these characteristics influence the 

magnitude of the impacts of oil on the environment and fish populations.  

 

Oil impacts on different life stages of fish have been studied extensively in laboratory studies (e.g., 

Carls et al. 1999; Lindén 1978; Kocan et al. 1996a; Heintz et al. 1999). Results have shown egg and 

larval stages to be especially sensitive to oil. Studies of oil impacts on fish eggs indicate positive 

correlation between egg mortality, and concentration of toxic oil compounds in water and exposure time 

of eggs to toxic compounds. One of the more extensively studied species in oil impact assessments is 

herring, which is the study subject of this thesis as well, or to be more precise, herring eggs.  

 

Economic impacts of oil spills on fisheries have been studied to some extent. Most studies seem to 

concentrate on estimating the economic impacts from changes in landings after past oil spills (Garcia 

et al. 2009; Loureiro et al. 2006; Garza-Gil et al. 2006). A few prediction studies can be found as well. 

For example, Berenshtein et al. (2019) developed a prediction model using spatial and temporal data of 

oil spill trajectories to predict areas, where fishery closures would be put to effect. Their model only 

considered the effect of closures on fishermen revenue and neglected the effect of oil induced additional 

mortality on fish biomass, and consequently future catches. 

 

Bayesian inference has been applied in many models, for both assessing oil spill impacts on herring 

populations and herring stock assessment (e.g., Rahikainen et al. 2017; Mäntyniemi et al. 2013a; 

Muradian et al. 2017). These applications have mostly focused on assessment of effects after past oil 

spills and development of population dynamics from historical data. Bayesian inference is based on the 

1.1 Background and aim of the thesis 
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Bayes rule (Gelman et al. 2014), which allows predictions to be made from estimated uncertain 

parameter values. Using Bayesian methods in a prediction model, allows the incorporation of 

uncertainty into decision making. There are very few studies available (e.g., Lecklin et al. 2011), in 

which a Bayesian inference model is used for predicting impacts of possible future oil spills on herring 

population dynamics. Furthermore, there are virtually no studies available, where a Bayesian inference 

model is used for predicting both possible oil spill impacts on herring population dynamics, and oil 

induced economic impacts on herring fisheries. Another characteristic missing in previous studies, is 

the integration of knowledge from laboratory studies into population level biological and economic 

predictions. 

 

The aim of this thesis, is to develop a hierarchical Bayesian bioeconomic prediction model for 

predicting oil spill impacts on Baltic Sea main basin herring population through oil induced additional 

egg mortality, estimated from laboratory study data. In this study, the model will be used for different 

hypothetical oil spill scenarios, which will impact herring spawning grounds in coastal areas. The 

different scenarios vary in terms of the initial population state, and certain oil spill characteristics. The 

resulting effects on population abundance, biomass and catches are predicted and compared to a 

situation with no oil exposure. In addition, the economic values of the effects on biomass and catches 

compared to no oil exposure will be estimated. The goal is to define the economic impact of an oil spill 

on fishermen. The prediction model is built by modifying and combining existing models developed 

for 1. assessment of population dynamics, 2. meta-analysis on laboratory studies of oil induced 

additional herring egg mortality, and 3. oil spill impacts on fish populations. 

 

 
 

 

In the first chapter, some basic concepts of Bayesian inference are reviewed to make this thesis easier 

to follow. Then, some important aspects related to Bayesian inference modelling in fisheries stock 

assessment are reviewed.  The Bayesian stock assessment model developed by Mäntyniemi et al. 

(2013a) will be used as the basis for developing the prediction model in this thesis. Therefore, it is 

important to understand the essential concepts related to Bayesian stock assessment. 

 

In the second chapter, relevant literature on assessing oil spill induced herring egg mortality is reviewed, 

and the most important aspects are identified for the context of developing the prediction model. To 

calculate the financial losses to fishermen, relevant literature on herring pricing and economics is 

reviewed. Some important aspects to consider, when integrating an oil induced mortality model to a 

stock assessment model, are presented. Relevant theory on validating a Bayesian inference model is 

reviewed at the end of the chapter. 

1.2 Structure of the thesis 
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In materials and methods, the structures of the models used in this thesis, are described in relevant 

detail. The computational methods and their most important aspects are reviewed before presenting the 

results. After the results have been presented, they are discussed in the light of the reviewed literature. 

Finally, the study results are concluded in comparison to the aim of the study, and future directions are 

suggested. 

 

 
 

Bayesian inference is about reallocation of probability across possible values of parameters related to 

the problem being analyzed (Kruschke, 2015). In general, there are five steps in Bayesian inference 

(Figure 1). These steps will be followed throughout this paper.  

 

 
Figure 1, Five steps of Bayesian inference, (Kruschke, 2015) 

 
When solving a scientific problem, a typical Bayesian inference starts with identifying relevant data. In 

practice, available data is never a perfect representation of the problem, and it is only a sample of the 

total population. In addition, measuring of the data is subject to error. Oberkampf, Helton, Joslyn, 

Wojtkiewicz and Ferson (2004) categorize uncertainty arising from randomness in processes, like 

measuring, as aleatory uncertainty, and uncertainty arising from imperfect knowledge as epistemic 

uncertainty. Epistemic uncertainty can in theory be reduced by gathering more knowledge through 

collected data and other information sources. These information sources may include, for example, 

publications or expert knowledge, which may be important if there is no appropriate observational data. 

(O’Hagan, 2019) 

 

The goal of defining a model, is to describe the system as well as possible, from which the data is a 

sample of (Kruschke, 2015). A model consists of formulas that characterize trends and spreads in the 

system. The formulas consist of parameters that determine the mathematical forms of the trends and 

spreads. Therefore, the chosen mathematical formulas define which parameters need to be estimated. 

In the beginning there are usually several candidate models. The chosen model or models should be 

comprehensible in relation to the problem, with meaningful parameters. The mathematical form defined 

1.3 Five steps of Bayesian inference 
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by the parameter values, should at least roughly resemble the system. The possible parameter values 

should be within a meaningful space for the chosen model.  

 

In Bayesian inference, the meaningful parameter value candidates are assigned prior probabilities 

(Kruschke, 2015; Gelman et al. 2014). Prior probabilities, or priors, can be retrieved from, for example, 

previous research or expert elicitation by conducting interviews (Kruschke, 2015; Mäntyniemi et al. 

2013a). Prior describes what the probabilities of the candidate values are believed to be before observing 

any data (Kruschke, 2015). Priors can hold various amounts of information. The more information a 

prior holds the more it assigns probability over a narrow range of candidate values, i.e., the prior is more 

accurate. 

 

The priors are updated to posteriors using the Bayes rule (Figure 2). It calculates the probabilities of the 

candidate parameter values, after observing data. Posterior is the result of allocating probability to more 

credible parameter values given the data. Sometimes however, uncertainty can increase from prior to 

posterior, if the collected data contradicts the priors. The posterior shows the uncertainty related to 

possible parameter values by showing their probability distributions. Using posteriors as priors in future 

studies, offers a systematic and continuous learning possibility in science. 

 

 

Figure 2, Bayes rule, (Kruschke, 2015) 

 

The last step of Bayesian inference is to check whether the defined model, and its posteriors, describe 

the data reasonably well. This is done by simulating data with the model and comparing how much the 

simulated data deviates from the observed data. There are numerous ways to analyze this deviation. 

Before going into the steps of Bayesian inference in this thesis, some characteristics of Bayesian 

modelling in this study’s context need to be reviewed, to understand the basis of the prediction model. 
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In Bayesian modelling, a probability model is fitted to observational data and the results are summarized 

with probability distributions on model parameters and predictions (Gelman et al. 2014). Inferences are 

made according to these summaries. Advantages of Bayesian methods have been recognized in 

fisheries’ stock assessment (Punt and Hilborn, 1997; McAllister and Kirkwood, 1998; Hammond and 

O’Brien 2001; Dorazio and Johnson 2003; Kuparinen et al. 2012; Mäntyniemi et al., 2013a). In a stock 

assessment model, the population dynamics of a fish stock are modelled into the parameters. In this 

paper, the terms stock assessment model and population dynamics model are used synonymously. 

 

Bayesian model averaging 

 

One of the main advantages of Bayesian methods, is the ability to incorporate model uncertainty as an 

integrated part within the stock assessment model, in the form of Bayesian Model Averaging (BMA) 

(Hammond and O’Brien 2001; Mäntyniemi et al. 2013a). BMA allows the inclusion of alternative 

models into the analysis, by weighting them according to their probabilities in the context of the problem 

being modelled. Geromont and Butterworth (2015) have stated that it is important for the realism of a 

stock assessment model to incorporate more than one stock-recruitment model into an analysis, by 

utilizing BMA, if the problem being analyzed so requires. In management of multinational fisheries, 

BMA allows all parties’ advocated models to be considered in the complex environmental problems 

with multiple sources of uncertainty (Hamilton et al. 2009). The models must be chosen carefully for 

BMA, because some models might fit the data but make no sense ecologically. It is an important 

challenge to introduce theoretical knowledge to Bayesian models and model selection. 

 

Hierarchical models 

 

A Bayesian hierarchical model (BHM) considers the stochasticity and uncertainty inherent in fish 

population dynamics (Kuparinen et al. 2012) and furthermore, uncertainty of the parameter values can 

decrease faster in hierarchical model structures as data is accumulated.  According to Gelman et al. 

(2014), a BHM is used in applications where multiple parameters can be assumed in a same group, 

according to the causal relationships of the problem. 

 

The parameter groups in a BHM can be considered as fixed or random effects, depending on the aim of 

the analysis (Korner-Nievergelt et al., 2015).  Fixed effects have a finite number of groups and a fixed 

effect study aims to compare the between-group differences of these specific groups. Random effects 

1.4 Bayesian modelling in fisheries stock assessment 
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have theoretically an infinite number of groups, all belonging to a common population, from which the 

groups analyzed in the study are assumed to be a random sample of. The common population 

distribution is estimated with hyperparameters, to which the parameter groups have dependency to. 

Observations are used to estimate the parameter posteriors and aspects of the common population 

distribution. In a random effect BHM for stock assessment, hyperparameters are uncertain population 

dynamics parameters, and the parameter groups represent population states at different points in time, 

such as years, and are temporally dependent on the previous time points (Mäntyniemi et al., 2013a; 

Massiot-Granier et al., 2014) (Figure 3).  

 

 

Figure 3, Illustration of a population dynamics BHM 

 

Parameters in a BHM can be modelled as regression models. Shimoda and Arhonditsis (2015) studied 

modelling the group specific parameters with a regression model consisting of hyperparameters. 

According to Gelman et al. (2014), linear regression models are used in BHMs, when there are 

regression parameters on different hierarchical levels of variation, like in groups representing 

population states at different time points. Usually, the parameters values, estimated by regression 

models, are transformed. Transformation is done so the parameter value of interest would fit to the 

regression model (Kruschke, 2015). 

 

BHM can include dynamic non-linear density-dependent stock-recruitment relationship assumptions in 

the form of, for example, Beverton-Holt or Ricker stock-recruitment functions, while utilizing BMA 

(Fleischman et al. 2013; Mäntyniemi et al., 2013a). Density-dependent models can add to the realism 

of the model if they are in accordance with the problem at hand (Massiot-Granier et al. 2014). According 

to Millar and Meyer (2000), traditional stock assessment models are often assumed linear, and process 
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error is assumed as normally distributed. This is because calculating the integral of the marginal 

likelihood function, or evidence (Figure 2), over all possible parameter values, is extremely demanding. 

In Bayesian models, the linearity and normality assumptions are not necessary because of developments 

in sampling methods, like Markov Chain Monte Carlo (MCMC).  

 

BHM can be built as fully age-structured considering growth and size of fish in each year class, and 

their interdependencies and effect on recruitment (Mäntyniemi et al. 2013; Massiot-Granier et al. 2014). 

A fully age-structured model is crucial in predicting how population dynamics react to different 

management decisions or stressors (Kuparinen et al. 2012). According to Hillary (2011), using a fully 

age-structured model, allows to model survival of a fish population as a time-varying parameter, and to 

model the survival of different age-classes separately. According to Kuparinen et al. (2012), growth 

and size at age, should be modelled as dependent stochastic variables, size being hierarchically 

dependent on growth. Natural and fishing mortalities should in turn be modelled as stochastic variables 

dependent on size. 

 

Prior specification 

 

According to Shimoda and Arhonditsis (2015), there are many options for the specification of priors.  

They can be considered as “non-informative”, or vague, if knowledge about the parameters is low. A 

prior is informative if there is useful prior knowledge coming from, e.g., existing publications or such 

stock assessments, where the assessed species is somehow comparable to the species being analyzed. 

According to Gelman et al. (2014), in most real-world problems there should be enough knowledge to 

at least constrain the possible parameter values to a finite range. It is very rare to be the first scientist to 

study a certain topic and therefore, there is almost always at least some prior knowledge. According to 

Shimoda and Arhonditsis (2015), if the knowledge of the parameters is received from the data that is 

also used to update the prior, then the information in the data would be used twice. According to Gelman 

et al. (2014), doing a Bayesian analysis with this kind of prior specification can only be considered an 

approximation of a complete Bayesian analysis. 

 

Group level parameters can be given a multivariate prior, if the correlation between the parameters 

needs to be considered (Shimoda and Arhonditsis, 2015). According to Gelman et al. (2014), 

multivariate priors are often used with regression models when, for example, the intercept and slope of 

the regression function vary by group. In a multivariate prior, variation of the parameters is considered 

in the form of a covariance matrix. 
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Experimenting with the model using different priors for parameters, can point out specific parameters 

to which the conclusions made with the model are sensitive to (Gelman et al., 2014). Muradian et al. 

(2017) developed an age structured BHM stock assessment model for Prince William Sound (PWS) 

herring population. They concluded that the model was sensitive to natural mortality assumptions, 

indicating the importance of prior knowledge of this parameter. Ibaibarriaga et al. (2008) developed a 

BHM for anchovy stock assessment. They stated that they need to develop certain model priors to be 

more informative by using expert elicitation for prior specification. Priors are often based on expert 

elicitation (O’Hagan, 2019). 

 

Prediction models 

 

Decision making in fisheries management requires estimates of parameters and forecasts of uncertain 

variables, like biomass and fishing mortality, while considering uncertainty (Ludwig et al. 1993). These 

requirements are inherent in Bayesian methods (Dorazio and Johnson 2003). Hamilton et al. (2009) 

argued that using BMA and carefully selecting environmental covariates for regression parameters, sum 

up to more accurate predictions. It is crucial to decide how much prior probability is given to each 

model in BMA, and how the priors are specified.  

 

A parameter estimation model can be used to predict unknown quantities, such as future observations 

or future values of population state parameters (Gelman et al. 2014). This is done by using the estimated 

posterior distributions on parameter values for forecasting the unknown quantities from the posterior 

predictive distributions, using the formulas defined for the parameters and observation models. (Figure, 

4).  

 

Figure 4, Illustration of prediction with a BHM 

 
Several Bayesian state-space models have been used for prediction. Geromont and Butterworth (2015) 

used their models for data poor fisheries to predict the outcomes of different management actions ten 

years into the future. Ibaibarriaga et al. (2011) used their model to predict the probabilities of biomass 
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being under a certain level under fixed recruitment and catch scenarios. Fleischman et al. (2012) 

predicted the run size of Karluk river salmon one year into the future. Muradian et al. (2017) compared 

their biomass predictions to those done with the current stock assessment model of Alaska Department 

of Fish and Game. They concluded that the advantage of using a Bayesian model, is being able to 

regulate according to probability intervals or cumulative probability distributions, instead of point 

estimates, which could leave out possibly vital information.  

 

Relevant findings of this chapter 

 

In a stock assessment model built as a random effect BHM, hyperparameters consist of uncertain 

population dynamics parameters, and parameter groups represent population states at each time step of 

the observations. If the problem at hand requires so, it is important to include more than one possible, 

possibly density dependent, stock-recruitment model into the analysis by utilizing BMA. A fully age 

structured BHM can add to the realism of the model and makes it possible to model size and survival 

as age-specific parameters. A BHM can be used to predict population states in the future. 

