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1 Introduction 

 

The natural carbon cycle is affected by human activity, and terrestrial carbon pools have 

been decreasing. At the same time carbon concentration in the atmosphere and oceans has 

increased (Ciais et al. 2013, Sanderman et al. 2017). Disturbance of this natural cycle 

causes different negative impacts to current state of global climate and the states of the 

oceans. Carbon dioxide (CO2) is responsible for the majority of global warming, but 

methane (CH4), nitrous oxide (N2O) and volatile organic compounds (VOCs) all are 

issues of concern (Toensmeier 2016). The concentration of these greenhouse gases 

(GHG) has increased in the atmosphere since industrialization. The use of fossil fuels as 

a source of energy, land use and changes in land use are the major causes of these rapidly 

elevated concentrations. CO2 concentration has increased by 40% from 1750 to 2011, 

CH4 150% and N2O 20% in same time period (Ciais et al. 2013). 

 

Terrestrial carbon locates naturally in soils and in biomass. Carbon pool in soils is twice 

as large as that in atmosphere (Smith 2012). Thus, even small changes in this stock can 

influence the atmospheric CO2 concentrations. Biomass carbon stock size is 

approximately the same as the atmospheric pool (Smith 2012). Carbon in soil and biomass 

can be released into the atmosphere due to the burning of fossil carbon, land use changes, 

management practises or because of natural causes due to the decomposing of organic 

matter (Janzen 2004). Soil carbon stocks are especially important because they can 

sequestrate large amounts of atmospheric CO2, which makes soil important factor to the 

global carbon balance (Bispo et al. 2017). Land is needed for food production and living 

space, and because population and per capita consumptions increases, demand for food 

and natural resources also grow continuously. This creates consequent stress to 

ecosystems. Global land use changes include for example deforestation and expansion of 

agriculture in tropics, afforestation and reforestation in temperate regions, intensification 

of agriculture and urbanization. The vegetation cover has been lost in many arid and semi-

arid ecosystems in all climate domains (Song et al. 2018). 

 

The Paris Agreement (2015) sets the target to limit climate change to 1.5°C. To reach that 

goal, all possible mitigation practises should be included into the global framework to 

avoid climate change. Carbon sequestration into natural pools could be a strategy for the 



6 

 

removal of greenhouse gases from the atmosphere. Carbon sequestration is also called 

negative emission technology or carbon dioxide removal option (Smith 2016). Climate, 

land use, management and edaphic factors affect the amount of carbon stocks, but changes 

in those pools are not well understood. Without appropriate understanding it’s hard to 

design monitoring, reporting and verification platforms (Smith et al. 2020). Carbon 

sequestration is also a reversible process so long-term monitoring is necessary to ensure 

that carbon sequestrated persisted in these pools (Smith 2012). In this thesis, I’m only 

considering carbon sequestration through biological processes.  

 

Greenhouse gas emissions and carbon stocks are complex to measure. Climate, soil and 

vegetation characteristics and land management practises cause variation and large 

heterogeneity in carbon emissions and stocks. These factors vary largely in all spatial 

scales (Bispo et al. 2017). Terrestrial carbon pools have climate change mitigation 

potential with low associated costs (Elofsson and Gren 2018). To include these pools to 

EU climate policy, it would be necessary to quantify the carbon stock sizes and changes 

in stocks. For market confidence and to satisfy regulatory requirements the quantification 

methods should provide accurate results and at the same time being practical and 

financially achievable (Roxburgh et al. 2015). Measuring and monitoring of stocks is a 

key step towards sustainable carbon markets (Lankoski et al. 2020).   

 

2 Research objectives and method 

 

Purpose of this thesis is to gather information about currently used terrestrial carbon stock 

quantification methods. Under interest were especially uncertainties, accuracy, costs and 

scale associated to different methods. One important factor is also the complexity of the 

method, which affects the expertise requirements. The aim was to compare the usability 

of different methods against developing carbon trading markets, because carbon 

offsetting projects need cost-effective and achievable carbon stock and stock change 

quantification method. Research questions are: 

 

1. How can the size of biomass and soil carbon pools be determined?  

2. Pros and cons of different carbon pool estimation methods as tool of carbon 

emission trading/carbon offsetting? 
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Used research method in this thesis was comparatively literature review. Scientific 

articles were collected from Helsinki University Library’s Helka information research 

portal and Google Scholar literature research tool. Article search was conducted 

according to keywords, which included: carbon stock, biomass stock, measuring, 

estimation, accuracy, cost, uncertainties, quantification method.  Discovered literature 

was evaluated based on the scientific credibility and content. Scope was in a forest and 

agricultural land use types.  

 

3 Background 

 

3.1 Carbon in terrestrial ecosystems 

 

There are five major carbon (C) pools in the Earth (Fig. 1):  Ocean (77.4% of global 

carbon pool), fossil carbon (14.9%), soil (5%), biotic pool (1.2%) and atmospheric pool 

(1.5%). These pools are not constant but carbon cycles back and forth between them. 

Carbon cycle is a natural planetary cycle and it has occurred billions of years (Toensmeier 

2016). Carbon’s natural cycle has been affected by human actions: the amount of fossil 

carbon is decreasing annually due to the burning of fossil fuels, soil carbon pools has 

reduced since the start of industrialization because of land use management, and the same 

human activities have also decreased the size of the biotic pool (Ciais et al. 2013). The 

atmospheric carbon increases because the other pools decrease, and the amount of carbon 

in oceans grow annually because it partially absorbs the excess carbon from the 

atmosphere (Ciais et al. 2013, Toensmeier 2016). 
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Fig. 1. Illustrative picture of relative sizes of the different carbon pools on Earth.  

 

Soil and biotic carbon are terrestrial carbon pools. Biotic carbon pool means living 

biomass, plants and animals, and dead detritus. Deforestation and agriculture have caused 

the loss of terrestrial carbon, the estimated loss amount is 320 billion tons of carbon, and 

majority of this has happened since 1850 (Ciais et al. 2013, Smith 2012, Toensmeier 

2016). The excess carbon in the atmosphere causes global warming due to greenhouse 

gas effect, but soil degradation and loss of biotic pool have also other, complicated 

negative effects. Soil degradation have caused e.g. problems with soil fertility and 

erosion, especially in areas with intense soil use (Wild 1993). Loss of biodiversity is also 

well recognized problem (Dirzo and Raven 2003).  

 

According to Jobbagy and Jackson (2000), the first three meters of mineral soils contain 

between 1500 and 2400 Pg of organic carbon. They estimated that first meter contains 

globally approximately 1500 Pg carbon, second and third meter 490 and 350 Pg carbon, 

respectively. Terrestrial vegetation contains approximately 450–650 Pg of carbon. Peat 

soils and permafrost account for more than 1500 Pg. These carbon pools are distributed 

across the terrestrial ecosystems (Fig. 2). 
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Fig. 2. Organic carbon pool sizes in different climatic regions. Green bars present above- 

and belowground biomass carbon. Topsoil (brown) and subsoil (orange) present the soil 

organic carbon pools. It’s notable that terrestrial organic carbon pools are not distributed 

evenly across different climatic regions. Modified from Scharlemann et al. (2014). 

 

3.2 Carbon cycle of atmosphere-plant-soil ecosystems 

 

Terrestrial carbon pools interact constantly with atmospheric carbon via photosynthesis 

and respiration (Fig. 3). Trough photosynthesis, plants convert sunlight, water and 

atmospheric carbon dioxide (CO2) into carbohydrates and oxygen. This photosynthesized 

carbon, which plant use for growth, creates the biomass carbon pool, or biomass carbon 

stock (Taiz and Zeiger 2010). According to Toensmeier (2016) carbon that plants do not 

use directly can be transported to soil. Photosynthetic carbon is transported into the soil 

from plant roots as compounds that plant roots exude. There are more than 200 carbon-

rich compounds that plants produced for different purposes (Taiz and Zeiger 2010). These 

exudates’ roles include e.g. helping with nutrient cycling by feeding soil organisms, 

functioning as a suppressor of diseases, or to entice predators of pests (plant-microbe 

interaction in rhizosphere). Between 10 and 40% of photosynthesized carbon passes 

though the roots within an hour (Taiz and Zeiger 2010, Toensmeier 2016). Over time, 
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plants die, and aboveground biomass falls to the ground, where carbon-rich litter is partly 

decomposed. In this process, about 60–70% of carbon is released into the atmosphere as 

CO2, and the remaining becomes soil organic matter (SOM) (Toensmeier 2016). Dead 

root biomass can become soil carbon as well. About half of soil organic matter is carbon 

(SOC). Respiration is the opposite reaction of photosynthesis and it describes the carbon 

flux form the soil to the atmosphere. Respiration can be divided into autotrophic 

respiration, which means carbon dioxide flux from plants, and heterotrophic respiration 

which refers to respiration of soil fauna. Rate of respiration and rate of photosynthesis 

depends from several environmental, climatic, soil characteristic and species-specific 

factors (Raich and Nadelhoffer 1989). 

 

Carbon balance describes the balance of photosynthesis and plant and soil respiration 

(Fig. 3). If rate of photosynthesis is higher than total respiration rate, the ecosystem stores 

more carbon than it emits. These total fluxes determine, if the soil and biomass are carbon 

sinks and potential long-term carbon pools. Globally the annual flux of carbon between 

decomposition of organic matter and plant respiration is 119.7 Pg and photosynthesis flux 

is 123 Pg carbon per year, which makes soil a carbon sink (Bispo et al. 2017). 

 

 

Fig. 3. Simplified chart picture presenting carbon cycle between atmosphere and 

terrestrial ecosystem. Arrows present the carbon transport between different carbon soil 

and biomass pools. Modified from Nordblad 2019. 
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3.3 Biomass carbon 

 

Plants sequester carbon within their biomass. Biomass carbon pools are aboveground and 

belowground biomass (IPCC 2006). Some of the synthetized glucose from photosynthesis 

is used for plant growth. Cellulose and lignin are important parts of plant cell wall and 

they are the backbone of plants providing structure and support. Cellulose and lignin have 

high carbon content and approximately 50% of the weight of the dehydrated plant 

biomass is carbon (Taiz and Zeiger 2010, Sedjo and Sohngen 2012).   

 

3.4 Factors affecting biomass carbon pools  

 

When plant sequestrates carbon and produces glucose, it enables the growth, and larger 

growth means also higher photosynthesis rate. Net carbon uptake is highest in forests 

when the stands is closed and reasonably young (Sedjo and Sohngen 2012). Plant growth 

depends on temperature, radiation, moisture and nutrients and demand of these basic 

variables is species specific (Taiz and Zeiger 2010). In well balanced growth conditions, 

plant can achieve species specific maximum growth rate. Plant age, disturbances, climate 

and nutrient availability are the main controllers of plant productivity (Magnani et al. 

2007). Nutrient availability is major growth limiting factor in several ecosystems 

(LeBauer and Treseder 2008).  

 

Because carbon sequestration is a reversible process, photosynthesized carbon can be 

released back to the atmosphere in respiration (Taiz and Zeiger 2010). Decomposition 

rate is highly dependent on temperature and moisture and it occurs mainly in soil (Lukac 

and Godbold 2011). Decomposition process is described with more detail in soil carbon 

section below.   

 

Other important factors decreasing biomass carbon pools are harvesting, fires and 

herbivory (Sedjo and Sohngen 2012). Harvesting is the main factor affecting the amount 

of biomass carbon stocks. The manner of how harvested products are used determines the 

permanence of carbon. Harvested crops and trees that are used for short-lived products 

releases the carbon quickly back to the atmosphere. Trees can also be used to produce 

long-term products, which bind the carbon until wood starts to decay (Pukkala 2019). 
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Fires (Fig. 4) and herbivory affect the amount of biomass. For example, in 2008, 189.7 

Tg of CO2 was released into the atmosphere from fires in US (Sedjo and Sohngen 2012). 

 

 

Fig. 4. Boreal forest after a small wildfire. Ground was covered with few centimetres’ 

depth layer of charred plant material and dead needles. Photo: Anniina Lampinen. 

 

3.5 Soil organic carbon 

 

Soil organic matter includes all organic components in the soil, and it is a complex 

mixture of compounds (Wild 1993). Litter is the first stage of organic matter entering the 

soil. Litter is dead plant material and it can origin from aboveground (canopy) or 

belowground (roots) (Lukac and Godbold 2011). Litter is full of nutrients and energy and 

their accessibility depends on the quality of litter. Litter quality can be estimated with its 

ratio of total carbon to total nitrogen (C: N) (Lukac and Godbold 2011).  
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Soil organic matter carbon content varies from 40-67% (FAO 2019). Soil carbon can be 

divided into soil organic carbon (SOC) and soil inorganic carbon (SIC). Soil inorganic 

carbon comprehends mainly carbonate minerals calcite (CaCO3) and dolomite 

[CaMg(CO3)2] and they are from geologic sources. Soil organic carbon is the carbon 

component of organic matter (SOM) (Lorenz and Lal 2018). According to Killham and 

Foster (1994) soil organic carbon can be separated into three pools: soluble, insoluble and 

biomass. Soluble fraction’s decomposition rate is fast and because of that, soils consists 

only of 1% of soluble carbon. 90% of soil carbon is insoluble and it is a complex mixture 

of different plant materials in different decomposition states. Insoluble organic carbon 

forms the SOC stocks. Soil biomass (9%) comprehends soil microbes and animals which 

are responsible for most of the decomposition activity and carbon cycle (Killham and 

Foster 1994). Stabile carbon is formed when carbon interact with soil particles (Killham 

and Foster 1994). Because soil organic matter comprehends a variety of different 

chemical compounds (Wild 1993), it interacts with soil’s mineral particles resulting in 

organo-mineral associations. Soil aggregates are one result from this interaction, and they 

are an important factor affecting soil carbon stability. Small humified compounds have 

high affinity for clay particles, and more than half of the total soil carbon is strongly 

bound to clay. This strong bond increases significantly the residence time of carbon in 

soils (Lukac and Godbold 2011).  

 

3.6 Factors affecting soil organic carbon pools 

 

Soil organic matter accumulation and distribution is affected by several biotic and abiotic 

factors and processes. Biotic factors include plant input and soil organisms. Important 

abiotic factors are e.g. climate (temperature and precipitation) and soil mineralogy (soil 

physio-chemical properties) (Luo et al. 2017). Anthropogenic factors have also an impact 

to soil carbon accumulation and distribution. Typical land management practises like 

fertilization with nitrogen and tillage affect to soil microorganism and structure (Jackson 

et al. 2017, Lorenz and Lal 2018). Soil organic carbon stocks are a result of complex 

interactions among several variables (Lukac and Godbold 2011).  

 

Litter is mainly decomposed via biological processes. Soil microbes and other living 

organism produce enzymes and metabolic substances which drive the decomposition 

processes. Activity of those enzymes are temperature and moisture limited, and each have 
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specific optimal range (Boyero et al. 2011). Soil microbes use carbon for growth and 

release it via respiration. When microbes die, these microbial residues or so called 

necromass, can be recycled as new substrates or it can be stabilized. Stabilization happens 

after necromass is bound to soil mineral surfaces and stored as microaggregates (Miltner 

et al. 2011). According to Kallenbach et al. (2016) and Balser and Lian (2011) 50-80% 

of stable organic carbon in soils is necromass. Environmental and microbial controls, 

which are important factors controlling necromass recycling and thus soil carbon 

stabilization (Buckeridge et al. 2020). 

 

Aboveground biomass sequestrates carbon from the atmosphere and higher plant 

productivity often increases SOM in the soils. The relationship between net primary 

production (NPP) and SOC accumulation is not linear and bigger biomass does not 

automatically lead to increase in SOC pools (Jackson et al.2017). Reasons for these 

nonlinear relationships are not well known because soil complex interactions and 

processes are not yet well understood. Some of the suggested reasons are soil carbon 

saturation (Mayzelle et al. 2014), the priming effect (Kuzyakov 2010) and carbon 

allocation between plant parts (Jobbagy and Jackson 2000). Soils have limited capacity 

to sequester carbon and they can saturate. The level of soil carbon saturation varies, and 

it’s affected e.g. by soil minerology and climate (Mayzelle et al. 2014). The priming refers 

to a situation where plant input to soil increases microbial activity which leads to losses 

of accumulated SOM (Kuzyakov 2010). Carbon allocation between above- and 

belowground biomass can also be one of the factors explaining the nonlinear relationship 

between carbon input and SOC accumulation. Different plant species in diverse 

environments distribute carbon compounds differently between plant parts. The 

allocation of net primary productions patterns varies between species and ecosystems, 

such ranging from 10% of carbon is allocated to roots in croplands, to 60% in native 

grasslands and 20% in forests (Poorter et al. 2012).  

 

Carbon is not evenly spread in soil profile. Different soil layers typically include different 

amounts of carbon and this vertical variability is due the different decomposition rates of 

organic matter and their transportation. Vegetation has also impact and deep rooting 

vegetation can potentially store carbon into deeper soil layers (Jobbagy and Jackson 

2000).  
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At the landscape scale, soil texture, pH, mineralogy, topology and land-use are the main 

factors affecting SOC heterogeneity. At the plot scale, plant species diversity and 

composition, and land management practises increase SOC heterogeneity (FAO 2019). 

Soil pH, clay content and cation exchange capacity all affect soil biochemical 

composition and distribution. These factors vary greatly on the ecosystem level but also 

on a smaller scale. Agricultural lands are relatively homogeneous compared to forests, 

but even in arable soils, where nitrogen deposit, pH and clay content are usually well 

monitored, spatial variation occurs on the farm level (Bispo et al. 2017). 

 

3.7 Practices to promote carbon sequestration 

 

Increasing the carbon input and decreasing the decomposition is the basic of carbon 

accumulation. Net primary production and decomposition rate varies between sites 

naturally, but there are management practises that are known to affect positively to the 

size of the different carbon stocks in forests and cultivated soils. Different agricultural 

and forestry practises e.g. residual management, soil tillage and fertilizer application add 

variation to carbon accumulation (Bispo et al. 2017). Global forest annual carbon 

sequestration potential is estimated to be 2-4 Gt C of atmospheric carbon. The “4 per 

mille Soils for Food Security and Climate” is an act which was launched to increase soil 

organic carbon content by 0.4% per year and at the same time to mitigate climate change.  

