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If you try to take a cat apart to see how it works,
the first thing you have in your hands is a nonworking cat.

Douglas Adams.





Abstract

Cancer continues to be a major clinical and societal challenge. Globally, the cancer burden
rises every year with a new record of 18.1 million new cases and 9.6 million cancer deaths,
as reported by the World Health Organization. Despite the increased financial efforts of
western countries to cure this disease, it is expected that in the year 2040, over one-third of
the population will be diagnosed with cancer.

The gap in translating basic research into clinical benefit requires cross-disciplinary ap-
proaches to harness large data from the complex molecular systems and cellular organization
within the tumor. The main obstacles in current cancer care are late detection and therapy
resistance. While high-throughput and single-cell methodologies have become an advisable
tool to analyze molecular profiles, their use for clinical decision-making is still missing.

This thesis aims to propose efficient methodologies to connect molecular and cellular pro-
filing research to cancer therapy outcomes. In the first and second publications, we made
available software to rapidly analyze large mass cytometry data with high resolution and
interaction-assisted interpretation steps for the analysis. These methods allow the rapid
profiling of tumor cell populations and their association with therapy response. As part of
the third project, we developed new image analysis methods to identify therapy response
predictors from highly multiplexed images. We found that spatial organization within the
tumor microenvironment was highly associated with DNA damage genome scarring. In the
fourth study, we designed a new method to identify epigenetically reversible drug resistance
mechanisms in tumor cells.

The application of novel methodologies contributed to a better understanding of the roles
of genomic and proteomic features in the tumor-immune microenvironment in response to
modern anti-cancer therapies.



Tiivistelmä

Syöpä on edelleen merkittävä kliininen ja yhteiskunnallinen haaste. Maailmanlaajuisesti
syöpätapausten määrä nousee vuosittain, uuden ennätyksen ollessa Maailman terveysjärjestö
WHO:n mukaan 18,1 miljoonaa uutta tapausta ja 9,6 miljoonaa syöpäkuolemaa. Huolimatta
länsimaiden lisääntyneistä taloudellisista ponnisteluista tämän taudin parantamiseksi, on
odotettavissa, että vuonna 2040 yli kolmanneksella väestöstä tullaan diagnosoimaan syöpä.

Aukko perustutkimuksen muuntamisessa kliiniseksi hyödyksi vaatii monialaisia lähestymis-
tapoja, jotta voidaan hyödyntää suuria määriä dataa kasvaimen sisäisistä monimutkaisista
molekyylijärjestelmistä ja solurakenteesta. Suurimmat esteet nykyisessä syöpähoidossa ovat
myöhäinen havaitseminen ja hoitoresistenssi. Vaikka suuritehoisesta tutkimuksesta, eli auto-
matisoinnin avulla tehostetusta mittauksesta, ja yksittäisen solutason tutkimusmenetelmistä
on tullut suositeltu työkalu molekyyliprofiilien analysointiin, niiden käyttö hoitopäätösten
teossa puuttuu yhä.

Tämän tutkielman tarkoituksena on esittää tehokkaita menetelmiä molekyylien ja solujen
profilointitutkimuksen yhdistämiseksi syöpähoitojen tuloksiin. Ensimmäisessä ja toisessa
julkaisussa kehitimme ohjelmiston, jolla voidaan analysoida nopeasti suuren kokoluokan
massasytometriadataa korkealla resoluutiolla ja hyödyntää interaktiivisia tulkintavaiheita
analyysissä. Nämä menetelmät mahdollistavat kasvainsolukantojen nopean profiloinnin ja
niiden yhdistämisen hoitovasteeseen. Kolmannen projektin osana kehitimme uusia kuva-
analyysimenetelmiä hoitovastetta ennustavien markkereiden tunnistamiseksi erittäin moni-
kanavaisista kuvista. Havaitsimme, että solujen järjestäytyminen kasvaimen mikroympä-
ristössä oli voimakkaasti yhteydessä DNA-vaurion aiheuttamaan genomin arpeutumiseen.
Neljännessä tutkimuksessa suunnittelimme uuden menetelmän epigeneettisesti kumottavien
lääkeresistenssimekanismien tunnistamiseksi kasvainsoluissa.

Uusien tutkimusmenetelmien soveltaminen johti parempaan ymmärrykseen genomin ja
proteomin ominaisuuksien roolista kasvaimen immuunimikroympäristössä ja niiden merki-
tyksestä nykyaikaisten syöpähoitojen vasteeseen.



Resumen

El cáncer sigue representando un gran desafío clínico y social. A nivel mundial, la incidencia
aumenta cada año con un nuevo récord de 18,1 millones de casos nuevos y 9,6 millones
de muertes por cáncer, según datos de la Organización Mundial de la Salud. A pesar del
aumento del esfuerzo económico para curar esta enfermedad, se espera que en el año 2040,
más de un tercio de la población sea diagnosticada con cáncer.

La traslación de los descubrimientos fundamentales en beneficio clínico requiere enfoques
interdisciplinarios para sacar provecho de la gran cantidad de información, desde complejos
sistemas moleculares, a la organización celular dentro de cada tumor. Los obstáculos princi-
pales en el tratamiento actual del cáncer son la detección tardía y la resistencia al tratamiento.
Aunque las metodologías de alto rendimiento y resolución unicelular se han convertido en
una herramienta recomendable para analizar perfiles moleculares, todavía no hay aplicación
para la toma de decisiones clínicas.

Esta tesis tiene como objetivo proponer metodologías eficientes para conectar la investigación
molecular y celular con la efectividad de las terapias anti-cáncer. En las publicaciones
primera y segunda, desarrollamos software de código abierto para analizar rápidamente
datos de citometría de masas de forma interactiva. Los dos métodos permiten analizar las
poblaciones de células en el tumor y su asociación con la respuesta a la terapia. Como parte
del tercer proyecto, desarrollamos nuevos métodos de análisis de imágenes para identificar
predictores de respuesta a la terapia a partir de imágenes multiplexadas de antígenos múltiples.
Descubrimos la organización celular dentro del microentorno tumoral asociada con la ruptura
y reparación del ADN, un predictor de la respuesta al tratamiento. En el cuarto estudio,
diseñamos un nuevo método para identificar mecanismos de resistencia a quimioterapia que
son epigenéticamente reversibles.