 

In this thesis, a generic Bayesian stock assessment model developed by Mäntyniemi et al (2013a) is 

used as the basis for the prediction model that will be developed in this thesis (Figure 5). The structure 

of Mäntyniemi et al.’s model includes most of the important aspects of a population model discussed 

above. It includes stakeholder knowledge in informative priors. It utilizes BMA for the density 

dependent stock-recruitment part of the model. Process variations in natural mortality, growth 

parameters and fishing mortality are treated as uncertain parameters, in contrast to some earlier stock 

assessment models (Nielsen & Lewy, 2002). Furthermore, the model is a fully age structured random 

effect BHM. The structure of the model will be described in more detail in materials and methods. 

 

 

Figure 5, Illustration of the prediction model 
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In the next chapter, the steps of the Bayesian inference (Figure 1) of this thesis are started by reviewing 

relevant literature for the oil induced egg mortality-part, and the decrease in value to fishermen- part of 

the prediction model. As more relevant aspects for the prediction model are found in literature, they 

will be appended to the model, which will be illustrated in the summaries of the sections.  

 

 

2 Identifying relevant data                                   

                         
 
The aim of the modelling in this thesis, is to build a bioeconomic model for describing the impacts of 

oil on fish stocks and fisheries. For this purpose, before reviewing the literature, relevant questions 

related to the study were recognized to which the data should shed light on (Figure 6). These questions 

are followed throughout this chapter. 

 

 

Figure 6, Relevant questions for identifying relevant data 

 

 

2.1.1 Oil weight and type affect the proportions of toxic compounds in oil 
 
 
Polycyclic aromatic hydrocarbons are the most toxic compounds in oil 

 
There are about 17 500 different compounds in oil, and of these compounds, aromatic hydrocarbons are 

most likely the most toxic to herring eggs (Fingas et al. 2011, Wiens et al, 2013). According to Neff et 

al (2000), the most toxic aromatic hydrocarbons are monocyclic aromatic hydrocarbons (MAHs), which 

contain one aromatic ring, and then polycyclic aromatic hydrocarbons (PAHs), which contain two or 

more aromatic rings. Therefore, the number of aromatic rings has negative correlation with the toxicity 

of the compound. MAHs are very volatile and do not persist in water very long. According to Heintz et 

al. (1999), when the persistence of the compound is considered, the most toxic aromatics are most likely 

2.1 Oil toxicity on herring eggs 
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compounds containing three and four aromatic rings. They are sufficiently reactive and persist relatively 

long in the environment and embryos. In studies of oil effects on marine biota, the chemicals under 

investigation are often PAHs. Commonly reported quantities are total polycyclic aromatic hydrocarbon 

(TPAH) concentrations, total petroleum hydrocarbon (TPH) concentrations and sum of some specific 

PAHs’ concentrations (Table 2). Laboratory experiment results have indicated positive correlation 

between initial TPAH concentration in water, and mortality and sublethal effects (Linden 1978; Carls 

et al. 1999; Kocan et al. 1996b).  

 

Oil products are divided into classes according to their weight, and into types according 

to their refinement stage 

 

Oil products are often classified according to their specific gravities converted to API (American 

Petroleum Institute) gravities (ITOPF, 2002). Oil product’s gravity tells, for example, whether it will 

sink or float (Wiens, 2013). As the API gravity of an oil product increases, it becomes lighter and vice 

versa. If an oil product has API gravity of 20 or higher, it is considered medium or light, and if lower 

than 20 it is considered heavy. (Wang and Stout, 2007) These API boundaries may vary across different 

studies (see e.g., ITOPF, 2002). Medium and light oils float on water and form a layer on the surface, 

and heavy oils can sink after the lighter compounds have evaporated (Fingas et al 2011; Wiens 2013; 

Guitart et al. 2008).  

 
According to Boehm et al. (2013), crude oils and refined fuel oils are usually the oil types involved in 

oil spills. The type of an oil product influences the amount and type of PAHs it contains (National 

Research Council, 2003; Wang and Stout, 2007). An oil product can contain between 0 and 60 percent 

PAHs out of TPH (Fingas, 2011). The different proportions of PAHs influence, for example, the 

compound’s volatility and solubility, and consequently the concentrations of PAHs found in water 

column after a spill (Wiens, 2013, Table 1).  

 

 

Table 1, Water column oil compound concentrations after past oil spills 

 
 

 

Associated spill Measured compounds Measured concentration (in ppb) Oil amount spilled ( tonnes) Oil type Reference

Exxon Valdez TPAH 0.1 - 12 35500 medium crude Wolfe et al. 1994

Exxon Valdez TPAH 0.1 - 41.6 37000 medium crude Boehm et al. 2013

Exxon Valdez TPAH 0.01 - 30 34600 medium crude Neff and Stubblefield 1995

North Cape TPAH; TPH 13.7-115; 113-3940 2700 light fuel Reddy and Quinn 2001

MSC Napoli TPAH 0.01 - 57 200 heavy fuel Guitart et al. 2008

Prestige TPH; 25 individual PAH 0.05 - 28.8; 0.07 - 9.56 77000 heavy fuel Gonzales et al. 2006

Bahia Paraiso TPAH 50 - 100 531 light fuel Kennicut et al 1991

Baltic Carrier TPAH 0,64 - 12,8 2400 heavy fuel Pecseli et al. 2003

Antonio Gramsci N/A N/A 570-650 heavy crude Nissinen 2000; Lecklin et al. 2011
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Polycyclic aromatic hydrocarbon composition determines toxicity of oil 

 

Linden (1978) studied the effects of three different oil products on herring eggs, refined light no. 1 fuel 

oil, Tuimaza crude oil and Venezuela crude oil. According to the results, only no. 1 fuel oil in 

concentrations of at least 5 parts per billion (ppb) caused significant egg mortality. Anderson et al. 

(1974) tested the toxicity of two different crude oils and two different refined fuel oils to marine biota. 

Water-soluble fractions of the refined products were in all cases more toxic. Light refined fuel oils, such 

as diesel fuel and no. 1 fuel oil, contain PAHs which are dominated by two- and three-ringed 

compounds, such as naphthalenes and chrysenes (National Research Council, 2003). For this 

dominance, light refined products have the biggest potential among oil products to harm aquatic biota. 

Heavy refined products in turn, have the smallest water-soluble fraction of all the oil products, and thus 

lowest toxicity. 

 

Crude oils have a wide variety of different PAH compositions that are usually dominated by 

naphthalenes and chrysenes, but to a lesser extent than light refined products (National Research 

Council, 2003; Wiens, 2013). Heavy crude oils generally contain more PAHs in total than lighter crude 

oils, but with higher proportions of less soluble compounds (Wang and Stout, 2007). Important PAHs 

to consider in analyses of oil toxicity to herring eggs, are more volatile and soluble PAHs. Lighter crude 

oils are on average more soluble than heavy crude oils (Fingas, 2011). Due to the wide variety of PAH 

compositions in crude oils, their compositions of water-soluble PAHs should be determined case by 

case for each individual spill. 

 

2.1.2 Weathering and movement of oil influence the concentration of toxic 
compounds in water and exposure time of herring eggs to them 

 
 
When oil enters water after a spill, it moves and undergoes weathering (Fingas et al. 2011). The rate of 

weathering is mostly affected by oil type and weight. Weathering consists of processes changing the 

physical and chemical properties of oil. Weathering processes include evaporation, emulsification, 

natural dispersion, dissolution, photo-oxidation, sedimentation, adhesion, interaction with minerals, 

biodegradation, and formation of tar balls. As MAHs weather away, the contribution of PAHs to the 

toxicity of an oil product increases, starting from the two- and three-ringed compounds (Wiens, 2013; 

Fingas et al. 2011). Neff et al. (2000) argue however, that MAHs and PAHs cause less than 50 % of the 

toxicity of weathered crude oils, and the rest is most likely caused by an unresolved complex mixture 

and resins. Part of oil’s toxicity might be due to products created when oil compounds biodegrade (Neff 

et al. 2013). According to Middaugh et al. (1998), biodegradation products more likely cause long term 

sublethal effects rather than mortality. 
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Dispersion transfers oil from the surface to the water column 

 

Oil weight and weather conditions affect the formation of oil water dispersion (OWD). According to 

Fingas et al. (2011), OWD forms when fine oil droplets are transferred into the water column by wave 

action. Dispersion is more significant when sea energy increases, and when the oil product is lighter. 

OWD most likely resembles the oil-water mixture formed right after a spill (Kocan et al. 1996a). 

According to Anderson et al. (1974), dispersed oil hydrocarbons in the water column undergo a 

transition to solution. This transition is affected by oil type and the amount of excess oil available on 

the surface. Refined products form toxic solutions with much less oil than crude oils. Support for this 

statement comes from the fact that in some larger spills involving crude oils, the effects on biota have 

been smaller than in smaller spills involving refined products (Table 2). 

 

Dissolution increases PAH concentration in water 

 

Dissolution can sometimes be a significant weathering process if the spilled oil is light, and thus 

contains large amounts of soluble components, like the spilled oil in the North Cape oil spill (Reddy 

and Quinn 2001; Fingas et al 2011). After the Bahia Paraiso spill, TPAH concentrations were relatively 

large due to the spilled oil being diesel fuel (Kennicut et al. 1991). Days after the Baltic Carrier oil spill, 

TPAH concentrations near the spill site were higher than background levels, but rapidly declined during 

two months after the spill (Pecseli et al. 2003). The spilled oil had relatively high proportions of volatile 

and soluble low molecular weight PAHs and MAHs.  

 

Usually, dissolution happens to only a fraction of a percent of the spilled oil but, for example, in the 

North Cape spill natural dispersion of the oil by strong wave action aided the dissolution. This could 

have explained the relatively high concentrations of TPAH in the water column (see Table 2) and the 

significant negative impact on biota in the spill area (Fingas et al. 2011; Reddy and Quinn 2001). After 

the Exxon Valdez spill, there was a storm in the spill area. About 23 % of the spilled oil was dispersed 

(Wolfe et al 1994; Reddy and Quinn 2001). According to Neff and Stubblefield (1995), only 1,6 % of 

samples collected, collected after the storm, showed concentrations of TPAH over 1 ppb. The Exxon 

Valdez oil had less soluble PAHs than the North Cape oil (Wang et al. 1999; Reddy and Quinn 2001). 

 

Increasing exposure time to PAHs increases egg mortality 

 

The exposure time of eggs to PAHs has been recognized as an important factor related to egg mortality 

and sublethal effects (Linden, 1978; Carls et al., 1999). According to Carls et al. (1999), as exposure 
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time increases, incubation time decreases while mortality and abnormalities increase. Their results 

indicated differences between PAHs regarding the needed exposure time to them to induce mortality. 

The differences in exposure times were affected by the molecular weights of the compounds. Herring 

eggs react more quickly to MAHs and light PAHs (Heintz et al. 1999). The uptake of three- and four 

ringed PAHs by eggs is slower. Once these larger compounds enter the eggs however, they remain there 

for longer time periods causing toxicity. As oil weathers, the PAH composition becomes more 

dominated by three- and four-ringed compounds. 

 

Movement of oil can bring toxins to herring spawning grounds 

 

Oil weight and type affect the movement of oil after it enters water (Fingas, 2011). Floating oil spreads 

into a slick over the surface. Lighter products, especially refined oil types, spread more rapidly and to 

a larger extent. Oil spreads even without wind or currents due to gravity and interfacial tension between 

oil and water. Wind and currents can speed up the process of spreading and cause the oil slick to move 

along the water surface. Movement, spreading and vertical dispersion of oil determine the location 

where the oil ends up after a spill. If it ends up in herring spawning grounds, it may cause oil induced 

herring egg mortality (Wolfe et al. 1994; Kocan et al. 1996b; Aneer & Nellbring. 1982; Brown et al. 

1996; McGurk and Brown, 2011; Incardona et al. 2012; Barron et al. 2003). 
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Relevant findings of this section 

 

The reviewed literature in this section has revealed several relevant subjects (Figure 7).  

 

 

Figure 7, Summary of oil and oil spill characteristics causing herring egg mortality in the prediction 

model illustration and remaining open questions 

 
Oil induced herring egg mortality seems to be dependent on concentration of soluble, and somewhat 

persistent PAHs in water, and exposure time of eggs to these compounds. Exposure of herring eggs to 

PAHs is dependent on movement and spreading of oil bringing it to spawning grounds. The PAH 

composition of an oil product, and its solubility, is dependent on oil type, and consequently its weight. 

The model developed in this study needs to consider these aspects in its structure. 

 

Raubenheimer et al. (unpublished) developed a Bayesian meta-analysis model for assessing oil induced 

additional mortality on herring eggs. The meta-analysis model considers many of the relevant subjects 
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described above, and it will be modified and extended for the purpose of this study. The modified 

version of the meta-analysis model that will be developed in this thesis, will be used as the oil induced 

additional mortality part of the prediction model. The meta-analysis model by Raubenheimer et al. 

(unpublished) analyzed the oil type specific additional mortality of herring eggs, as dependent on 

exposure time and concentration of PAHs in water. The results of the analysis indicated generally 

positive correlation between initial concentration of PAHs in water and mortality of eggs. Exposure 

time generally correlated positively with mortality as well. The model will be modified to include the 

effects of oil weight and location of oil spill, among other things. The original meta-analysis model and 

its modified version will be described in more detail in materials and methods.  

 

Remaining open questions 

 

After reviewing the literature in this chapter, a few open questions remain (Figure, 7), for which more 

relevant literature needs to be reviewed. The meta-analysis model in Raubenheimer et al. (unpublished) 

does not consider the effect of an oil product’s weight on additional mortality. In addition, the location 

of an oil spill in relation to location of herring eggs, is not yet included in the meta-analysis model. In 

the next chapter, literature on these subjects will be reviewed. Since oil induced mortality is an 

additional source of mortality, herring egg natural mortality literature will be reviewed, for determining 

the baseline mortality. In addition, literature on how to assess the effect on value to fishermen will be 

reviewed. 

 
 

      

Natural mortality of herring eggs varies in nature 

 

When analyzing the oil induced additional mortality on herring eggs, it is important to separate it from 

the natural mortality of eggs. Studies on herring egg natural mortality have reported very varying results 

(Table 2). Rajasilta et al. (1989) found that mortality of herring eggs in Finnish archipelago varied 

according to the substrate they were attached to. Aneer (1987) has stated that the major cause of natural 

mortality in the Baltic Sea could be toxic algal exudates. Rajasilta et al. (1989) also found that in their 

samples, the total amount of eggs had no significant effect, but depth and temperature were positively 

correlated with mortality. Good oxygen conditions and not too high temperature appear to be crucial 

for egg survival. In many studies, the predation of herring eggs, and wave and current action, have been 

2.2 Baltic Sea Herring 
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stated as significant sources of herring egg mortality (Richardson et al. 2011; Hempel 1971; Moll et al. 

2018). 

 

 

Table 2, Natural mortalities of herring eggs during incubation time 

 
According to Haegele and Schweigert (1985), there are spring and fall spawners among Baltic Sea 

herring (Picture 1). In the western Baltic Sea, according to some evidence, there are two groups of 

spring spawners and one group of fall spawners (Popiee, 1958). According to one source, there are six 

groups of spring spawners in the eastern Baltic Sea (Rannak, 1971). From the eastern Swedish coast to 

Bothnian Sea and all the way to Gulf of Finland, spawning happens most likely in spring (ICES, 1979). 

Most likely the only fall spawning group in the eastern Baltic Sea, is in the Gulf of Riga.  

 

 
Picture 1, Spawning sites of Baltic Sea herring and local spawning time frame, (Haegele & Schweigert, 

1985) 

Region Expected value Value range Reference

Baltic Sea 9,52 % 0,0 % - 95,2 % Rajasilta et al (1988)

Northern Pacific Ocean 14,68 % 10,58 % - 18,79% McGurk and Brown (2011)

Baltic Sea 33 - 74 % Aneer (1989), Aneer (1985)

Atlantic Sea, laboratory 78 % 14 % - 100 % Taylor (1971)

Atlantic Sea 97 % 95 % - 99 % Dahlberg (1979)

Pacific Ocean 13 % Jones (2011)

Pacific Ocean 41,20 % 28,2 % - 52,2 % Kocan et al. (1996)



19 
 

 

Regarding some characteristics, the spawning of Atlantic herring is suggested to be similar in all regions 

(Rannak, 1971; Drapeau 1973). Spawning appears to happen in high-energy environments, i.e., in areas 

with shallow shores, and with wave action or tides. Spawning in shallows in the Baltic Sea, takes place 

in depths of 0.4 – 12 meters (Rannak, 1971; Aneer and Nellbring, 1982). Depth depends on the starting 

time of spawning. If spawning starts later, the depth is usually greater because of higher surface water 

temperatures. The eggs sink to bottom and stick to substrates such as sand, gravel, stones, or seaweeds 

(Bigelow and Schroeder, 1954). Number of eggs has significant negative correlation with depth 

(Rajasilta et al. 1989). In surface or near-surface spills, the highest PAH concentrations are usually 

measured in the first few meters of the water column, and the concentrations decrease significantly after 

10 meters (Boehm et al. 2013). Therefore, if oil moves to a herring spawning site during egg incubation, 

especially if the eggs are spawned by spring spawners, they are likely to get exposed to oil. Knowledge 

of timing of spawning in relation to timing of oil accident is crucial, as is the overall amount of oiled 

coastline in herring spawning grounds (Lecklin et al. 2011).  