The 4p 1000 Iniative was a result from global survey where soil organic pool sizes and 

sequestration potentials were estimated. They reported that under best management 

practises 0.4% sequestration rate would be accomplished in cultivated soils in areas where 

topsoil carbon content is low, less than 30 t C/ha. With this rate, global agricultural lands 

would be able to sequester 2-3 Gt carbon annually, which would offset 20-33% of 

anthropogenic emissions (Minasny et al. 2017).  

 

In arable land, management practices and history of those affect the accumulation. 

Conservation practices have a technical potential to increase the soil carbon stocks 

(Lorenz and Lal 2018). Globally applied conservation principles include minimizing soil 

disturbance, maximizing surface cover and stimulate biological activity through cover 

crops, crop rotation and integrated nutrient and pest management (Lorenz and Lal 2018). 

Term regenerative farming is nowadays commonly used term to describe those 
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management practices that aim to minimize erosion and leaching of nutrients and organic 

matter, enhance biodiversity and soil health and to sequester carbon (Elevitch et al. 2018).   

 

Tillage management, crop rotation, agroforestry, cover crops and application of organic 

amendments are land management practices that could increase carbon concentration in 

soils (Karhu et al. 2012, Poeplau and Don 2015, Paustian et al. 2016, Brekke et al. 2019). 

For example, tillage of soil produces more CO2 efflux than soils that are under no-tilled 

soil management, which is partly due the fact that tillage makes soil organic material 

available to oxidation and microbial mineralization (Brekke et al. 2019, Peterson et al. 

2019). Haddaway et al. (2017) concluded that SOC accumulated to topsoil layer (depth 

0-30 cm) under no-tillage and intermediate intense tillage practices, but SOC 

accumulation was not noticed in whole soil profile. Selection of crop variate and avoiding 

the use of bare fallows have also positive impact to soil carbon accumulation (Lorenz and 

Lal 2018). Cultivation of cover crops increases the soil carbon accumulation by 32 g C/m2 

(R2 = 0.17) annually (Poeplau and Don 2015) and they also prevent nutrient leaching and 

are beneficial to soil (Dabney et al. 2001). Higher plant species richness is also shown to 

increase SOC storages in mineral soils for example due to increase of microbial biomass 

and necromass (Prommer et al. 2019). 

 

Afforestation is one way to increase the amount of terrestrial biomass carbon. Tree and 

other vegetation growth in previously unforested sites would also increase the amount of 

carbon in soils (Sedjo and Sohngen 2012). Peltoniemi et al. (2004) studied how growing 

stands (afforested site) would affect the soil carbon accumulation and they found out that 

carbon stock increased average of 4.7±1.4 g/m2/year with increasing stand age. This 

accumulation was only noticed in organic layers, and no significant changes were 

measured in mineral soils.  

 

Nitrogen fertilization in ecosystems that suffer from nitrogen deficiency is one possible 

way to affect the biomass growth. For example, in boreal forests nitrogen fertilization 

increased growth significantly and in fertilization treated plots stemwood production 

increased by 29-37% compared to non-treated plots (Mäkipää et al. 1998). Nitrogen 

affects the growth, which means accumulation of carbon in biomass, but it also has impact 

to soil carbon pools. Weather the impact is negative, positive or neutral, depends on 

several factors. For example, in boreal forests, soil organic matter accumulation is noticed 
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to increase by nitrogen input (because of increase litter input) (Mäkipää 1995). Other 

forest management practises are thinning, extending the harvest rotation and selection of 

species varieties (breeding) (Sedjo and Sohngen 2012). 

 

4 Detecting the change in the biomass and soil carbon pools 

 

Carbon accumulation or losses can be in general determined in two different ways: 

measuring pool changes and measuring incoming and outgoing fluxes (Houghton 2003). 

Estimations about different biomass and soil carbon pools are usually conducted with 

different methods (Fig. 5). Soil carbon pools can be quantified with direct soil sampling, 

sensing with spectroscopic methods or by modelling (Paustian et al. 2019). Biomass 

carbon pools can be quantified with inventory-based field measurements, remote sensing 

or modelling (Pearson et al. 2007). Incoming and outgoing fluxes can be used to measure 

the whole ecosystem (biomass and soil) carbon pool size (Smith et al. 2020).  

 

Soil carbon stocks can be measured directly in units of carbon, but biomass is converted 

to units of carbon by multiplying biomass by 0.5 (IPCC default) or more specific values, 

if there is available data (Pearson et al. 2007). 

 

 

 

Fig. 5. Schematic picture of different carbon pool estimation methods and how they are 

linked together. Conventional soil and forest field samples provide information about 

current stock sizes and/or changes in those stocks. They also provided foundations to 

other methods. Spectral methods relay also to measured values, because there must be 

reference data to evaluate the reflectance. Modelling can be used to simulate carbon stock 



18 

 

sizes or changes in those stocks. They also link the remotely sensed data to the field 

measurements. Information from flux measurements and from remotely sensed data can 

be used to model development. Gas flux measurements present the net ecosystem carbon 

exchange (Pearson et al. 2007, Paustian et al. 2019, Smith et al. 2020). 

 

Several European countries have launched networks to monitor the changes in soil 

condition (Morvan et al. 2008) and changes in biomass over time (Tomppo et al. 2010). 

But in European scale, the geographical distribution of monitoring networks is uneven, 

and in central and northern in Europe the number of sampling plots is higher than eastern 

Europe. Globally this same trend is recognized, and certain areas have representative 

study networks and some lack those completely. One large problem is also that networks 

differ considerably in their sampling protocols, designs, plot locations and sampling 

frequency. Sampling networks vary also within the country because some have different 

networks for different land-use types, like arable and forest lands (Heikkinen 2016, 

Tomppo et al. 2010). Long-term experiments are needed for data concerning processes 

that affect soil and biomass carbon and how different management practices affect the 

pools. These long-term field measurements also provide the basis for the calibration and 

validation of different models (Körschens 2005, Saarsalmi et al. 2012, Heikkinen 2016).  

 

According to Pearson et al. (2007), to produce credible and transparent estimates of 

changes in carbon pools the following steps are needed: 1. A monitoring plan should 

include description of boundaries, project area, number of sample plots, project duration 

and monitoring frequency, 2. Information about the number of samples and other 

sampling protocols, 3. Carbon stock estimation methods and analyzing of the results. 

What are the actual methods and how they are utilized? What techniques are used for 

result analyzing? 4. Net change estimation. How the change in carbon stocks can be 

estimated? 5. A quality control plan. What is the accuracy in these estimations? Quality 

assurance (QA) and quality control (QC) for results (Fig. 6). 

 

 
Fig. 6. Steps needed for estimation of changes in carbon pools. 
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According to Pearson et al. (2007), carbon stock estimations should be primary conducted 

with field measurements, because of their accuracy. Pearson et al. (2007) also suggested 

that precision target should be that with 95% confidence level, the true population value 

is ± 10% of the sample estimate. Because field measurements are not the most cost-

effective way to monitor carbon stock changes, alternative methods could be used, if those 

reach robust precision enough. Good common practices for carbon accounting secure the 

reliable results. Good practices according to Watson (2009) are summarize in table (Table 

1). 

 

Table 1. Important factors that should be considered in carbon stock estimations. 

Accurate and 

precise 

Both accuracy and precision should be achieved. Biases and 

uncertainties should be removed as far as it possible.  

Comparable Assumptions, methods and data must be commonly accepted 

(scientific consensus) and should provide meaningful and valid 

results between areas. 

Complete All relevant carbon pools should be included. If some are excluded, 

it should be well justified and documented. 

Consistent Estimates from different quantifications should present the actual 

difference between pools. Differences should not emerge from 

differences in methods.   

Relevance Trade-offs between time, resources, data and methods should be 

appropriate to the purpose of the quantification.  

Transparent Results should be able to be confirmed by a third party.  

 

All carbon stock and stock change estimation methods include sources of uncertainties or 

errors and there is no such method which would provide absolute true pool size value. 

It’s important to identify the sources of errors and quantify their nature and magnitude. 

Estimations of these uncertainties are especially important if the results are used for policy 

purposes (Aubinet et al. 2012). For example, sustainable creditable carbon unit is a result 

of quantification method which full uncertainty is defined and considered. Resolution is 

also an important term. Resolution can be defined as the smallest change in the measured 

quantity that instrument can detect (Aubinet et al. 2012).  
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Precision, accuracy, and bias are commonly used terms when discussing about 

uncertainties related to measurements. Precision refers to the degree of agreement in a 

series of measurements and accuracy is the closeness of a measurement to the true value 

(Husch et al. 2003). Bias is a term that describes the difference between the true value of 

a target and its average measured value. Bias error can also be called systematic error. 

Systematic errors are consistent and repeatable errors. Random errors can be called for 

precision errors and those types lack repeatability. Scattered result in a repeated 

measurement is a common sign of random error (Husch et al. 2003). These two traditional 

error types propagate in different ways and thus it is important to differ those. Random 

errors are impossible to correct due to their random nature, and they typically cause noise 

and scatter in the data. Random errors reduce the precision of the measurements. Repeated 

measurements (increasing the n) is the only way to characterize the total random error. 

Averaging over n measurements improves the precision and result of this gives the 

standard error of the mean. Systematic error stays constant and it cannot be identified 

through statistical analysis (bias) (Aubinet et al. 2012). 

 

Many carbon estimation methods rely on data-model fusion and different error types 

affect differently to the models. All models are as good as their most inaccurate 

parameter.  Different error types at different stages affect the total uncertainty of the 

estimation. It’s important to evaluate the magnitude of all possible errors (Lasslop et al. 

2008). 

 

5 Carbon markets 

 

The Paris Agreement was launched 2015 and parties of the UNFCCC agreed to fight 

against climate change and to enhance investments needed for reach low carbon future. 

The Agreements central aim is to limit the temperature rise to 1.5 °C and thus prevent the 

harmful consequences of climate change. The Paris Agreement considers carbon sinks 

and reservoirs also as important factor as a tool for mitigating climate change, and The 

Agreement encourages Parties to enhance pools and to increase their sizes (United 

Nations 2020). European aims to be first carbon neutral continent in 2050 (European 

Commission 2020). To meet this target the EU is set several action plans, and for example 

European Green Deal is a package which includes first climate action initiatives, like 



21 

 

European Climate Law (European Commission 2020). European Climate Law is going 

to be a first law where EU aims to write the year 2050 climate neutral target. European 

Climate Law would ensure that all EU policies would make effort to reach that target. To 

reach that target all possible mitigation practices should be adopted and to enhance 

practices to increase natural-based carbon sequestration, political incentive should be 

launched (European Commission 2020). One possible way is international carbon 

markets and the Paris Agreement recognize the importance of this in Articla 6, where it’s 

mentioned that carbon trading would help to achieve emission reduction targets. This kind 

of market mechanism would include that farmers and foresters could manage their land 

so that carbon sequestration is maximize and would achieve economic value from these 

practices by selling the creditable carbon units they have produce in the carbon pool. 

Creditable carbon unit is not yet defined, and there is no such regulated mechanism where 

transaction would be conducted (Ollikainen et al. 2020).  

 

Climate change mitigation by changing the land management practises and at the same 

time providing excess income possibilities for farmers and foresters is a great goal to 

achieve. This approach would be a way to utilize the already existing, and possibly quite 

effective methods, but there are also several well-known issues associated to carbon 

sequestration projects via natural methods. Project issues usually contain the criteria 

which should be met so that it is possible to say that carbon is sequestrated from the 

atmosphere and it’s now in adequately stable form and locates in stock. Baseline 

determination, additionality, possible carbon leakage and permanence (and non-

permanence risk) are the most discussed issues (García-Oliva 2004, Sedjo and Sohngen 

2012).  

 

In carbon market framework, the baseline determination is the first thing to address. 

Credible and accurate baseline is needed for monitoring difference in carbon stocks. 

Baseline determination is also one of the most challenging issues. According to Carcia-

Olivia (2004) two approaches have been used for developing and applying baselines. One 

approach is project specific. Baseline is established case-by-case. Other is generic, where 

baseline is determined by using regional or national data. Important component of 

assessing carbon sequestration is also to determine whether the carbon benefits of an 

activity are truly additional. Carbon benefits of certain project/action should be compared 

to carbon stocks between a with- and without- action scenario. Leakage can occur when 
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measurable carbon net change (decrease or increase) occurs outside wanted area due to 

project activity. For example, if farmer afforests land and after the afforestation of area 

deforests another land for agricultural purposes, the resulting carbon emissions are 

referred to as leakage. Monitoring and accounting leakage can be done either project 

specific or standardized. And because carbon sequestration is a reversibly process and 

carbon stored in terrestrial ecosystems are vulnerable to natural or anthropogenic 

disturbances the sequestrated carbon is not stored permanently. Fires and pests, 

harvesting and changes in land management and land-use may result to carbon release to 

the atmosphere (Carcia-Olivia 2004, Sedjo and Sohngen 2012).  

 

Besides the tight criteria, there are also other challenges which should be resolved before 

well-functioning CO2 emission markets. One big issue is high measuring/monitoring, 

reporting and verifying (MRV) costs of carbon sequestration. Current costs are high (see 

for example section 6.1.6) and MRV processes are complicated and they lack standards. 

Small-scale projects are important for the development of local carbon markets and MRV 

costs should be reduced in order to allow the progress. High MRV costs are identified as 

a challenge and some solutions are also presented. For example, group certification 

options, more diverse group of auditors to carry out verification and baseline and stock 

change estimation with less time-consuming methods would reduce the costs (Grimault 

et al. 2018, Köhl et al. 2020, Ollikainen et al. 2020). One approach is to value other 

benefits besides carbon to allow higher carbon prices. Well implemented carbon 

sequestration projects are usually multi beneficial, and environmental and social benefits 

could be added to carbon price value. Higher carbon value would increase the project 

profitability. This is a possible approach, but it also adds uncertainties in the achievement 

evaluation state (Sonwa et al. 2016, Köhl et al. 2020). It’s hard and expensive to determine 

the size of the carbon stock change accurately and it would be even harder to evaluate the 

project impact for e.g. biodiversity.  

 

6 Forest field measurements for biomass stock quantification  

 

The conventional methods to estimate amount of biomass are harvesting to determine 

exact biomass and estimation approaches which rely sampling and statistics. Harvesting 

and directly measuring all biomass (weight and volume) is destructive method and it gives 
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accurate values (Husch et al. 2003). This type of approach is laborious and time 

consuming, but it provides basic data information to the different applications. For 

example, different allometric equations and growth models are conventionally used 

methods for biomass estimations and they are developed from information provided by 

destructive methods (Mäkelä and Valentine 2019). Destructive methods are part of the 

basic research and needed for better model development, model validation and to increase 

our knowledge of vegetation characteristics etc., but they are not suitable for biomass 

estimations in a purpose to estimate permanent carbon pools. Other forest field method, 

that don’t include harvesting, is measuring diameter and height of trees and to identify 

different species and then link those measures to other three attributes like, total biomass, 

via allometry (Husch et al. 2003).   

 

Husch et al. (2003) pointed out that the most economical approach to estimate 

aboveground forest biomass is to use data from forest inventories. National forest 

inventories are conducted in several countries and they have been common practice in 

many places for decades (Tomppo et al. 2010). On the other hand, several countries where 

carbon sequestration potential is high, forest inventories are not a common practice, 

which hampers the application. Small scale forest inventories are also conducted to 

research purposes (Tomppo et al. 2010). 

 

6.1 National forest inventories 

 

National forest inventories (NFI) are conducted to provide information about forest 

resources. Most basic variables that forest inventories produce are related to forest area 

and growing stock volume. Inventories are based on large field measurements, where tree 

parameters are measured. Field plot measurements and systematic or random sampling 

are ways to produce information which can be upscaled to comprehend large areas. In 

national forest inventories, the whole country is covered with regular networks of plot 

measurement clusters. These field measurements can be used for reliable forest statistics 

and calculations for larger areas (Tomppo 2014). 

 

Information from forest inventories are usually used for example policy making, forest 

management planning, assessing sustainable forestry, greenhouse gas and carbon stock 

evaluation and research (Tomppo 2014).  The first NFI in Finland was carried out in 
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1921−1924 (Tomppo et al. 2010). Current day inventory in Finland is multisource 

inventory where several data sources are utilized (field measurements, satellite data and 

digital maps) (Tomppo 2014). Most European countries conduct forest inventories, for 

example Austria (first 1952−1956), Sweden (first 1923−1929), Spain (first 1965−1974), 

Great Britain (first started 1924) and Italy (first 1986−1988). USA (first started 1928) and 

Brazil (first 1980s) are also managing their forest resources through inventories. Canada 

is one of the biggest forest countries, where national forest inventory is not mandated 

through legislation. China (first 1973−1976), Japan (first started 1951), The Republic of 

Korea (first 1960s), New Zealand (first 1946−1955) and Russian Federation (first 2007) 

are counties in Asian continent that conduct inventories (Tomppo et al. 2010). 

 

6.2 Allometric equations 

 

Allometric equations are mathematical models that describe the relationship between tree 

characteristics that are easier to measure to another tree properties that are hard to 

measure. This relationship is typically based on detailed measurements of vegetation, 

where small sample size is representing a population of interest (Mäkelä and Valentine 

2019). Easier tree determinations are for example diameter and total tree height and 

harder ones are volume or biomass. Diameter is typically measured from chest height and 

the total height can be estimated with a hypsometer and leveling rod. For example, 

biomass equations are developed from harvested and weighted vegetation samples. Each 

sample is oven dried, weighted with high detail, stem, stump, roots, branches and foliage 

separately, and after sufficient number of samples, some consistency can be seen. With 

regression techniques, certain parameters of allometric equation that relate biomass and 

measured variables can be found (Moore et al. 2010, Birdsey et al. 2013). Each allometric 

equation is as good as its parameters are (Mäkelä and Valentine 2019). Individual tree 

estimates can be expanded to larger areas by knowing the probability of sampling each 

tree (Birdsey et al. 2013).  

 

Different biomass or volume equations are a cost-effective way to evaluate large areas, 

but there is scarcity of representative equations. Population of trees under interest maybe 

different than population from where the equation was developed, and if only few 

equations are available, there is a problem. This issue is particularly true in tropical 

regions (Rex et al. 2020). Generalized biomass equations can be used when local or 
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species-specific biomass equations are not available (Birdsey et al. 2013). Biomass 

equations are typically presented to individual species, groups of species (Zianis et al. 

