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Abstract: In many cases, the traditional ground-based estimates of competition between trees are not
directly applicable with modern aerial inventories, due to incompatible measurements. Moreover,
many former studies of competition consider extreme stand densities, hence the effect of competition
under the density range in managed stands remains less explored. Here we explored the utility of
a simple tree height- and distance-based competition index that provides compatibility with data
produced by modern inventory methods. The index was used for the prediction of structural tree
attributes in three boreal tree species growing in low to moderate densities within mixed stands.
In silver birch, allometric models predicting tree diameter, crown height, and branch length all
showed improvement when the effect of between-tree competition was included. A similar but non-
significant trend was also present in a proxy for branch biomass. In Siberian larch, only the prediction
of branch length was affected. In Scots pine, there was no improvement. The results suggest that
quantification of competitive interactions based on individual tree heights and locations alone has
potential to improve the prediction of tree attributes, although the outcomes can be species-specific.

Keywords: allometry; competition; forest inventory; model; tree structure

1. Introduction

Easily measurable forest or tree structural attributes are frequently used as statistical
proxies to estimate structural attributes that are more difficult or time consuming to
gauge. For example, numerous models use tree height and stem diameter to estimate
tree biomass [1]. Due to persisting challenges in the direct measurement of many attributes,
there has been a constant need to improve statistical models that are based on proxies [2].

Competitive interactions within individual tree groups are one candidate for model
improvement, because they influence the size relationships among the basic structural
attributes that are covered by many large-scale forest inventories, such as tree height,
stem diameter, and crown size [2–4]. However, traditional information on competitive
processes often relies on the use of stem diameter, crown dimensions, or other ground-
based measurements [5], which are not automatically compatible with modern remote
measurements, such as the capture of canopy height and density using aerial laser scanning
(ALS). Moreover, many former studies of competition consider rather extreme stand
densities [5,6], hence the importance of such interactions under a more limited density
range typical for commercially managed and frequently invented and thinned stands
remains poorly known.

To some extent, forest management decisions based on stand density management
diagrams account for the outcomes of competition, but they chiefly focus on wood volume
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growth within the stand [7]. As the trees and forests are nowadays acknowledged to
serve multiple ecosystem functions, there are needs to improve the estimation of multiple
aspects of tree structure and function to guide forest management decisions [8]. One step
in this process can be improving the precision of predicting structural attributes using
forest inventory data. However, although output from remote measurements including
ALS can be used to estimate important attributes including stem volume, crown size or
tree biomass [9,10], examples of utilising tree-level competition data with ALS remain
scarce [11–13]. For example, the use of common competition indices with ALS data may
be problematic due to the inability of ALS to detect all individual trees and their spatial
locations within a stand [14]. Terrestrial laser scanning (TLS) and unmanned aerial vehicles
(UAV) also remain unable to detect full aspects of crown structure, although they can
capture more detailed structural information [15,16].

While the capabilities of remote sensing methods keep improving, the potential of
remote inventories such as ALS and TLS to employ improved methods for the estimation
of structural tree attributes can be already explored. Here we provide an example by
investigating the possibilities to improve tree height-based estimates of four structural tree
attributes (crown height, breast-height diameter, branch main axis length, and total branch
length) of three boreal tree species growing in low to moderate densities within mixed
stands. We quantify local tree-level competition with a simple index based on tree heights
and distances, which could be readily applicable in forest inventories.

2. Materials and Methods
2.1. Competition Measurements

Structural measurements (Table 1) and estimates of competition for three boreal tree
species—Scots pine (Pinus sylvestris L.), silver birch (Betula pendula Roth.), and Siberian
larch (Larix sibirica Ledeb.)—were available from the mixed stands of studies by [17,18].
All the target trees ranged from 10 to 40 years in age, and 4 to 22 m in height, and they
originated from up to 10 different Myrtillus type forest sites that were distributed along a
400-km southwest-northeast transect in southern Finland. The tree age and height varied
between the sites, but was roughly similar within each site. The target tree sample with
detailed structural measurements included 55 individuals of Scots pine and 50 individuals
of silver birch originating from 10 sites (3 to 10 trees per each site). The 29 Siberian larch
individuals (three to nine per each site) originated from five sites that formed part of
the transect within a 15 km2 area in the vicinity of the Hyytiälä Forestry Field Station in
southern Finland. The actual number of trees in the individual analyses varied slightly
because of missing data.