 

According to Geffen (2002), herring eggs’ hatching started after 16 days and ended after 18 days in 

water temperature of 7 ⁰C. Bigelow and Schroeder (1954) state, herring eggs’ incubation time can be 

up to 40 days depending on temperature. In temperature of 3 ⁰C incubation can even last 40 days, in 7 

⁰C 15 days, and in 10 ⁰C 11 days on average. Knowing the incubation time of herring eggs is vital since 

exposure time to PAH compounds is positively correlated with egg mortality (Carls et al. 1999; Heintz 

et al. 2000). The incubation time of herring eggs ultimately determines the range of possible values for 

exposure time of eggs to PAHs. 

 

In the Baltic Sea, cod, herring, and sprat constitute about 95 % of total fish catches (ICES, 2016). 

According to ICES (2019a), herring spawning stock biomass has shown an increasing trend since 2003 

after a long decreasing trend (Figure 8) in ICES subdivisions 25-29 and 32 (Picture 2), but catches have 

been above maximum sustainable yield (MSY) since 2007. Stock assessment made by Mäntyniemi et 

al. (2013a), suggests there has been no decreasing trend before 2003, and herring biomass has remained 

stable from 1975.  
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Picture 2, ICES subdivisions in the Baltic Sea, (Anderson et al. 2011) 

 

 

Figure 8, Development Baltic Sea herring catches in subdivisions 25-29 and 32, (ICES 2019b) 

 

Fisheries management in EU is based on national total allowable catches (TAC), which are determined 

by the state of the fish stocks. The TAC is further divided into national quotas. The national quotas are 
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further allocated to fishermen as transferable individual quotas (ITQ). (Aps et al. 2019) Biomass is an 

important metric used in assessing the state of herring stocks, and state of a stock directly affects TAC 

(Aps et al. 2019). Therefore, any changes in herring stock biomass will affect the income of fishermen.  

 

Average first sale prices have remained stable in the Baltic Sea region countries, despite of changes in 

the local supply of herring (Figure 8 and 9). First sale price is what fishermen get when they sell herring 

from their catches. The average first sale price includes prices received from selling herring of all size 

classes, and to all purposes. The market for herring has changed in past decades (Aps et al. 2019). 

According to Pihlajamäki et al (2016), majority of herring caught in the Baltic Sea is sold for fur animal 

food and to other animal and fish feed industries. The dioxin related restrictions can influence where 

herring can be sold (Ignatius and Haapasaari, 2016). Fishermen generally get a better price for herring 

sold to consumer use than to industrial use (Ignatius and Haapasaari, 2016; Luonnonvarakeskus, 2020). 

 

 

Figure 9, Development of Baltic Sea herring first sale prices, (Anderson et al. 2011) 

 

Aps et al. 2019 have studied the different forces driving herring market these days. According to them, 

the development of the global market demand and stock states globally, are the most important drivers 

of herring market in the long run. Trade politics, demand of industries like fur industry, and changes in 

consumer behavior are now shifting the sources of demand globally. Furthermore, when the market is 

global, the most important factors affecting price of herring locally on short term, are changes in 

consumer behavior and changes in the demand and regulation of industry products like fur.  
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Relevant findings of this section 

 

The range of possible values for the exposure time of herring eggs to PAH compounds, is limited by 

herring egg incubation time (Figure 10). When analyzing oil induced egg mortality, the incubation time 

needs to be estimated according to water temperature during the spill. Baltic sea herring spawn in 

shallow shores. To analyze oil induced mortality on herring eggs, the proportion of oiled coastline in 

herring spawning grounds needs to be estimated. The first sale price fishermen get from selling herring 

forward, most likely remains stable despite of changes in the local supply. Therefore, an oil spill induced 

change in supply probably does not affect local first sale prices. The decrease in the future income of 

fishermen can thus be estimated using the usual variation of first sale prices as a parameter. 

 

 

Figure 10, Summary of all the relevant subjects appended to the illustration of the prediction model 

 

 

Before going into the next step of Bayesian inference (Figure 1) of this thesis, ways of integrating an 

oil induced mortality model into a population dynamics model needs to be researched. Relevant model 

checking methods in literature are reviewed as well. These model checking methods will be used in the 

last step of Bayesian inference of this thesis, before using the model for prediction. 
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Only a few Bayesian population dynamics models can be found in literature, which are developed for 

assessing oil spill impacts on marine life. The models usually include an additional mortality rate, or 

survival rate reduction, parameter within the population dynamics model. Schwacke et al. (2017) built 

an age-, sex- and class-structured population model for bottlenose dolphins. They modelled the 

mortality caused by Deepwater Horizon (DWH) spill as a survival rate reduction parameter in one class 

of dolphins, which was exposed to DWH oil. Muradian et al. (2017) developed a Bayesian stock 

assessment model for Prince William Sound (PWS) herring, which included modelling of possible oil 

spill impacts after the Exxon Valdez spill. PWS herring population spawning stock biomass (SSB) 

collapsed in 1993 and has persisted low ever since. For years 1992 and 1993, the researchers included 

additional mortality rates required to explain the sharp decline in SSB, which was assumed to be caused 

by, among other stressors, the possible oil spill impacts. 

 

Lecklin et al. (2011) used a Bayesian model to analyze biological impacts of hypothetical oil spill 

accidents in the Gulf of Finland (GoF). Their model was used to assess impacts of two spill scenarios. 

In the analyses, the accident was assumed to have happened with no uncertainty. The important 

uncertain variables related to an accident, were size of tanker and cargo, type of oil, location of the 

accident, type of accident and timing of accident. Variable used for determining the location of a spill, 

was the proportion of oiled coastline. They concluded that this method is incomplete, and many other 

factors such as weather conditions can affect the amount of oiled coastline. Considering the spawning 

sites of Baltic herring identified in the previous section, in this thesis the location of spilled oil in relation 

to herring eggs is analyzed by the proportion of oiled coastline as well. 

 

Rahikainen et al. (2017) integrated the oil spill impact model of Lecklin et al. (2011) into the population 

dynamics model developed by Mäntyniemi et al. (2013a). They modelled the oil induced mortality after 

the 1987 M/T Antonio Gramsci oil spill on herring offspring and adult herring, as additional mortality 

parameters in the year of the accident. In this thesis, the methodology used by Rahikainen et al. (2017) 

is adapted and explained in materials and methods. 

 

 

 

 

 

 

2.3 Integrating oil induced mortality into a population dynamics 

model 
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Posterior predictive checking 

 
According to Gelman et al. (2014), a comprehensive analysis using Bayesian methods, should always 

include at least some kind of checking for fit of the model to data, and the plausibility of the model for 

the problem in question. One possible way to check fit to data, is posterior predictive checking, in which 

a replicate data set is created from the posterior predictive distribution, which is then compared to the 

actual observations using a suitable test statistic. Hillary (2011) simulated observations, and calculated 

median absolute deviation as a test statistic, for the calculation of Bayesian p-values. The Bayesian p-

value tells the probability of the simulated data being more extreme than the observed data (Gelman et 

al. 2014). There are many possible test statistics to be chosen depending on the specific structure of the 

problem. If the p-values are equally distributed between 0 and 1 and are 0,5 on average, the variability 

is similar between the simulated data and the observed data. 

 

Sensitivity analysis 

 

According to Gelman et al. (2014), sensitivity analysis can be used to check the effect of using other 

possible models for calculating the posterior distributions. Millar and Mayer (2000) stated that a set of 

competing models can be derived with sensitivity analysis by specifying different sets of priors. 

Sensitivity analysis can be used for finding out the parameters to which information should be added, 

to make the posterior distributions more accurate. Massiot and Garnier (2014) found that their model 

was highly sensitive to changes in harvest rate priors, which hierarchically affected the rates of salmon 

returning to spawn, and consequently the whole stock abundance. Ibaibarriaga et al (2008) tested their 

model with posterior predictive checking, allowing them to see the model’s sensitivity to certain 

parameters, and helped them to adjust assumptions on them. Michielsen and McAllister (2004) 

conducted a sensitivity analysis on priors of stock-recruitment function steepness parameters. The 

comparison between different models was done by posterior predictive checking and calculating 

Bayesian p-values. 

 

3 Materials and methods 

 
 
 

This section describes the models used and developed in this thesis (Figure 11). The meta-analysis 

model developed by Raubenheimer et al. (unpublished), will be described in sufficient detail and 

2.4 Model checking 

3.1 The models                                                          
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furthermore, how it will be modified for the purpose of this study. Relevant parts of the population 

model developed by Mäntyniemi et al. (2013a) will be described. The prediction model developed in 

this study, is an adapted combination of the afore mentioned two models, and the models developed in 

Lecklin et al. (2011) and Rahikainen et al. (2017). The important hierarchical structures of the different 

models are illustrated with directed acyclic graphs (DAG) (e.g., Gelman et al 2014) and graphical maps, 

in which blue ellipses represent parameters, blue rectangles observations and green rectangles 

covariates. Yellow colored shapes are used to highlight certain parts of the models, which are currently 

being reviewed in the text. Relevant mathematical equations are written out in simplified form.  

 

 

Figure 11, Outline of the models- section of materials and methods 

 

 
3.1.1 Original meta-analysis model in Raubenheimer et al. (unpublished) 
 
 
Raubenheimer et al. (unpublished) conducted a hierarchical Bayesian meta-analysis on mortality of 

herring eggs as a function of initial TPAH concentration in water from different oil types, and exposure 

time of herring eggs to PAH compounds. Data for the analysis was collected from laboratory studies. 

The collected data had a column for total mortality as a proportion, initial concentration of TPAH, 

exposure time in days and oil type (Appendix 1). Some of the results were controls, which were 

excluded from the analysis. A BHM was fitted to the data (Figure 12). 
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Figure 12, Original meta-analysis model in Raubenheimer et al. (unpublished) 

 
The mortality as a proportion data was transformed first to survival as a proportion by subtracting it 

from one, and then to instantaneous mortality on logarithmic scale (IMOLS) per exposure time (1). 

IMOLS per exposure time after oil exposure, was modelled with a log Gaussian regression observation 

model (2, 3). The intercept parameter of the expected IMOLS per exposure time after oil exposure (3), 

was determined to be IMOLS per exposure time with no oil exposure. The slope parameter was 

determined to be oil induced additional IMOLS per exposure time. The slope parameter value 

determines the increase in expected IMOLS per exposure time after oil exposure, per increase of one 

unit in concentration on logarithmic scale. IMOLS per exposure time after oil exposure can be 

transformed back into original scale to get survival as a proportion (4). 

 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 
𝑜𝑛 log 𝑠𝑐𝑎𝑙𝑒 (𝐼𝑀𝑂𝐿𝑆)

𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒
𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

= log ( 
−𝑙𝑜𝑔  (𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑎𝑠 𝑎 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎)

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑎 𝑑𝑎𝑡𝑎
)  (1) 

 

𝐼𝑀𝑂𝐿𝑆 𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 
𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

= 𝑁  (

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑀𝑂𝐿𝑆
𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒
𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

 ,

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑜𝑓 𝐼𝑀𝑂𝐿𝑆 𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 

𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
)  (2)  
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𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑀𝑂𝐿𝑆
𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒
𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

 =  

𝐼𝑀𝑂𝐿𝑆 𝑝𝑒𝑟 
𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒

𝑤𝑖𝑡ℎ 𝑛𝑜 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
 +  

𝑂𝑖𝑙 𝑖𝑛𝑑𝑢𝑐𝑒𝑑
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

𝐼𝑀𝑂𝐿𝑆
𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒

 × log (
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑜𝑓 𝑇𝑃𝐴𝐻 𝑖𝑛  
𝑤𝑎𝑡𝑒𝑟 𝑑𝑎𝑡𝑎

)          (3) 

 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑎𝑠
𝑎 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛

 = exp (− 𝑒𝑥𝑝 (
𝐼𝑀𝑂𝐿𝑆 

𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒
𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

)  × 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑑𝑎𝑡𝑎)  (4) 

 

3.1.2 Modified version of the original meta-analysis model developed in this 
thesis 

 

For this thesis, the original meta-analysis model of Raubenheimer et al. (unpublished) is modified 

(Figure 13). The data is still the same as in the original model and transformed the same way as before. 

The observation model is still a log Gaussian regression model. 

 

 

Figure 13, DAG of modified meta-analysis BHM 

 

In the original model, oil induced additional instantaneous mortality on log scale (IMOLS) per exposure 

time was estimated for three oil type categories. Since oil types have very varying PAH compositions, 

all oil types in Raubenheimer et al.’s (unpublished) data are analyzed separately in this thesis. This is 
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done by treating oil induced additional IMOLS per exposure time, as a normally distributed random 

effect varying by oil type. Oil type specific additional IMOLS per exposure time is conditional on 

expected value and standard deviation of oil induced additional IMOLS per exposure time in the 

common population. Common population is assumed to consist of theoretically infinite number of 

groups of different types of oil. In this thesis, these groups are assumed to consist of oils that have 

similar mortality causing characteristics, and the most important characteristic is assumed to be API. 

Individual oil’s API affects additional mortality through its difference compared to expected API of all 

groups on average in the common population, multiplied by an API effect parameter (5). 

 

𝑂𝑖𝑙 𝑡𝑦𝑝𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑀𝑂𝐿𝑆
𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒

 =  𝑁 (

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
𝐼𝑀𝑂𝐿𝑆 𝑝𝑒𝑟 𝑒𝑥𝑝. 𝑡𝑖𝑚𝑒 𝑖𝑛

𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 +  (𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑜𝑖𝑙′𝑠

𝐴𝑃𝐼 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒
−  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑃𝐼
𝑖𝑛 𝑐𝑜𝑚𝑚𝑜𝑛
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

)  ×  
𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝑓𝑜𝑟

𝐴𝑃𝐼′𝑠 𝑒𝑓𝑓𝑒𝑐𝑡
,      

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦
𝑖𝑛 𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

) (5) 

 

IMOLS per exposure time with no exposure was treated as a fixed effect in the original model. Because 

the data in Raubenheimer et al. (unpublished) included laboratory studies with varying control 

experiment mortalities, mortality with no exposure is treated as a normally distributed random effect 

varying across different studies in the data set.  

 

Modelling of the expected IMOLS per exposure time after oil exposure, was modified to be linearly 

separable (6). This makes it possible to use oil type specific additional IMOLS individually in the 

prediction model, where mortality without oil exposure is already considered.  

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑀𝑂𝐿𝑆
𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒
𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

=  log (exp (
𝑆𝑡𝑢𝑑𝑦 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐼𝑀𝑂𝐿𝑆

𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒
𝑤𝑖𝑡ℎ 𝑛𝑜 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

) + exp (
𝑂𝑖𝑙 𝑡𝑦𝑝𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑀𝑂𝐿𝑆 
𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒

) × log (
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓

𝑇𝑃𝐴𝐻 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟
 𝑑𝑎𝑡𝑎

))        (6) 

 

 

The oil induced mortality as a proportion results of Rahikainen et al. (2017), are used as one additional 

source of data for posterior estimation, and for estimating aspects of the Antonio Gramsci 1987 oil spill. 

The results of Rahikainen et al. (2017), did not include data for concentration, exposure time or specific 

oil type, and they could not be found from other literature either. Nissinen (2000) stated that the type of 

the oil was generally crude oil, but its origin or weight expressed as API is not known. For this data 

point, the model is modified to include exposure time and concentration as unknown parameters (Figure 

14).  