2005, Pearson et al. 2007) or for geographic regions (Duncanson et al. 2015). Allometric 

equation are also typically developed to forest trees which diameter at breast height 

(DBH) is bigger than 10 cm and equations for smaller trees are rarely available. This 

means that forest understory vegetation is difficult to estimate cost-effectively (Han and 

Park 2020).  

 

One example of allometric equation which can be used to calculate oven-dry tree biomass 

M (kg) according to Brown (1997) is shown in equation 1. 

 

𝑀 = 𝑎 + 𝑏𝐷𝐵𝐻 + 𝑐𝐷𝐵𝐻2   (1) 

 

in which 

DBH = diameter (cm) at breast height (1.3m) 

a,b,c = best fit parameters. 

 

Biomass growth can be also simulated with growth models. Growth models combine 

carbon allocation models to factors affecting carbon accumulation (Mäkelä and Valentine 

2019).  

 

6.3 Estimating carbon stock from forest inventories 

  

Most forest inventories are focused on timber estimation, but constant need for 

information about forest health, soils, wildlife and other nontimber values have created 

development of integrated or multisource inventories (Husch et al. 2003, Tomppo 2014). 

Information from a timber inventory is insufficient for a complete estimate of a carbon 

stock, because they usually estimate only the volume of the main stems, ignoring other 

components of the vegetation and other carbon pools in the ecosystem (Husch et al. 2003, 

Lindner and Karjalainen 2007, Tomppo 2014). Carbon stock estimations need an 

inventory of the total biomass of live standing timber, biomass of the understory 

vegetation and estimations of dead biomass, root biomass and soil carbon pools. Total 

biomass can be adjusted with an expansion factor to include all other biomass quantities 
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(Husch et al. 2003, Lindner and Karjalainen 2007) or other carbon pools could be also 

estimated by conducting additional measurements at the inventory (Birdsey et al. 2013). 

If inventories are conducted so that other biomass is ignored, to include weights of these 

components (roots, foliage, understory vegetation and detritus on the forest floor) the 

weight of the commercial volume should be multiplied by an expansion factor which 

typically varies from 1.3 to 2.5 depending on species, forest age, average tree height and 

amount of dead matter. Expansion factors are generated from allometric relations (Husch 

et al. 2003).  

 

Carbon pools locates in vegetation biomass aboveground and belowground, and each pool 

needs different sampling methods (Pearson et al. 2007). Size of those carbon pools vary, 

and it should be decided if the certain pool is cost effective to estimate for certain 

purposes. Live trees and their roots are important to include to all activities. Understory 

vegetation and nontree biomass maybe be beneficial to measure and monitor only if they 

are significant component of the total biomass (Lindner and Karjalainen 2007, Pearson et 

al. 2007). This is the case in areas where the main biomass consists mainly from shrubs 

and other form of nontree vegetation. Some forests may mainly composite from big trees 

and understory vegetation is not a large part of total biomass. The forest floor should be 

included in carbon pool accounting in most cases, especially in conifer dominated forest, 

because it is known that in this type of forest the biomass in forest floor consists big part 

of the total pool. Understory vegetation in the forest inventories can be measured with 

harvesting technique, where small subplots are harvested, and vegetation is oven dried, 

pooled to composite sample and weighted. After measuring, the information can then be 

upscaled to the whole plot (Lindner and Karjalainen 2007, Pearson et al. 2007). 

 

Amount of biomass can be calculated with equation (2) and multiplying by 0.5 the metric 

t/ha for the amount of carbon (Pearson et al. 2007). 

 

Oven-dry weight (g) of biomass / sampling frame area (cm2) * 100 (2) 

 

in which 

multiplying by 100 converts the unit to metric t/ha.  

 



27 

 

Below-ground biomass comprehends coarse and fine roots and they are included to 

carbon pool accounting by applying a regression models which links belowground 

biomass to aboveground biomass. Example Cairns et al. (1997) developed regression 

models that can be used in different forest biomes (equations 3−5):  

 

Boreal: BGB= exp (-1.0587 + 0.8836 * lnAGB +0.1874)  (3) 

Temperate: BGB= exp (−1.0587 + 0.8836 * lnAGB +0.2840) (4) 

Tropical: BGB= exp (−1.0587 + 0.8836 * lnAGB)  (5) 

 

in which 

BGB =belowground biomass density in t/ha 

AGB= aboveground biomass density t/ha 

(n=151; R2=0.84.). 

 

Dead biomass comprehends dead organic matter in forest floor and dead trees (on the 

ground or standing). Forest floor dead biomass should be estimated like living forest floor 

biomass (Pearson et al. 2007). Most time-efficient way to estimate carbon stocks in dead 

wood is the line intersect method, where each dead wood intersecting at least 100 m 

length (per plot) line is measured and classified via density (Harmon and Sexton 1996). 

There are different density classes and they are developed by forest scientists and they 

are based on different decomposition models of dead wood (Beets et al. 1999).  

 

Most accurate and precise carbon stock estimation of trees is achieved with direct 

methods where all trees (above a minimum diameter) in sample plot are measured 

(Lindner and Karjalainen 2007, Pearson et al. 2007). The minimum diameter varies 

according to trees that are expected to be found in a sampling area. Environments where 

the trees grow slower (e.g. arid) the minimum diameter may be 2.5 cm and in humid 

environments, where the tree growth is fast, the value may be up to 10 cm (Pearson et al. 

2007). Tree biomass is often estimated with equation where only the diameter at chest 

height is used as a variable. Height and diameter as the independent variables result better 

estimates but measuring the tree height increases the cost of monitoring. If there is vast 

monitoring network with plenty of data, the regression equation with diameter only can 

result a high significance (Lindner and Karjalainen 2007, Pearson et al. 2007), but if not 

the variation of total biomass estimations could be high. For example, the total estimate 
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of tropical forest carbon biomass stock varies by 35.3 Pg depending if the height is 

included (Feldpausch et al. 2012). 

 

6.4 Inventory planning and sample size  

 

Available funds and the costs of an inventory will influence the chosen design (Husch 

2003). Main factors affecting the costs are precision, total size of the area and the 

minimum size of the unit area where estimates are required. The accuracy requirement 

defines the number on needed sample plots. Keller at al. (2001) calculated the required 

number of plots and total sampling area for biomass estimations if total error is within 

20% of mean with 95% confidence (table 2). When the area increases the total number of 

required samples decreases. 

 

Table 2. Required number of sample plots and total area to meet error less than 20% 

(Keller et al. 2001). 

Plot size (ha) n Total area (ha) 

0.09 43 3.87 

0.25 21 5.25 

0.49 15 7.35 

1.00 10 10.00 

1.96 8 15.68 

4.00 6 24.00 

 

6.5 Uncertainties in forest inventories  

 

 According to Husch (2003) typical errors sources in forest inventories are sampling error, 

measurement error and prediction error from used models. Classification error of remote 

sensing imagery is also one error source, if remote sensing is used. The essential problem 

in inventory-based approach is that obtained samples should represent the population. If 

samplings are representative, useful statements can be made about characteristics of the 

population, like volume or weight per unit area, number of trees etc. These characteristics, 

parameters, exact values would be known if the entire population would be measured, but 

due the time and cost factors, sampling provides estimated values for these parameters. 

Estimates are calculated from samples and these statistics are summary values which 

represent the whole population. If determined parameters are not representative it will 
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lead to a sampling error. That’s why the efficient sampling design is important. The used 

sampling units, the number of samplings, the manner of selecting and distributing the 

sampling points over forest area, measurement and result analyzing procedures are all 

important parts trying to decrease the sampling error (Lindner and Karjalainen 2007, 

Husch 2003, Tomppo 2014). 

 

Keller et al. (2001) calculated the size of the sampling error and other error sources (table 

3) in the Amazon area field measurements and data analysis. Their results show that in 

mean sampling error was approximately 15%. Field plot aboveground estimation’s 

uncertainties has been reported to be even 20-30% (Keller et al. 2001, Chave et al. 2004). 

 

Table 3. Biomass density estimations with related errors.  

 Mass 

(Mg/ha) 

Sampling 95% 

CI (Mg/ha) 

Other 

error (%) 

Trees (DBH≥35cm) 177 24 20 

Trees (15<DBH<35cm) 47 10 50 

Trees (DBH<15cm) 40 8 50 

Vines and epiphytes 18 2 50 

Dead fine AGB 8 2 50 

Dead coarse AGB 19 3 50 

All below-ground 63 9 50 

Total biomass 372 56 (15%)  

 

Measuring tree height is time consuming and it’s possible that height is not measured 

form all trees form inventory plots (Sullivan et al. 2018). For example, The Amazon 

Forest Inventory Network RAINFOR, the guideline is to measure the height of 40 trees 

in 1 ha area if time prevents all trees being measured (Phillips et al. 2009) which means 

that in tropical forests 90% of tree heights are not measured but predicted. Different 

prediction models perform differently, and the performance can be estimated by 

calculating prediction error. For example, root mean square error (RMSE) can be used to 

describe the difference between measured and predicted heights (Sullivan et al. 2018). 

 

Measurement errors include errors that arise from defects in the sampling procedure, like 

mistakes in data collection or processing. Measurement errors don’t decrease when 

increasing the sample size. For example, appropriate training of field crew, quality 
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control, appropriate mathematical models and well-prepared maps would reduce the 

nonsampling errors (Husch 2003). 

 

6.6 Accuracy and cost of forest measurements 

 

In-situ sampling costs depend on design, the number of attributes to be collected, salary 

levels and on the accessibility of the forest area. Costs increase with accuracy.  Berenguer 

et al. (2015) studied how forest carbon stock could be quantified through field 

measurements in cost-effective way. They conducted the study in Amazon, which is area 

lacking intensive field measurements. Several tropical countries are suffering this lack of 

filed measurement. Study site included 224 sampling plots spread evenly to two 5000 ha 

areas (three different forest type). They conducted field measurements to all biomass 

carbon stocks and soil. These results were compared to simulations where single value 

for wood density was used, without identifying the stems. They also compared the field 

measurements to default values, defined by FAO and IPCC. The total cost quantifying 

carbon stocks of field sampling by assessing each forest component was 364 000 US$ 

(~311 000 €) with 224 0.25 ha forest plots. They calculated that without species 

identification the costs would decrease by 58%. This reduction would be due to decrease 

in salary costs when experienced taxonomic experts are not needed. They also noticed 

that forest soil was by far the most expensive and time-consuming part to measure (with 

conventional soil samples and dry combustion method). In their study, the soil sampling 

cost approximately 2250 US$ (~2680 €)/ha and identification and measuring large and 

small stems cost ~500 US$ (~595 €)/ha each.  

 

Berenguer et al. (2015) also expressed the average error compared to intensive field 

measurements with unit Mg C/ha. Field sampling with species identification gave errors 

close to zero (accurate values were not presented in article). Protocol where stems were 

measured but not identified gave average errors of 2.69 Mg C/ha, 6.42 Mg C/ha and 14.22 

Mg C/ha which represent 3%, 5% and 31% of the total carbon stocks contained in those 

stems (average from different areas, three different forest types). FAO default values gave 

average errors of 21.16 Mg C/ha and 5.02 Mg C/ha (value for two different areas, forest 

type doesn’t matter in default values). IPCC values performed poorly, average errors were 

50.16 Mg C/ha and 34.02 Mg C/ha. 
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7 Remote sensing of aboveground biomass 

 

Remote sensing is a method where different sensors are used from distance, for example, 

from airplanes or satellites (French 2013, Angelopoulou et al. 2019). Remote sensing is 

used for large scale biomass estimations (aboveground carbon stocks), and although other 

spectral methods are typically used for below ground carbon estimations, remote sensing 

is not yet robust method enough for that. Remote sensing of soil organic carbon is also 

limited to few first centimeters of bare topsoil (Vaudor et al. 2013, Angelopoulou et al. 

2019).  

 

Remote sensing procedures have been applied to collect information about aboveground 

biomass. Vegetation structure, biomass and productivity can be estimated on a large scale 

by measuring the spectral reflectance of the vegetation (Main-Knorn et al. 2011, 

Vicharnakorn et al. 2014). According to Canada Centre for remote sensing (2020), remote 

sensing refers to a science where information concerning the earth’s surface is collected 

by sensing and recording emitted or reflected energy. Processing, analyzing and applying 

that information is part of that science. Remote sensing can be conducted from space 

(satellite systems) or air (airplane, drone). Aerial sensing is used for local-scale 

assessment of earth surface and satellite systems can be used for larger spatial extents 

(French 2013). Remote sensing needs some field measurements, the ground truthing, that 

is the way to link the sensor data to biophysical phenomena (French 2013). 

 

Aboveground biomass estimations are usually conducted with optical, Radar (SAR) and 

light detection and ranging (Lidar) sensors (Issa et al. 2020). Aboveground biomass is not 

spatially mapped even in countries where systematic forest inventories are conducted 

(French 2013). Mapping would add important information about carbon stocks, because 

forest characteristics can differ greatly from inventoried ones. Some areas are not easily 

accessible and remote sensing would be good opportunity for those (Vicharnakorn et al. 

2014, Holopainen 2019). On a national scale, above ground carbon stocks can be 

overestimated or underestimated if only field approach is used (French 2013). 
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7.1 Basics of remote sensing of biomass 

 

According to Canada Centre for Remote Sensing (2020) remote sensing needs an energy 

source that illuminates or provides electromagnetic energy. This energy travels towards 

its target of interest and while travelling comes into contact with atmosphere. Interaction 

with atmosphere takes place a second time as the energy travels from the target to the 

sensor. After the energy makes it way to the target, they interact with each other 

depending on the properties of both. After the interaction, the next step is to record and 

collect the electromagnetic radiation. This can be done via a sensor, which is not in 

contact with the target, that collects the scattered or emitted energy from the target. Then 

the energy recorded by the sensor must be transmitted to the station where the data is 

processed into an image. Lastly processed images can be interpreted visually, digitally or 

electronically, so that information about the target, which was illuminated, can be 

extracted (Canada Centre for Remote Sensing 2020). All electromagnetic radiation 

behaves in predictable ways in accordance to the basics of the wave theory (Canada 

Centre for Remote Sensing 2020). 

 

The interaction between a sensor and the surface can be active or passive. Passive sensors 

measure naturally available energy. These kinds of remote sensing systems can be used 

when the sun is illuminating the Earth (reflected energy), and during day and night when 

naturally emitted energy is available (for example thermal infrared) (Canada Centre for 

Remote Sensing 2020). Passive sensors usually record electromagnetic waves from 

visible (430−720 nm) and near-infrared (750−950 nm) range of light (Zhu et al. 2018). 

Active sensors provide their own energy source which means that the sensor emits 

radiation and detects and measures the radiation reflected from the target. These kinds of 

systems work regardless of the time of day or season (Canada Centre for Remote Sensing 

2020). Active sensors use electromagnetic waves in the range of visible light, near 

infrared and radio (Zhu et al. 2018). Wavelength of the electromagnetic radiation and the 

characteristics of target affect the reflectance spectra. Each target has its own spectral 

signature and this information can be utilized in remote sensing. Spectral signature is 

affected also by e.g. season, time of the day and position of the radiation, which all affect 

the interpretation of the images (Campbell et al. 2008). 
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Remote sensing for biomass carbon stock estimation is challenging but offers a broader 

scale estimation when compared to field observations (Gibbs et al. 2007). Remote sensing 

for carbon estimations can be separated into two main methodologies (Iizuka and Tateishi 

2015). The first is the indirect measurement of carbon (physical method) and the second 

is a method where land cover information is integrated with observations of forest 

inventories (statistical method) (Goetz et al. 1999, Pachavo and Murwira 2014). In the 

indirect approach gross primary production (GPP) or net primary production (NPP) is 

estimated with several parameters that are related to vegetation functions. Such 

parameters include leaf area index (LAI) and photosynthetically active radiation (PAR). 

In the statistical method, the field reference measurements and remotely sensed picture 

characteristics (e.g. pixel shade) are linked with regression techniques (Holopainen 

2019).  Both methods can also be integrated together (Zheng et al. 2007). Remote sensing 

can be conducted on a regional to global scale depending on the resolution of sensors and 

purpose of the use (Angelopoulou et al. 2019).  

  

7.2 Resolutions of remote sensing instruments 

 

Different remote sensing instruments have different resolutions (table 4). Spatial 

resolutions refer to the smallest object, pixel, that sensor is capable to detect. Spatial 

resolution determines how detailed a picture can be. Temporal resolution tells how often 

satellite passes the same spot and spectral resolution refer to sensors ability to sense 

different wavelengths. In spatial and temporal resolution, high resolution refers to small 

number of units (for example days or meters), and opposite in spectral resolution, where 

high resolution means that sensor can sense several wavelengths. There is usually a trade-

off between spatial and temporal resolution, which means that high spatial resolution 

pictures can be taken less frequently (Ympäristöministeriö 2004).  
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Table 4. Satellite remote sensing resolutions (example, values vary slightly between 

sources) (Ympäristöministeriö 2004). 

 Resolution 

Spatial Temporal Spectral 

High 1-35 m < 3 days several hundred bands 

Medium 200−500 m 4−16 days  3−15 bands 

Low > 1000 m > 16 days  3 bands 

 

For large (global and continental) scale biomass mapping the coarse spatial resolution 

(>100 m) optical sensors, such as the MODIS (French 2013), are useful because they have 

moderate spatial resolution, and good image coverage and frequency in data acquisition 

(good trade-off between those). Smaller (local to regional) scale biomass mapping needs 

finer spatial resolution instruments to achieve data with more details (Lu 2007).  

 

According to Lu (2007), vegetation estimations with coarse spatial resolution data over 

larger areas have been limited by the errors caused by mixed pixels, and the major 

difference between the pixel size of the satellite and the ground reference data. Mixed 

pixels case a situation where the coarse resolution pixels receive response from several 

objects (such as trees), and from that data, biomass cannot be directly estimated. Because 

coarse imaging satellites have useful characteristics (e.g. good image coverage), finer 

spatial resolution satellite data has been used to combine ground reference data to this 

coarser spatial resolution data. This is usually done by regression techniques (Muukkonen 

and Heiskanen 2007). For example, Häme et al. (1997) derived regression models from 

ground reference data and Landsat satellite data which they utilised successfully in the 

medium coarse spatial satellite data. Finer spatial satellite data models can be used as an 

intermediate step between ground measurements and coarse resolution data.  