La aplicación de nuevas metodologías presentadas en esta tesis ha contribuido al conoci-
miento y comprensión de la función de las características genómicas y proteómicas en el
microentorno tumoral e inmune en respuesta a las terapias modernas contra el cáncer.
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1 INTRODUCTION

1 Introduction

The prevalence or demise of any species depends on how fit it is to thrive and
reproduce in its circumstances [1]. The fitness of a species is determined by the
fitness of its members and the result of their actions. In turn, the fitness of each
individual is affected by the functioning and interplay of the organs and functional
parts that make up these individuals; all the way down to the cellular and molecular
complexes that build these parts. In a predator-prey scenario, the circumstances
test both the fitness of the individuals involved and that of their pack or herd. For
instance, previous access to resources helps one grow stronger than the other, and
collective behaviors, either cooperative or competitive, also factor in the individual’s
final fate or even its species. Similarly, human diseases test our fitness, in the form
of the ability of our bodies to detect, correct, and recover from any calamity that
challenges our health. A cell’s fitness can be described by how well a cell performs
its function, and the function often entails interacting with other cells or with
external stimuli [2]. The proper or flawed functioning of a cell in an environment
is determined by the proteins performing its function and structure. Proteins are
encoded in the DNA, but their production is regulated by a complex program that
we summarize as epigenetics. This program responds to proteins inside and outside
of the cell, as well as RNA and other molecules [3].

A disease such as cancer is strongly determined by aberrant DNA, which causes
aberrant functioning of the cell [4]. The newly aberrant cell does not follow the
same collective behaviors as the other cells, thus challenging the fitness of the whole
system. Now, the normal cells’ ability to communicate correctly with each other and
work against the cancer cells will determine the prevalence or demise of this new
aberrant cell. For instance, immune cells can be recruited by cancer cells to help
the tumor grow without turning them into cancer cells, but also immune cells are
often very successful at identifying and terminating tumor cells. If a tumor cell is
more advanced, it can evade the terminating signals. They can rapidly become more
advanced due to unlimited replication, which launches an accelerated evolutionary
process by which the fittest cells, either by their DNA changes or epigenetic
programs, proliferate despite our defense mechanisms. Tumor evolution produces
multiple subtypes of tumor cells, making it even more difficult for the immune
system and the medical treatment to kill all of them. This heterogeneous mixture of
tumor cells makes up the tumor microenvironment together with infiltrating and
recruited immune and other normal cells. It has been referred to as a battlefield in
popular literature [5].

Fortunately, technological advances in molecular biology in the past two decades
have shed light on both sides’ inner workings, the tumor cells, and the immune cells,
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1 INTRODUCTION

and provided tools to study their interplay on human cancer specimens straight
from the operation theatre [6, 7]. Deep sequencing of thousands of cancer genomes
and transcriptomes has made the blueprint of the potential tumor cells’ capabilities
that lead to many successful drugs being developed. As a result, the overall survival
of cancer patients has doubled since 1970 [8]. However, in this process, we have
learned that finding general or targeted treatments to kill the tumor cells is not
enough [9]. Thus, we need smart drug combinations and strategic scheduling, as
well as treatments that take advantage of the body’s own defense systems. Research
on predictive biomarkers has developed efficient systems to stratify patients by the
expected response to treatment [10]. Eradicating this disease will require large
team efforts to efficiently share data and collaborate to translate results into patient
benefits [11].

While translational research plays two important roles, the first one being placed
between basic science and clinical research, and the second being the adoption of
findings from clinical research into practice, both parts of this process are necessary
[12]. The latter one is in the hands of multiple stakeholders such as policymakers,
investors, and citizens. The first one involves large networks of cross-disciplinary
international collaborations. This thesis aims to help smooth such collaborations by
redesigning the steps where data translation has been one of the bottlenecks.

In this thesis, we use the name translational steps as the building blocks of
translational cancer research [13]. The keyword translation implies that we must
be translating from some origin domain to some target domain. In translational
research, the first domain consists of basic research findings, while the latter
one corresponds to the benefit these findings effect on patients’ lives. Hence,
translational research is defined as the process of exchanging knowledge between
the laboratory bench and clinical setting with the main aim of clinical applications
[14]. For example, while several studies were needed to identify endogenous DNA
damage as a potential weakness to target cancer cells [15], it took a large body
of research to develop compounds that could safely inhibit key elements on DNA
repair mechanisms and hinder the cells’ ability to repair DNA damage [16, 17].

The original contribution of this thesis work is in the form of effective methodolo-
gies to translate between molecular biology, computational science, and clinical
setting. The thesis describes the new methods and their application to study
drug response in human cancers. Publication I combines single cell cytometry
analyses with agile principles to design a generalized pipeline that can answer the
most common questions on cytometry experiments such as population abundance,
detection of rare cell populations, and expression on different cell types within
the same tumor microenvironment. Publication II presents a method that tackles
the challenge of visualizing large cytometry datasets. Both, Publication I and II,

2



1 INTRODUCTION

show the benefit of this type of analysis in fresh tumor samples and explain how to
identify rare but important tumor cells with stem-like expression associated with
a short time to progression. Publication III is a large cross-disciplinary effort to
translate findings from a clinical trial back into the biomarker discovery channels.
The clinical trial assessed the benefit of combining immunotherapy and targeted
therapy against DNA repair mechanisms of the cells. This thesis presents novel
image analysis methods to resolve the cellular organization of tumor and immune
cells in synergy with genomic features and treatment response. In Publication IV,
we developed an experimental protocol to test epigenetic reprogramming options
with standard laboratory robotics. We demonstrate the utility of this protocol by
reverting drug resistance in vitro in a set of lymphoma cells. Taken together, we
report new cross-disciplinary methods and discoveries in the field of translational
cancer research.

3



2 BACKGROUND

2 Background

Cancer is a cell disease characterized by uncontrolled growth. This uncontrolled
growth is enabled by a series of mechanisms that allow the cells to malfunction,
and to eventually cause fatal failure of vital organs [18]. This chapter starts with a
short primer on cancer biology and broad cellular mechanisms that are discussed
later in this thesis, followed by the technologies and methodologies utilized to study
the cellular and molecular composition of human cancers.

2.1 Introduction to cancer biology

Two decades ago, Doctors Hanahan and Weinberg compiled the body of molecular
cancer biology knowledge into a framework of six biological capabilities developed
during tumorigenesis [18]. This framework, called the Hallmarks of Cancer,
consisted of sustained proliferative signaling, evasion of growth suppressing signals,
resisting cell death, limitless cell replication, angiogenesis, and activation of
invasive and metastasis capabilities. The hallmarks became a guiding beacon
for today’s cancer biology research.

The second edition [19, 4] incorporated four new hallmarks. Two emerging
hallmarks: reprogramming of energy metabolism allows the cells to survive in
overcrowded environments, evading immune response by tricking the immune
system to not target tumor cells; and two enabling hallmarks: tumor-promoting
inflammation, and genomic instability. On one hand, immune cells infiltrate the
cancerous or pre-cancerous lesion as they do for wound healing, but their presence
inadvertently aids tumor progression by providing molecules that enable new
hallmark capabilities. On the other hand, genomic instability is necessary to
enable cancer cells to acquire multiple hallmarks capabilities. While epigenetic
reprogramming due to environmental factors can enable hallmark capabilities,
current knowledge points to genomic instability as the most prominent step that
further accelerates the appearance of random genetic changes that can enable further
hallmark capabilities. This goes in line with the idea that cancer arises from an
unfortunate sequence of mutations and genomic changes [20].