Table 1. Abbreviations and units.

Variable Description

ht tree height (m)
dbh tree diameter at breast height (cm)
hc relative height of crown base
lb branch axis length as a straight line between the branch base and tip (m)
db branch diameter (cm)
Lb total branch length with all branching orders combined (m)
H competition index (see text for calculation)

The basal area variation of the target sites (sites 1 to 9 and 12 in [18]) ranged from 11 to
28 m2/ha. Using silver birch as the guideline—birch has, according to the Finnish manage-
ment recommendations, intermediate density requirements of the three species [19]—only
three stands had reached the density where thinning is recommended [20].

Our previous studies reported the effects of multiple competition indices on growth
allocation in these species [17,18,20]. Different variants of competition indices performed
best with different growth attributes and species, although the indices typically correlated
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with each other. Here, in order to operate consistently with a competition index that would
be readily compatible with remote sensing measurements, we relied on a simple form
of the widely-applied Hegyi index [21] that requires only tree heights and distances as
an input. For each target tree, the value of the index H was calculated based on the tree
heights and distances of the crown-bordering neighbouring trees within a 5 m radius from
the target tree [17]:

H =

n

∑
j=1

hj/ht

Ltj
(1)

In the index, t denotes the target tree and j is a neighbouring tree, n is the number of
crown-bordering neighbours inside a 5-m radius from the target tree, ht is the height of
the target tree, hj is the height of the neighbouring tree, and Ltj is the distance between the
target tree and its neighbour.

The hj within a 5 m circle was measured using a Haglöf Vertex or a Suunto clinometer,
and the heights were used in the calculation of H for each target tree. Diameter at breast
height (dbh) was measured for the target trees that were felled gently using a pulley in order
to take additional structural measurements without damaging the branches. Target tree
height ht was measured from the felled stems, which were then cut into smaller pieces
and placed in an upward position to measure the basal diameter (db) and an approximate
length (lb) of each primary branch axis. Only regular branches initiated before the current
growth season were included in the analysis. The branch length lb was measured as the
length of a straight line from the branch base to the branch tip.

The total length of an individual branch (Lb) was measured by digitising the 3D
structure for a set of sample branches that were distributed throughout the crown [18].
Lb included the combined length of the main branch and all the side branches from all
branching orders, and hence can be considered as a proxy for branch biomass. The average
number of fully digitised branches per tree was five in Siberian larch, four in Scots pine,
and thirteen in silver birch. Relative height of crown base (hc) was the ratio of crown base
height to total tree height, with crown base height measured at the base of the lowest living
branch in the continuous crown.

2.2. Allometric Equations

Based on ht, we first constructed basic statistical allometric models to estimate dbh
and hc, and then investigated how the inclusion of competition as an additional factor
influenced the model fit. To further estimate finer details of crown structure, we similarly
investigated the effect of competition on allometric models that use db to estimate both lb
and Lb.

A simple allometric equation of the form

Y = aXb (2)

was applied, and its parameters a and b were estimated using the procedure NLMIXED
in statistical SAS software (SAS Institute Inc., version 9.4) for each Y–X pair investigated
in each of the three species: dbh–ht, hc–ht, Lb–db, and lb–db. For Scots pine, individual db
for the study branches was not available. Instead, the average length and diameter of the
branches within each sampled branch whorl was used.

In the next step, each of the four equations were modified to include competition
index H as an additional factor, following the practice described in e.g., [22]:

Y = aHcXb (3)

In the final analyses, the models (1) and (2) were further complemented in NLMIXED
by a random subject effect study site (SS)

Y = aXb + SS (4)
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and
Y = aHcXb + SS, (5)

as written using the syntax of NLMIXED. Further, the term study tree (ST) was defined as
an additional random effect when the structure of data allowed its estimation in NLMIXED.
Consequently, for all study species, the equations of lb in the syntax of NLMIXED became

lb = adb
b + SS + ST (6)

and
lb = aHcdb

b + SS + ST (7)

In the analysis of Equations (6) and (7), ST was defined as a subject that was nested
within the study site [23].