 

7.3 Different sensor approaches for biomass estimations 

 

Three main sensor approaches are used for vegetation carbon storage estimations: optical 

sensors, synthetic aperture radar (SAR) and Lidar (Sun and Liu 2019) (Table 7). Optical 

sensors and their spectral measurements have been used to model and monitor primary 

production of above ground vegetation (Song 2012, French 2013). Optical imaging 
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sensors operate in the visible and reflective infrared ranges. Aerial photographing was the 

earliest version of remotely sensed data and it has been used to local-scale assessments 

(French 2013). Larger spatial scale remote sensing with satellite platforms and optical 

systems have been used for several decades (French 2013). Optical instruments on space 

platforms typically include panchromatic systems, multispectral systems and 

hyperspectral systems (Zhu et al. 2018).   

 

Landsat is one of the optical satellite systems which can be utilized for carbon mapping. 

Landsat land observation was launched in July 1972 and it has been orbiting earth since 

then (French 2013). Landsat is high spatial resolution satellite (30 m resolution) and its 

collected data is publicly open. There are also commercial high spatial resolution 

satellites, like QuickBird (measuring visible to infrared region). Landsat and QuickBird 

are passive optical sensor systems. Landsat collects data at specific multiple spectral 

wavelengths (optical multispectral remote sensing), measuring visible spectrum. Optical 

instruments can also collect data across the entire spectrum of reflected solar energy 

(optical hyperspectral remote sensing). For example, NASAs operating airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor is hyperspectral sensing system 

(Hbirkou et al. 2012, French 2013). Satellite optical imaging system’s spatial resolution 

varies from under 1m to 2 m (high spatial resolution) (Zhu et al. 2018). Variation depends 

from the sensor (e.g. QuickBird under 2 m, MODIS 250m) (Zolkos et al. 2012). 

 

Optical remote sensing does not directly asses the aboveground biomass (Vicharnakorn 

et al. 2014), but it gives two-dimensional information, which can be linked to biophysical 

characteristics of the vegetation. This linkage is indirect and optical systems can be used 

to identify horizontal variability and, for example, to asses canopy conditions (French 

2013). The electromagnetic energy that optical sensors utilize is emitted or absorbed on 

the upper layers of vegetation, so it only gives limited information (does not penetrate 

through vegetation) (Zolkos et al. 2012). This remote sensing system has been widely 

used to link direct aboveground measurements to satellite observations due to fact that 

different canopy structure gives different reflectance. This method is not consistent over 

large areas because rapidly varying surface conditions cause artefacts to the derived maps, 

as the satellite observations cannot keep up (cloud free time, repeat time). Frequent repeat 

measurement sensors, like the Moderate Resolution Imaging Sensor (MODIS), have 
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helped to overcome this problem (Goetz et al. 2009). Optical remote sensing systems are 

sensitive to optical properties and moisture (Zolkos et al. 2012). 

 

Synthetic aperture radar (SAR) produces images based on principles of radio detection 

and ranging (RADAR often synonym for SAR) (Goetz et al. 2009). SAR is active system 

and uses microwaves, an electromagnetic spectrum range of 1 mm−1 m (Zhu et al. 2018). 

SAR can penetrate through haze, smoke and clouds, and it can operate during day and 

night. SAR transmits microwave energy which can penetrate forest canopies. SAR 

sensors are sensitive to different aboveground biomass components according to the 

wavelength of the sensor. Shorter wavelengths are more sensitive to leaves and small 

branches, and longer wavelengths are more sensitive to stems and large branches (Goetz 

et al. 2009). SAR only shows the geometry and surface roughness of the target and it does 

not produce data where you can identify for example the vegetation type (like infrared, 

and they are used to complement each other’s) (Zhu et al. 2018). Several radar satellites 

are currently operating, for example the European ENVISAT/ASAR, the Japanese 

ALOS/PALSAR and German TerraSAR-X (Goetz et al. 2009).  

 

One of SAR system’s disadvantages is that its estimations of AGB are limited as the SAR 

instruments lose their sensitivity with increasing biomass (Issa et al. 2020). This 

phenomenon is known as “saturation” and it occurs in relatively low, but undetermined, 

biomass densities (optical saturation point is around 100−150 Mg/ha and for SAR a bit 

higher) (Zolkos et al. 2013). Low saturation point causes uncertainties in AGB mapping 

because estimations of vegetation density in high density forest is not accurate. Current 

SAR systems can produce an image with a half meter of accuracy (Zhu et al. 2018). It 

measures forest structure with high spatial resolution (20−100 m), can operate regardless 

of the time of the day and it can penetrate through clouds and through vegetation (Zolkos 

et al. 2013). 

 

Lidar uses a pulse of energy from a laser operating at optical wavelengths to actively 

sense vegetation. Lidar systems that are typically used for vegetation mapping usually 

operate in wavelengths between 900 and 1064 nm.  They record the time the pulse is 

travelling, and that time-return interval can be used to calculate distance between the 

sensor and the object (Zolkos et al. 2013). Lidar’s laser beam width varies (small to large 

footprint) and a small footprint beam typically illuminates a surface area with a diameter 
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50 cm or less. This kind of accuracy provides information that is increasingly utilized in 

forestry applications but in a small area. Medium to large footprint lidars illumination 

surface area can vary from larger than 5 m to approximately 65 m (depending the 

platform) (Zolkos et al. 2013). A lidar can measure the three-dimensional vertical 

structure of vegetation in great detail (Vierling et al. 2008). This information can be 

applied to above ground biomass via correlative models which has been derived from 

associated field measurements (Zolkos et al. 2013). There are some lidar’s operating form 

satellite platforms. The geoscience Laser Altimeter System (GLAS) spaceborne lidar 

system which be used to estimate forest aboveground biomass on a large scale (Sun et al. 

2019). 

 

Airborne Lidar is scalable and cost effective (Asner et al. 2013). Lidar and biomass have 

reported to show strong relationship beyond biomass levels of 1000 Mg/ha, which is far 

more than SAR and Optical sensors are capable. Lidar can estimate the vegetation 

structure direct (e.g. canopy height distribution) and it has been shown in several studies 

that it provides more accurate results in AGB estimations than optical and SAR data. 

Lidar can’t penetrate clouds (Zolkos et al. 2013).  

 

7.4 Important issues influencing biomass estimations for carbon mapping  

 

Remote sensing for aboveground biomass estimations include several critical steps to 

consider when building a proper biomass estimation procedure (Fig. 7). The selection of 

the sensor and platform, sample size of the reference data, variables, algorithms and cross 

validation of data is important, and each step include uncertainties (Sun et al. 2019). Many 

studies have conducted aboveground estimations, but comparing those studies is difficult 

due to diversity of data sources, modelling methods and calculation standards (Sun et al. 

2019).  
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Figure 7.  Workflow of satellite image processing. Combination of Sentinel and Landsat 

data (closely adopted from Li et al. 2020). 

 

Assessing carbon stocks with remotely sensed data uncertainties are high. Each workflow 

step includes possible error sources and ecological subjects are hard to monitor with high 

accuracy. This means that vegetation structural variations, species composition, 

heterogeneity of landscapes, soil properties, climatic and topographic variables and 

disproportionate data availability all create high uncertainties that affect biomass division 

and change tendency (Issa et al. 2020).  

 

7.4.1 Remotely sensed data  

 

Remotely sensed data introduces limitations and sources of uncertainties. Different 

sensing systems provide different information and the selection of the right sensor data is 

essential. For example, each sensor type provides different resolutions and different 

information according to the polarization and angularity (Lu 2007). Sensor selection 

according to a specific purpose and study area is the key, and since each sensor type has 

their own characteristics, they can be integrated to achieve data where one sensor’s 

limitations are exceeded. Multisensor synergy can produce estimations with accuracy 

levels similar to those of the lidar alone, or even better accuracy, but study results have 

varied (Zolkos et al. 2013).   
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Remotely sensed data needs also several corrections due to the radiometric characteristics 

and interaction with the atmosphere (Lu 2007). When electromagnetic energy passes 

through the atmosphere it causes changes to direction, intensity and spectrum of the 

radiation. These atmospheric effects need to be corrected, and typically it is done via 

mathematical models. Without proper atmosphere corrections, satellite pictures will show 

major distortions (Muukkonen and Heiskanen 2007). Atmospheric correction with 

mathematic models is necessary, but they also include inaccuracies (Muukkonen and 

Heiskanen 2007). Topographic factors also influence the reflectance of the vegetation and 

remotely sensed data from mountainous regions needs removal of topographic effects (Lu 

2007). It goes without saying that remotely sensed data handling requires a thorough 

knowledge of data processing and an understanding of the phenomena under interest.  

 

7.4.2 Reference data quality and variables 

 

Remote sensing data is conventionally compared with forest in situ measurements (non-

destructive estimations) (Zolkos et al. 2013). Forest field measurements are essential for 

biomass estimations and field measurements can also be called reference data. The field 

measured data can be used for different purposes e.g. model development, validation, 

calibration, comparing different models and to conduct uncertainty analysis. High quality 

data source is thus essential for developing an AGB estimation model.  The quality of the 

field data may vary greatly because data is essentially collected for another purposes, tree 

species composition might be very complex and wood density may differ (Lu 2007). 

Quality of field data affects the accuracy, and calibration or validation of the calculated 

AGB is needed. Asner et al. (2013) argued that to reduce uncertainties in lidar and satellite 

measurements, the necessary step is to measure plot-level biomass instead of estimating 

it from conventional inventories with allometric equations. More accurate plot level direct 

measurements offer better data for lidar calibrations.  

 

Geometric accuracy of the field data sample plots and remotely sensed data is also 

important factor affecting the accuracy of the biomass estimations (Lu 2007). Without 

proper geometric accuracy, the relationship between AGB and remotely sensed data can 

be erroneous.  
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According to Issa et al (2020) one factor affecting biomass estimations is selection of 

suitable remote sensing variables. Remote sensing variables, such as spectral signature, 

vegetation indices and image textures, may be suitable parameters to describe AGB. 

Suitable variables should correlate significantly with AGB and weakly with each other’s. 

Weak correlation with AGB reduces the AGB estimation performance. Potential 

parameters can be identified with several statistical methods. For example, stepwise 

regression analysis and correlation analysis can be used. Both are simple analysis which 

are based to the relationship between AGB and tested variables (Issa et al. 2020). 

 

7.4.3 Modelling and uncertainty analysis  

 

Different modelling algorithms can be used to describe what remotely sensed data tells 

about phenomena of interest, which is in this case aboveground biomass (carbon pool).  

Algorithms link reference data to the variables divided from remotely sensed images 

(Gasparri et al. 2010, Dormann et al. 2012). Empirical algorithms include parametric and 

nonparametric algorithms, and both are widely used in aboveground biomass estimations 

(Sun et al. 2019). Parametric algorithms (e.g. simple or multiple linear regression model) 

and nonparametric algorithms (e.g. K-nearest neighbors, random forest) behave a bit 

differently. Parametric algorithms assume straight forward linkages between variables 

and biomass and estimation are based on models which predict the relationship (Powell 

et al. 2010). But in real life, factors affecting biomass are complex and numerous, which 

means that it is difficult to predict the relationship with simple regression models. An 

alternative approach is to use nonparametric algorithms (Sun et al. 2019). 

 

Several factors determine which model/algorithm/prediction method is selected (Sun et 

al. 2019). Factors, such as, sensors resolution, the availability of biomass sample data and 

reference data, the scale of the area, the availability of related software and human 

resources all affect the selection of prediction model. Different models perform 

differently according to factors mentioned above. One way to evaluate model 

performance is uncertainty analysis. Uncertainty analysis is used to assess the accuracy 

of biomass estimates. The root mean square error (RMSE) and the coefficient of 

determination (R2) are commonly used measures (Lu 2007). High R2 value and low 

RMSE value often indicates that developed model fits well with the sample plot data. 

Traditionally, in remote sensing data analysis, the reference data is split into two parts, 
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where one part is used to develop the model, and other is used for evaluation of model 

performance (cross-validation) (Sun et al. 2019). Uncertainty analysis is one way to 

compare performance of different approaches but there is also variation between analyzed 

results. For example, one of the common types of cross-validation method is k-fold cross-

validation, but the value of k differs in different studies and that might affect the model 

diagnostics (Sun et al. 2019). 

 

Sun et al. (2019) studied the performance of different prediction methods by combining 

lidar data (GLAS), optical data (MODIS) and field measurements. They compared six 

prediction methods (Gaussian processes, stepwise linear regression, nonlinear regression, 

partial least squares regression, random forest and support vector machines) and effect of 

prediction method, sample size of field measurements and cross-validation settings. 

Authors concluded that prediction method had the most considerable effect on the quality 

of the estimations. In most cases the random forest -model produced more accurate 

predictions than others. The sample size obviously affected the prediction model 

performance and for example the random forest algorithm combined to large number of 

field measurements (n=801) gave the most precise results (R2=0.73 and RMSE=23.58 

Mg/ha).  

 

Several approaches have been developed, yet there is no universal model, or at least 

agreement which model would perform best in certain situations. One universal model 

might be too difficult to develop, but it is necessary to identify (or develop) models 

suitable for different environments. More advanced models for AGB estimations, which 

utilize multi-source data, are also needed (Lu 2007). 

 

Asner et al. (2013) demonstrated the uncertainty of aboveground carbon density 

estimations by combination of lidar sensors and satellite (Landsat) data. Accuracy was 

compared to field measurements. Study was conducted in Panama, and study site was the 

whole country. Vegetation types ranked from dense tropical forest to grasslands. The 

result demonstrated that the lidar based carbon mapping has an uncertainty of about 10% 

at 1 ha resolution.  

 

Fassnacht et al. (2014) compared how sample size, sensor type and prediction method 

affect the accuracy of the AGB estimations. They conducted the study in two locations, 
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in Europe and South- America, and they compared three different sensor scenarios and 

they performance with different sample sizes and different prediction methods. Authors 

concluded that selection of sensor type had the highest impact on accuracy. In their study, 

the best performing sensor scenario was a combination of airborne lidar data and 

spaceborne optical data (compared to airborne optical and airborne lidar). Best 

performing prediction method was again random forest. The overall best performance 

was multisensory synergy with random forest algorithm and biggest sample size (R2 0.71 

and RMSE 37, case mean was R2 0.42 and RMSE 52). The main discovery in their study 

was that a good prediction method might be more important than increasing the number 

of the field data. 

 

7.5 Accuracy of remote sensing methods for biomass estimation 

 

Accuracy requirements for remote sensing approaches are not yet explicitly stated, but 

studies conducted by Hall et al. (2011) and Houghton et al. (2009) asserted that satellite 

remote sensing should give errors in biomass estimation within 20 Mg/ha or 20% of field 

estimates. Errors should not exceed 50 Mg/ha for a global biomass map at 1 ha resolution 

(Zolkos et al. 2013). Asner et al. (2013) concluded that fraction cover of photosynthetic 

and non-photosynthetic vegetation imagery from Landsat, combined to topography and 

climate data, is a suitable way to map national-scale aboveground vegetation density on 

a per hectare basis. This method gives low uncertainties to estimations. In Panama study, 

Asner et al. (2013) calculated that carbon density uncertainty was on average 20.5 Mg 

C/ha at the national level. 

 

7.6 Costs of remote sensing 

 

Economic condition is probably the most important factor affecting the implementation 

of satellite remote sensing for carbon mapping (Issa et al. 2020). Economic condition 

influences the extent of the field work, purchase of different sources of image data and 

the human resources that all affect the accuracy of the AGB mapping. Higher accuracy 

often means higher costs.  Asner et al. (2013) estimated that their costs for airborne lidar 

inventory was 1 USD dollar (0.85 €) per hectare in an area of 600 000 hectares. Costs of 

airborne lidar approach decrease when area increases and Asner et al. (2013) estimated 
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that for example cost for twice as large area, the cost per hectare (airborne lidar 

acquisition and analysis) would be about 0.15 USD dollars (0.13 €). 

 

Böttcher et al. (2009) collected costs for monitoring Reduced Emissions from 

Deforestation and Degradation (REDD) projects in different areas and different project 

scales (table 5). They concluded that cost can vary from 0.42 to 463 €/km2. These project 

areas were smaller (40−28000km2) than area in Asner et al. (2013) study, but results differ 

from each other largely. 

 

Table 5. Biomass monitoring costs with different remote sensing techniques (acquisition 

and analysis costs) example.  

Satellite, sensor US$/km2 (€/km2) 

Optical, medium 0.50−1.21 (0.42−1.02) 

Optical, high 7.50−35.40 (6.32−29.83) 

Optical, very high 116−272 (97.74−229.18) 

Radar, satellite SAR 7.04−10.54 (5.93−8.88) 

Radar, airborne SAR >345 (290.68) 

Lidar, airborne 100−550 (84.26−463.41) 

 

 

7.7 Summary of different aboveground biomass remote sensing sensors 

 

Short summary of different biomass remote sensing approaches for carbon estimation 

(Table 6). 
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Table 6. Summarization of average R2 values, average prediction errors, limitations and 

benefits of different remote sensing sensors for aboveground biomass estimations in 

forest (modified from Issa et al. 2020). 
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8 Soil sampling for carbon stock quantification 

 

Soil organic carbon stock estimation is challenging, because soil carbon content and soil 

biochemical processes vary greatly spatially and temporally. Physical sampling can be 

used for baseline determination and monitoring SOC stock changes. Soil sampling should 

be well planned and fulfil standard methodology criteria. Several environmental factors 

cause heterogeneity in the organic carbon content in soils and standardization adds 

confidence in sampling results (FAO 2019). For example, 60% of carbon in boreal forests 

is located in soil (Liski et al. 2006) and changes in this pool are small in relation to the 

size of the stock, which means that forest soil carbon stock changes are hard to measure 

and detect reliably (Peltoniemi et al. 2004).  

 

The conventional approach to determine soil organic carbon quantity is to collect soil 

samples and analyse them for carbon concentration. This procedure includes field soil 

sampling, sample preparation and laboratory analysis. Dry bulk density measurements 

are also required to convert concentration from mass to volume based (Whitehead et al. 