The complexity of this disease stems from multiple levels of heterogeneity. Previ-
ously defined as inter- and intra-tumor heterogeneity, were recently redefined to
address the different levels at which we can differentiate tumors; first, morphological
differences help find subtypes within a cancer type; second, within a tumor type we
can observe different clinical responses; third, molecular heterogeneity shows that
even within the same subtypes, each tumor has its own set of genetic, epigenetic, and
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immune features; and fourth, the tumor cell heterogeneity describes the subclones
resulting from darwinian evolution [21].

The discovery of the conflicting role of immune cells to aid and attack tumor cells
[22], together with the advancements of single-cell technologies opened a new door
into the complexities of the molecular heterogeneity level. To eradicate this disease
and cure all patients we must learn how all the moving parts interact as cancer
manifests on each patient as its own complex system [9]. The following chapters
will explain the mechanisms and interactions tackled in this thesis.

2.1.1 Epigenetic reprogramming

The epigenome refers to all the cell’s processes that regulate gene expression, and
therefore cell identity [23]. These processes are the reason that cells with identical
DNA perform very different functions, and are affected by previous cell states,
as well as environmental cues [2]. The mode of action of the epigenetic program
is intrinsically related to the three-dimensional packaging of the DNA molecules
(Figure 1). The accessibility to the DNA depends on how tightly parts of the DNA

Figure 1: The DNA is wrapped around histone complexes called nucleosomes, the
state of the histone complexes as well as the presence of covalently bonded methyl
molecules to the DNA regulate how loose or tight the nucleosomes are organized.
Image adapted from zenithepigenetics.com, copyright of Richard E. Ballermann.
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2 BACKGROUND

are wrapped around the histone proteins. Hence, the epigenome is comprised of
molecular tags, called epigenetic marks, that bind to the DNA as well as to the
histones, applying pressure to wrap the DNA more loosely or tightly, and thus
rendering some regions of the DNA unreadable for the gene expression machinery
[24].

The epigenetic marks are set in place and removed by a family of epigenetic
enzymes, that can be further subdivided into epigenetic readers, writers and erasers.
The dysregulation or reprogramming of the epigenome can thus change the cell
identity without genomic changes. In cancer epigenomes, the expression of the
enzymes as well as the resulting epigenetic marks are disrupted from their normal
function [25].

New pharmacological developments have allowed a plethora of epigenetic inhibitors.
That is, drugs that target the epigenetic enzymes so they cannot modify their
corresponding epigenetic tags. As the epigenome is still to be fully understood,
these inhibitors yield new leads to study causal effect between epigenetic enzymes
and measurable gene expression. Epigenetic inhibitors have been tested in clinical
trials as monotherapy, however, they have been recently shown to reprogram the
cancer cells to a drug-sensitive state [26].

2.1.2 DNA breaks and DNA repair in cancer

Errors in the replication process of DNA molecules can happen as well as damage
caused by external events [2]. However, DNA, being the blueprint of the individual,
is protected by multiple redundant care-taking systems. DNA integrity is regularly
checked, and if a copy turns out to be corrupt, several alarms and protocols are
set off [27]. If the damage is harmless for the cell, it might not trigger any further
action; if it is deemed to be fixable, the repair mechanisms will try to repair it; and
finally, if it is damaged beyond repair, an auto-destruction system, called apoptosis,
is started and the cell dies. The correct functioning of these systems keeps the
accumulation of mutations and mutant cells to a minimum.

Mutagens can be both endogenous to the host and external, such as radiation, smoke,
and viruses. While cells are regularly exposed to mutagens, tumor cells undergo
higher mutation rate due to replication stress and evolve quickly avoid apoptosis
signaling and maintain a proliferative state despite clear DNA aberrations [28].

DNA damage can occur to a single strand or to both strands of the DNA double
helix. The latter one, called double strand breaks (DSB), is critical for the cell [29]
and commonly caused by chemotherapy. Hence, repair of DSB directly effects
drug response. Figure 2 shows the repair mechanisms that activate when DSB
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Figure 2: Double DNA strand breaks are detected by sensor proteins. When following
HR repair pathway, the ends of the 5’ strand are cut to leave the 3’ strand free. The
loose strand then invades an available homologous sequence to synthesise the new
DNA segment. When following NHEJ, the strand ends are not cut, instead, the repair
machinery will attempt a ligation that may introduce small deletions or insertions to
correct for loose nucleotides.

are detected have two main types: homologous recombination (HR) and non-
homologous end-joining (NHEJ)[30]. HR driven repair is a mechanism that uses
the homologous chromosome as a template to assemble one strand of the missing
segment, allowing the broken part to look the same as the template. NHEJ system
simply connects the ends of the broken strands, if some nucleotides were lost,
this repair mechanism will lead to loss of integrity of the DNA. The DNA repair
machinery comprises multiple proteins that work together to restore the original
state to the genome, however, if these proteins are (epi)genetically inhibited or their
function is compromised by mutations, the quality of the repairs is affected. For
example, homologous recombination deficiency (HRD) has been shown to cause
loss of heterozigosity (LOH)[31].

When DSB events are detected, protein complexes act as mediators to recruit
effector proteins that will repair the damage. While the cell has multiple redundant
mechanisms, the mutations in tumor cells genome often disrupt some of these
proteins, forcing the cell to rely on fewer care-taking options. A successful example
in the HR pathway is the dependency of having a functional BRCA protein or a
functional PARP, however, when both are disrupted it was shown to render the cell
unable to repair DSB [17, 16]. This weakness has been successfully exploited by
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the prescription of PARP inhibitor therapy to patients with existing BRCA mutations
[28].

2.1.3 Elements within the tumor microenvironment

In contrast to a traditional cancer-centric view of autonomous mutant cells repli-
cating and invading the patient’s organs, recent advances have shown the tumor
development to be affected by a multitude of normal cells recruited to the site [32].
The assemblage of cells inside and around the tumor is called tumor microenvi-
ronment (Figure 3), and the collective function or dysfunction of the cells must
be understood to turn key players into an actionable weakness [33]. Over the last
decade, it has developed into a large research field on itself.