 

This data point is used to analyze probabilities of the Raubenheimer et al.’s (unpublished) data set’s 

crude oils being the spilled oil in Antonio Gramsci 1987 spill. The analysis is done using BMA for the 

expected oil type specific additional IMOLS regression model, for each oil separately (7). The results 

of Rahikainen et al. (2017) were reported as additional mortality as a proportion and therefore, the 

parameter for IMOLS without exposure is dropped out, which is possible with the linearly separable 
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model. This form of the equation will be used in the prediction model as well because the population 

model, which will be the basis of the prediction model, already considers mortality with no exposure. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑖𝑙 
𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝐼𝑀𝑂𝐿𝑆

=  log ((exp (
𝑂𝑖𝑙 𝑡𝑦𝑝𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑀𝑂𝐿𝑆
𝑝𝑒𝑟 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒

)  × log (
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓

𝑇𝑃𝐴𝐻 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟
)) × 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
𝑡𝑖𝑚𝑒 𝑜𝑓 𝑒𝑔𝑔𝑠 𝑡𝑜 𝑇𝑃𝐴𝐻

)        (7) 

 

To make it possible to estimate the parameter values of the Rahikainen et al. (2017) data point, a 

simulated data set was derived from the results of Rahikainen et al. (2017). Rahikainen et al. (2017) 

estimated the additional mortality as a proportion, on to a probability distribution with median of 17 % 

and a posterior 95 % probability interval from close to 0 % to 57 % mortality (Figure 15). The simulated 

dataset was approximated with a beta distribution by trial and error. The resulting distribution of the 

simulated data resembled the posterior distribution estimated by Rahikainen et al. (2017). The simulated 

data was assumed to be the result of a binomial experiment (observation model), with Beta (1,1) uniform 

prior distribution. The code of the modified meta-analysis model can be found in Appendix 2. 

 

 

Figure 14, Meta-analysis model for Rahikainen et al. (2017) data point and the prediction model 
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Figure 15, Posterior distribution of Antonio Gramsci 1987 spill mortality of herring offspring (black 

line), (Rahikainen et al. 2017) 

 

Predicting with the modified meta-analysis model 

 

In this study, the meta-analysis model is used to predict oil induced additional mortality of herring eggs 

as a proportion, in the context of hypothetical oil spill scenarios. This additional egg mortality will be 

used in addition to natural mortality of eggs, to reduce the number of spawned eggs in the population 

model. Because the population model considers natural mortality of eggs, equation 7 will be used. The 

predicted oil induced additional IMOLS needs to be transformed back into original scale (8). This 

transformation gives the predicted value as predicted survival of eggs as a proportion after oil exposure, 

without considering natural mortality. Subtracting this from one gives the additional oil induced 

mortality as a proportion for the prediction model (9). 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑎𝑓𝑡𝑒𝑟
𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

𝑎𝑠 𝑎 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛
 = exp (− 𝑒𝑥𝑝 (

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑖𝑙 𝑖𝑛𝑑𝑢𝑐𝑒𝑑
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑀𝑂𝐿𝑆

) )  (8) 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑖𝑙 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑎𝑠 𝑎 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛

 = 1 −  
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑎𝑓𝑡𝑒𝑟

𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦
𝑎𝑠 𝑎 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛

  (9) 
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3.1.3 Basis of the prediction model: Population model (Mäntyniemi et al. 2013a) 
 
 

In this section, the population model developed by Mäntyniemi et al. (2013a) will be explained in 

relevant detail. This model is used as the basis for the prediction model developed in this thesis. The 

population model will be run in its original form to estimate population dynamics parameter posteriors. 

The modified meta-analysis model will be run separately for estimating posteriors, which will be 

integrated into the population dynamics model for prediction.  

 

Data for the population model 

 
The original data in the population model is from data sets used by ICES Baltic Fisheries Assessment 

Working Group (WGBFAS) for Baltic Sea main basin herring. The data set includes age-specific 

commercial catches, mean weights-at-age from years y = 1974 – 2007, and acoustic survey estimates 

from years y = 1982 - 2007. 

 

General structure of the population model 
 

The population model is a generic hierarchical state-space population dynamics model. It models the 

full life cycle of the Baltic Sea main basin herring. The model is fully age-structured with age classes 

A = 1 – 8, and many of the parameters are modelled as stochastic and weight dependent including 

natural mortality, fecundity, and fishery selection. The model loops through all observation years and 

all age classes for those parameters that are age class specific. There are several age distribution 

parameters to which the age specific parameters are hierarchically dependent to. Figure 16 illustrates 

the three key parameter groups in a simplified form due to the model’s complex structure. The three 

key parameter groups were decided based on information received from stakeholders regarding herring 

population dynamics (Mäntyniemi et al., 2013b). The same expert elicitation results were also used for 

prior specification.  
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Figure 16, Simplified DAG of the population model 

 

 

3.1.4 Prediction model developed in this thesis. 
 
In this section, the methodology will be explained regarding how the modified meta-analysis model and 

the population model are integrated to form the prediction model. The methodology, of how the 

prediction model developed in this thesis will be used for prediction, will be explained as well. 

 

Relevant population model parameters and equations for the integration of the meta-

analysis model 

 

 
The modified meta-analysis model posteriors are integrated into the population dynamics model using 

a similar methodology as in Rahikainen et al. (2017). They included a parameter for additional mortality 

of herring offspring to the calculation of recruits in the population model in the year of the oil accident 

of Antonio Gramsci 1987 (10, 11). 
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log(𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡𝑛𝑜 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒) ~ 𝑁 (log (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 

𝑠𝑝𝑎𝑤𝑛𝑒𝑑 𝑒𝑔𝑔𝑠
 ×  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑜𝑓 𝑒𝑔𝑔𝑠

) − 0.5 ×  𝜎 , 𝜎) (10) 

 

 

𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = 𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡 𝑛𝑜 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 × (1 − 
𝑂𝑖𝑙 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑜𝑓

ℎ𝑒𝑟𝑟𝑖𝑛𝑔 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
)           (11) 

 
 

, where σ is residual variance of recruitment process. In the predictions of this study, the modified meta-

analysis model is used to predict additional mortality of herring eggs as a proportion. To model oil 

impact on eggs alone instead of total offspring, the additional mortality needs to be included in the 

calculation of spawned eggs in the year of the accident, to get survived spawned eggs after oil exposure 

(Figure 17). This comes from the idea that density dependent survival of eggs to recruits happens after 

the more short-term effect of oil induced additional mortality.  

 

In the population model, the density dependent survival of eggs is assumed to follow either Beverton-

Holt or Ricker models. These models assume a density dependent survival of young fish to recruits 

(Beverton and Holt, 1959; Ricker, 1954). In the population model, recruitment is calculated from 

survived eggs (10), and the stock recruitment models are thus parameterized in terms of density 

dependent survival of eggs. This means density dependent survival is limited to egg phase. As stock 

abundance increases, and consequently the number of spawned eggs, the density dependent survival of 

eggs decreases recruitment exponentially and vice versa. The posterior probabilities of the two models 

in the population model were 93 percent for Ricker model and 7 percent for Beverton-Holt. Therefore, 

this study focuses only on the effects of the Ricker model.  

 

Parameter for proportion of oiled coastline, in herring spawning areas, needs to be added for integrating 

the modified meta-analysis posteriors, and prediction of oil impacts. The effect of additional oil induced 

mortality of eggs is calculated as spawned eggs survived after exposure (12). Eggs survived after oil 

exposure is then simply added to the calculation of recruits (13), to integrate the oil impact to population 

dynamics.  

 

𝐸𝑔𝑔𝑠 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑
𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓

𝑒𝑔𝑔𝑠 𝑠𝑝𝑎𝑤𝑛𝑒𝑑
 × (1 − 

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑖𝑙 𝑖𝑛𝑑𝑢𝑐𝑒𝑑
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 ℎ𝑒𝑟𝑟𝑖𝑛𝑔 𝑒𝑔𝑔𝑠

 × 
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓
𝑜𝑖𝑙𝑒𝑑 𝑐𝑜𝑎𝑠𝑡𝑙𝑖𝑛𝑒

) (12) 

 

log(𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡)  ~ 𝑁 (log (
𝐸𝑔𝑔𝑠 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 

𝑎𝑓𝑡𝑒𝑟 𝑜𝑖𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
 ×  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑜𝑓 𝑒𝑔𝑔𝑠

) − 0.5 ×  𝜎 , 𝜎)  (13) 
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Figure 17, DAG of the integration of the oil impact into the population model 

 
Prediction of the economic values of catches and total biomass 

 
To enable the prediction of economic values of catch and biomass, a parameter for annual first sale 

price of herring is added to the model. Values are calculated by multiplying catch and biomass 

observables of the population model (14 – 17) with the first sale price. The observable parameters 

estimate the true weights of catch and biomass.  

 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒

=  
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒

 × ∑
𝑀𝑒𝑎𝑛 𝑤𝑒𝑖𝑔ℎ𝑡
𝑜𝑓 𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠

𝐴
𝑎=1  × 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑎𝑐ℎ
𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛 𝑠𝑢𝑟𝑣𝑒𝑦 𝑑𝑎𝑡𝑎

   (14) 

 
 

𝐶𝑎𝑡𝑐ℎ
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒

=  
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒

 ×
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎

𝑓𝑖𝑠ℎ 𝑔𝑒𝑡𝑠 𝑐𝑎𝑢𝑔ℎ𝑡
 ∑

𝑀𝑒𝑎𝑛 𝑤𝑒𝑖𝑔ℎ𝑡
𝑜𝑓 𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠

𝐴
𝑎=1  ×  

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑎𝑐ℎ
𝑎𝑔𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛 𝑐𝑎𝑡𝑐ℎ 𝑑𝑎𝑡𝑎

  (15) 

 

 

 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

=  𝐵𝑖𝑜𝑚𝑎𝑠𝑠
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒

 × 
𝐹𝑖𝑟𝑠𝑡 𝑠𝑎𝑙𝑒 𝑝𝑟𝑖𝑐𝑒

𝑜𝑓 ℎ𝑒𝑟𝑟𝑖𝑛𝑔
                    (16) 

 

 

 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓
𝑐𝑎𝑡𝑐ℎ

=  𝐶𝑎𝑡𝑐ℎ
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒

 × 
𝐹𝑖𝑟𝑠𝑡 𝑠𝑎𝑙𝑒 𝑝𝑟𝑖𝑐𝑒

𝑜𝑓 ℎ𝑒𝑟𝑟𝑖𝑛𝑔
       (17) 
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Predicting with the integrated prediction model developed in this thesis 

 

The idea of this study is to use the integrated bioeconomic model, consisting of the population model 

developed by Mäntyniemi et al. (2013a) and the modified meta-analysis model developed in this thesis, 

for predicting the impacts of hypothetical oil spills on Baltic Sea main basin herring population, and the 

consequential economic impacts to fishermen. The posteriors of the population model and the modified 

meta-analysis model are used to predict future parameter values from the posterior predictive 

distribution (Figure 18). The modified meta-analysis model posteriors are programmed into a separate 

block (Appendix 3) inside the population model, for the purpose of predicting the additional mortality 

caused by the oil accident in each scenario.  

 

 
Figure 18, Predicted quantities 

 
 
 
 
 
 

 
Modified meta-analysis model run for estimating parameter posteriors 

 
The modified meta-analysis model is first run separately to estimate the parameter posteriors that will 

be integrated into the population model, and for estimating certain aspects of Antonio Gramsci 1987 

spill. Table 3 presents the specified priors for the modified meta-analysis model. 

 

 

 

 

 

 

3.2 Running of the models and prior specification 
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Hyperparameters Distribution Truncation 

API effect N (0, 1)  

Expected API in the common population N (32.7, 15)  

Expected oil type specific additional IMOLS per exposure time in 
common population 

N (0, 10)  

Standard deviation of oil type specific additional IMOLS per exposure 
time in common population 

U (0.01, 50)  

Standard deviation of IMOLS per exposure time with no exposure in 
common population 

U (0.01, 10)  

Expected IMOLS per exposure time with no exposure in common 
population 

N (0, 10)  

Standard deviation of IMOLS per exposure time after oil 
exposure/Standard deviation of additional oil induced IMOLS 

U (0.01, 10)  

Concentration of TPAH in water for Rahikainen et al. data point N (0.006, 0.04) > 0 

Exposure time in days for Rahikainen et al. data point N (15, 4) > 0 

Probabilities of different models in BMA for Rahikainen et al. data 
point 

Equally likely  

Table 3, Priors for the modified meta-analysis model run 

 
Prior for the expected API in the common population was specified according to the OPEC reference 

basket concept (OPEC, 2021). In the basket are the API figures of the main exported crude oils of OPEC 

member countries, weighted by production and export amounts to main markets. The weighted average 

API of the basket is 32,7, which is used as the mean of the prior. Standard deviation is set to a high 

enough value to represent uncertainty in prior knowledge, and high variation in oil type characteristics 

between the common population groups. The prior for API effect is specified as a vaguely informative 

normal distribution. API effect values are assumed to lie between -1 and 1. 

 

There were 8 different oil products in the experiment studies used in Raubenheimer et al.’s 

(unpublished) data. According to Blasko et al. (1972), different crude oils from Cook Inlet have an 

average API gravity of 35,11. Venezuela crude oil and Tuimaza crude oil used in Linden (1978) had 

31,14 and 33 API gravities. Benzene has 32,7 API gravity (Stauffer et al., 2008). According to EIA 

(2020), no. 1 fuel oil, a light fuel oil, has about 43 API gravity. According to ITOPF (2002), Cosco 

Busan heavy fuel oil has 11-15 API, and ANSCO has 28 API gravity. According to Banet (1994), 

Prudhoe Bay crude oils usually have 25–30 API gravities. These API figures are used as the API 

covariates in equation 5. 

 
Expected IMOLS per exposure time with no exposure in common population, was specified a 

noninformative normal prior. This reflects the varying natural mortalities in nature (Table 2) and 

varying natural mortalities in the studies of Raubenheimer et al.’s (unpublished) data set. Prior for the 

expected oil type specific additional IMOLS per exposure time in common population, was specified 

as noninformative normal, reflecting the large variation in oil characteristics between different possible 

groups. The priors for all standard deviation hyperparameters are specified as uninformative uniform 

distributions.   
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Prior for exposure time for the Rahikainen et al. (2017) data point, is specified according to 15 days 

expected incubation time and timing of the Antonio Gramsci accident. The spill occurred February 1987 

in ice covered waters and the oil remained under the ice for two months (Urho, 1991). The low water 

temperature, ice coverage, and possible general oil type being crude oil, suggest the weathering of PAH 

compounds was slow (Wiens 2013; Fingas et al. 2011; National research council 2003). Therefore, the 

exposure time of herring eggs could have been close to, or equal to incubation time. In cold water, 

incubation time can be even as high as 40 days (Bigelow and Schroeder, 1953), which was considered 

in the standard deviation of the prior. The toxic PAH compounds were assumed to have persisted in the 

water column under the ice until spawning time, and throughout the incubation time. Since there are no 

mentions in literature of measured TPAH concentrations in the water column after the spill, the prior 

for concentration was estimated according to concentrations of other known spills. The prior mean was 

specified to correspond the average concentration (in parts per million (ppm)) of the range reported by 

Wolfe et al. (1994) after the Exxon Valdez spill. The standard deviation of the prior was specified broad 

enough to allow other realistic values, considering the spill volume and the oil type being generally 

crude oil. The different oil type specific BMA models for expected additional mortality, were 

considered equally likely a priori.  

 

 
Prediction model runs of the hypothetical oil spills 

 
The population model is run in its original form for estimating posteriors of its parameters from the 

historical observed data used in Mäntyniemi et al. (2013a). These posteriors are used in the prediction 

model scenario runs. Of the modified meta-analysis model posteriors, only estimated oil type specific 

additional IMOLS per exposure time parameters and standard deviation of additional oil induced 

IMOLS parameter are transferred to the prediction model (Figure 19).  
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Figure 19, Transferring posteriors to the prediction model 

 

The scenarios run with the prediction model vary across four parameters (Figure 20). There are in total 

36 scenario combinations. Initial population abundance will be set to two different levels. Both levels 

will be run with two different oil types. Each oil type will cover three different proportions of oiled 

herring spawning coastline, with three different concentrations of TPAH in water. The assumption is 

that in the case of an accident, samples and information for these parameters would have been collected 

and calculated. Making accurate predictions is always dependent on the information content of field 

samples (Boehm et al. 2013). Concentration parameter is assigned informative normal priors, with 

expected values according to the scenarios, and concentrations of scenario oils found in past spills 

(Table 2). The model assumes the hypothetical spills have happened right before spawning, so exposure 

time will also be specified an informative normal prior with expected value of 15 days, corresponding 

the probable water temperatures during spring spawning, with deviation high enough to allow longer 

incubation time in colder waters. The oiled coastline parameter is specified an informative beta prior 

varying according to the scenarios. The population abundance levels are set to the corresponding 

posterior years from the population model run posteriors. The years are chosen to represent different 

levels of stock-recruitment ratios to induce effects according to the Ricker model parameterization in 

Mäntyniemi et al. (2013a). The last estimated year of the population model is on the level where stock 

abundance is on a relatively high level, according to the Ricker model, so number of spawned eggs is 

high. When number of spawned eggs is high, density dependent survival of eggs is low and so is 

recruitment. The lowest estimated year on the other hand is on a level, where number of spawned eggs 

is small, so density dependent survival and recruitment are high. 
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Figure 20, Illustration of the scenario combinations 

 

 

 

 

 
 

The posteriors of the model parameters were estimated using MCMC sampling from the joint posterior 

distribution. The simulation was implemented using Just Another Gibbs Sampler (JAGS) built on top 

of R programming language. 