2012). Soil dry bulk density is the dry mass per unit volume of the soil. Soils include 

solids and pores, and those pores can contain air, water or both and bulk density typically 

has high spatial variability (Wild 1993). Soil carbon concentration can be determined with 

dry combustion. Dry combustion is done with standard automatic instruments in a 

laboratory. Bulk density is conventionally measured with the volumetric ring method or 

the clod method (for soils with many rock fragments) (England and Viscarra Rossel 

2018). Due to the soil characteristics the direct soil sampling needs to be considered 

thoroughly in order to achieve effective and representative sampling (FAO 2019).  

 

Soil sampling can be carried out in arable and forest soils, and every soil type. Forest soil 

sampling is more complicated than sampling of cultivated soils, but there are approaches 

that are suitable for soils under different vegetation types (grasslands, trees, wet peat etc.) 

(Whitehead et al. 2012). Forest soils typically have well-developed organic layers and 

high organic matter content, which causes significant variations of SOC with depth. 

Compared to agricultural soils the spatial variability is usually larger in forest soils (IPCC 

2003, Vanguelova et al. 2016). 
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8.1 Sampling design and dry bulk density 

 

Sampling size and core depth depend on the purpose of the sampling, and vertical and 

horizontal stratification or heterogeneity of soil carbon. If the purpose is to estimate the 

total amount of soil organic carbon stock in a certain area, then the sample collection 

should contain all subunits in that location (Whitehead et al. 2012). If the land area is 

shallow mineral soil with organic horizon, then the sampling of multiple cores should be 

distributed accordingly. Slopes also need several sampling points in different slope 

positions. In general, that the larger the horizontal or vertical gradient, the larger the 

replicate needed. The horizontal gradient affects the number of cores and the vertical 

gradient affects the number of the samples collected in each core (Whitehead et al. 2012). 

Sampling locations for soil coring should be randomly determined to avoid bias. GPS 

coordinates of each sampling location should be recorded for future revisiting (FAO 

2019). 

 

Soil samples are collected from certain soil depth and most often soil sampling for carbon 

stock estimation purposes is done in a depth of 30 cm, the minimum recommended (FAO 

2019). Deeper layers of soil can also be sampled in the depths of 30−60 cm and 60−100 

cm. The 100 cm sampling depth often requires specific machinery (Smith et al. 2020). 

Large amount of SOC is found under 30 cm depth, it is estimated 60% of SOC locates 

deeper layers (Soussana and Lemaire 2014). Long-term SOC stabilization may occur in 

deeper layers and short term SOC changes happen in top layer (Conant et al. 2001), which 

makes it important to also sample soil layers below 30 cm (Jobbagy and Jackson 2000). 

A sample can be collected by using a soil corer tool of known volume, or a pit. A large 

pit is more time consuming but reveals the whole soil profile and reduces uncertainties 

related to soil compaction. Soil coring with suitable tool and the pit are both accepted 

practices; most important is to use such methods that the needed parameters can be 

calculated/estimated (e.g. soil bulk density, soil mass) (FAO 2019).  

 

Soil coring is usually conducted with a simple cylinder, which is pressed into the soil, to 

the depth of interest. FAO recommends that the core diameter is something between 50 

and 100 mm. This is because a diameter smaller than 50 mm gives a small sample volume 

that makes it difficult to represent properly the coarse roots and coarse mineral fragments. 

Diameters larger than 100 mm are difficult to handle (FAO 2019). Depending on the 
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depth of the core, the sample might be divided into sections. According to the method 

from Blakemore et al. (1987), the fresh sample is weighted (each section if necessary), 

sub-sampled and homogenized. Dry mass is calculated from the water content and field 

weight, and bulk density is determined by dividing the dry mass by its volume (each 

section). Soil fraction is sieved, and soil that passes 2 mm sieve and the organic carbon 

in it, is the internationally accepted definition of operational SOC (fine earth fraction) 

(FAO 2019). 

 

Compositing is a procedure where several soil cores (subsamples) are pooled together 

into one homogenous composite sample. This method is also known as bulking. In those 

samples, SOC concentration should be equal to the average SOC value of individual 

cores. Compositing method can be used for reducing spatial variability and overall cost 

from multiple soil sample analyses (FAO 2019).  

 

8.2 Soil organic carbon content and stock size determination 

 

Dry combustion is an analytical method to measure organic carbon content in soil.  In dry 

combustion, finely grounded soil samples are burned generally around 1000 °C (Nelson 

and Sommers 1996). Pure oxygen acts as a catalyst or accelerator and ensures complete 

combustion of the sample. Other catalysts are vanadium pentoxide, copper (Cu), copper 

oxide (CuO) and aluminium oxide (AlO) (FAO 2019). The end product, CO2, is then 

quantified by gas chromatography. Since all carbon units are measured, it is important to 

remove other carbonates (SIC) before SOC determination. This is conducted with 

hydrochloric acid acidification prior the analysis. Some soils include high amounts of 

highly stable organic carbon compounds (e.g. char from natural fires and biochar) which 

don’t decompose in temperatures under 600 °C (FAO 2019). This may lead to 

underestimation of SOC concentration (Nelson and Sommers 1996). Other analytical 

methods are also available (e.g. wet digestion/oxidation) (Vitti et al. 2016.).  

 

For SOC stock determination, soils fine earth and coarse mineral fraction, organic carbon 

concentration in the fine earth fraction and soil bulk density or fine earth mass are 

necessary parameters. Those parameters can be used in equation 6 to calculate SOC stock 

(FAO 2019).  
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𝑆𝑂𝐶𝑖 𝑠𝑡𝑜𝑐𝑘 (
𝑀𝑔 𝐶

ℎ𝑎
) =  𝑂𝐶𝑖 ×  𝐵𝐷𝑓𝑖𝑛𝑒 𝑖 ×  (1 –  𝑣𝐺𝑖) ×  𝑡𝑖 ×  0.1   (6) 

 

in which 

SOCi = soil organic carbon stock (in Mg C /ha) of the depth increment i 

OCi = organic carbon content (mg C g/soil) of the soil fraction (< 2 mm) in the depth 

increment i 

BDfine I = the mass of the ne earth per volume of ne earth of the depth increment I (g ne 

earth cm-3 ne earth = dry soil mass [g] – coarse mineral fragment mass [g]) / (soil sample 

volume [cm3] – coarse mineral fragment volume [cm3]) 

vGi = the volumetric coarse fragment content of the depth increment i 

ti = thickness (depth, in cm), of the depth increment i 

0.1 = conversion factor for converting mg C cm2 to Mg C/ha. 

 

When SOC stock changes are monitored, changes in bulk density should also be 

considered. Because of bulk density variation, comparison of SOC stocks should be made 

on an equivalent soil mass basis (ESM). This means that SOC stocks over time are 

compared to the same mass of soil.  This method fixes the effect of SOC content and bulk 

density variation in different soil depths (Wend and Hauser 2013). Overall, SOC stock 

determination should always be conducted with the same sampling and analyzing 

protocol, so that changes could be detected reliable (Heikkinen et al. 2020). Davis et al. 

(2018) compared soil organic carbon measurement protocols in U.S. and Brazil and they 

found out that reported procedures reflected big variabilities, which makes it hard to 

compare results from different study sites. Differences may be due to different sampling 

protocols instead of differences in soil carbon stocks.  

 

8.3 Minimum number of sampling points  

 

A long monitoring period and a large sample size are needed for evaluating soil treatment 

effects on SOC (due to large spatial variation of SOC). The smallest difference in SOC 

stock that can be detected and is statistically significant, is based on the minimum 

detectable difference (MDD), and it can be determined through power analysis (equation 

7) (Zar 1999).  
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𝑀𝐷𝐷 ≥
𝑆

√𝑛
× (𝑡∝,𝑣 +  𝑡𝛽,𝑣)   (7) 

 

in which 

MDD = minimum detectable difference 

S = standard deviation of the difference in SOC stocks between t0 and t1 

n = number of replicates 

v = n – 1 is the degrees of freedom for the relevant t-distribution 

t = values of the t-distribution given a certain power level (1-β) and α level. 

 

The minimum number of samples needed to detect the difference of two different 

sampling points can be calculated with equation 8 (Vanguelova et al. 2016).  

 

𝑛 ≥ (
𝑆 ×(𝑡∝+𝑡𝛽)

𝑀𝐷𝐷
)

2

   (8) 

 

in which 

n = number of samples, 

MDD = minimum detectable difference 

S = estimated standard deviation, 

tα = two-sided critical value of the t-distribution at a given significance level (α) 

frequently taken as 0.05 (5%) 

tβ = one-sided quartile of the t-distribution corresponding to a probability of type II error 

β (e.g. 90%). 
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There are different calculation methods, and for example Mäkipää et al. (2008) used the 

equation 9 to calculate the number of plots needed for detection of soil carbon stock 

changes in Finnish forests. 

 

𝑛 = (𝑡 × 𝑠
𝐸⁄ )2  (9) 

 

in which 

n = number of plots required 

t = value from Student’s t distribution table (number of degrees of freedom and 

confidence interval considered) 

s = estimated standard deviation 

E = desired half of the confidence interval. 

 

Schrumpf et al. (2011) took soil samples from 12 sites from CarboEurope Integrated 

Program across Europe to find out sufficient core number in plot/field scale and if the 

equivalent soil mass method would increase the smallest detectable change. They took 

100 sampling points per site (up to 60 cm depth) and they covered the major land use 

types, deciduous and coniferous forests, grasslands and croplands. The authors concluded 

that in cropland sites the spatial variability was smallest which also led to the lowest 

minimum detectable difference (105 ± 28 g C/m2). In grasslands the minimum detectable 

difference was 206 ± 64 g C/m2 and forest sites 246 ± 64 g C/m2.  

 

Heikkinen et al. (2020) concluded that in boreal agricultural mineral soils the required 

sample size to detect difference of 0.1 kg C/m2 at field level is several hundred samples. 

Median results from power analysis varied from 623 samples in coarse soil under 

perennial plants to 891 samples in fine soil under annual plants. 

 

8.4 Soil sampling frequency  

 

A single re-sampling would not distinguish any interannual variability and long-term 

trends. Repeated soil inventories during a certain period would be advisable, instead of 

just one re-sampling after several years. More frequent sampling will increase precision 

(Schrumpf et al. 2011). SOC change between two sampling points should be greater than 



51 

 

MDD, which means that if the expected stock change rate is low, the sampling time is 

also less frequent. Carbon input, climate and seasonal weather influence on the carbon 

gained or lost. Under variable environmental conditions, a longer sampling frequency is 

needed, to ensure that any changes in SOC stocks can be detected (FAO 2019). Intra-

annual variation is also important to consider. SOC decomposition is mainly moisture and 

temperature dependent (Paul 2007), farming practices, carbon inputs, and carbon inputs 

due to natural reasons vary seasonally. Repeated sampling over several years should be 

planned to minimize intra-annual variation; this can be done by ensuring that sampling is 

conducted during the same season or by comparing more than two years (van Wesemae 

et al. 2010). 

 

Smith (2004) studied the increased carbon input effects on the SOC stock change 

detection between two sampling points, and reported that when the C input increased by 

a maximum of 20 to 25%, changes in SOC stocks could be detected after 6−10 years (with 

90% confidence) (Smith 2004). Schrumpf et al. (2011) also found out in their vast soil 

monitoring study (mentioned above) that general trends in soil organic carbon indicate 

that with 100 samples (per site), the change would be detectable after 2−15 years (10 cm 

depth). In a depth of 30 cm, the time varied between 7 years (grasslands) and 14 years 

(croplands, conventional farming methodologies) to 20 years in forests (Schrumpf et al. 

2011). 

 

8.5 Uncertainties in soil sampling 

 

Soil sampling includes several steps and each step includes possible error sources. Table 

7 summarises the systematic error sources at different scales. Identifying different 

potential sources of uncertainties is important when considering the possibilities to reduce 

them. Biggest problem based on literature can potentially be to neglect bulk density 

determination. Adequate sampling depth is also under debate (Vanguelova et al. 2016).  
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Table 7. Possible soil sampling error sources at different scales. Modified from 

Vanguelova et al. 2016. 

Sample Bulk density is not assessed 

Samples are not homogenized 

Different analytical procedures 

Coarse fragment volume is not assessed 

Different soil horizons and layers are not 

separated accurately 

Inappropriate time for soil sampling 

Profile Sampling at not full soil depth 

Sampling by horizon versus soil depth 

Plot Bulk density and stone content not analyzed 

Not enough sampling points 

Different sampling schemes 

Small scale variability not accounted 

Measurement error including sample preparation 

Not harmonized inventory teams 

Landscape/National/ 

European 

Lack of local and regional representativeness of 

sampling plots 

Important areas are underrepresented (e.g. peat 

soil) 

Lack of forest cover maps and accurate 

soil/hydrology maps 

 

 

An appropriate scale related to carbon stock monitoring is important to define. Different 

scales could include profile, plot, forests, catchment, national or wider areas. Soil 

heterogeneity and spatial variability are important to take into consideration, as the factors 

are clearly scale dependent (Goidts et al. 2009). In general, soil properties vary more with 

increasing study area. According to Hobley and Willgoose (2010), soil carbon’s spatial 

variability can rise sevenfold when scaling up from a point sample to landscape scale. 

This can lead to high uncertainties in SOC stock calculations if scaling up is not 

considered accordingly (Vanguelova et al. 2016). 
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8.6 Soil sampling costs 

 

Mäkipää et al. (2008) calculated the sampling costs for plot scale soil sampling in Finnish 

forests. Costs of soil sampling depends on several factors and those costs can be divided 

into fixed and variable components. Fixed components include costs that are not 

dependent on the number of the soil samples (n). For example, direct personnel costs from 

transportation, accommodation and driving time to the sampling site (salary). Variable 

costs are dependent on the sample size (n) and it includes the costs of soil sampling, 

sample preparation and analyses in the laboratory (salary and all other costs).   According 

to Mäkipää et al. (2008) measuring the carbon in soil organic layer costs 520 €/plot with 

10 analyzed samples. In this study and with their sampling protocol the minimum 

detectable change was >860 g C/m2, which is not very good precision. If sample size per 

plot was increased to 30 sampling costs arise to 1100 € and detectable change drop to 540 

g C/m2. In Peltoniemi et al. (2004) study, the organic layer in forest increased in average 

by 47 g C/m2 during a 10−year period and this relatively slow change makes it hard and 

costly to detect on a small scale.  

 

Singh et al. (2012) calculated how much would cost to measure field level soil carbon 

stock size in cropping field in Australia. They concluded that sampling to 30 cm depth in 

a 68−hectare area with < 2 t/ha standard error, the cost would be 2500 AU$ (~1500 €). 

 

9 Modelling of soil carbon stocks 

 

Soils are very heterogeneous, and it would take a large number of direct measurement 

samples to estimate the size of the soil carbon pool reliably. Changes in soil carbon pools 

occur slowly and monitoring it is often difficult (Mäkipää et al. 2004). Modelling soil 

dynamics and simulating stock changes helps to tackle those obstacles and offers a 

mathematical way to estimate SOC (Peltoniemi et al. 2007, Paustian et al. 2019). A 

completely accurate model is, however, difficult to develop, because the large 

uncertainties in empirical data and the complexity of the carbon turnover process in soil 

(Peltoniemi et al. 2007).  
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9.1 Three levels of soil models 

 

FAO (2019) categorizes soil organic matter models into three levels according to different 

models of approach. These categories are 1. empirical models, 2. soil process models and 

3. ecosystem models. Model categorizing varies, and for example Paustian et al. (2019) 

divides models that predict SOC changes into empirical models and process-based 

models.   

 

Empirical models represent the observed relationship between carbon stocks and 

environments. Empirical models are based on statistical relationships and describe how 

environmental and management variables interact with SOC stocks and SOC stock 

changes (FAO 2019, Paustian et al. 2019). Statistical relationships are estimated from 

field experiments, where SOC changes due to environmental and management variables 

are observed (Paustian et al. 2019). Temperature, precipitation, soil clay content and land 

use are typical variables affecting SOC changes and empirical model development (FAO 

2019). Best known empirical approach is the model developed by Intergovernmental 

Panel on Climate Change (IPCC) to estimate SOC stock changes for the national 

greenhouse gas inventories (IPCC 2003). Empirical type of approach has been the basis 

for more complex models (FAO 2019). The drawback of using empirical models is that 

typically these equations are generated for specific soil types, climates, management and 

carbon inputs which leads to the situation that models are not working adequately when 

those variables change (FAO 2019). Other limitation is lack of field experiment data from 

many climates, soil types and management combinations (Paustian et al. 2019). Empirical 

models developed by IPCC (2003) are developed from global data sets, and they are 

intended for national scale application. Thus, regional or local scale SOC stock estimation 

need new estimations of parameters used in models (Paustian et al. 2019). 

 

Process-based models are models that estimate the SOC stock changes aided by SOC 

dynamics through time. These SOC dynamics consider the effects of climatic and soil 

factors with land use and management variables (Paustian et al. 2019, Senapti et al. 2014). 

These models are more detailed, and they determine SOC stocks and changes by using 

mathematical functions (sets of different equations), where physical and chemical soil 

processes are considered (FAO 2019). These models are usually constructed from several 

compartments (Fig. 8) where each represents the fraction of SOC with similar 
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characteristics. Decomposition rate and mechanism driving carbon stabilization are 

typical factors directing model compartment division (Stockmann et al. 2013). The 

carbon flow moves from litter to the microbial pool and then to more stable soil carbon 

pool. Moving from first compartment to next, the stability of soil organic carbon increases 

(FAO 2019). Yasso (Liski et al. 2005) and RothC (Coleman and Jenkins 1996) are 

examples of process-based models (table 8). FAO recommends that these types of models 

should be used when required (model specific) data is available.  

 

Most models are developed for research purposes where aim was to study how different 

changing variables affect SOC dynamics. Under interest has been how SOM functions 

with environmental variables, edaphic variables and land-use and management practise. 