Advances in preclinical models, microscopy, and cytometry, have identified seem-
ingly normal cells recruited by the tumor and tricked into promoting tumorigenesis
[22]. The cells can be classified in three groups, each being actively developed in a

Figure 3: The tumor microenvironment is largely shaped by secreted factors that
allow cells to send signals to neighboring cells. The figure shows main three cell
states of cancer cells (light pink) as epithelial, apoptotic, and undergoing transition to
mesenchymal (EMT); the stromal compartment includes endothelial structure, pericytes
(yellow), and fibroblasts (brown); the immune compartment involves an interplay
between dendritic cells (pink), macrophages (purple), B cells (blue), and T tells (teal).
The close up (top left) shows the interface between a PD-L1+ positive tumor cell and a
PD1+ CD8+ T cell.
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race to turn them against the tumor. The first and most widely known group, are
endothelial cells and pericytes, that are necessary recruits to build nutrient supply
routes in a process called angiogenesis. During tumorigenesis, the tumor may
secrete growth factors to trick the host into building new blood and lymphatic vessels
for the new tumor cells in need of resources. The second group are fibroblasts, also
part of the stromal compartment like the previous group, however, when normal
fibroblasts are recruited into cancer-associated fibroblasts (CAFs) they can support
tumor growth and metastasis [33]. The third group are the infiltrating immune cells;
they can be divided into multiple subtypes and new findings about their pro- and
anti-tumorigenic functions are being discovered every year [34]. The complexity of
this field is exacerbated by the notion that the composition of the microenvironment
and the function of these cells varies in function of the anatomical site, types of
tumor cells present, and therapeutic interventions [35]. While immunology is a large
and specialized field that will yield new opportunities on anti-cancer treatments,
in this thesis we focus on the anti-tumor response by T cells as studied by clinical
trials.

The promise of immunotherapies, drug compounds that help the immune system
better detect and kill cancer cells, has had varying degree of success in different
cancer types [36, 37, 38]. However, many different immunotherapeutic approaches
exist today, and new studies must now find out when, where, and how they are
beneficial [39].

2.2 Diffuse large B-cell lymphoma

B-cell lymphomas are a disease of the blood cells. Lymphomas are commonly
classified into Hodgkins and non-Hodgkins lymphomas. In this thesis, we focus
on the drug resistant phenotype of the most common subtype of non-Hodgkins
lymphoma, diffuse large B-cell lymphoma (DLBCL) [40]. In the past decades
the standard of care for DLBCL has improved patient prognosis significantly, to
the point that approximately 70% of the patients can be cured with the standard
treatment [41, 42]. The standard of care for DLBCL is R-CHOP, a combination of
five drugs: rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone,
that is effective in 60% of the cases [43].

Relapse patients have a dire prognosis and depend on the chances of being eli-
gible candidates for clinical trials that are recruiting at the time. Identifying the
mechanisms that lymphoma cells utilize to evade the most toxic compounds in
R-CHOP is the next step to propose options for the patients that do not respond to
R-CHOP [44]. Recent results in drug synergy and preclinical models points out
that the R-CHOP combination does not have synergistic effects and points out to
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solutions for drug testing [45]. In this line, emerging anti-cancer therapies targeting
epigenetic mechanisms [46] rather than direct DNA damage have shown promising
results in various lymphomas [47, 48].

2.3 High-grade serous ovarian cancer

Ovarian cancer is the 7th leading cancer type in incidence rankings and the 8th

in cancer fatalities among women [49]. High-grade serous ovarian cancer (HG-
SOC) is the most aggressive subtype of ovarian cancer. While most patients
respond positively to a primary therapy with platinum-based chemotherapy (a DNA
damaging agent), the 5-year survival rate is still below 50% due to relapse and
chemotherapy resistance [50]. The standard of care in ovarian cancer is primary
debulking surgery (PDS) followed by platinum-based chemotherapy when the
diagnosis is such that debulking is possible. When complete removal of the tumor
is not possible, platinum-based chemotherapy is then the first line of treatment [51].

HGSOC is a cancer of epithelial cells that is characterized by genomic instability
[52]. Importantly, half of the HGSOC tumors suffer from homologous recombina-
tion deficiency, due to mutations or epigenetic silencing of caretaker genes TP53,
BRCA1 and BRCA2, and other HR pathway members [53]. HR deficiency can now
be exploited by poly(ADP-ribose) polymerase (PARP) inhibitors that disables the
cells ability to recover from DNA-damage [54].

Previous research identified patients that, after a relapse from platinum, could be
treated with new therapy combinations targeting DNA repair pathways, anti-tumor
immune response, or tumor heterogeneity. Large international studies yielded data
to bring back into the biomarker discovery pipeline [55, 56].

2.4 From preclinical models to clinical trials

Before a discovery can be translated into new treatment opportunities for patients,
it must follow a rigorous roadmap [57]. Identifying a druggable target requires
understanding of the mechanisms that the target sets in motion, and assessing
the schedule strategies as well as possible combinations. The validation process
involves in-vitro and in-vivo assays in preclinical models. A preclinical model is an
experimental setting with live cells or organisms that are suitable to test a discovery
due to shared traits to human physiology and fast development to produce timely
results. Examples of models are mice, fruit flies, zebra fish, and human-derived
cells in different culture conditions [58, 59, 60].

Biological samples associated to therapy response information are invaluable to
close the bidirectional translational gap in cancer research (Figure 4). Samples
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Figure 4: The translational road from "bed to bench and back". Preclinical research
findings help guide novel therapeutic options. On the other opposite direction, data
from clinical trials, prospective studies, biobanks and other human-centered studies,
are indispensable inputs for biomarker discovery.

are obtained with previous consent from clinical trial patients or from standard
of care clinical setting, and enable deep qualitative and quantitative research into
the mechanisms that explain therapy response. A huge amount of biomedical data
in the form of clinical variables and follow up information and clinical samples
have an invaluable yield of data in genetic sequences and an uncountable amount
of experiments [61, 62, 63]. Furthermore, clinical samples are often deposited in
national biobanks, enabling future research on questions we cannot yet consider
[64].

Vast amount of data are not manageable with traditional manual analysis and require
very technical bioinformatic tools for the analysis and cross-disciplinary teams for
the interpretation [65]. These advances have improved overall prognosis in cancer
patients, but the remaining pieces of the puzzle to completely cure current drug
resistant cancer are still missing [9].

2.5 Biological data acquisition

This chapter describes the technologies that were used to produce the biological
data at the core of this thesis.

2.5.1 Genomics and transcriptomics

The study of complete genomes and transcriptomes from biological samples is done
from the sequence of nucleotides that make up the DNA and RNA molecules. There
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are many available technologies to extract the sequences and quantify molecules
[6]. In the research setting, they have become so widely used that caused a
bioinformatics revolution [66]. The sample preparation process varies, but the
general steps consist of breaking previously isolated DNA or RNA molecules into
smaller fragments to then create multiple copies of each molecule that are then
sequenced by the sequencer.

The sequencer produces an enormous amount of reads, the nucleotide sequences
from each fragment. To construct a digital representation of the DNA or RNA we
must first align the reads. The field of bioinformatics has produced produced a
plethora of tools and methodologies to produce biological insight from omics data
as well as tested best practices [67, 68].