 

In all the MCMC runs, four independent MCMC chains were ran on separate processors. For the meta-

analysis model run, 100 000 samples were generated for each chain. For the population model run, 5 

000 000 samples were generated for each chain, saving every 100th sample. The predictions were made 

generating 100 000 samples for each chain, saving every 10th sample. The prediction runs took 

approximately 1.5 weeks. The population model run took approximately 1 week. These computation 

times highlight the demanding computational requirements of the kind of modelling done in this thesis.  

 

The non-convergence of the modified meta-analysis model chains was examined, first visually by 

plotting the trace plots of the parameter chains, and then running Gelman-Rubin diagnostics. The model 

was checked with posterior predictive checks and plotting Bayesian p-values. The population model 

was run identically as in Mäntyniemi et al. (2013a) so no model checking was done for it in this thesis. 

 

 

 

3.3 Computation and model checking 
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4 Results 

 
 
 

In this section, the results from running the modified meta-analysis model described in section 3.1.2 are 

presented. The results of checking the modified meta-analysis model are presented as well. The results 

of the prediction model scenario runs are presented in the next section. 

 

Posteriors of oil type specific additional instantaneous mortality on log scale (IMOLS) 

per exposure time parameters 

 
As a reminder for reviewing the results, the common population is assumed to consist of theoretically 

infinite number of oil type groups. Oils belonging to a certain group have similar mortality causing 

characteristics. All the oils in the data set used in this thesis, are samples from different groups of the 

common population. The different common population parameters presented below, describe average 

expected values and standard deviations of the theoretically infinite number of groups. 

 

The hyperparameters of additional oil type specific IMOLS per exposure time parameters, were not 

well known a priori. They were assigned uninformative uniform or vaguely informative normal priors 

(Table 3). Posteriors of the hyperparameters and parameters conditional on hyperparameters, are 

presented in Table 4. IMOLS values less negative mean more lethal oil and vice versa. 

 
Hyperparameters Mean  SD 

API effect 0,2396  0,1860 

Expected API in the common population 35,7800  14,1514 

Expected oil type specific additional IMOLS per exposure 
time in common population 

-5,9118 
 

3,7591 

Standard deviation of oil type specific additional IMOLS 
per exposure time in common population 

1,5602 
 

1,8231 

Parameters Mean API covariate SD 

Additional IMOLS per exposure time of ANSCO -9,1434 28 2,5212 

Additional IMOLS per exposure time of Prudhoe Bay crude 
oil -7,7121 

27 
2,5277 

Additional IMOLS per exposure time of Venezuela crude oil -6,9203 31.4 1,2185 

Additional IMOLS per exposure time of Cook Inlet crude oil -6,1776 35 2,0072 

Additional IMOLS per exposure time of Tuimaza crude oil -6,6242 33 1,6462 

Additional IMOLS per exposure time of benzene -7,2972 32.7 2,3850 

Additional IMOLS per exposure time of heavy fuel oil -11,7502 13 4,4835 

Additional IMOLS per exposure time of light fuel oil -4,4518 43 0,4244 

Table 4, Posteriors of oil type specific additional mortality parameters 

 

4.1 Modified meta-analysis model run 
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The API effect hyperparameter tells how much the expected value of oil type specific additional IMOLS 

per exposure time increases, or decreases, per unit of difference between oil type API covariate and 

expected API in the common population. The posterior’s large standard deviation compared to its mean, 

reflects the uncertainty regarding the true value of the parameter. The uncertainty decreased 

significantly from prior to posterior (Figure 21). Expected API in the common population parameter 

did not changed much from prior to posterior (Figure 21). Since the prior was only vaguely informative, 

this reflects much variation in the common population and in the data, and/or that the posterior is mostly 

affected by the prior. 

 

 

Figure 21, Posterior vs. prior of API effect and expected API in the common population 

 

Expected oil type specific additional IMOLS per exposure time in common population parameter, 

represents the expected additional IMOLS per exposure time on average in all possible oil type groups 

in the common population. Since it was given a vaguely informative prior, the posterior was mostly 

affected by data (Figure 22). Posterior mean seems to lie somewhere between light fuel oil’s mean and 

Cook Inlet crude oil’s mean (Table 4). Standard deviation of the posterior tells the uncertainty regarding 

the true value of the parameter. The deviation has decreased significantly from prior to posterior, which 

is not surprising given the vagueness of the prior (Figure 22). 
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Figure 22, Posterior vs. prior of standard deviation and expected value of oil type specific additional 

IMOLS per exposure time in the common population 

 

Standard deviation of oil type specific additional IMOLS per exposure time in common population 

parameter tells the expected deviation around the expected value within a group on average in the 

common population. The parameter has large standard deviation compared to its mean, representing 

uncertainty regarding the true value of this parameter. The expected value of this parameter affects the 

standard deviation of the expected oil type specific additional IMOLS per exposure time in common 

population parameter’s standard deviation. If the expected value of the standard deviation parameter is 

high, then the standard deviation of the expected value parameter is high as well. Since the prior of this 

parameter was uniform, the posterior is only affected by the data. 

  

Additional IMOLS per exposure time parameters of the oils in the data set, have somewhat similar 

standard deviations around their means proportionally, compared to the standard deviation parameter 

of the common population, except for light fuel oil. The standard deviations of these parameters 

represent uncertainty regarding the true values of the parameters. Therefore, uncertainty seems to be 

very low, proportional to the expected value, for light fuel oil compared to the rest of the oils.  

 

According to the results, light fuel oil is most lethal and heavy fuel oil least lethal. Venezuela, Cook 

Inlet and Tuimaza crude oils seem to be somewhat equally lethal. ANSCO seems to be somewhere in 

between heavy fuel oil and Prudhoe bay crude oil. It is easier to understand the effect of these 

parameters, by using them in equation 4 with fixed concentration (0,1 ppm) and exposure time (15 

days), then transforming the results with equation 5 and subtracting from one to get total additional 

mortality as a proportion (Figure 23). 
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Figure 23, Example of oil type specific additional IMOLS per exposure time parameters' effect on total 

mortality as a proportion (concentration = 0,1 ppm, exposure time = 15 days) 

 
Posteriors of IMOLS per exposure time with no oil exposure parameters 

 
Even though parameters related to IMOLS per exposure time with no exposure are not transferred to 

the prediction model, their posteriors are analyzed to see how the idea of treating IMOLS per exposure 

time with no exposure as a random effect works. The hyperparameters were not well known a priori 

and were assigned uninformative uniform or vaguely informative normal priors (Table 3). Posteriors of 

the hyperparameters and of parameters conditional on hyperparameters are presented in Table 5.  

 
Hyperparameters Mean SD 

Standard deviation of IMOLS per exposure time with no 
exposure in common population 

2,1982 0,6252 

Expected IMOLS per exposure time with no exposure in 
common population 

-3,9353 0,7121 

Parameters Mean SD 

IMOLS per exposure time with no exposure, study 1 -3,7104 0,3944 

IMOLS per exposure time with no exposure, study 2 -4,8312 0,4809 

IMOLS per exposure time with no exposure, study 3 -5,0117 0,3720 

IMOLS per exposure time with no exposure, study 4 -3,1468 0,4886 

IMOLS per exposure time with no exposure, study 5 -5,6367 0,8279 

IMOLS per exposure time with no exposure, study 6 -5,4436 0,8129 

IMOLS per exposure time with no exposure, study 7 -5,2553 0,2732 

IMOLS per exposure time with no exposure, study 8 -5,4163 0,5208 

IMOLS per exposure time with no exposure, study 9 -2,8400 0,6794 

IMOLS per exposure time with no exposure, study 10 0,4352 0,2796 

IMOLS per exposure time with no exposure, study 11 -2,6562 0,6115 

Table 5, Posteriors related to mortality with no exposure 

 
In this study, the parameters for IMOLS per exposure time with no exposure are treated as random 

effects varying across different studies in the data set. Assumption of the parameters’ treatment as 
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random effect was made, because of the varying natural mortalities in the data set studies. For example, 

study ten had large natural mortality, which is reflected in the expected value of its study specific 

IMOLS per exposure time with no exposure parameter. The standard deviations of the parameters are 

mostly small compared to their means, except for study ten, and they represent uncertainty regarding 

the true values of the parameters. Standard deviations of the common population hyperparameters have 

decreased significantly from prior to posterior (Figure 24). The priors were however uniform or vaguely 

informative normal, and thus posteriors are mostly or only affected by data. 

 

 
Figure 24, Prior vs. posterior of standard deviation and expected value of IMOLS per exposure time 

with no exposure in the common population 

 
The effects of the study specific IMOLS per exposure time with no exposure parameters on mortality 

as a proportion are best illustrated with an example using fixed concentration (0,02 ppm), fixed oil type 

for additional mortality (Venezuela crude oil) and fixed exposure time (15 days) (Figure 25). Study ten 

is excluded from the example, because with such large natural mortality, total mortality as a proportion 

is always close to one in this example.  
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Figure 25, Example of the effect of study specific IMOLS per exposure time with no exposure 

parameters on mortality as a proportion (concentration = 0,02 ppm, exposure time = 15 days, oil type 

= Venezuela crude oil) 

 

 

Estimating aspects of the Antonio Gramsci 1987 spill  
 
Part of the purpose for running the modified meta-analysis model, was to estimate aspects of the 

Antonio Gramsci oil spill of 1987 (Figures 26). In the posterior, much probability has been allocated 

away from oil type one, ANSCO. It seems oil types three, Venezuela crude oil, four, Cook Inlet crude 

oil and five, Tuimaza crude oil, are the most probable crude oil types, from the data set’s crude oils, to 

have been the oil type involved in the Antonio Gramsci 1987 spill. Oil type two, Prudhoe Bay crude 

oil, remained somewhat unchanged from prior to posterior.  

 

 

 
Figure 26, Prior vs. posterior of aspects related to Antonio Gramsci spill of 1987 

 
 
Exposure time and concentration have not been updated much from prior to posterior. This could be 

explained by the fact that there is only one data point for updating them. Therefore, the posteriors are 
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mostly affected by the priors. A sensitivity analysis was conducted to determine how much the BMA 

results are affected by the priors of exposure time and concentration parameters.  

 

There is not much effect on the BMA results when using uniform priors for concentration and exposure 

time (Figure 27). Again, concentration and exposure time parameters are not significantly affected by 

updating from prior to posterior. Cook Inlet crude oil has lost some probability and ANSCO has gained 

a little, but otherwise the BMA results look like the original distribution. 

 

 

Figure 27, Prior vs. posterior of aspects related to Antonio Gramsci spill of 1987, uniform priors for 

concentration and exposure time 

  

When using high priors for concentration and exposure time, even more probability is allocated from 

Cook Inlet crude oil to ANSCO (Figure 28). There is virtually no change in concentration and exposure 

time from prior to posterior in this case.  

 

 

 
Figure 28, Prior vs. posterior of aspects related to Antonio Gramsci spill of 1987, high priors for 

concentration and exposure time 

 
 

 

Model checking 

 
The model was checked by plotting sorted Bayesian p-values, plotting predicted data from the posterior 

predictive distribution against the data, and plotting Bayesian p-values against the concentration data in 

logarithmic scale (Figure 29). 
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Figure 29, Model checking results 

 
The sorted Bayesian p-values span uniformly from 0 to 1 (Figure 29). This suggests no bias and good 

fit, at least in terms of marginal variance. The Bayesian p-value calculates whether predictions, given 

the data, are more extreme than the actual data points. When the sorted p-values span uniformly from 

0 to 1, it means predictions done with the model have a 50 % probability of being more extreme than 

the data points. Therefore, on average the model does not overpredict or underpredict.  

 

Plotting predicted survival proportion data against the actual data, shows visually how well the 

predictions mimic the data. The predictions seem to mimic the model data quite well, as can be seen 

from the somewhat uniform distribution of the points on both sides of the diagonal line (Figure 29). 

The fit of the model can also be checked by plotting Bayes p-values against log(concentration). Since 

there is no clear pattern evident in the scatterplot (Figure 29), and the points are scattered somewhat 

evenly across the plot at each log(concentration), the fit seems good. 

 

Finally, correlations between parameters transferred to the prediction model were checked (Figure 30). 

It seems there is positive correlation between the additional mortality parameters. Light fuel oil seems 

to be an exception. The standard deviation of total mortality seems to have little negative correlation 

with some of the additional mortality parameters.  
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Figure 30, Correlation between transferred parameters 

 

Because there is correlation between the transferred parameters, they will be transferred as a 

multivariate normal distribution. This way, the correlation can be considered in the predictions. 

 
 
 

 
In addition to the scenarios in Figure 18, the prediction model was run without oil exposure for each of 

the two initial population states. The scenario results are illustrated with line graphs, in which the black 

horizontal lines, where y = 0, represent results without oil exposure. Results of the no oil exposure runs 

were used as reference scenarios to which all oil exposure results were compared to. This section is 

divided according to the different predicted quantities (Figure 18).  

 

Population abundance results are presented as annual percent changes from the level of no oil exposure 

scenario. Results regarding value of biomass and catch, are presented as cumulative economic value 

changes from the level of no oil exposure scenario at the end of prediction period, in millions of Euros. 

The development of the cumulative economic value changes year by year for each scenario can be seen 

in Appendix 4.  

 

4.2 Prediction model scenario runs 
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The results are summarized with expected values and 95 % probability intervals. A 95% probability 

interval shows the uncertainty regarding the true value of a parameter. Within the interval, lie 95% of 

the possible true values, leaving out 2.5% from the highest end of values, and 2.5% from the lowest 

end. A 2.5% quantile tells the lowest value of the 95% probability interval, and a 97.5% quantile tells 

the highest value of the 95% probability interval. In the results below, the expected values tell the 

differences between the expected values of the oil spill scenarios and the expected values of the 

reference scenarios. The quantiles tell the differences between the quantiles of the oil spill scenarios 

and the quantiles of the reference scenarios.  

 

Oil induced change in population abundance compared to no oil exposure 

 

 

Figure 31, Prediction results: population abundance expected value and 95% probability interval (solid 

line = 2.5% quantile, dashed line = 97.5% quantile), ANSCO, last year of population model 
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When initial population abundance was set to the last estimated year of the population model, exposure 

to ANSCO did not cause significant expected changes from the reference scenario (Figure 31). With 

exposure to ANSCO, the highest possible true values did not change significantly from the reference 

scenario. The lowest possible values did change from the reference scenario and, up until year 7, the 

variation of the changes between the oil spill scenarios was between -10 and 10 percent. After year 7, 

there was more variation in the changes between the scenarios.  