Process models integrate these factors and controls affecting decomposition and organic 

matter stabilization in soils (Paustian et al. 2019). Even tough dynamic process-oriented 

models might be quite comprehensive, they don’t include all important ecological 

processes affecting soil carbon. Some exclusions might include e.g. biomass growth and 

nutrient cycle (FAO 2019). Process-oriented models also need relatively few data 

requirements. Information about climate, soil and productivity are typical data 

requirements for simulations (FAO 2019). Process based models can be further develop 

by integrating models with several data sources (Campbell and Paustian 2015) like flux 

measurement networks and exciting long-term field experiment (Harden et al. 2018) 

 

Ecosystem models present the third level of modelling according to FAO (2019). 

Ecosystem models simulate carbon stock changes in time, considering the same factors 

as the level two models, but they also integrate above- and belowground plant biomass 

growth and carbon inputs, water and nutrient dynamics and their interactions. CENTURY 

(Parton et al. 1987) is one of the existing ecosystem models used for SOC estimations. 

Models with several compartments, processes and interactions to simulate, need higher 

amounts of soil, climatic and management data. Higher complexity can provide higher 

accuracy, but great data requirements can be difficult to obtain, which limits the 

application (FAO 2019).  

 

More than 250 models describing soil carbon turnover (Manzoni and Porporato 2009) 

have been formulated, each for different purposes. Models differ from each other based 

on the biochemical and physical processes and the underlying assumptions. Table 4 
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summarises examples of commonly used named models. Yasso (Liski et al. 2005) and 

RothC (Coleman and Jenkins 1996) are process based models, CENTURY (Parton et al. 

1987) is ecosystem model and FullCAM (Richards et al. 2004) is combination model 

which integrates several different models into one full ecosystem model.  

 

Table 8. Overview of different types of process-oriented models. Yasso and RothC are 

process models, CENTURY is ecosystem model and FullCAM is combination of several 

models (Parton et al. 1987, Coleman and Jenkins 1996, Richards et al. 2004, Liski et al. 

2005)  
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9.2 Soil carbon turnover models internal structure 

 

According to Batlle-Aguilar et al. (2011) SOC turnover models can be divided into 

categories based on their internal structure. Processes-oriented (multi-compartment) 

(Smith et al. 1998), organism-oriented (Post et al. 2007), cohort (describes decomposition 

as a continuum) and a combination of the first two, are four categories that each describe 

SOM dynamics models (Batlle-Aguilar et al. 2011).  

 

Process-oriented, or compartment models, are built to consider SOM transformation and 

migration through different soil layers (Smith et al. 1998) (Fig. 8). A compartment refers 

to different fractions of SOM that each have different chemical and physical 

characteristics. These kinds of models can be complex, including multiple compartments, 

or a simple one compartment, or even no compartment models, where degradation is 

assumed to be a continuum (Smith et al. 1998). Process-based models can be combined 

with Geographical Information Systems (GIS), which adds benefits for regional-scale 

studies. CENTURY (Parton et al. 1987) and RothC (Coleman and Jenkins 1996) are 

process-based models combined successfully with GIS (Batlle-Aguilar et al. 2011). As a 

downside, theoretical compartments created to describe SOM dynamics are difficult to 

compare with actual measurements of soil fractions. Thus, validation and testing are quite 

limited leading to a situation that model can include an undefined inaccuracy (Batlle-

Aguilar et al. 2011). 
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Figure 8. Separation of the SOM in different compartments representing different 

decomposition rates. Modified from Willgoose (2018). 

  

Organism-based models describe SOM movements between pool, and each of these 

organism pools is classified. The main drivers (microbes and fauna) of SOM fluxes and 

transformation are explicitly accounted for, which gives more accurate estimations where 

the model is based on (Post et al. 2007). Accuracy is the main advantage and the negative 

side is that the relationship between the abundance of soil biota and degradation rate of 

organic matter is not yet commonly agreed upon. Another downside in organism-oriented 

models is that site-specific calibration requires the characterization of the whole soil 

microbial pool with complex techniques. Compared to process-based models, the 

relationship between degradation rate and substrate concentration is well known (Batlle-

Aguilar et al. 2011). First-order kinetic rate (assumption: the bigger the concentration, the 

bigger the decomposition rate) (Senapati et al. 2014) is simple and often a suitable way 

to describe the organic matter transformation. Rate of these reactions can be determined 

in a laboratory (e.g. litter bag) and then used in process-based models, but organism-

oriented models need complex site-specific calibration. Process-oriented models are more 

popular because of their usability (Batlle-Aguilar et al. 2011).  
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Cohort models divide the organic matter in soils into cohorts, and further into different 

pools (Senapati et al. 2014). In a cohort model, the microbial physiology is considered to 

be the main driving factor in organic matter decay. The fourth group of models is a 

combination of the process- and organism-oriented models, which have high specific data 

requirements and thus not commonly used (Batlle-Aguilar et al. 2011). 

 

In most soil carbon models the size of the microbial pool (microbes, fungi and fauna) is 

not determined, but the decomposition is considered by variables that affect the microbial 

activity (e.g. temperature and soil moisture) (Peltoniemi et al. 2007). This means that the 

microbial activity in model is expressed as decomposition rate of compartment 

(Peltoniemi et al. 2007). Because SOM is complex and includes fractions of different 

stability, the energy needed for decomposition varies also (Davidson and Janssens 2006, 

Peltoniemi et al. 2007). In model compartment development, these different 

decomposition rates and needed energy requirements are approximated and divided to 

several different compartments that differ in organic matter turnover time (Peltoniemi et 

al. 2007). Because of the complexity of SOM, several studies confirm that simulation of 

carbon dynamics cannot be adequately approached with one compartment only (Kätterer 

et al. 1998, Davidson and Janssens 2006), but more complex SOM models, with several 

pools, are necessary when modelling carbon concentration changes in soils and the 

atmosphere (Schimel et al. 1994). Large soil carbon stocks located in slow turnover pools 

in soils and fluxes represent the fast turnover carbon pools (Fig. 7). Models with one pool 

and one turnover rate will overestimate the carbon response because changes in the stabile 

stocks happen in the slow pool (Telles et al. 2003)  

 

9.3 SOC model scales 

 

SOC models can be formulated to different scales. According to Campbell and Paustian 

(2015) three commonly used scales are microsite, ecosystem and global. Each scale has 

its own limitations and use. Microsite is the smallest scale and models designed for that 

can be used, for example, to predict short-term and small changes. Microsite presents, for 

instance, a small area of a rhizosphere. These small-scale models are difficult to link into 

larger scale dynamics and microsite models are also dependent on specific soil 
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fractionation method (a method where different soil organic matter particles are 

fractioned from each other) (Campbell and Paustian 2015).  

 

Ecosystem scale models can be used to model a hypothesis based on mechanistic or 

empiric relationships and predict impacts of changes specific to a certain site. Ecosystem 

scale limitations are required for site-level data, and on this scale, models cannot represent 

mechanistic relationships that are important in smaller scales. RothC (Coleman and 

Jenkins 1996) and Yasso (Liski et al. 2005) are examples of ecosystem scale SOM 

models. SOM models can also be formulated on a global scale. Global scale SOM models 

that can be used to model hypotheses of large-scale dynamics, simulate global scenarios 

and predict climate change with dynamic soil feedback (Campbell and Paustian 2015).  

 

The scaling decision is a critical component of the simulation of soil carbon for inventory 

purposes (Peltoniemi et al. 2007). Input data and model application will determine to 

which scale the soil carbon stocks can be estimated. Many models are developed to cover 

a small spatial resolution and a short time period (daily time step), but those models can 

be scaled to a larger resolution. Scaling-up can create biases, Ogle et al. (2006) concluded 

that increasing model spatial resolution with coarser-scale parameters can lead to 

significant biases. Rescaling is possible but should be done with careful consideration of 

the uncertainties (Peltoniemi et al. 2007).  

 

9.4 Model selection 

 

The choice of modelling approach depends on the purpose, available resources and 

expertise. FAO (2019) recommends that a locally validated model should be preferred. 

Internal model calibration, with region(site)-specific data, and factors adapted to that give 

more accurate results (FAO 2019). 

 

Models need several types of data and data availability is an important factor when 

deciding which approach to use (Bellocchi et al. 2010, FAO 2019). Several different 

process-based models could be used for soil carbon inventories, but the selection is 

constrained by the availability of model input and evaluation data (Peltoniemi et al. 2007). 

Data sources can be, for example, national forest inventories (NFI), soil samplings and 

remotely sensed data. There are several international soil and climate databases that 
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provide data for model inputs (e.g. FAO Global Soil Information Carbon Map, Solid 

Grids- Global Soil Data Facility). These databases do not provide data for all situations, 

but in some cases local data may be available (Peltoniemi et al. 2007). National forest 

inventories are also widely conducted in several countries (Tomppo 2014). 

 

Typically soil carbon models need input data, parameters and test data (FAO 2019). Input 

data is data that a model needs to output predictions. Most typical input variables are 

temperature, moisture, soil texture and nitrogen. Those are the main factors affecting the 

decomposition processes (Peltoniemi et al. 2007). Information about land management 

and disturbances are also key model inputs, because minor changes in land-use may lead 

to major changes in soil carbon (Peltoniemi et al. 2007). Thus, forest inventories with 

land use surveys, remotely sensed data and long-term soil surveys are important data 

sources. Data from several sources also helps up-scale models (FAO 2019, Paustian et al. 

2019). Amount and coverage of biomass, species composition, topographic position, 

temperature and thermal regimes and edaphic characteristics are important factors and 

data sources that provide information on different scales are needed when plot level data 

is scaled over large areas. Long-term experiments give valuable information and 

measured data can be used to calibrate, validate, evaluate and compare models 

(Peltoniemi et al. 2007, FAO 2019, Paustian et al. 2019). Measurements are also needed 

for model development and more extensive data gives better building blocks for new 

models (Paustian et al. 2019). SOC models are usually used in larger, ecosystem scale, 

carbon change simulations and future predictions (as it is possible to formulate site-

specific calibration) (Peltoniemi et al. 2007). Parametrization is a critical step in the model 

development. If parameters are not sufficient, new values might need to be measured or 

parameters to be fitted with existing calibration data (Bellocchi et al. 2010, FAO 2019). 

Test data is the data that the model has predicted (e.g. SOC stock and changes) and it can 

be divided into calibration data and validation data. Test data is used to test model outputs 

(FAO 2019). 

 

Most commonly used SOC models (e.g. RothC and CENTURY) are developed for 

temperate climate, which means that they are parametrized and calibrated with data that 

fits in certain conditions. For tropical and subtropical applications, these models should 

be validated for conditions corresponding area under interest (Campbell and Paustian 

2015).  
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9.5 Uncertainties and sensitivity analysis 

 

There are several possible sources of uncertainties in SOC models. Some errors in SOC 

models are not avoidable because they arise from problem that man can’t exactly describe 

complex chemical, biochemical, physiological and biological systems in a mathematical 

way. In general, there are two main sources of uncertainty: model uncertainty (mentioned 

above) and uncertainty of modelled system inputs (FAO 2019). Model uncertainties 

includes parameter value uncertainty, which means that the correct value of the parameter 

that determine the model estimations is imprecise. Modelled system inputs include 

measurement errors and natural variability (Ogle et al. 2010). According to (FAO 2019) 

structural uncertainty is the one which causes major difficulties, because if the processes 

are not adequately represented, no effort will not reduce the uncertainties.   

 

Sensitivity analysis (Fig. 9) is a useful tool to identify the most significant variables and 

parameters for further analysis (FAO 2019). FAO (2019) recommends that model 

sensitivity analysis and uncertainty assessment is conducted for every simulation scenario 

to confirm that model is suitable for its application. Information about model inputs and 

processes is also important to evaluate continuously. 

 

 

Figure 9. Illustrative figure of model (RothC) uncertainty and sensitivity presented with 

typical parameters needed to simulate carbon turnover. In this figure, plant carbon input 
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is a parameter that has high uncertainty and high model sensitivity, which makes it 

problematic (modified from FAO 2019). 

 

Models should be calibrated to reduce uncertainties. Calibration can be conducted by 

calibrating model parameters that are most effective for the model performance (FAO 

2019). Site specific calibration means that the simulation of SOC dynamics in a certain 

area requires calibration with data specific to that soil area, like soil particle size 

distribution, pH, soil type, decomposition rate, etc. This kind of information input makes 

models more reliable, but it complicates the prediction of changes. To truly predict SOC 

changes, a model should be able to simulate dynamics without site-specific data input 

(Smith et al. 1997). If models that need site-specific calibration are used in long term 

simulations, it may cause major biases in the results if the site changes over time 

(Willagoose 2018). 

 

9.6 Model performance  

 

SOC model’s performance can be studied by comparing values from simulations to actual 

measured values from long-term field experiments (Smith et al. 1997). Commonly used 

measures of model performance are the coefficient of determination (R2) and root mean 

square error (RMSE) (FAO 2019). Smith et al. (1997) compared the performance of nine 

different SOM models. A model’s performance was evaluated with different data sets 

(arable land, forest soil, strong fertilization, etc.) and the results were compared to soil 

samples (from long-term soil inventories). All nine were process-oriented 

multicompartment models. From those nine models, RothC (Coleman and Jenkins 1996) 

and CENTURY (Parton et al. 1987) were the most interesting ones considering carbon 

dynamics. RothC (Coleman and Jenkins 1996), CENTURY (Parton et al. 1987) did not 

show significant biases in overall simulations and they performed the best in all datasets. 

RothC (Coleman and Jenkins 1996) and CENTURY (Parton et al. 1987) can be used in 

different land-use areas, which explains partly their good performance. One source of 

error occurs if a model is used in an application for land-use where it was not developed. 

For example, SOMM model is developed for forestry/grassland and when it is used to 

simulate soil organic carbon in arable soils, it is forced to count grass as the only crops. 

That kind of structural problem causes errors because it is well documented that different 
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plant species and management practices result in different SOC accumulation and should 

be considered in simulations (Smith et al. 1997).  

 

Smith et al. (1997) also tested the performance of combined models and concluded that 

the coupling of two models does not lead to more accurate results. On the contrary, it led 

to inaccurate values and estimations with more errors.  

 

Heikkinen et al. (2014) compared Yasso (Liski et al. 2005) and RothC (Coleman and 

Jenkins 1996) to measured carbon values. Mineral soil carbon stock changes were 

simulated after the cropland conversion to grassland. The study area soil type was mineral 

soil and the total area was 4 hectares.  The soil sampling was conducted in 1980, 1999 

and 2004, and the sampling depth was 0−20, 20−40 and 40−60 cm. Soil C stock (equal 

to C content x bulk density) was determined to the depths 20 and 60 cm. The concluded 

result was that Yasso07 and RothC both estimated the carbon stock increase relatively 

accurately (R2 0.60 and 0.72 respectively). Yasso07 underestimated the change in soil C 

stocks and RothC overestimated the changes. 

10 Sensing soil organic carbon 

 

Spectroscopic techniques rely on the interaction of electromagnetic radiation and matter 

(Carcia-Sanchez et al. 2017). Spectroscopic technique has many advantages over the 

traditional soil sampling methods, as it is a non-destructive analysis method, do not 

require toxic or expensive chemicals, is fast, measures several parameters in a single 

analysis and can be used in situ or in a laboratory (Carcia-Sanchez et al. 2017). 

Spectroscopic laboratory devices are accurate, but even they enable analyzation of larger 

amount of soil samples more rapidly than dry combustion method (England and Viscarra 

Rossel 2018), they still require field sampling and some sample preparation before 

analysis, which are laborious. Proximal soil sensing is method where field-based 

instruments are used (England and Viscarra Rossel 2018). 

 

Soil organic carbon quantity can be measured by different sensors relying on 

electromagnetic radiation because soil matters organic bonds and minerals absorb light in 

specific wavelengths. Soil information can be measured via sensors using signals that 

correspond to physical qualities and that information can be linked to soil properties. Soil 
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content specific absorbance spectrum can be compared to spectral measurements of 

known sample via statistical model (Carcia-Sanchez et al. 2017). Reference spectrum is 

derived from samples, which have been analyzed by traditional laboratory methods (e.g. 

dry combustion) (Stenberg et al. 2010).  

 

Soil organic carbon wavelengths are mainly in the visible-near infrared (400−700 nm), 

near infrared (700−2500 nm) and mid infrared (2500−25000 nm) region (Smith et al. 

2020). Soil spectrum can be generated by directing radiation to the sample, which makes 

the molecular bonds to vibrate. Vibrating molecules absorb light and eventually produces 

a characteristic shape that can be used for analytical purposes (Stenberg et al. 2010). 

 

10.1 Proximal soil sensing 

 

According to Viscarra Rossel et al. (2011) proximal soil sensing is a method where field-

based sensors are used in contact or close to (within 2 m) the soil. Proximal soil sensing 

doesn’t include remote sensing or laboratory measurements.  

 

There are several different proximal soil sensors and they can be classified according to 

the manner they measure or the source of their energy. Sensors can be invasive, which 

means that sensor is in contact to soil during measurements or non-invasive. Invasive 

measurements can be done within the soil or for example excavated soils. Proximal soil 

sensor is active if it produces its own energy form artificial energy source and passive if 

they use natural radiation energy form sun or earth. Sensors can be used “on a go” or 

moving (mobile). Sensors can consider to be indirect or direct. Direct proximal soil 

sensing means that measured soil property is based on a physical process (e.g. clay 

minerology). However, when the measurement is of a proxy and inference is with a 

pedotransfer function (PTF = raw soil data translated into more useful information), then 

the proximal soil sensor is indirect. Proximal soil sensing is done in same spatial scale as 

conventional methods (soil sampling and dry composition) (Viscarra Rossel et al. 2011). 

 

Soil sensors for field use are developed for cost-effective and rapid soil organic carbon 

determination. The benefit those sensors provide is that high sampling density can capture 

more effectively field variability and hence solve the problem with selecting a correct soil 
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sampling design (Sinfield et al. 2010). Proximal sensing ranges from micro to landscape 

(plot to farm) scale (England and Viscarra Rossel 2018) 

 

10.1.1 Visible and infrared reflectance spectroscopy 

 

Visible (vis) portion of the electromagnetic spectrum is 400−700 nm and near infrared 

(NIR) region is 700−2500 nm. Visible and infrared spectroscopic techniques are sensitive 

to soil organic and inorganic components. Visible and near-infrared ranges can also be 

combined; this synergy adds value to the sensing because both wavelength ranges provide 

different information about soil organic carbon (England and Viscarra Rossel 2018). Mid-

infrared (mid-IR) electromagnetic spectrum region is from 2500−25000 nm and it 

contains more information about soil organic composition than vis-NIR (Viscarra Rossel 

et al. 2011). 