Once the reads are aligned we can produce multiple layers of information. By the
RNA reads we can characterize current transcriptional state of the cells, or look at
RNA splicing events that can disrupt the correct functioning of the cells. By the
DNA reads we can characterize chromosomal rearrangements that produce fusion
genes, copy number alterations, as well as deletions and insertions of one or more
single nucleotides. Information from these extracted features are stored in public
databases that help international efforts at associating them to cell mechanisms and
therapy responses [69]. The field of genomics was able to associate mutational
patterns to known mutagens, hence providing an edge to find exploitable mutational
signatures in different cancers [70].

These techniques have offered a new understanding of cancer [71]. However, so
far these studies have been performed on bulk samples, and miss the detail of the
heterogeneity within the tumor microenvironment [72]. Bioinformatics methods to
solve this problem, and technologies such as single cell sequencing, belong to the
current efforts of the community towards to study the cell to cell variation [72].

2.5.2 Single cell proteomics in cytometry

Proteins are the ultimate molecules that perform cell function [2]; however, analysis
and quantification of protein molecules from individual cells pose challenges
different from DNA or RNA. Recent advances point in the direction that we can
expect to see soon full single-cell proteomes at the level at which we measure single-
cell transcriptomes [73]. At the moment, the most widely used technology is mass
cytometry time-of-flight (CyTOF) [74]. CyTOF couples cell sorting microfluidics
from flow cytometry with heavy metal tags measured by mass spectrometry.

Figure 5 describes how this technology works. Metal-conjugated antibodies bind to
specific proteins inside and outside the cell, cells tagged with antibodies are shot
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one by one into a nebulizer that breaks the cell into a particle cloud. The particle
clouds are send one by one into a mass spectrometer tunnel, when the metal atoms
land on the detector, the time-of-flight is used to calculate the mass of the atom.
Because we know the exact mass of each metal used as a tag, we can calculate
how much of each antibody was originally present before the cell was fragmented.
The final output is the single cell data table, where the rows depict cells that were
shot one by one into the machine, and the columns depict the metal-conjugated
antibodies.

CyTOF enables scientists to measure intensity of protein expression for each cell as
long as we have validated antibodies. This means hundreds of validated antibodies,
and millions of cells. The size of the datasets obtained from CyTOF is vertical,
i.e. more data points than variables, compared to a genomics or transcriptomics
dataset that have horizontal shape with more variables (genes and mutations) than
data points (samples). Because of this, many new bioinformatics tools have been
developed for this specific problem [75]. While data acquisition standards have
been reached to improve reproducibility, data analysis practices are reported in
varying degrees of detail and often include human manipulation of the data and
specialized users, making this an obstacle towards clinical use [76].

Figure 5: Mass cytometry by time of flight (CyTOF). (A) Cells are stained with
antibodies previously coupled with metal tags. Using a fluidics system (B), cells are
processed one by one, and shot into the nebulizer (C) to fragment the cells into particle
clouds. Each cloud goes into a time-of-flight tunnel (D) to measure the time each atom
takes to reach the detector (E). The mass spectra (F) are converted into single cell data
with the intensity for each antibody.
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Immunofluorescence imaging techniques

Before antibodies were coupled with heavy metals, scientists used fluorophore-
conjugated antibodies for decades to measure protein expression intensity on cells
directly on their physical location in the tissue or plate [77]. Fluorophores are
molecules that are excited by specific light wavelengths. A fluorescence-based
microscope excites the sample with a laser of predefined wavelength at the same
time that the scanner takes the picture. This way, we see light where the excited
molecules were. The microscope then takes one image for each of the lasers (Figure
6.1-2). For large samples, multiple pictures are taken, and they need to be aligned the
edges of each plane to compose the bigger picture. This process is called stitching.
After stitching, we could analyse each channel image separately, or merge them
depending on the research goal behind the image. Often we wish to quantify the
cells in the image and measure the intensity that each channel, i.e. antibody, and for
that we must define which pixel belongs to each cell via segmentation. Segmentation
is a computer vision technique to segment the image into smaller regions, many
techniques exist to segment round cells that are separated from each other and have
similar size, however tissue images have dense cell distribution with overlapping
cells of different sizes and shapes [78]. A regular IF microscope can measure 4-7

Figure 6: tCyCIF analysis. In each cycle, whole tissue slides are stained, scanned and
bleached to produce images for 4 antibodies, for up to 20 cycles depending on tissue
integrity. The dashed line shows classical immunofluorescence via a single cycle of
staining and scanning. The images are then stitched and aligned across cycles prior to
regular image processing to quantify the channel intensity for each cell.
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fluorophores for each cell. This thesis also used images from a highly-multiplexed
technique called cyclic tissue-based immunofluorescence (tCyCIF) [79] described
in Figure 6. Here, at each cycle we scan a different set of antibodies with the same
fluorophores. Therefore we can measure up to 50 proteins from a whole slide of
tissue in the microscope. Other multiplexed techniques have been developed in the
last decade creating a need for bioinformatic analysis methodologies to effectively
translate these valuable images into knowledge [80, 81, 82].

2.5.3 High-throughput drug screening

Among other pre-clinical models for drug testing, in vitro drug testing (see Figure
7) takes advantage of patient-derived cell lines [83]. By dispensing the same
amount of cells in each well of the plate, we can test how they respond to different
drugs and doses. Dose-response analysis translates experimental read outs like cell
inhibition or viability into a relationship between drug dosage and effect. Traditional
measurements, such as the dose that kills 50% of the cells (IC50) or the area under
the dose-response curve (AUC) are then used to compare and rank drugs by effect
[84].

Drug screening technologies are also useful to evaluate the effects of combinations
of drugs [85]. The concept of drug synergy is based on the idea that drugs inhibiting
pathways of the same cell function will be more cytotoxic due to leaving the cells
with fewer options to maintain a given cell function. Drugs that target independent
cell functions are also effective but allow the cell to use back up pathways to survive
[86]. By testing all combinations of doses between two treatment options we can

Figure 7: Patient derived cell lines, either primary or immortalized, are dispensed on
micro plates coated with increasing doses of the drugs. With a luminance scanner and
a reagent of choice we measure the cells alive on each well. Bioinformatics analysis
translates these findings into the next translational step.
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find how the cells respond to the combined effect of the drugs and which are optimal
doses. Further improvements of drug screening methods have been proposed for
personalized medicine settings where a patient is not treated until the results from a
multidrug screening are at the hands of the clinician [87].

The number of wells and the number of plates can be increased as much as our
infrastructure allows. Research institutes often invest on high throughput facilities
that use highly specialized robotics to handle the plates and dispense accurate
amounts of cells and compounds [88]. This technology has matured to a point
where software to analyse and interpret drug resistance and sensitivity tests (DSRT)
is usable for non-technical users [89].