 

 

Figure 32, Prediction results: population abundance expected value and 95% probability interval (solid 

line = 2.5% quantile, dashed line = 97.5% quantile), ANSCO, lowest year of population model 
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When initial population state was set to the lowest estimated year of the population model, ANSCO 

exposure caused, in some scenarios, expected population abundance to decrease a few percent from the 

reference scenario by year 2 (Figure 32). Population abundance quickly recovered to the reference 

scenario level after year 3. ANSCO’s low additional IMOLS per exposure time (Table 4), seems to 

cause little expected changes in population abundance from the reference scenario, regardless of 

concentration and proportion of oiled coastline. The highest possible true values did not change 

significantly from the reference scenario in any of the oil spill scenarios. The changes of the lowest 

possible true values from the reference scenario, show high variation between oil spill scenarios. Up 

until year 7, the variation of the changes was between -20 and 20 percent. After year 7, the magnitudes 

of the changes were larger.  
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Figure 33, Prediction results: population abundance expected value and 95% probability interval (solid 

line = 2.5% quantile, dashed line = 97.5% quantile), Light fuel oil, last year of population model 

 

Exposure to light fuel oil caused more significant expected changes in population abundance from the 

reference scenario, than exposure to ANSCO (Figure 33, Figure 34). Interestingly, when initial 

population state was set to the last estimated year of the population model (Figure 33), and proportion 

of oiled coastline was set to 10 or 50 percent, expected change in population abundance from the 

reference scenario was slightly positive. According to the Ricker model parameterization used in the 

population model, when initial population abundance, and thus spawned eggs is on a high level, an oil 

induced decrease in spawned eggs can increase recruitment if the decrease in spawned eggs is not too 

high. It should be noted here, this thesis does not promote oil spills as a good way to increase herring 
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recruitment. This is merely an effect of the stock-recruitment model assumptions made in the population 

model. According to the 95% probability interval, the scenarios with 50% oiled coastline had smaller 

lowest possible true values in year 2 than the reference scenario. After year 2, the variation of the oil 

spill scenarios’ changes in lowest possible true values from the reference scenario, is between -10 and 

10 percent. After year 7, the variation between scenarios is larger. The highest possible true values do 

not differ significantly from the reference scenario. 

 

 

Figure 34, Prediction results: population abundance expected value and 95% probability interval (solid 

line = 2.5% quantile, dashed line = 97.5% quantile), Light fuel oil, lowest year of population model 
 

According to the Ricker parameterization, when population abundance is on a low level, the number of 

spawned eggs is low, and density dependent survival of eggs is high. Therefore, a decrease in spawned 

 



54 
 

eggs due to oil exposure, does not yield significant density dependent increase in recruitment. When 

initial population state was set to the lowest year of the population model, expected population 

abundance decreased compared to the reference scenario in all oil spill scenarios (Figure 34). According 

to the results, expected change in population abundance from the reference scenario, has a negative 

correlation with both concentration and proportion of oiled coastline. According to the 95 % probability 

interval, the highest possible true values of the oil spill scenarios, were smaller compared to the 

reference scenario from year 2 to 5. There is much more variation in the changes of the lowest possible 

true values between oil spill scenarios from the reference scenario, than in the changes highest possible 

true values. The lowest possible true values are increasingly smaller compared to the reference scenario 

after year 7, except in 100% oiled coastline scenarios with low and mid concentrations in year 9.  

 

In conclusion, light fuel oil clearly causes population abundance to change more significantly from the 

reference scenario than ANSCO. With ANSCO exposure, expected changes from the reference scenario 

were practically nonsignificant. When initial population state was set to the last estimated year of the 

population model, population abundance increased in some light fuel oil scenarios from the reference 

scenario level, suggesting favorable effect on recruitment due to Ricker model parameterization. When 

population state was set to the lowest estimated year of the population model, the expected changes 

from the reference scenario in the light fuel oil scenarios were most significant. In scenarios with 100% 

oiled coastline, the expected change was around -30 percent. The 95 percent probability intervals 

suggest little difference between highest possible true values of the scenarios and highest possible true 

values of the reference scenario. The lowest possible true values of the scenarios differed significantly 

from the reference scenario. The variation of the lowest possible true value changes between the oil 

spill scenarios, increased significantly from year 6 or 7 onwards, possibly indicating increasing 

uncertainty in later prediction years. 

 

Impact of ANSCO exposure on the economic value changes of total biomass compared to 

no oil exposure 

 

Exposure to ANSCO, when initial population state was set to the last estimated year of population 

model, caused expected cumulative economic value of total biomass at the end of the prediction period 

to increase from the reference level in most scenarios (Figure 35). This is most likely due to Ricker 

model parameterization. Cumulative 95 percent probability intervals show the uncertainty regarding the 

true values of cumulative economic value change of total biomass from the reference scenario. There 

was much variation in the changes in the lowest and highest possible true values across the oil spill 

scenarios.  
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When initial population state was set to the lowest estimated year of the population model, all scenarios 

yielded negative expected cumulative value changes from the reference scenario (Figure 35). When 

number of spawned eggs is proportionally low, a decrease in eggs does not yield density dependent 

advantages in recruitment, according to the Ricker model parameterization. Interestingly, the scenario 

with 50 % oiled coastline and mid concentration of TPAH in water, yielded larger expected cumulative 

value decrease from reference scenario level, than scenarios with 100 % oiled coastline. 

 

 

Figure 35, Prediction model results: economic value change in total biomass from the level of no oil 

exposure, ANSCO 

 
When initial population state was set to the lowest estimated year of the population model, the changes 

of the highest possible true values from the reference scenario level became increasingly negative, as 

oiled coastline rose from 10 to 50 %. The changes of the lowest possible true values from the reference 

scenario showed a similar trend, but not as steep.  

 

Impact of ANSCO exposure on the economic value change of total catch compared to no 

oil exposure 

 

According to the oil spill scenario results, changes in cumulative total catch values from the reference 

scenario, are smaller in magnitude compared to changes in cumulative total biomass value. This is not 

surprising, since fishing mortality is only a proportion of total biomass. When initial population state 

was set to the last estimated year of the population model, the expected changes in cumulative total 
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catch value from the reference scenario, were in all oil spill scenarios positive or close to zero (Figure 

36). This is most likely due to Ricker model parameterization. The variation of the changes in expected 

values from the reference scenario across oil spill scenarios, was between 0 and 5 M€. The lowest 

possible true values of the oil spill scenarios did not differ significantly from the reference scenario. 

The highest possible true values were mostly higher than in the reference scenario. 

 

 

Figure 36, Prediction model results: economic value change in total catch compared to no oil exposure, 

ANSCO 

 
When initial population state was set to lowest estimated year of the population model, the expected 

changes in cumulative values of total catch from the reference scenario level, were negative in all 

scenarios. The variation of the expected changes across the oil spill scenarios, was steady between -3 

and 0 M€. The lowest possible true values did not differ from the reference scenario. The changes of 

the highest possible true values from the reference scenario, were increasingly negative as oiled 

coastline rose from 10 to 100 %. 

 

Impact of light fuel oil exposure on the economic value change of total biomass compared 

to no oil exposure 

 

According to the results, changes in value of total biomass from the reference scenario are greater in 

magnitude with light fuel exposure than with ANSCO exposure (Figure 37). 
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Figure 37, Prediction model results: economic value change in total biomass compared to no oil 

exposure, Light fuel oil 

 

When initial population state was set to the last estimated year of the population model, scenarios with 

10 and 50 % oiled coastlines resulted in expected cumulative value increases compared to the reference 

scenario, most likely due to Ricker model parameterization. Scenarios with 100 % oiled coastline 

resulted in value decreases (Figure 37). 50 % oiled coastline scenarios yielded most value increase. In 

100 % oiled coastline scenarios, value decrease had positive correlation with concentration. The 

variation of the expected changes in cumulative total biomass value from the reference scenario, was 

between -100 and 100 M€. The lowest possible true values did not differ significantly compared to the 

reference scenario in 10 and 50 % oiled coastline scenarios, except for the scenario with 50 % oiled 

coastline and mid concentration. The changes in the highest possible true values compared to the 

reference scenario, were more significant. The changes were mostly positive, most likely due to Ricker 

model parameterization. 

 

With the lowest estimated year of the population model as the initial population state, the expected 

changes in cumulative total biomass value from the reference scenario were negative in all oil spill 

scenarios (Figure 37). The trend of the expected changes was increasingly negative, as oiled coastline 

proportion rose from 10 to 100 %. The variation of expected changes across scenarios, was between  

-200 and 0 M€. The changes of the lowest possible true values of the oil spill scenarios from the 

reference scenario level, showed an increasingly negative trend as oiled coastline rose from 50 % to 

100 %. The highest possible true values differed more from the reference scenario than the lowest 
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possible values. The changes in the highest possible true values from the reference scenario level, had 

an increasingly negative trend. The variation of the changes across the oil spill scenarios was between  

-450 and -30 M€.  

 

Impact of light fuel oil exposure on the economic value change of total catch compared to 

no oil exposure 

 

Like with ANSCO exposure scenarios, the changes in cumulative economic values of total catch from 

the reference scenario level are smaller in magnitude than changes in the expected cumulative total 

biomass values (Figure 38). When initial population state was set to the last estimated year of the 

population model, the expected changes of the cumulative values compared to the reference scenario 

were positive, except for scenarios with 100 % oiled coastline. The increases in value, compared to the 

reference scenario, are most likely due to Ricker model parameterization. The variation of the expected 

changes in value across the oil spill scenarios is between -4 and 8 M€. According to the 95 % probability 

interval, the lowest possible true values of the oil spill scenarios did not differ from the corresponding 

values of the reference scenario. The changes in the highest possible true values of the scenarios, from 

the reference scenario level, were all positive. The highest positive changes were yielded in scenarios 

with 50 % oiled coastline.  

 

When the initial population state was set to lowest estimated year of the population model, all expected 

changes in cumulative total catch value from the reference scenario level were negative (Figure 38). 

The changes show an increasingly negative trend across scenarios, as proportion of oiled coastline and 

concentration increase. The variation of the changes across scenarios is between -20 and 0 M€. The 

lowest possible true values of total catch value do not differ from the reference scenario. The variation 

of the changes in highest possible true values across oil spill scenarios is between -50 to -3 M€. The 

changes in highest possible true values from the reference scenario level show an increasingly negative 

trend as proportion of oiled coastline and concentration increase. 
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Figure 38, Prediction model results: economic value change in total catch compared to no oil exposure, 

Light fuel oil 

 
 
As a conclusion it can be stated that as the oil type and initial population state are fixed, the patterns of 

the expected changes in cumulative total biomass values from the reference scenario, resemble the 

patterns of the expected changes in cumulative catch values from the reference scenario. This indicates 

that there are no changes in fishing mortality in the population model due to oil exposure and 

furthermore, as biomass decreases so do the catches in same proportions. According to the results, the 

highest possible true values of the cumulative catch values in the scenarios do not differ from the 

reference scenario. In general, the highest possible true values of total biomass of the oil spill scenarios 

differ less from the reference scenario, than do the lowest possible values.  

 
 
Impacts of the oil exposures on economic values calculated per recruit of the no oil 

exposure scenarios: total biomass 

 
 
To make the results transferable to other environments, the expected changes in values from the 

reference scenarios are presented per recruit, by dividing them with number of recruits in the no oil 

exposure reference scenarios (Figure 39, Figure 40).  
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Figure 39, Prediction results: Expected differences in value of total biomass calculated per recruit 

 
 
When initial population state was set to the last estimated year of population model, exposure to 

ANSCO yielded expected changes in the cumulative value of total biomass from the reference scenario 

between -0.001 and 0.002 € per recruit. When initial population state was set to the lowest estimated 

year of the population model, the results with ANSCO exposure were between -0.0012 and 0 € per 

recruit. With each initial population state, and with ANSCO exposure, the most negative changes in 

value of total biomass from the reference scenarios, are achieved in scenarios with 50 percent oiled 

coastline and mid concentration. This could have something to do with the characteristic of the Ricker 

model parameterization. 

 

Exposure to light fuel oil, when initial population state was set to the last estimated year of the 

population model, yielded expected changes in cumulative economic value of total biomass from the 

reference scenario between -0.004 and 0.005 Euros per recruit, depending on the scenario. The 

scenarios, resulting in value increases from the reference scenario, do so most likely due to the Ricker 

model parameterization. It appears 50 percent oiled coastline yields most value increase from the 

reference scenario. When initial population state was set to the lowest estimated year of the population 

model, all results were value decreases from the reference scenario. For scenarios with 50 and 100 

percent oiled coastlines, positive correlation between value decrease, concentration, and oiled coastline 

was evident. For scenarios with 10 percent oiled coastline, concentration was negatively correlated with 

value decrease. This effect is most likely due to the Ricker model parameterization. Expected changes 
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in cumulative economic total biomass values from the reference scenario seem to lie between -0.010 

and 0 Euros per recruit. 

 

 

Impacts of the oil exposures on economic values calculated per recruit of the no oil 

exposure scenarios: total catch 

 

 
According to the per recruit results, the expected changes in the cumulative values of catches from the 

reference scenario, are approximately ten times smaller than the corresponding results in expected value 

of total biomass (Figure, 40). This indicates fishing mortality is approximately 10 % of the total 

biomass.  

 

 
Figure 40, Prediction results: Expected differences in value of total catch calculated per recruit 

 
When initial population state was set to the last estimated year of the population model, and with 

ANSCO exposure, expected changes in the cumulative values of catch from the reference scenario, are 

between -0.0001 and 0.00025 € per recruit. When initial population state was set to lowest year of the 

population model, the corresponding values are between -0.0002 and 0 € per recruit. 

 

When initial population state was set to the last estimated year of the population model, and with light 

fuel exposure, the expected changes in cumulative value of catches from the reference scenario, were 

between -0.0003 and 0.0005 € per recruit. The highest positive differences in value are yielded with 

50% oiled coastline scenarios. When initial population state was set to the lowest estimated year of the 
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population model, the expected changes in cumulative values of catch from the reference scenario were 

all negative between -0.001 and -0.0001 € per recruit. 

 
 
 

5 Discussion and conclusions 
 

Assessing oil spill impact on Baltic Sea herring: 1. Impact on population 

 

The main purpose of this study was to develop a hierarchical bioeconomic Bayesian prediction model 

for predicting oil spill impacts on Baltic Sea herring population, through oil induced additional egg 

mortality. Furthermore, the predictions of the impacts on the population, were supposed to be used to 

determine financial impacts to fishermen. These aims were achieved very well in the prediction model 

that was developed in this thesis. In this chapter the main achievements of the results and future 

development areas for the model are discussed. The thesis and the discussion are then concluded in the 

final conclusions.  

 

The predicted quantities of the prediction model scenarios do not directly show mortality of eggs. The 

oil type specific additional instantaneous mortalities on log scale (IMOLS), estimated with the modified 

meta-analysis model, were transformed to mortality proportions, with which the number of spawned 

eggs was directly decreased within the prediction model design. The prediction model scenario results 

showed how this decrease in spawned eggs affected population dynamics parameters, and consequently 

financial impacts to fishermen. In this section the assessed impact on population abundance is discussed. 

The financial impacts are discussed in the next section. 

 

The results of this study indicated similar relationships between oil induced additional mortality of 

herring eggs and oil spill characteristics, as found in the literature review. According to the literature 

review, oil type affects the magnitude of additional mortality of oil. Generally, lighter oils are found to 

be more lethal than heavier oils. In the modified meta-analysis model, individual oil’s weight, expressed 

with an API covariate, was assumed to be the main oil type related explanatory factor of oil type specific 

additional IMOLS of herring eggs. To consider the unique compositions and characteristics of different 

oils, each oil in the data set was analyzed separately in this thesis, in contrast to the original meta-

analysis in Raubenheimer et al. (unpublished).  

 

In the modified meta-analysis model run results in section 4.1, lighter oils were found more lethal in 

general with some exceptions. For example, according to the API covariate value found in literature, 

Prudhoe Bay crude oil is heavier than ANSCO, but the results indicated it to be more lethal. The reason 
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for this, is most likely in part the fact that there are numerous other factors to consider as explanatory 

factors of oil lethality. Therefore, the model developed in this thesis should be expanded to include the 

consideration of these factors, such as precise PAH composition of an oil and its weathering. 

Weathering rate of an oil is in turn dependent on external conditions, which should be considered in the 

model structure, and linked with causal relationships to oil induced additional IMOLS. There is as well, 

uncertainty related to the API covariate values that were found in literature. The type of oil, and its 

origin, might not be correctly disclosed in the studies of the data set. In addition, the reported API 

figures for different oil types vary in literature, and even the definition of API can vary across different 

studies. Determining an accurate description for oil’s lethality, for example by using Bayesian meta-

analysis techniques, is an important subject for future research.  

 

In addition to oil type, the literature review found other important oil spill characteristics for assessing 

oil spill impact on herring egg mortality, such as concentration of TPAH in water, exposure time of 

eggs to PAHs, and proportion of oiled coastline in herring spawning grounds. The effects of these 

characteristics on Baltic Sea herring population, including oil type, were demonstrated with the 

hypothetical oil spill scenarios in the prediction model runs, except for exposure time, which was kept 

on the same level in all scenarios because of time constraints.  