 

Visible-NIR techniques have been used successfully in SOC concentration estimations 

on field conditions. Mid-IR can predict SOC concentration, most commonly, in a 

laboratory with measurements on dried and finely ground soil samples. This is partly 

because there are strong water absorptions in the mid-IR range. This effect tends to mask 

or deform other soil constituents’ absorptions which makes it more difficult to calibrate 

adequately. Portable mid-IR devices are currently under development and some exist 

already (England and Viscarra Rossel 2018). 

 

10.1.2 Laser-induced breakdown and neutron induced gamma-ray spectroscopy 

 

Laser-induced breakdown spectroscopy (LIBS) and neutron-induced gamma-ray 

spectroscopy (INS) are emerging and promising techniques (FAO 2019, Paustian et al. 

2019). Laser-induced breakdown spectroscopy is a technology where optically focused 

short-pulsed laser is used to heat the soil sample. Heating results in the formation of high 

temperature plasma. After the plasma is cooled down, it can be measured with 

spectrometer (190-1000 nm), as plasma emits radiation that is characteristics to its 

fragments.  The plasma forms on only a very limited area allowing only a small portion 

of the sample to be measured during each event. Advances in fiber optic technology also 

makes LIBS systems portable and mobile (Viscarra Rossel et al. 2011). LIBS 
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measurements are rapid, in a laboratory, time per sample is less than a minute (England 

and Viscarra Rossel 2018).   

 

Currently LIBS for SOC measurements are mainly conducted with benchtop laboratory 

devises that require sample preparation. Other constrains are sample representativeness 

(tiny sample volume) and limited understanding of wet field measurements accuracy 

(Viscarra Rossel et al. 2011). 

 

Inelastic neutron scattering (INS) acts in the gamma ray region of the electromagnetic 

spectrum (Wielopolski et al. 2008, Viscarra Rossel et al. 2011). Neutron generator 

generates fast neutrons which penetrate the soil and interact with nuclei of the elements. 

In that process, gamma rays are simulated, and those rays can be detected by a scintillation 

detector (e.g. sodium iodide). The detector measures the spectra and from peak intensities, 

with specific calibrations, it is possible to determine the SOC in units of g C/m2. INS is a 

non-destructive method with the capability to measure to a depth of 30-50 cm, from a 

relatively large footprint (diameter 150 cm) and large volumes (0,3 m3) (Wielopolski et 

al. 2008). INS method requires some conventional soil sampling for correlation 

establishing, but once correlation is formulated there is no need for further soil sampling 

(Izaurralde et al. 2013). In INS technique, the sampling depth is not precisely defined, but 

according to Izaurralde et al. (2013) about 90% of the detected signals was from 30 cm 

depth and 99% effective depth was 50 cm (based on Monte Carlo calculations). This 

means that depth variation should not play a major role in total, since only small signal 

arrives from deeper layers. INS is not yet well developed, but it is known that it would 

suit well in field conditions.  

 

10.1.3 Uncertainties and important issues  

 

Reflected soil absorbance needs several processing steps (Fig. 10) before information of 

soil organic carbon can be interpret. Spectral analysis is based on multivariate statistical 

methods. Soil matrix is complicated mixture of different parameters that have overlapping 

absorptions and low consecrations (England and Viscarra Rossel 2018, Angelopoulou et 

al. 2020). These factors interfere the measurements which result to preprocessing in a 

purpose to for example minimize noise and enhance signals (Nawar et al. 2016).  



68 

 

Multivariate spectroscopic modelling is a process where sensed soil properties are related 

to the absorbance of a set of known reference samples. This describes the relationship 

between spectral data and soil properties. Most commonly used method is partial least 

squares regression (PLSR). Accuracy of the estimations is highly dependent on the 

chosen calibration method (table 6) (Angelopoulou et al. 2020). Model development need 

several diagnostic steps, where the model fit, and performance is evaluated and improved. 

Model is also validated with external data set. According to Australian Government 

“Measurement of Soil Carbon Sequestration in Agricultural Systems” methodology 

(2018) the data for the spectroscopic modelling and validation is divided into three 

components: training set, validation set and prediction set. Training set is used to develop 

the spectroscopic model and validation set is used to test the accuracy of model’s 

estimates. Training and validation set’s soil samples need to be analyzed with reference 

analytic method, which is in this case dry combustion, to determine their soil organic 

carbon concentration. After laboratory analysis data sets can be used to develop the 

spectroscopic model. Data from large spectral libraries can be used to expand the site-

specific models and to improve the accuracy, but not to develop the model (Australian 

Government 2018). 

 

In field conditions, soil moisture, surface roughness and vegetation cover affect the 

spectral signal (Geht and Rice 2006, Rodionov et al. 2014). For example, vegetation 

would lead to overestimation of soil organic carbon (Dvorakova et al. 2011). 
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Figure 10. Flow diagram of different procedural steps of visible-infrared spectra when 

estimating soil organic carbon content. Closely adopted from soil carbon methodology 

by Australian Government (2018). 

 

10.1.4 Accuracy and cost 

 

Stevens et al. (2006) tested field spectroscopy in agricultural land and they concluded that 

according to the results, the standard error of measurements allows to detect a soil organic 

carbon change of 7.2−9.9 Mg C/ha (upper 30 cm of the soil). According to Freibauer et 

al. (2004) soil organic carbon changes result of land conversion or management practices 

are only 0.3−1.9 Mg C/ha/year, which means that the field spectroscopy would detect any 

changes in the soil organic carbon after minimum of 10 years.  

 

England and Viscarra Rossel (2018) gathered information about accuracy and costs of 

different spectroscopic techniques (table 9) for soil carbon accounting. Both LIBS and 

INS techniques are also expensive, sensor costs are even more than 100 000 AUD 

(63 989 €) (England and Viscarra Rossel 2018). 
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Table 9. Assessment of cost and accuracy of different sensing methods for carbon 

determination. Modified from England and Viscarra Rossel 2018. 

Method Instrument cost (in 

thousands of AUD) 

Measurement 

cost per sample 

(AUD) 

Accuracy 

RMSE R2 

vis-NIR, dried ground 10−100 (6−64 €) 8 (5 €) 0.44 0.85 

vis-NIR, field condition 10−100 (6−64 €) 0.8 (0.5€) 0.47 0.81 

mid-IR, dried, finely 

ground 

25−90 (16−57 €) 15 (9 €) 0.11 0.93 

 

Cremers et al. (2001) evaluated LIBS technique’s capability for soil total carbon 

detection. They conducted the study on agricultural soil and on woodland soil, and they 

concluded that LIBS instrument has a detection limit of 300 mg C /kg, a precision of 4-

5% and accuracy of 3−14% (= 750 mg C/kg). 

 

Wielopolski et al. (2011) tested INS for soil carbon pool determinations in situ. They 

concluded that INS estimations of soil total carbon amount agreed with dry combustion 

method values in organic soils (difference varied from 3% to 9%). In pasturelands there 

was no agreement between the two methods and difference varied from 16% to 168%. In 

organic soils, the total carbon amount varied from 3.92 to 5.36 kg C/m2 and in 

pasturelands the variability was from -3.07 to 5.96 kg C/m2.  

 

Izaurralde et al. (2012) tested portable LIBS, INS and infrared spectroscopy (DRIFTS) 

methods against results from dry combustion. In their study, the soil carbon density (total 

carbon, not organic carbon) determined with dry combustion method was 4.07 kg C/m2, 

LIBS gave estimation value of 3.27 kg C/m2, infrared 4.32 kg C/m2 and INS 2.57 kg C/m2 

with “universal” calibrations and 4.06 kg C/m2 with “local” calibrations. Compared to the 

dry combustion method, the LIBS underestimated (20%) the carbon concentration, 

infrared overestimated it slightly (6%) and INS with local calibration was very accurate.  

 

Different studies are hard to compare due the different measurement, modelling and 

prediction procedures (table 10). According to Angelopoulou et al. (2020) proximal soil 

sensing in situ is developed in recent years, but more research needs to be done.   

carbon stocks  
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Table 10. Comparison of different infrared sensors and multivariate methods for soil 

organic matter or soil organic carbon estimations in field conditions (modified from 

Angelopoulou et al. 2020). 

 

 

11 Gas flux measurements with eddy covariance  

 

The full carbon budget on the ecosystem level can be achieved with carbon flux 

measurements (Smith et al. 2020). Micrometeorological techniques measure the gas 

exchange between ecosystem and atmosphere (Rinne et al. 2016). Full carbon budget 

quantification needs information about carbon uptake through photosynthesis, carbon 

losses through respiration and other C inputs and outputs (e.g. organic amendments and 

harvest). Gross primary production (GPP) describes the carbon uptake through 

photosynthesis. When soil, plant and litter respiration (Re) are subtracted from the GPP, 

the result gives the net ecosystem exchange (NEE), or net ecosystem production (NEP) 

Spectral range Multivariate 

method 

R2 Reference 

350-2500 PLSR 0.63-0.70 Ji et al. (2015) 

305-2200 PLSR 

ANN 

0.37-0.81 

0.39-0.90 

Kuang et al. (2015) 

350-2500 PLSR 0.84 Rodinov et al. (2016) 

350-2500 PLSR 0.75 Cambou et al. (2016) 

350-2500 CUBIST 0.81 Vicarra Rossel et al. (2017) 

350-2500 smote/PLSR 0.40-0.86 Kuhnel and Bogner (2017) 

350-2200 MARS 

ANN 

SVMR 

PLSR 

RF 

Cubist 

0.76 

0.01 

0.75 

0.54 

0.78 

0.8 

Sorenson et al. (2017) 

350-2200 PLSR 0.23-0.82 Veum et al. (2018) 

305-2200 PLSR 0.74-0.78 Nawar et al. (2018) 

305-2200 RF 0.12-0.75 Nawar et al. (2019) 

343-2222 PLSR 

NN 

RT 

RF 

0.8 

0.86 

0.69 

0.58 

Pei et al. (2019) 
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(equation 10). Net ecosystem production of CO2 presents the whole CO2 entering and 

leaving the ecosystem during time period (Smith et al. 2010). 

 

𝑁𝐸𝑃 = 𝐺𝑃𝑃 − 𝑅𝑒  (10) 

 

in which 

NEP= net ecosystem production 

GPP =gross primary production 

R =ecosystem respiration. 

 

NEE and NEP of CO2 can be estimated with cuvettes (not included) or with the eddy 

covariance methods (Smith et al. 2010). 

 

The eddy covariance (EC) is a method for measuring heat, mass and momentum exchange 

between the surface and the overlying atmosphere. Surface should be flat and horizontally 

homogenous, and under these conditions the net transport is one-dimensional. The 

vertical flux density can be calculated by a covariance between turbulent fluctuations of 

the vertical wind and the quantity of interest (Aubinet et al. 2012, Flechard et al. 2020). 

This means that the exchange rate of CO2 between atmosphere and ecosystem can be 

determined with measuring the covariance between the vertical wind velocity fluctuations 

and the CO2 mixing ratio (Byrne et al. 2007).  An eddy is a current of flowing material 

that moves in a whirlpool or circular motion against the main current. Eddies are formed 

from wind, roughness of terrestrial surface and convective heat flows on the boundary 

layer. A boundary layer is a relatively thin layer of the atmosphere and the thickness 

varies diurnally and geographically (Posudin 2014).  

 

The eddy covariance system (Fig. 11) includes three sensors that are used to measure 

water vapor density, air temperature and wind speed. EC measurements are typically 

made on the surface boundary layer (Baldocchi 2003, Aubinet et al. 2012). Fluxes are 

approximately constant in height on the surface layer; hence measurements taken in this 

layer are representative of the fluxes from the underlying surface. On the boundary layer 

the atmospheric turbulence is the main transport mechanism. To determine CO2 fluxes 

the tower needs also analyzer for measuring turbulent fluctuations in CO2. Commonly 

used analyzer is an infrared gas analyzer, with open- or closed-path configuration. Open-
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path system needs more maintenance above cultivated soil because for example dust form 

tilling can block the equipment. Both systems include a broadband infrared light source, 

band-pass filter and a detector (Baldocchi 2003, Aubinet et al. 2012). When infrared light 

is emitted by CO2 molecule the detector observes the reduced light intensity. This 

reduction presents the nonlinear function of the molar concentration of CO2. To be able 

to capture eddies the air movement should be constant. Eddy covariance sampling 

frequency is high, usually 10-20 Hz. This is because only high sampling frequency can 

cover turbulent fluxes (Aubinet et al. 2012, Flechard et al. 2020). Eddy covariance 

measurement tower can cover large scales from hundreds of meters to several kilometers 

or it can be used in field scale. This sampling area is called flux footprint, and size of it 

depends from the objective of measurements (Byrne et al. 2007).  

 

 

Fig. 11. Eddy covariance tower and power source in a grass field. Photo: Anniina 

Lampinen 
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11.1 Important things to consider  

 

According to Aubinet et al. (2012) application of this micrometeorological technique 

requires vast knowledge of technical issues and the studied phenomena. There are several 

options for eddy covariance tower design, and some instrument options and 

configurations. Towers can also be placed on different sites. Installation and operational 

costs, and precision and accuracy are the main points taken into consideration when 

designing the optimal solution (Baldocchi 2003, Aubinet et al. 2012). Site design is the 

first step to ensure proper accuracy and precision. There is unlikely going to be a perfect 

design and some compromises between science requirements, costs and practicality 

inevitably occur. The measurement tower should be placed in an area where the 

systematic biases are minimized, and ecological integrity is maintained (Aubinet et al. 

2012, Flechard et al. 2020). Ecosystems are structurally and functionally diverse, and all 

the environmental extremes can be found. Towers need to capture complex ecological 

drivers and processes and withstand extreme conditions like high temperature, ice and 

snow loading. After site is selected, site operation including calibration and validation are 

essential steps to make sure that overall performance is as good as possible, and associated 

uncertainties are minimized (Aubinet et al. 2012). 

 

With ecosystem gas flux measurements, the effect of diurnal, seasonal and annual 

variation should be considered. According to Flechard et al. (2020) if eddy covariance 

flux measurements are used to quantify the amount of carbon that is accumulated in 

forests the study period should be one or several decades. This is because only long 

measurement period would ensure statistically significant results, because the annual 

stock changes are relatively small compared to the large carbon forest stock, especially if 

forest soil is included. 

 

11.2 Uncertainties and accuracy 

 

Eddy covariance methods includes several possible sources of uncertainties. According 

to Baldocchi (2003) when operating the most accurate results can be measured when the 

tower locates in flat terrain on top of homogenous vegetation which extends upwind for 

an extended distance surrounded by steady atmospheric conditions. But in nature 

conditions are not always ideal and when the method is applied over complex and natural 
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landscape where wind, temperature, humidity and CO2 vary with time, the CO2 

quantification needs corrections. Long measurements period reduces the random 

sampling errors (Flechard et al. 2020), but long measurement time means also gaps in the 

data. Gaps in a long-term data can occur for example due to sensor malfunction or if the 

wind is coming from undesirable wind sector. Gaps in the data can be filled e.g. with 

empirically derived algorithms. This approach needs continuous tuning because 

biological factors (like leaf area, soil moisture) are changing seasonally. Nighttime fluxes 

need also corrections. CO2 emitted by nighttime may not reach the tower height due the 

fact that during nighttime thermal stratification is stable. If nighttime CO2 is not 

measured, then the system underestimates the ecosystem respiration (Baldocchi 2003. 

 

Goulden et al. (1996) concluded that sampling error in forest study area was ±30 g C/m2 

/year and the net annual CO2 uptake is 200 g C/m2/year. According to Balldocchi (2003) 

the error bound from nearly ideal sites for annual net exchange of CO2 is less than ±50 g 

C/m2 /year (concluded from several studies). Carbon sequestration estimations from flux 

measurements have been relatively uncertain.  

 

Carbon sequestration studies conducted with eddy covariance have been compared to 

conventional soil sampling methods. For example, Jones et al. (2017) estimated soil 

carbon sequestration in grasslands with soil inventories and eddy covariance flux 

measurements. Study period was 7 years and results showed poor agreement. Repeated 

soil sampling showed soil carbon stock loss average of 29.08 g C m2 (60 cm depth) in 7 

years and carbon flux budget of -179.6 g C m2/year. Negative flux budget value means 

that area under interest acts as a sink, which means that in their study, the flux balance 

estimated that carbon was sequestrated. Disagreement might be due the underestimation 

of carbon exported from the field, which might lead to overestimation of carbon storage 

in the soils in a flux balance calculation. The authors argued that leaching of dissolved 

organic carbon and inorganic carbon from the field could be the variables that were 

underestimated. There are also studies that show comparable estimates. For example, 

Skinner and Dell (2015) compared carbon sequestration in pasture lands. Study period 

was 9 years and in their study eddy covariance showed that ecosystem act as a carbon 

source with rate of 103 g C/m2/year. Soil samples showed similar trend, soil organic 

carbon stock decreased, depending from the soil depth, from 26 to 202 g C/m2/year (60 

cm depth 170 g C m2/year). Ferster et al. (2015) compared carbon fluxes to carbon stock 
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changes estimated with forest inventories in forest sites, and their results also showed 

agreement between methods.  

 

12 Carbon quantification methods used in voluntary market 

methodologies 

 

This chapter provides short overview of carbon quantification methods used in current 

offset projects by two companies that share most of all offsets in voluntary markets. 

Purpose is to shortly introduce quantification methods these companies use and what are 

the precision requirements, to give perspective of the current state.  

 

There are several companies, acting in a voluntary market, that provide carbon offsets via 

different projects and activities. This area is not currently regulated, and it lacks standards 

and specific project boundaries (e.g. what areas can be used for afforestation). According 

to Financial news (2019) Verra and Gold Standard are companies certifying 80% of all 

offsets. Both companies have been launched in beginning of 2000s and aim to sustainable 

climate actions. Companies have developed several methodologies for different natural 

based actions and most deposited and released credits are from forestry practices 

(afforestation) which are implemented in developing countries (Gold Standard 2020, 

Verra 2020). Each methodology includes descriptions of how different part of 

projects/activities are dealt.  