2.6 Reproducible data analysis and visualization

Once we have produced and processed data from multiple techniques, we need
to translate it into useful information and new leads for future research. The way
to achieve this from such complex datasets is through computational methods
[90]. With the aid of computers, we can look at data from different points of view.
While formal classification of machine learning and data mining methods exists, in
computational biology the two fields merge and its clearer to describe them by the
applications of groups of methods, even if some methods are hierarchically part of
another family of methods. The key computational methods applied in this research
are:

Unsupervised clustering. A flexible tool for explorative analysis, clustering al-
gorithms help highlight patterns and find subsets of the data that share
similarities.

Supervised classification and prediction. It is a family of supervised algorithms
that instead of highlighting the most clear patterns in the data, they try to find
features that would best predict a class label (e.g. response to a new therapy)
or a continuous value (e.g. gene expression).

Summary descriptive statistic. Although statistics are an inherent part of many
supervised and unsupervised learning methods, we often use them on their
own to extract features that describe groups.

Inferential statistic. Although statistics offers a rich variety of models to help
answer questions from data, only a few of them are commonly applied in
bioinformatics. For example, even if visually we are able to assess if a
variable is clearly different in different subsets of the data, statistics helps
give a numeric value to the confidence that that difference is not due to
chance.
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Dimensionality reduction. Lastly, this is a family of methods that transforms a set
of multidimensional data points onto a lower-dimension space that maintains
feature of interest, e.g. variance or similarity. The most popular dimensional-
ity reduction methods in single cell data analysis are t-distributed stochastic
neighbor embedding (tSNE) [91] and uniform manifold approximation and
projection (UMAP) [92], where the feature that we aim to maintain is the
distribution of the distances between points that are similar to each other.

After performing an analysis step, the researchers involved in an experiment need
to interpret the results and find useful conclusions to pursue their primary question.
This often means designing new analysis or new experiments. While intermediate
conclusions with high confidence are shared with the scientific community, in the
process of answering a question we often find more questions. Such is the iterative
nature of research [93].

One of the challenges to ensure confidence on a scientific result is the reproducibility
of results [94, 95]. The reproducibility of a computational result in the analysis
depends solely on having enough details of the methods that yielded that iteration
and the original data [96]. A strategy that some bioinformatics tools took was
to produce log and execution files that accompany each intermediate result [97].
Researchers do not have to figure out what details are necessary to reproduce that
result. Instead, these files are a technical sheet that guides reproducing the analysis
either by a human or by the same tool [98].

Effective visualization of a result is critical for the interpretation into useful
information [99]. However, complex visualization techniques require specialized
data scientists to create visualizations for each iteration of the research. Interactive
visualization of data helps speed up this process and allows rapid browsing of highly
dimensional or complex data [100].
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3 Aims of the study

The main goal of this thesis project is to propose efficient methodologies to
connect efforts between molecular and cellular profiling research to cancer therapy
outcome, therefore the focus of the individual aims builds upon previous advances
in translational cancer biology.

The intermediate goals, together with the Publications where the goal is achieved,
are the following:

1. Develop computational cytometry methodologies to improve single cell pro-
filing of clinical tumor samples before and after chemotherapy (Publications
I, II, III)

2. Identify cellular profiles associated with immunotherapy response on tumors
with acquired chemotherapy resistance (Publication III)

3. Design a pre-clinical high-throughput methodology to screen dozens of
epigenetic treatments as a way to revert drug resistance (Publication IV)
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4 Materials and methods

This chapter briefly describes the methods applied and developed for the key results.
Further details are available in the original publications, here denoted with Roman
numbers.

4.1 Biological sample data

The data analyzed through this thesis were collected using genomic, proteomics,
and drug screening measurement techniques. All the data are of human origin, and
appropriate informed consent was reported from each study.

Publication Samples Technology Source

I 19 fresh tumor and ascites samples
from 15 patients with stage III and
IV ovarian cancer. 9 samples taken
at diagnosis time, 6 samples after
three cycles of platinum treatment,
and 3 samples taken when the
disease relapsed

CyTOF HERCULES
Consortium

14 Control PBMC samples from
healthy (n=7) children and adult
(n=7) donors

CyTOF Flow
Repository
[101]

II Matched primary and interval as-
cites samples from an HGSOC
patient

CyTOF HERCULES
Consortium

III 26 archival samples from HGSOC
patients enrolled in the Topacio
clinical trial with acquired resistance
to platinum therapy

Cyclic multiplexed
immunofluorescence
imaging (tCyCIF)

Topacio clinical
trial [102]

IV 4 DLBCL cell lines: Su-Dhl-4
belongs to GCB subtype, Oci-Ly-3,
and Riva-I to the ABC subtype, and
Oci-Ly-19 is unclassified

Epigenetic reprogram-
ming screening

Kindly
provided by Dr.
Karen Dybkær

IF imaging, WES, and
RNA-seq

Table 1: Sample materials utilized in this thesis work. Publication II and Publication
IV included other data not included in this thesis.

4.1.1 Mass cytometry data (I-II)

We used two cohorts of mass cytometry data samples for testing the feature of
our software, Cyto. The first one was downloaded from the publicly available
samples by Van Unen et al. 2016. We used all 14 FCS files corresponding to
CyTOF data from healthy donors. The data set contained 48,611,486 cells, the
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Cyto parameters, including a random subsampling of 300,000 cells, and arcsinh
transformation. Outliers were determined based on Multidimensional Scaling
(MDS) and non-redundancy scores (NRS) visualization and comparing Simpson’s
diversity index data exported from Cyto.

The second dataset is part of an in-house set of HGSOC samples acquired as
part of the HERCULES Consortia. Fifteen tumor and ascites samples from 15
patients were prepared immediately after the surgical intervention and sent to our
partner lab to perform CyTOF measurements. Data were processed with CyTOF
software version 6.7.1014 to minimize variation due to instrument performance and
FlowJo software to export bead-normalized single-viable cells based on channels
191/193Iridium and 103Rhodium. All of these samples were analyzed on Cyto.

Additionally, in Publication II, we analysed two samples from this set that originated
from the same patient (PFI 2 months) before and after the first chemotherapy cycle.
Single-cell data from this patient were log-transformed and normalized with Z-score
to limit the batch effect on the high-resolution analysis with qSNE.

4.1.2 Cyclic immunofluorescence images (III)

Twenty six Formalin-fixed paraffin-embedded (FFPE) tumor samples were collected
from patients enrolled in the TOPACIO study [102]. Twelve were from time of
diagnosis and 14 were collected after 1 to 5 cycles of platinum therapy. The
samples were stained following the tCyCIF protocol [103, 79] using an antibody
panel to detect common immune cells and key signaling markers in epithelial cancer
cells. Traditional image analysis methods do not work out of the box on tCyCIF
data due to the complexities of cyclic staining and the high-dimensionality of the
measurements. For the work presented in Publication III, we optimized the choice
and order of analysis steps shown in Figure 8, as well as some of the specific steps,
like cell type assignment and spatial analysis methodologies.