 

In the literature review, initial concentration of TPAH in water was stated to be positively correlated 

with oil induced additional mortality of herring eggs. The modified meta-analysis model was designed 

to increase additional IMOLS per exposure time of herring eggs as a function of TPAH concentration 

on log scale. The results from the different prediction scenarios showed how changing initial 

concentration of TPAH in water, and consequentially changing number of spawned eggs after oil 

exposure, affected population dynamics parameter values. The effect of concentration was best seen in 

scenarios with light fuel oil, in which the results of different scenarios had clearer differences. In these 

scenarios, higher concentration could be seen to produce larger changes in population abundance from 

the reference scenario. The effect of the proportion of oiled coastline was, similarly to concentration, 

best evident in light fuel oil scenarios, where larger proportions of oiled coastline resulted in higher 

changes in population abundance from the reference scenario. The magnitudes of the changes from the 

reference scenarios were larger in light fuel oil scenarios than in ANSCO scenarios. 

 

A very interesting finding was made from the prediction scenario results. It appears the assumption of 

density dependent survival of eggs of the Ricker model used in the population dynamics model, 

determines partly how additional egg mortality affects predicted population dynamics parameters in the 

end (Figure 41).  In the population model, two possible density dependent stock-recruitment 

relationship models were used to describe the true relationship. They were weighted equally likely a 

priori and their posterior probabilities were 97 % for Ricker model, and 3 % for Beverton-Holt model. 
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Because of Ricker model’s high posterior probability, density dependence was analyzed only in relation 

to the Ricker model. 

 

 

Figure 41, Effect of the Ricker model on predicted quantities 

 

In some of the scenarios, when initial population state in the prediction scenarios was set to the last 

estimated year of the population model, corresponding a high population abundance, an oil induced 

decrease in spawned eggs caused an increase in population abundance from the reference scenario level. 

On the other hand, in most of the scenarios, when population state was set to the lowest estimated year 

of the population model, corresponding a low population abundance, a decrease in spawned eggs 

lowered population abundance. This might be at least in part due to the density dependent mechanism 

of the Ricker model parameterization.  

 

In the population model by Mäntyniemi et al. (2013a), the parameterization of the Ricker model, and 

calculation of recruits, are derived from survived eggs. Proportion of survived eggs is higher when 

number of spawned eggs is lower and vice versa. Therefore, when number of spawned eggs is high, due 

to high population abundance, the Ricker model increases exponentially the proportion eggs that survive 

to recruits, after oil exposure has first decreased the number of spawned eggs. The increase in 

recruitment is higher than the decrease in spawned eggs due to oil. On the other hand, if number of 

spawned eggs is already low, due to low population abundance, an oil induced decrease in number of 

spawned eggs does not raise the density dependent survival proportion of eggs to recruits after oil 
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exposure, more than what the decrease in number of spawned eggs is. Therefore, recruitment is 

decreased.  

 

The Ricker model effects are present in the predictions because, in Mäntyniemi et al.’s (2013a) analysis, 

the model’s posterior probability of being the true model for describing stock-recruitment relationship 

is high. However, the model is only compared to Beverton-Holt model. Therefore, Ricker model 

assumption in the population model, should be tested against other models from assessments of 

populations like the one being analyzed. Mäntyniemi et al. (2013a) recognize the need for testing their 

stock-recruitment relationship assumptions in their discussion. It is important in any fish stock 

assessment, and in oil impact assessment, to estimate, as well as possible, the prevalent true stock-

recruitment relationship.  

 

The effects of the Ricker model had limits in the prediction scenarios. For example, in the scenarios 

with light fuel oil, initial population state set to last estimated year of the population model, and with 

10 and 50 percent oiled coastlines, oil induced additional mortality of eggs caused the population 

abundance to increase from the level of the reference scenario. However, when proportion of oiled 

coastline was increased to 100 percent, the decrease in the number of spawned eggs due to oil exposure 

must have been so significant that it suppressed the Ricker model effects.  

 

The effects of the Ricker model were best seen in light fuel oil scenarios, in which the magnitude of the 

changes from the reference scenario were much greater. ANSCO caused much less change in all oil 

spill scenarios. The additional IMOLS caused by ANSCO, as determined by the modified meta-analysis 

model, is so low it does not seem to have a significant effect on the simulated fish population. That is, 

at least with the assumptions and data used in the developed model. Using one more crude oil from the 

dataset, who’s additional IMOLS is higher, for example Venezuela crude oil, could have yielded better 

comparisons for discussion.  

 

It should be noted here that the purpose of this thesis is not to promote, or suggest, that oil spills are a 

good thing for fish populations. The observed Ricker model effect, in the context of the developed 

model, does not consider the source of the decrease in spawned eggs. The decrease could have happened 

because of predation or environmental conditions, and the results would have been similar. The 

harmfulness of oil to the environment, and to other life stages of herring, are not considered in the 

developed model structure. These are, however, very important subjects for future research.  
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Assessing oil spill impact on Baltic Sea herring: 2. Impact on financial values 

 

The prediction scenarios were used to estimate financial impacts to fishermen, after the hypothetical 

spills had happened. Calculations of the impacts were done by multiplying biomass and catch 

observable parameter estimates, with a price per kg multiplier. The multiplier was constant for all sizes 

of herring for simplicity. This might be an oversimplification of the true effects on economic values. 

For example, the model developed in this study considers the price of herring to be unaffected by 

changes in demand and supply. The model should be developed further to consider effects of, for 

example, supply and demand and herring size classes on prices. Furthermore, the economic impacts 

were estimated only from the oil induced mortality of herring eggs. To estimate total economic impacts, 

oil effects to other life stages of herring, and to herring environments, should be considered. 

 

The model does not consider changes in fishing mortality after a hypothetical spill has happened. Most 

likely there would be restrictions, or even halts, on fishing after an oil spill, potentially for a long time 

like in the case of the Gulf of Mexico spill (Berenshtein et al., 2019). Therefore, the model should be 

run in the future, by assuming, for example, a three-year halt on fishing all together by assigning fishing 

mortality to zero. This would have an increasing effect on the negative value changes of catches from 

the reference scenario. There would of course be decreases in variable costs due to vessels standing in 

ports, which should be considered in the model as well.  

 

According to the results, expected changes in cumulative values of total biomass are always 

significantly larger than expected cumulative changes in values of catches (Figure 42). This makes 

sense since fishing mortality is always only a proportion from total biomass and, according to the 

results, the proportion of fishing mortality from total biomass seems to be around 0.1. Like the 

population abundance predictions, the predictions of changes in cumulative values showed results of 

bigger magnitude in scenarios with light fuel oil than with ANSCO. This makes sense in the light of the 

additional IMOLS results of the modified meta-analysis model. The effect of concentration and 

proportion of oiled coastline were most evident in light fuel scenarios. ANSCO caused significantly 

smaller differences compared to no oil exposure than light fuel oil. Light fuel is significantly lighter 

than ANSCO, at least according to the API covariate values found in literature, and thus more lethal 

according to the modified meta-analysis model. 
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Figure 42, Prediction results: Cumulative difference in value, biomass vs. catches and ANSCO vs. light 

fuel oil (Black areas behind red areas represent 95 % probability intervals, red areas in front represent 

the variability of expected values) 

 
Since the predictions of changes in cumulative values are derived straight from population dynamics 

parameter values with a multiplier parameter, the Ricker model effects are present in the changes in 

cumulative values as well. When initial population abundance was set to the last estimated year of the 

population model, most of the predicted changes in cumulative values are positive for both oil types, 

and for both catches and total biomass. Again, it should be noted, this thesis is not suggesting oil spills 

are good for fish populations, but rather that these results illustrate the effects of density dependent 

survival of eggs according to the Ricker model parameterization. This underlines the importance of 

understanding the true stock-recruitment relationship of a fish population in both stock assessment and 

oil impact assessment. The model developed in this thesis only considers oil effects on herring egg 

mortality and ignores other harmful and lethal direct or indirect effects of oil on biota. When population 

state is set to the lowest estimated year of the population model, the predicted changes in cumulative 

values were mostly negative for both oils, and for both catches and total biomass.  

 

The greatest negative changes in cumulative values of catches and total biomass from the reference 

scenario, were caused in scenarios where initial population state was set to the lowest value of the 

population model, and where oil type was light fuel oil. For total biomass, the largest possible negative 

change in cumulative value was about -450 million Euros. For catches the same was about -55 million 

Euros. The changes in cumulative values of catches, are dependent on annual predicted fishing 

mortalities in the prediction years and, as noted before, after an oil spill there would most likely be a 

halt on fishing for some time. This would decrease herring fishermen’s revenue to zero, but also 

decrease variable costs for the duration of the halt. The changes in cumulative value of total biomass 
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from the reference scenario, can be thought to represent the cumulative change in total present and 

future fishing potential from the reference scenario level at the end of the prediction period.  

 

To make the cumulative value change results transferrable to other herring areas, they were calculated 

per recruit of the no oil exposure reference scenarios. The idea is to enable decision makers in spill 

areas, where an occurred spill resembles one of the hypothetical spills in this thesis, to quickly get a 

ballpark idea of the magnitude of future financial impacts. To get a more accurate prediction, the oil 

mortality model would have to be integrated into a population model that describes the local population 

under analysis. To illustrate this idea let us assume an oil accident has happened in Prince William 

Sound (PWS) (Table 6). 

 

Oil type 
 Expected concentration of 

TPAH in water 
Expected exposure 

time 
Proportion of oiled 

coastline 

Light fuel oil  Mid  15 days 50 % 

Table 6, Characteristics of a hypothetical oil spill in PWS 

  

According to Muradian et al. (2017), median of herring recruitment in PWS in 2013 was 35 million, 

and according to their results, herring in the area had most likely fallen below regulatory threshold. 

Therefore, let us assume initial population abundance to a low level according to the Ricker model 

parameterization used in the population model. The prediction model predicted, with similar oil spill 

characteristics in the Baltic Sea, an expected change of -0.003 Euros per recruit for total biomass, and 

around -0,0003 Euros per recruit for catches from the reference scenario. As a very rough estimate, the 

expected economic value decreases of this hypothetical oil spill in PWS, from the reference scenario 

level, would be -105000 Euros for total biomass and, if we assume similar proportional fishing 

mortalities as in the Baltic Sea scenario, -10500 Euros for catches. These estimated changes are much 

smaller than in the Baltic Sea scenario however, according to Muradian et al.  (2017), estimated total 

biomass of herring in PWS was only about 10 000 tons compared to about 500 000 tons in the Baltic 

Sea, with the low population abundance used in the prediction model. 

 
Estimating aspects of the Antonio Gramsci oil spill 

 
As a very minor side task, the results of Rahikainen et al. (2017) were used for estimating aspects of 

the Antonio Gramsci 1987 oil spill. Because there was only one data point updating exposure time and 

concentration priors, their posteriors were mostly affected by the priors. It is, therefore, impossible to 

make any conclusions of the possible true concentration or exposure time of the spill. For this, more 

data points with, for example, results of estimated additional mortality as proportion would be needed.  
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The BMA model for assessing the possible oil type of the spill, was somewhat sensitive to the priors of 

concentration and exposure time parameters. It seems the model allocates probability to oil types, whose 

additional mortality characteristics, defined by the modified meta-analysis model, best fit the additional 

mortality of the Rahikainen et al. (2017) results, given the concentration and exposure time priors. The 

modified meta-analysis model results show ANSCO is the least lethal crude oil type of the data set 

followed by Prudhoe Bay crude oil (Table 4). The remaining three crude oils were quite similar 

however, Cook Inlet crude oil seems to be a little bit more lethal than Venezuela and Tuimaza crudes. 

Therefore, when the concentration and exposure time priors were changed from lower values to uniform 

or high values, the model allocated probability from the most lethal crude oil, Cook Inlet crude oil, to 

the least lethal crude oil, ANSCO. This makes sense, because the additional mortality results of the data 

point remained unchanged, but concentration and exposure time increased, and therefore the oil’s 

induced additional mortality per exposure time must decrease. Even though changing the priors 

allocated probability to some extent between Cook Inlet crude oil and ANSCO, the most probable oil 

types were in all cases Venezuela crude oil and Tuimaza crude oil. It is good to note however, that even 

their probabilities were not very high, around 25 %. 

 

Estimating these aspects was only a minor part of this thesis and it is hard to make any conclusions 

about them using only one data point. However, using the model developed for this thesis, makes it 

possible to assess unknown aspects related to any past spill, at least in a general level. The assessment 

would, however, need more data points for accuracy and possibly more parameters to explain the data 

points better.  

 

Final conclusions 

 

This thesis aimed at developing a model, with which it would be possible to predict oil spill impacts on 

Baltic Sea main basin herring population and furthermore, predict how these impacts on the population 

would economically impact fishermen. These aims were very well achieved. The prediction model 

developed in this thesis was able to predict oil spill impacts on both the Baltic Sea main basin herring 

population dynamics, and on the economic values of biomass and catches. The developed model is a 

great example of how data collected from laboratory studies can be integrated into population scale 

estimates.  

 

Predictions made with the model can be used for risk assessment of possible future oil spills, and for 

decision analysis after an oil spill has happened. Furthermore, the estimation of the Antonio Gramsci 

1987 spill aspects demonstrated the capability of the model to estimate unknown aspects of past spills. 

The economic impact predictions can function as bases for determining appropriate compensations to 
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fishermen, and other possible stakeholders, after a spill has occurred. The model can be fitted to other 

fish populations and species by changing the population model parameters accordingly. In its present 

form, the model can offer rough estimates of impacts on other herring, and similar species, population 

dynamics and economic values in other areas, with the per recruit predictions of changes in values of 

catches and total biomass. 

 

Many important areas of development were identified in the model. The oil mortality estimation part of 

the model could be extended to include more oils by adding more studies to the modified meta-analysis 

model. The main mortality causing characteristic of oil was assumed to be its weight however, there 

are other factors the modified meta-analysis model should consider. The accuracy of the results could 

be enhanced by including more studies with results of oil induced additional mortality per oil type. 

Furthermore, the data set used in the population model was the same as in Mäntyniemi et al (2013a), 

which is quite old and should be updated to a more recent time series.  

 

According to the results, the prediction model is sensitive to the stock-recruitment relationship 

assumptions made in the population model. Future research should be directed to accurately estimate 

the true stock-recruitment relationship of Baltic Sea main basin herring, and the same applies to any 

fish population to which the model could be applied to.  

 

The predicted changes in values made with the model, were only due to oil induced egg mortality. The 

prediction model developed in this thesis does not account for oil impacts on other life stages of herring, 

sublethal effects on herring, or damages to the environments where herring live and spawn. Therefore, 

the estimated financial impacts in this thesis should be considered only as one part of the possible total 

financial impacts, which could be estimated better if the model would consider the missing factors 

mentioned above. Furthermore, the calculation of the economic values should be developed to consider 

effects on prices from changes in supply and demand, and other possibly important factors.  