The procedure NLMIXED estimated the values of the parameters a, b, and c, and
also provided Akaike’s Information Criterion for small samples (AICC) to be used as the
measure of model fit. Additional fit statistics, root mean square error (RMSE) and R2,
were obtained from the regressions between predicted vs. observed values. To focus on
effects that could be generalised across all sites, we do not report tree- and site-specific
information.

3. Results and Discussion

Inclusion of the competition index H in the allometric equations improved the esti-
mates of several attributes for silver birch and Siberian larch (Table 2, Figure 1). In silver
birch, the parameter c associated with H was significantly different from zero and provided
consistent improvement of model fit in dbh, hc, and lb (Table 2). In lb, the effect was too
small to be visible in the rounded value of RMSE (Table 2). In Siberian larch, improvement
was detected only in lb (Table 2). In Scots pine, the inclusion of H did not influence model
fit (Table 2).

In silver birch, the signs and values of c suggest that increased competition makes
the stems more slender and the crowns and main branches shorter compared to equally
tall trees experiencing milder or no competition. This is in line with previous studies,
which have reported related responses using much steeper gradients of stand density [6,24].
Although the improvements in the scale of individual trees or branches were modest in the
case of silver birch, they may nevertheless be meaningful over large forest areas.

The lack of improvement after the inclusion of H in the allometric equations for Scots
pine, and mostly for Siberian larch, does not imply that these species do not respond to
competition [25,26]. Rather, in contrast to silver birch, the allometric size relationships
between the structural compartments in Scots pine, and also largely in Siberian larch,
remained consistent in the presence of mild competition, such that ht alone predicted their
dbh and hc, and db predicted their Lb and lb in Scots pine. In silver birch, the same allometric
relationships were more sensitive to the effects of competition.

Overall, the results imply that aboveground growth allocation in silver birch is more
sensitive to mild competition than that in Scots pine or Siberian larch. Laboratory studies
with silver birch saplings have shown that silver birch responds to stand density with
changes in growth allocation even before actual competition of growth resources takes
place, i.e., before the increase in stand density causes reduction in total biomass incre-
ment [27]. In the laboratory, the detected changes in growth allocation were increase in
stem height:diameter ratio and in shoot:root ratio. The observed growth responses seemed
to be caused by changes in light quality sensed by the trees [27]. On the contrary, in
Scots pine the lack of responses in the allometric size relationships may be linked to its
ability to efficiently avoid competition by shifting its crown towards empty spaces in the
canopy [25,28]. In Scots pine, most structural relationships have also shown consistency
throughout different developmental stages in similar mesic site types as in our study [29].
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Figure 1. Black crosses show the observed values, red circles and blue lines show the values predicted by models with or
without the effect of competition H, respectively.

Table 2. Parameter values, fit statistics and the number of trees for the alternative models. Values of c in bold indicate cases
where the 95% confidence limits (CL) do not overlap with zero.

Model a (±CL) b (±CL) c (±CL) AICC R2 RMSE N of Trees

Betula pendula
dbh = aht

b 1.01 (±0.51) 0.93 (±0.21) 219 0.73 2.0 cm 50
dbh = aHcht

b 1.55 (±1.00) 0.84 (±0.22) −0.27 (±0.20) 213 0.82 1.7 cm 50
hc = aht

b 0.16 (±0.15) 0.34 (±0.41) −71 0.47 0.10 50
hc = aHcht

b 0.08 (±0.09) 0.52 (±0.39) 0.35 (±0.30) −74 0.54 0.09 50
lb = adb

b 1.10 (±0.5) 0.85 (±0.03) 653 0.76 0.29 m 45
lb = aHcdb

b 1.18 (±0.08) 0.84 (±0.04) −0.08 (±0.06) 646 0.76 0.29 m 45
Lb = adb

b 5.52 (±0.76) 1.56 (±0.14) 2789 0.73 2.64 m 47
Lb = aHcdb

b 5.65 (±1.13) 1.55 (±0.16) −0.02 (±0.15) 2791 0.73 2.64 m 47
Pinus sylvestris

dbh = aht
b 0.10 (±0.08) 0.70 (±0.16) 242 0.81 1.8 cm 55
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Table 2. Cont.