After performing shading effect correction with the BaSiC [104] tool, we aligned
the images from different cycles using the DNA channel (Hoechst dye). The main
differences between this workflow and traditional multiplexed imaging, such as the
data used in Publication IV, are: (i) tile stitching errors would propagate and affect
cycle alignment quality, which in turn is critical for optimal cell segmentation; (ii)
segmentation for tumor tissues, which is more challenging than for dissociated
cultured cells, requires comprehensive quality filter due to cell loss between cycles;
(iii) and cell type-based analysis must handle over 40 channels vs. the traditional 4
channels.
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Figure 8: Computational analysis pipeline to process and analyse tCyCIF images.
Image processing involves optimized stitching and segmentation to be able to quantify
MFI by cell. Quality control steps are tailored to cyclic imaging techniques. The cell
type calling module shows the subpopulations used on each iteration. Outside of the
regular modules we included the downstream analyses used in Publication III.
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4.1.3 Epigenetic inhibitor collection (IV)

A key component to accomplish the results of Publication IV was a carefully
curated collection of epigenetic inhibitors (Figure 16). We searched for compounds
to inhibit epigenetic enzymes with previous evidence of potential benefits in cancer.
The collection contains compounds targeting HDAC (n = 21), DNMT (n = 7), HAT
(n = 1), HMT (n = 15), HDM (n = 3), and BRD (n = 13). The compounds were
bought from FIMM High-throughput Biology Core facility.

4.1.4 DNA repair assay images of epigenetically treated cell lines (IV)

Cells were incubated in T-25 flasks and treated every 3 days with belinostat,
entinostat, vorinostat, or tazemetostat. Untreated cells were used as a control
to measure endogenous DNA damage and DNA repair in these cell lines. We used
doxorubicin to induce DNA damage (detected via gH2Ax) and measured the activity
of DNA repair via homologous recombination (RAD51) and non-homologous end
joining (53BP1), and apoptosis (cleaved-Casp3). Quantification was performed
using the Anima framework [105], followed by a statistical summaries in R.

4.2 Modular implementation of cytometry workflow

We built Cyto using Anduril 2 [106], an open-source workflow framework that
allows bioinformaticians to build analysis pipelines with multiple programming
languages. At the same time, it also automatizes parallelization and systematic
logging of the analysis steps. Cyto is composed of three modules shown in Figure
9: the graphical user interface as the data importer, the interactive results browser,
and, at the heart of Cyto, the Anduril cytometry pipeline.

Cyto is distributed as an already built Docker container. Docker is a platform
that uses virtualization of operating systems to encapsulate the environment of a
software or service into packages called containers. The data importer is a Flask
application server that handles the loading and saving of the data between the local
machine and the container and coordinates the launch of the cytometry pipeline
and the results browser. The results browser is a separate web application using
Python Dash elements. Dash is a powerful Python library that integrates interactive
data visualization elements from other libraries. When the user clicks on the "Run
Analysis" button, Cyto will launch the cytometry pipeline with Anduril. The order
of the Anduril components (Figure 10) has been tested to include the most popular
methods in the appropriate order to produce trustworthy results. Each module
produces a file output that can be exported and processed on its own if needed. The

22



4 MATERIALS AND METHODS

data

importer

results

dash board

Anduril

cytometry

pipeline

User
settings

Result

data

launch dash board

USER INTERACTION IN WEB BROWSER

ru
n

 a
n

a
ly

s
is

User

data

CONTAINER

Figure 9: Software architecture to support Cyto’s features. All modules are included
in a Docker container that acts as a web server. The data importer and the results
dash board host the user interaction, and the cytometry pipeline built with Anduril is
responsible for processing the inputs, settings, and preparing the results packages.

common steps of a cytometry analysis comprise data preprocessing, unsupervised
clustering, and dimensionality reduction. However, the choice of methods and
parameters in each of these categories considerably affects the results.

4.3 Cell type-based analysis of single-cell imaging data

For Publication III, we devised and applied a new methodology to assign cell type
labels to the single-cell data proceeding from the CyCIF experiment. The traditional
gating technique on biaxial plots added high human-to-human variation, a large
number of gates per sample and marker, and low confidence on the resulting cell
type labels. We overcome this challenge by automatically annotating cell clusters
produced by self-organized maps [107, 108]. Due to the variety of distributions
across markers and across cell types, our cell type calling method tries to assign
only a few labels at a time that are expected to be very dissimilar from each other.
In the first iteration, we label tumor, immune, and stromal cells. In the second
iteration, we label the immune cells into T cells, macrophages, B cells, NK cells,
and neutrophils. The third and following iterations go deeper into subtypes of T
cells and macrophages. An expert evaluated the labels by visual inspection with the
raw images compared to the assigned labels on a side by side visualization.

The cell type labels and the coordinates of each cell were used for spatial analysis.
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Figure 10: The analysis is composed of Anduril components and functions. The output
of each component is an intermediate result that can be accessed at the end of the
analysis run. The intermediate results are stored as CSV files and as feather and pickle
objects compatible with R and Python.

Two cells were considered neighbors if the distance between their centers was less
than 28 pixels, two times the average cell diameter. Two types of spatial analysis
were used. First, a permutation test consisting of 1000 random permutations of the
cell labels was used to determine which pairs of cell types would attract or avoid
each other significantly (p < 0.05). Second, the abundance of PD-L1+ cells in the
neighborhood of PD1+ CD8+ T cells was compared by defining PD-L1 thresholds
for each sample.
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4.4 Epigenetic drug screening

The screening procedure starts with microplates previously coated with a Labcyte
Echo 550 acoustic dispenser. The drug concentrations were calculated as 10-fold
dilutions from the recommended concentration advised by the provider. Positive
(benzethonium chloride) and negative (DMSO) controls were randomized across
the plate to detect potential plate effects (coefficient of variation). Cells were
seeded using a BioMek MultiFlo TX Random Access Dispenser. The initial cell
counts were optimized through titration assay to 3000-4000 cells per well. Plates
undergoing 9 days of epigenetic treatment were covered with Labcyte microclimate
lid. All plates were incubated at 37’C and 5% CO2.

In-plate cell passaging was achieved with a Beckman Coulter BioMek FXp pipetting
robot to dispense 384 wells simultaneously. The BioMek FXp program we made is
included as a supplementary file in Publication IV. After the designated pretreatment
time (1, 3, or 9 days), the treatment plates were treated with rituximab and
doxorubicin, while the control plates were treated with PBS. The fixed-dose of
rituximab and doxorubicin were optimized to achieve minor toxicity (IC20 - IC40)
in the combination of the two. The objective measurement was cell viability with
CellTiter-Glo reagent luminance readout. Cell viability for each dose was used for
dose-response analysis using the following reprogramming score:

where i represents the dose of epigenetic inhibitor. xt represent the observed
inhibition in the plate treated with rituximab and doxorubicin after pretreatment,
and xc represents the inhibition on the plate with only pretreatment (control plate).
The score is computed as the highest difference between treatment and control
dose-response curves, max

i
(xi

t − xi
c). Additional cases were added to ensure that a

positive score is caused by two differentially effective dose-response curves and
not the result of artifacts in the measurement.