 

As a conclusion, the bioeconomic prediction model developed in this thesis is a generic impact 

assessment and risk analysis tool for decision making, with which the prediction of both biological and 

economic impacts of oil on fish populations is possible. The model in its present form can be thought 

of as a first version, which can be updated, indefinitely even, by adding more parameters and adding 

knowledge and data from both laboratory and field to the latest parameter posteriors, by treating them 

as new priors. This is the Bayesian way. 
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8 Appendices 
 

 

APPENDIX 1. Raubenheimer et al. (unpublished) data set 

 

 

Study Exposure time in 

days 

Mortality 

proportion 

Concentration in parts 

per million 

Oil type 

1 4 0,07 0,009 ANSCO 

1 4 0,09 0,6 ANSCO 

1 4 0,09 3 ANSCO 

1 4 0,1 0,6 ANSCO 

1 4 0,10 0,009 ANSCO 

1 4 0,10 0,09 ANSCO 

1 4 0,10 0,00001 ANSCO 

1 4 0,1 0,00001 ANSCO 

1 4 0,11 0,007 ANSCO 

1 4 0,11 0,007 ANSCO 

1 4 0,12 0,09 ANSCO 

1 4 0,15 3 ANSCO 

2 16 0,08 0,05 ANSCO 

2 16 0,08 0,00001 ANSCO 

2 16 0,10 0,01 ANSCO 

2 8 0,06 0,005 ANSCO 

2 8 0,07 0,05 ANSCO 

2 8 0,08 0,01 ANSCO 

2 16 0,18 0,08 ANSCO 

2 16 0,20 0,005 ANSCO 

2 8 0,11 0,08 ANSCO 

2 8 0,11 0,00001 ANSCO 

3 8 0,02 0,00001 ANSCO 

3 8 0,03 0,00001 ANSCO 

3 8 0,04 0,00023 ANSCO 

3 8 0,04 0,00001 ANSCO 

3 8 0,06 0,001 ANSCO 

3 8 0,08 0,00013 ANSCO 

7 11 0,00 0,121 ANSCO 

7 11 0,00 1,210 ANSCO 

7 11 0,00 1,040 ANSCO 
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7 11 0,01 12,10 ANSCO 

7 11 0,01 1,370 ANSCO 

7 11 0,01 0,1 ANSCO 

7 11 0,02 0,137 ANSCO 

7 11 0,02 1,040 ANSCO 

7 11 0,02 0,1 ANSCO 

7 11 0,03 1,210 ANSCO 

7 11 0,026 13,70 ANSCO 

7 11 0,03 0,00001 ANSCO 

7 11 0,03 0,00001 ANSCO 

7 11 0,03 1,040 ANSCO 

7 11 0,04 0,1 ANSCO 

7 11 0,04 0,137 ANSCO 

7 11 0,04 10,40 ANSCO 

7 11 0,05 1,210 ANSCO 

7 11 0,05 0,121 ANSCO 

7 11 0,05 0,00001 ANSCO 

7 11 0,05 0,00001 ANSCO 

7 11 0,05 0,00001 ANSCO 

7 11 0,05 0,00001 ANSCO 

7 11 0,06 0,1 ANSCO 

7 11 0,06 0,121 ANSCO 

7 11 0,06 0,137 ANSCO 

7 11 0,06 1,210 ANSCO 

7 11 0,06 0,121 ANSCO 

7 11 0,07 1,040 ANSCO 

7 11 0,07 10,40 ANSCO 

7 11 0,08 0,00001 ANSCO 

7 11 0,08 0,00001 ANSCO 

7 11 0,09 10,40 ANSCO 

7 11 0,09 1,370 ANSCO 

7 11 0,09 1,370 ANSCO 

7 11 0,10 13,70 ANSCO 

7 11 0,14 12,10 ANSCO 

7 11 0,17 0,00001 ANSCO 

7 11 0,17 0,00001 ANSCO 

7 11 0,22 0,137 ANSCO 

7 11 0,30 0,00001 ANSCO 

7 11 0,30 0,00001 ANSCO 

7 11 0,41 1,370 ANSCO 

7 11 0,59 12,10 ANSCO 

7 11 0,83 10,40 ANSCO 

7 11 0,85 12,10 ANSCO 
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7 11 0,85 13,70 ANSCO 

7 11 0,97 13,70 ANSCO 

8 16 0,00 0,0001 ANSCO 

8 16 0,00 0,0007 ANSCO 

8 16 0,05 0,00005 ANSCO 

8 16 0 0,009 ANSCO 

8 16 0,08 0,0004 ANSCO 

8 16 0,09 0,002 ANSCO 

8 16 0,17 0,008 ANSCO 

8 16 0,20 0,00004 ANSCO 

8 16 0,32 0,03 ANSCO 

8 16 0,55 0,09 ANSCO 

4 18 0,08 0,20000 Prudhoe Bay 

4 18 0,14 0,10000 Prudhoe Bay 

4 18 0,15 0,04000 Prudhoe Bay 

4 18 0,17 0,00001 Prudhoe Bay 

4 18 0,21 0,02000 Prudhoe Bay 

4 18 0,24 0,00001 Prudhoe Bay 

4 18 0,25 0,48000 Prudhoe Bay 

4 18 0,27 0,00200 Prudhoe Bay 

4 18 0,27 0,96000 Prudhoe Bay 

4 18 0,30 1,94000 Prudhoe Bay 

4 18 0,39 0,00001 Prudhoe Bay 

4 1,5 0,28 1,94000 Prudhoe Bay 

4 1,5 0,35 1,94000 Prudhoe Bay 

4 1,5 0,37 0,00001 Prudhoe Bay 

4 1,5 0,40 0,48000 Prudhoe Bay 

4 1,5 0,40 0,48000 Prudhoe Bay 

4 1,5 0,45 0,48000 Prudhoe Bay 

4 1,5 0,50 1,94000 Prudhoe Bay 

4 1,5 0,60 0,48000 Prudhoe Bay 

4 1,5 0,65 1,94000 Prudhoe Bay 

10 2 0,58 0,1 Prudhoe Bay 

10 0,5 0,27 0,1 Prudhoe Bay 

10 2 0,72 0,1 Prudhoe Bay 

10 1 0,58 0,1 Prudhoe Bay 

10 2 0,86 0,1 Prudhoe Bay 

10 1 0,65 0,1 Prudhoe Bay 

10 0,5 0,42 0,1 Prudhoe Bay 

10 0,17 0,17 0,002 Prudhoe Bay 

10 6 0,9999 0,1 Prudhoe Bay 

10 6 0,9999 0,1 Prudhoe Bay 

10 6 0,9999 0,1 Prudhoe Bay 
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10 1 0,80 0,1 Prudhoe Bay 

10 0,33 0,49 0,1 Prudhoe Bay 

10 0,5 0,70 0,1 Prudhoe Bay 

10 0,33 0,56 0,1 Prudhoe Bay 

10 0,33 0,65 0,1 Prudhoe Bay 

10 0,17 0,44 0,1 Prudhoe Bay 

10 0,17 0,45 0,1 Prudhoe Bay 

10 0,17 0,51 0,1 Prudhoe Bay 

10 0,17 0,61 0,002 Prudhoe Bay 

10 0,17 0,61 0,002 Prudhoe Bay 

5 6 0 0,00001 Venezuela 

5 6 0,02 0,00001 Venezuela 

5 6 0,08 0,1 Venezuela 

5 6 0,09 1 Venezuela 

5 6 0,26 10 Venezuela 

6 6 0 0,1 Venezuela 

6 6 0 0,00001 Venezuela 

6 6 0,02 0,1 Venezuela 

6 6 0,08 0,1 Venezuela 

6 6 0,08 1 Venezuela 

6 6 0,10 1 Venezuela 

6 6 0,12 1 Venezuela 

6 6 0,27 10 Venezuela 

6 6 0,28 10 Venezuela 

6 6 0,30 1 Venezuela 

6 6 0,49 10 Venezuela 

9 12 0,15 0,8 cook inlet  

9 12 0,20 0,00001 cook inlet  

9 12 0,25 1 cook inlet  

9 12 0,41 1 cook inlet  

9 2 0,20 2 cook inlet  

9 12 0,75 2 cook inlet  

9 2 0,21 2 cook inlet  

9 2 0,21 5 cook inlet  

9 2 0,22 4 cook inlet  

9 2 0,25 0,00001 cook inlet  

9 12 0,9999 3 cook inlet  

9 12 0,9999 3 cook inlet  

9 12 0,9999 4 cook inlet  

6 6 0,03 1 Tuimaza 

6 6 0,03 0,00001 Tuimaza 

6 6 0,08 0,1 Tuimaza 

6 6 0,08 1 Tuimaza 
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6 6 0,15 1 Tuimaza 

6 6 0,17 10 Tuimaza 

6 6 0,21 1 Tuimaza 

6 6 0,22 0,1 Tuimaza 

6 6 0,24 10 Tuimaza 

6 6 0,26 0,1 Tuimaza 

6 6 0,33 10 Tuimaza 

11 3 0,10 5 benzene 

11 3 0,15 18 benzene 

11 2 0,15 5 benzene 

11 2 0,15 18 benzene 

11 3 0,27 45 benzene 

11 1 0,10 5 benzene 

11 1 0,12 18 benzene 

11 2 0,27 45 benzene 

11 1 0,15 0,00001 benzene 

11 1 0,27 45 benzene 

3 8 0,02 0,00062 heavy fuel 

3 8 0,03 0,00001 heavy fuel 

3 8 0,05 0,00027 heavy fuel 

3 8 0,07 0,00001 heavy fuel 

3 8 0,09 0,002 heavy fuel 

3 8 0,10 0,00062 heavy fuel 

3 8 0,13 0,001 heavy fuel 

3 8 0,17 0,0011 heavy fuel 

6 6 0,01 0,05 light fuel 

6 6 0,09 0,5 light fuel 

6 6 0,30 0,5 light fuel 

6 6 0,36 0,05 light fuel 

6 6 0,39 0,5 light fuel 

6 6 0,40 0,05 light fuel 

6 6 0,96 0,5 light fuel 

6 6 0,9999 5 light fuel 

6 6 0,9999 5 light fuel 

6 6 0,9999 5 light fuel 
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APPENDIX 2. Code of the modified meta-analysis model 

 

 

jags_model_code="model{ 

#Below is the model for Raubenheimer et al. data set  

#######################################################3 

for(i in 1:n){  # loop through all observations 

# linear Gaussian model for the log-survival (ls[i]) 

x[i]~dnorm(mu[i],pow(sigma,-2)) 

pred_x[i]~dnorm(mu[i],pow(sigma,-2)) 

pred_surv[i] = exp(-exp(pred_x[i]) * exposuretime[i]) 

Bayesian_p_value[i]=step(x[i]-pred_x[i])  

mu[i]<-log(exp(alpha[study[i]])+exp(M[oil_type[i]])*exposure[i]*(log(concentration[i]+0.000000001)+12)) 

} 

# #Below is the code for Rahikainen et al. data point 

# ################################################################# 

 

x[n+1]~dbin(pred_survadd,N) 

pred_x[n+1]~dbin(pred_survadd,N) 

pred_survaddp~dnorm(muadd[mucat],pow(sigma,-2)) 

pred_survadd=exp(-exp(pred_survaddp)) 

pred_mortadd = 1-pred_survadd 

for(i in 1:5){ 

  muadd[i]<-log((exp(M[i])*(log(concentration2+0.000000001)+8))*exposuretime2) # M: additional mortality 

rate due to exposure, alpha: baseline mortality rate in control group = mean mortality effect mu 

} 

#################################################################################### 

##### Examples of the effect of oil type specific additional IMOLS per exposure time parameters on mortality  

for(i in 1:8){ 

pred_survaddexample[i]~dnorm(muaddexample[i],pow(sigma,-2)) 

pred_mortaddexample[i]= 1 - exp(-exp(pred_survaddexample[i])) 

muaddexample[i] <- log((exp(M[i])*(log(0.1+0.000000001)+8))*15) 

} 

#################################################################################### 

##### Examples of the effect of IMOLS per exposure time with no exposure parameters on mortality  

for(i in 1:11){ 

pred_survalphaexample[i]~dnorm(mualphaexample[i],pow(sigma,-2)) 
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pred_mortalphaexample[i]= 1 - exp(-exp(pred_survalphaexample[i])*15) 

mualphaexample[i] <- log(exp(alpha[i]) + exp(M[3])*(log(0.02+0.000000001)+12)) 

} 

##priors for hyperparameters of oil type specific additional IMOLS per exposure time 

################################################################################# 

for(i in 1:8){ 

  M[i] ~ dnorm(muMalloils + (APIeffect*(API[i]-commonpopAPI)), pow(STDoilclass, -2)) #EVO/ANSCO 

} 

muMalloils ~ dnorm(0, pow(10, -2)) #T(0,1) 

STDoilclass ~ dunif(0.01, 50) 

commonpopAPI ~ dnorm(32.7, pow(15,-2))  

APIeffect~dnorm(0,pow(1,-2)) 

 

API[1]=28  #EVO/ANSCO  #Different Ms for different oil types 

API[2]=27   #Prudhoe 

API[3]=31.14   #Venezuela 

API[4]=35   #Cook Inlet 

API[5]=33   #Tuimaza 

API[6]=32.7   #Benzene 

API[7]=13   #heavy fuel 

API[8]=43   #light fuel 

 

#Priors for hyperparameters of IMOLS per exposure time with no exposure 

########################################################################33 

for(i in 1:11){ 

  alpha[i]~dnorm(mualpha,pow(STDalpha, -2)) # different alphas for different studies 

} 

mualpha ~ dnorm(0, pow(10, -2)) 

STDalpha ~ dunif(0.01, 10) 

#Rest of the priors 

########################################################################### 

mucat ~dcat(pmu[1:5]) 

pmu[1] <- 1/5 

pmu[2] <- 1/5 

pmu[3] <- 1/5 

pmu[4] <- 1/5 

pmu[5] <- 1/5 

sigma~dunif(0.01,10) 

 

concentration2~dnorm(0.006,pow(0.04,-2)) T(0.001,) #concentration parameter for Rahikainen et al data point 



91 
 

exposuretime2~dnorm(15,pow(4,-2)) T(0.001,)    #exposuretime parameter for Rahikainen et al data point 

 

}" #JAGS model ends here 
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APPENDIX 3. Code of the additional oil type specific mortality block in the prediction 

model  

 

################################################################# 

# Oil mortality model 

################################################################# 

 

pph~dnorm(250,pow(5,-2))   #parameter for first sale price of herring 

 

######Different oiled coastline proportions for scenarios 

#OiledCl=0 

#OiledCl~dbeta(0.9,6)       #10%  

OiledCl~dbeta(5.5,6)       #50% 

#OiledCl~dbeta(6,0.1)        #100% 

####### 

 

pred_addp~dnorm(muadd[mucat],pow(sigma,-2)) #predicted additional oil type specific IMOLS 

pred_survadd = exp(-exp(pred_addp))  #transformation to proportion 

pred_mortadd=1-pred_survadd    #predicted additional mortality as a proportion 

 

sigma<-pmvn[9]        #stadard deviation of additional IMOLS 

 

for(i in 1:8){ 

  muadd[i]<-log((exp(OilM[i])*(log(concentration+0.000000001)+8))*exposuretime) 

} 

 

for(i in 1:8){ 

  OilM[i] <- pmvn[i] 

} 

 

#######Different concentrations for scenarios 

 

# concentration~dnorm(0.006, pow(0.002,-2)) T(0.001,)   # ANCSCO lowC 

# concentration~dnorm(0.02, pow(0.002,-2)) T(0.001,)   # ANCSCO midC 

# concentration~dnorm(0.04, pow(0.002,-2)) T(0.001,)   # ANCSCO highC 

# concentration~dnorm(0.02, pow(0.002,-2)) T(0.001,)   # Light fuel lowC 

# concentration~dnorm(0.05, pow(0.002,-2)) T(0.001,)   # Light fuel midC 

 concentration~dnorm(0.12, pow(0.002,-2)) T(0.001,)   # Light fuel highC 

 

################# 



93 
 

 

exposuretime~dnorm(15, pow(4,-2)) T(0.001,)   

 

mucat ~dcat(pmu[1:8])   #You can change the oil type according to the scenarios by assigning the 

probability of the oil type to 1 

pmu[1] <- 0 

pmu[2] <- 0 

pmu[3] <- 0 

pmu[4] <- 0 

pmu[5] <- 0 

pmu[6] <- 0 

pmu[7] <- 0 

pmu[8] <- 1 

 

pmvn[1:n] ~ dmnorm.vcov(meanvec[1:n,1], covmat[1:n,1:n]) 

############################################################# 
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APPENDIX 4. Development of the cumulative value changes from the reference 

scenario year by year for each prediction scenario 

 

 

Figure 43, Prediction results: ANSCO, Initial population state = last value of population model 
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Figure 44, Prediction results: ANSCO, Initial population state = lowest value of population model 
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Figure 45, Prediction results: Light fuel oil, Initial population state = last value of population model 
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Figure 46, Prediction results: Light fuel oil, Initial population state = lowest value of population model 
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Figure 47, Prediction results: ANSCO, cumulative financial loss of total biomass per recruit 
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Figure 48, Prediction results: Light fuel oil, cumulative financial loss of total biomass per recruit 
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Figure 49, Prediction results: ANSCO, Initial population state = last value of population model 
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Figure 50, Prediction results: ANSCO, Initial population state = lowest value of population model 
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Figure 51, Prediction results: Light fuel oil, Initial population state = last value of population model 
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Figure 52, Prediction results: Light fuel oil, Initial population state = lowest value of population model 
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Figure 53, Prediction results: ANSCO, cumulative financial loss of catches per recruit 
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Figure 54, Prediction results: Light fuel oil, cumulative financial loss of catches per recruit 

 

 