 

12.1 Verra 

 

Verra is a global company that develops and manages standards for sustainable 

development and climate actions. Their standards and frameworks help to channel 

finances to projects and activities which have high positive climate impact. Verra was 

founded in 2005 by specialists to fill the need for more assurance quality practises in 

voluntary carbon markets. Nowadays Verra manages several programs and initiatives, 

like VCS Program, where they turn greenhouse gas emission reductions and removals 

from certified projects into tradable carbon credits. This program includes different 

technologies and natural based solutions, including forest and wetland restoration and 

conversation, and agricultural land management (Verra 2020).  
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Verra owns several methodologies which can be implemented in different kind of projects 

considering forests and biomass carbon pools. The carbon pool size quantification method 

used in several of these methodologies is forest inventory (Verra methodologies 2020). 

They have developed Agricultural Land Management (ALM) methodology which was 

launched in October 2020. This methodology provides procedures to estimate the GHG 

(CO2, CH4, and N2O) emission reductions and removals which are achieved with 

improved agricultural land management practises. Focus is on practises that help to 

increase the soil organic carbon storages and it can be used in a regenerative agriculture. 

ALM methodology provides three possible approaches: 

 

1. Measure and Model: 

Initial SOC stock size is measured and an acceptable model is then used to 

estimate the change. Acceptable model needs edaphic characteristics and actual 

implemented agricultural practices, initial SOC stock and climatic conditions 

from sample fields. 

2. Measure and Re-measure: 

This approach utilizes direct measurements (soil samples) in two time points, and 

it can be used if there are no relevant models to apply. Some regions, crops or 

practices may lack accurate validated and parametrized models. In October 2020 

it is mentioned that this quantification approach 2 cannot be used because there is 

no benchmark for performance. 

3. Calculation: 

CO2 flux is calculated from IPCC Guideline for National Greenhouse Gas 

Inventories (2019) equations.  

 

Verra ALM methodology sets the accuracy requirement to be precision of 15% of the 

mean (95% confidence level) of total SOC change calculations (Verra Agricultural Land 

Management methodology 2020). 
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12.2 Gold Standard 

 

Gold standard for the Global Goals is standard that provides credible projects that have 

positive effect to climate and sustainable development. Gold Standard was established in 

2003 by WWF and other non-governmental organizations. Paris Climate Agreement and 

the Sustainable Development Goals were the main drivers to develop a best practice 

standard for climate and development in a most sustainable way. Their purpose is to 

maximize positive climate impact and at the same time providing income possibilities for 

people. Their mission is: “To catalyzes more ambitious climate action to achieve the 

Global Goals through robust standards and verified impacts” (Gold Standard 2020), 

which means that they really emphasize that under their certification, results are 

trustworthy  

 

Gold Standards for the Global Goals launched Soil Organic Carbon Framework 

Methodology in January 2020. This methodology introduces requirements for soil 

organic carbon stock and greenhouse gas emission quantification. The methodology is 

exerted to agricultural lands and SOC changes through better agricultural practices can 

be quantify with this. Gold Standard SOC methodology takes into account that data or 

measurements needed are not available in all projects or activities, and that’s why they 

provide three possible approaches: 

 

1. Direct measurements (soil samples) and directly documented baseline and size of 

the SOC stock. 

2. Data from peer-reviewed scientific publications (modelling). 

3. Default factor from the IPCC Guidelines for National Greenhouse Gas Inventories 

(IPCC 2019) and Tier 1 and 2 approach. 

 

With these possibilities they conclude that this methodology can be applied in a broad 

range of activities and with different recourses. This methodology also takes into account 

that science around SOC impact and activities are constantly evolving and it is not limited. 

Gold Standard SOC methodology sets the accuracy requirement to be precision of 20% 

of the mean (90% confidence level) of total SOC change calculations (Gold Standard, 

Soil organic carbon framework methodology 2020).  
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13 Discussion  

 

Quantification of different terrestrial carbon stocks and their changes is not a simple task. 

There is a lot of different scientific research considering different quantification methods, 

but the comparison of those is hard or even impossible. Each study is designed to give 

answers to specific research questions, and there is a large variability in used approaches. 

Different statistical methods, data sources, model choices and scales lead to different 

accuracy and results. E.g. in soil sampling the sampling depth varies, which hampers the 

comparison of results. The need for systematic comparison of different quantification 

methods is high and it should be done to provide information for developing carbon 

offsetting markets. 

 

Because the accuracy of the quantification methods could not be estimated, all methods 

were seen possible for carbon offsetting purposes and none was excluded. Cost of carbon 

stock quantification depends on the accuracy, size of the area under focus and frequency 

of the measures. The accuracy of carbon stock quantification must be estimated for 

coming carbon offsetting projects.  Open questions in addition to the above are who will 

pay the measuring costs and what would be the value of carbon credit. All this needs to 

be solved. 

 

13.1 Forest field measurements 

 

Measuring plant biomass directly is a destructive method and it can’t be used to quantify 

the biomass carbon stock size for carbon offsetting purposes. Typically forest biomass 

can be estimated with inventory-based approach where field measurements, like tree’s 

height and diameter at breast height, are taken from a certain sampling point and with 

allometry those values can be converted to biomass estimations (Husch et al. 2003). 

Forest inventories are conducted in several countries (Tomppo 2014) and there is already 

large database about forest biomass estimations available. All forest inventories don’t 

include all carbon stocks, and it would be necessary to modify inventories so that all 

significant pools are included (Birdsey et al. 2013). 
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Tree biomass can be calculated with allometric relationships which connect some tree 

characteristics to others resulting an estimation of total biomass (Birdsey et al. 2013). 

Allometric equations vary widely and each describe certain relationships. Relationships 

between measured values and other tree measures vary depending on the species (Pearson 

et al. 2007). Thus, selecting the right equations is essential to produce accurate 

estimations.  

  

Total biomass carbon quantity estimation in forest, based on inventory, is time consuming 

and laborious (Berenguer et al. 2015). Sampling design and field work should be well 

planned so that the results are representative or the whole population under interest 

(Husch et al. 2003). The cost of inventory approach depends on the accuracy wanted. 

Many sampling points are needed to reach high accuracy. Carbon stock size that can be 

estimated from forest inventories is usually presented as Mg C/ha. Inventory where all 

biomass carbon pools are measured (height and diameter) and tree species are identified 

(100% inventory), the sampling error is low, almost zero, but the cots is high (Berenguer 

et al. 2015). There is no common agreement which sampling design would be the most 

cost-efficient in certain areas and purposes. 

 

Because national forest inventories are representing large areas, it is difficult to down 

scale the statistically derived information (Husch et al. 2003). When measures from an 

intensive field sampling is scaled up to larger areas, the estimation is based on the 

probability (Tomppo 2014). Down scaling from areal estimates to plot level can lead to 

biases because the smaller area might not be representative to the whole area. 

 

13.2 Remote sensing of aboveground biomass 

 

Remote sensing of aboveground biomass is not an accurate method for carbon offsetting 

(Issa et al. 2020). Remote sensing can provide valuable information about large scale 

changes and it can be used to monitor projects (Main-Knorn et al. 2011), but currently 

sensors are not developed enough for accurate carbon stock estimations.  

 

Optical sensors have wide global coverage and good temporal resolution (French 2013, 

Holopainen 2019), but they are not sensitive enough to measure biomass variations and 

their accuracy is not enough for carbon stock estimations (Issa et al. 2020). Radar sensors 
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can give more information from forest canopies than optical sensors, and they can 

penetrate clouds (Zolkos et al. 2012), which helps to overcome some application 

problems. Radar approach is costly and sensor’s ability to map high density biomass 

forest is limited (Zolkos et al. 2012). Radar is not currently accurate enough for carbon 

stock estimations and it’s expensive (Issa et al. 2020). Light detecting and ranging (lidar) 

is used in small scale forest mappings from ground or from air, but there is still need for 

satellite based lidar (Sun et al. 2019b). Ground based lidar produces three-dimensional 

information about stands and it can be used to provide information e.g. from tree height 

more accurately than conventional field measurements (Holopainen 2019). This would 

help to build new, more accurate models. 

 

Combining different methods of remot sensingcould increase the accuracy and help to 

tackle challenges related to a specific sensor type (Issa et al. 2020). To choose the right 

sensor type, prediction model and combination of all those need considerations which 

only highly trained expertise are capable to do. There is no common agreement from 

methodology to be used and each study is implemented separately, which makes the 

comparison of results difficult and hampers the development of commonly accepted 

carbon sequestration quantifications (Issa et al. 2020). Overall, the remote sensing 

techniques need more development to be able to be utilized in carbon offsetting projects.  

 

13.3 Soil sampling 

 

Conventional soil sampling is a direct method of organic soil carbon quantity 

determination. Because the soil organic carbon quantity varies horizontally and vertically 

(soil profile) the sampling design needs careful consideration (FAO 2019). SOC is 

accumulated differently through soil profile (Jobbagy and Jackson 2000) which causes 

the variation in one-point sample and is the cause why soil samples should be taken in 

several depths. The sampling depth is still under debate, and there is no common 

consensus. Soils vary greatly also horizontally and thus the soil sample taken from one 

point don’t necessarily represent the same SOC quantity in 10 cm apart. Because of this 

variation soil samples should be also taken from several different points (Schrumpf et al. 

2011). The number of adequate samples is dependent on the purpose of the sampling, and 

to determine the total soil carbon quantity in one area (e.g. g C/m2 or Mg C/ha)  the soil 
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samples should capture the variation in SOC quantity in different layers and places and 

be as representative as possible (Mäkipää et al. 2008).  

 

To achieve high accuracy and precision the number of needed samples is high (Mäkipää 

et al. 2008), and the needed number depends on the soil characteristics. Cost of soil 

sampling depends on the wanted accuracy. Soil sampling is time consuming and 

laborious, which affects the costs. Costs vary greatly between projects.  

 

Soil is not a homogenous matter and it includes different components in different sizes, 

like gravel, stones, water and air. Due to the fact that different soil types include different 

number of factors mentioned (e.g. water), the SOC quantity should be presented in 

equivalent soil mass (FAO 2019). Dry bulk density is important to take into consideration 

because if next sampling is conducted after soil compaction the carbon quantity would be 

higher in the same volume due to the loss of air pores and not necessarily due to the 

increase in soil organic carbon quantity (FAO 2019). Errors in bulk density 

determinations can lead to significant errors in total carbon quantity.  

 

Soil sampling can be conducted in all soil types, in a small scale. If sampling is conducted 

only for small scale, the results are difficult to scale up to larger areas (Goidts et al. 2009). 

Scaling decision depends on how statistically representative the few samples are. If 

landscape is homogenous and managed, the variation could be small, and scaling could 

be done to larger areas with possible smaller biases. Scaling decision needs knowledge 

of soil type, history, topography, carbon inputs and climate and their affect to soil organic 

carbon (Vanguelova et al 2016). 

 

Soil sampling is not an effective quantification method for carbon offsetting because the 

“background” soil carbon stock is large, the annual soil organic carbon stock change is 

small, and the soils are very heterogeneous (Peltoniemi et al. 2004). Soil sampling is still 

needed for to increase knowledge of soil carbon dynamics under different management 

practices under different climates, so that carbon sequestration can be better understood 

(Saarsalmi et al. 2014). 
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13.4 Modelling soil carbon  

 

Simulation of carbon stocks and carbon stock changes with different models is a widely 

used approach. Model simulations are usually performed to provide information from the 

effect of different practises on the soil carbon turnover rate and accumulation (Paustian 

et al. 2019).  There are several different options to simulate soil carbon turnover. The 

choice of the model depends on the purpose and data available (Manzoni and Porporatio 

2009, FAO 2019). The internal structure and the level of details of different soil carbon 

models varies (Battle-Aguilar et al. 2011), and there is no common rule to select the model 

to be used. Input data and data for model evaluation are typical limiting factors affecting 

model application (Peltoniemi et al. 2007).  

 

Empirical models are usually developed from global datasets (Paustian et al. 2019) and 

for national carbon stock estimations (FAO 2019) which hampers their application in 

small scale projects. Process-based models have advantages of detecting soil carbon 

turnover in detail, but because of that they have also higher data requirements which limits 

their application. One limiting factor of the use of the process-based models is the fact 

that most soil organic carbon models are developed for temperate climate (Campbell and 

Paustian 2015) and therefore they should be validated to other climatic conditions. 

Generally, can be concluded that locally validated models give the most accurate 

estimations of carbon stocks (FAO 2019), which means that a lot of data is needed for 

more accurate simulations in future. 

 

It might not be possible to use one model approach only for all different environments, 

but one selection criteria for model selection is its general applicability. Models behave 

differently in different environments and if several models are used to estimate carbon 

stocks their differences must be known. The internal structure of each model should be 

known thoroughly so that their performance in varying environments can be evaluated.   

     

13.5 Proximal soil sensing 

 

Soil carbon quantity determination with spectroscopic measurements include several 

approaches. Sensors that sense visible-near infrared and mid-infrared spectral regions are 

used to measure soil organic carbon quantity in soils (England and Viscarra Rossel 2018). 
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Especially interesting are approaches that include measurements in field conditions. 

Measurements made in situ would reduce costs and labor requirements, if samples could 

be measured immediately without transportation to a laboratory. Currently this is not 

totally possible, due to the calibration requirements (Angelopoulou et al. 2020). Current 

methods are not accurate enough without extensive calibration and calibration at this state 

requires sample analysis with a conventional laboratory analysis and developing adequate 

spectroscopic model according to those samples (Angelopoulou et al. 2020).  

 

Accurate spectroscopic measurements made in laboratory with benchtop devises are 

intended for dried and homogenized samples. In field conditions natural environment 

factors like soil moisture and vegetation cover cause uncertainties in spectral 

measurements (Geht and Rice 2006) because sensors don’t specify the source where the 

reflectance is coming. In field conditions, a rough surface scatters the reflectance 

differently compared to finely grounded samples (Rodionov et al. 2014). All these factors 

hamper the application in field conditions.  

 

SOC quantity measurements would be beneficial to do with a device that could be used 

to gather information from other soil properties simultaneously. This could be used 

especially in agriculture, where spectroscopic techniques are used for precision farming 

(Mulla 2013).  

 

Proximal soil sensing can be carried out in several ways, but if the purpose is to determine 

the soil organic carbon quantity in a certain area, the measurements should be taken from 

a soil sample cored with auger from a specific depth (England and Viscarra 2018). The 

dry weight and dry bulk density should also be determined from that sample for carbon 

quantity estimations. To determine the soil mass and bulk density, the sample should be 

dried and weighted, and this cannot be done in field conditions only, which is major 

limitation.  Sensing of bulk density is a method under development (England and Viscarra 

2018). 

  

In future soil organic carbon content sensors used in field conditions could be laser-

induced breakdown spectroscopy and inelastic neutron scattering, but currently both of 

them are under research and not available (Paustian et al. 2019). Both devices are 

expensive, and their ability to work in field conditions is not fully understood (Viscarra 
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Rossel et al. 2011). Inelastic neutron scattering of gamma rays (Wielopolski et al. 2008) 

is a safety concern if used in fields. This issue needs sever consideration.   

 

13.6 Eddy covariance 

 

Carbon dioxide flux measurements with an eddy covariance is a direct method to estimate 

the whole ecosystem carbon budget (Baldocchi 2003). When carbon fluxes between soil 

and atmosphere, and other carbon inputs and outputs are studied, the result can be used 

to estimate if the ecosystem under interest acts as a carbon sink. This method doesn’t 

detect where the carbon is sequestrated and if it’s important to quantify the different 

carbon stocks separately, soil respiration measurements should be included (Baldocchi 

2003). In cultivated lands, the amount of carbon lost (e.g. harvest) and carbon inputs (e.g. 

manure) affect the whole ecosystem carbon budget and should be considered accordingly. 

Natural carbon losses from the ecosystem through e.g. leaching and erosion are also 

sources of error and hard to monitor (Jones et al. 2017).  

 

Eddy covariance is a point in space measurement, and it works best under homogenous 

landscape with proper wind flow (Aubinet et al. 2012). In natural environments the 

conditions are not always ideal and thus data needs several corrections. A long 

measurement time is needed to reduce uncertainties (Flechard e al. 2020). Eddy 

covariance technique is advanced and complex and for using this technology is needed 

highly trained expertise to maintain the measurements and to process and analyze the data 

(Aubinet et al. 2012). Because eddy covariance tower and the measurement method as a 

whole is expensive (e.g. high expertise salary) and sophisticated (Baldocchi 2003), it is 

currently used only in research. To be able to utilize carbon flux information for carbon 

stock change quantification purposes, the towers should be built to intensive measurement 

areas and provide information gathered from those sites to offset projects. All different 

land use forms should be covered in different environments. This is of course problematic 

in agricultural area, because there is a huge variety of crops and management practices, 

and it would require a large number of measurement points to cover all possible 

combinations.  

 

Eddy covariance method is not practical for carbon offsetting purposes, but it provides 

information about how different environmental variables and management practices 
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effect on carbon fluxes at the whole ecosystem level.  That information can be used for 

example for model development (Paustian et al. 2019). Long term flux measurements 

from different land use areas would provide valuable information for future quantification 

method applications and estimations of carbon sequestration potential.   

14 Conclusions 

 

Methods for terrestrial carbon pool quantification are dependent on high quality data. To 

increase the accuracy of quantification methods empirical research should provide 

information needed to fill information gaps and to reduce uncertainties in estimation. For 

carbon offsetting purposes of carbon markets, the quantification method should be 

achievable, cost efficient, repeatable and transparent. Aboveground carbon stock 

estimations can be achieved more effectively than underground estimations, but the main 

interest is in soil organic carbon and underground biomass carbon stock. At this moment 

simulation of stock change is the most achievable approach and it could be used in carbon 

offsetting projects, if the method gains a common acceptance. To achieve that, the 

modelling method should be based on science, the good quality data should be available 

and there should be evidence that simulations result the real carbon stock with acceptable 

accuracy. Increasing knowledge of soil processes and data collected from different 

sources helps to develop models further and decreases the uncertainty of results.  At this 

state, the developing carbon market needs cost-effective approach to include small scale 

projects and to increase the supply of creditable carbon units. To increase the overall 

knowledge of carbon sequestration and to improve quantification methods a long-term 

research projects and co-operation between different method developments are needed. 
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