Model a (±CL) b (±CL) c (±CL) AICC R2 RMSE N of Trees

dbh = aHcht
b 0.08 (±0.11) 0.72 (±0.18) 0.03 (±0.13) 244 0.81 1.8 cm 55

hc = aht
b 0.14 (±0.07) 0.39 (±0.21) −106 0.25 0.09 55

hc = aHcht
b 0.13 (±0.08) 0.42 (±0.24) 0.05 (±0.25) −104 0.26 0.09 55

lb = adb
b 0.90 (±0.80) 0.69 (±0.09) −75.4 0.59 0.24 m 34

lb = aHcdb
b 0.92 (±0.10) 0.68 (±0.08) −0.04 (±0.11) −74.0 0.60 0.24 m 34

Lb = adb
b 2.08 (±0.49) 1.86 (±0.29) 1053 0.52 2.32 m 55

Lb = aHcdb
b 1.77 (±0.57) 1.93 (±0.34) 0.16 (±0.20) 1051 0.53 2.31 m 55

Larix sibirica
dbh = aht

b 1.10 (±0.66) 0.99 (±0.23) 127 0.89 1.9 cm 29
dbh = aHcht

b 1.05 (±0.85) 1.00 (±0.27) 0.02 (±0.20) 130 0.89 1.9 cm 29
hc = aht

b 0.005 (±0.01) 1.66 (±1.10) −44 0.85 0.09 29
hc = aHcht

b 0.005 (±0.02) 1.70 (±1.12) −0.16 (±0.39) −42 0.86 0.08 29
lb = adb

b 0.93 (±0.07) 0.90 (±0.07) 676 0.64 0.30 m 25
lb = aHcdb

b 1.07 (±0.08) 0.88 (±0.06) −0.20 (±0.08) 650 0.66 0.29 m 25
Lb = adb

b 5.84 (±1.50) 1.97 (±0.49) 289 0.80 3.17 m 29
Lb = aHcdb

b 5.81 (±2.45) 1.97 (±0.51) 0.01 (±0.39) 292 0.80 3.17 m 29

Since the current stem form and crown length result from complex processes and
allocation trade-offs occurring throughout the growth history of a tree, there can be mul-
tiple ways to respond to competition. For example, field studies have shown that silver
birch increased height:diameter ratio and decreased branching in response to competition,
whereas Scots pine did not change its growth allocation [30]. On the other hand, both Scots
pine and silver birch can adjust shoot lengths and branch numbers inside the crown in
response to competition [17,20]. Besides competition, also site type effects can contribute
to structural relationships in Scots pine [31].

Competition itself is an aggregate outcome that may consist of multiple processes,
including nutrient, water and light limitation, mechanical abrasion, or indirect effects
mediated by additional species. A transient value of a competition index can only capture
a small portion of the potential processes, as it can only capture a small portion of the
developmental history of a forest stand [32]. Similarly, different aspects of competition
may be captured with different explanatory variables, including the choice of competition
indices that have been developed and found adequate for different purposes. In spite of
the potential problems with interpretation [32], even static estimates of competition can
have value as predictive variables for structural traits [33].

In conclusion, this study corroborates for boreal tree species the findings from studies
done in more temperate regions [11–13], suggesting that considering competitive interac-
tions using simple height- and distance-based data at the level of individual trees can be
beneficial when making calculations based on measurements of tree heights and locations
in modern inventories. There is potential for improved structural predictions as observed
in silver birch, but the responses can be largely species-specific as suggested by the out-
comes of Scots pine and Siberian larch. Here, the approach was simplified and clearly
leaves plenty of scope for enhancements when analysing larger datasets. For example,
modern machine learning techniques could utilise a time-series of individual tree and
stand development data to screen a large set of alternative formulations of competition in
order to produce the most precise predictions.
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