4.5 Whole exome sequencing and genomic profiling of DLBCL
cell lines

We used NucleoSpin Tissue (Macherey-Nagel) for DNA extraction and SureSelect
Human Exome V5 kits for whole-exome sequencing target enrichment and library
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preparation. Samples were sequenced by BGI Genomics Co., Ltd. (Hong Kong)
using Illumina HiSeq4000 sequencer. The key parameters were paired-end sequenc-
ing, 100bp read length, and 50x coverage. A custom analysis pipeline built with
Anduril 2 was developed to perform sequencing processing and analysis. The steps
for genomic profiling included (i) quality filtering, (ii) read alignment to reference
genome, (iii), and variant filtering with public databases. A summary of the steps
and methods is described in Table 2.

The first filtering module keeps only splicing and exonic variants with VAF >
20% in at least one cell line. Then, variants with CADD > 10 and either missing
SNPdb information or an updated COSMIC [109] annotation. Variants within
genes with low expression in our RNA-seq data (FPKM < 1) were discarded.
The second filtering module used Minor Allele Frequency (MAF) and somatic
type annotations from COSMIC to classify the variants by the likelihood of being
somatic or germline. Germline variants were further filtered based on potential
relevance to the epigenetic inhibitors, rituximab, and doxorubicin. All variants were
annotated and selected based on annotations from the following databases: CIVIC
[110], DGIdb [111], DrugBank [112], PharmGKB [113], LOVD3 [114], and IARC
[115].

Step Tool Source

Quality control of raw reads and mates FastQC [116]
Trimming read ends Trimmomatic [117]
Read alignment to reference genome hg19 Burrows-Wheeler Aligner [118]
BAM file sorting Picard tools [119]
Variant calling and filtering GATK and Annovar [67, 120]

Table 2: Whole Exome sequence processing and analysis steps and tools.
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5 Results

The following sections present the results of this work. First, the computational
methods developed and applied to cytometry data analyses (Pub I-III), followed by
tumor microenvironment findings from the clinical trial Topacio (Pub III), and then
the methodological and biomedical contributions to preclinical screening (Pub IV).

Description Category Publication

Agile workflow for cytometry analyses Methodological I

Automatic cell type assignment Methodological III

Tumor composition in high grade serous ovarian cancer samples Biomedical I, II, III

Spatial organization of cells with PD-L1 and PD1 expression Biomedical III

High-throughput screening of non-simultaneous
drug combinations

Methodological IV

HDAC inhibitors shift DNA repair ability on DLBCL cell lines Biomedical IV

Table 3: Summary of main contributions from this work.

5.1 An agile-based workflow for mass cytometry analyses

To help interpreting results from highly dimensional data while maintaining re-
producible analyses, We designed a method that supports the iterative nature of
data analysis and agile methodology principles. It is presented in the form of a
Docker-based tool called Cyto (Figure 11).

Agile principles focus on the individuals instead of the processes, and the main
goal is to produce value in each iteration. While it was a methodology designed
for software development, there are many views on whether it applies to data
science and in which form. We aligned Agile principles to the scientific principles
of reproducibility, transparency, and systematic evaluation of results in this work.
While a primary research question drives a research project, many intermediary or
secondary questions relate to designing experiments and determining analysis steps.
These questions often require running exploratory analysis on data, discussing the
results to conclude that helps formulate the next question. Each of these iterations
should aim towards the primary goal of the project.

It does sound simple. However, publications often describe only the last bioinfor-
matic analysis that yielded the results they include in the manuscript. In practice,
source code changes from iteration to iteration, and there is a lack of systems to
keep the result of each analysis iteration organized.
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Data analysis is iterative in nature. Each iteration must answer an important question
that leads to the next question and, therefore, the next iteration of the analysis. In
Publications I and II, we have questions about differences between sample groups
at the cell population level. However, we first needed to ask earlier questions about
sample and feature selection to ask such questions. Experimental design must go
together with analysis design. However, biological assays do not always turn as we
expect, so we must ask questions regarding the quality of the data, or the feasibility
of the next questions. Unfortunately, quality assessment often goes unnoticed.

The common pipeline followed for mass cytometry data is included as the core of
the Cyto software. Among the most common steps of cytometry data preprocessing
is the systematic sampling of cells, which is discussed in Publication II; however,
to use state-of-the-art cytometry tools that need smaller datasets, Cyto includes two
strategies for cell sampling: random and density-based. After this step, CyTOF data
is transformed and normalized to prepare it for downstream analysis. The pipeline
includes comprehensive metric calculation and statistic summaries from the global
data to interpret inter-sample and inter-marker variability.

The two key steps in all cytometry analysis are dimensionality reduction by tSNE or
UMAP and unsupervised high-dimensional clustering. Methods and algorithms in
both of these areas are constantly developed. Users tend to choose methods based
on their ease of use within their favorite environment rather than by how well a

Precompute data metrics

Store data metrics, clustering and
dimensionality reduction results
into objects for the results browser

Adjust inputs and

settings for next iteration

Validates user input and prepares
environment for execution

Naming different settings allows
going back to previous results
without re-executionDownload

results

USER INTERACTION

AUTOMATIC STEPS

Figure 11: The iterative life cycle of cytometry analysis projects with Cyto. The
upper part of the cycle shows the user settings, that must be designed based on data
and research questions. The lower part of the cycle shows the automatic steps by the
analysis pipeline, this part can run unattended in a computing cluster or locally, in as
many samples as needed.
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method is targeting their kind of data and research question. In CyTOF, we lack
ground truth, so we depend mostly on prior knowledge to decide if the output is
informative and useful.

Furthermore, CyTOF analyses in the literature, when they include the source
code, it is a collection of R scripts. Here, all the CSV transformations, filterings,
and concatenations are done with Anduril components that follow a regular unit
testing strategy. Figure 11 shows the steps of the workflow and the architecture
that supports this methodology. Interactive visualization supports live analysis
during project discussions among collaborating scientists while importing and
exporting Cyto configuration files means systematic reporting and out-of-the-box
reproducibility of the results.

5.1.1 Interactive outlier detection and cell-type identification

The cytometry field is such a well established field that we take for granted the
quality of the experimental protocols. However, while measuring several replicates
helps alleviate this problem, it is also important to have control samples to use as a
baseline and to be able to assess the quality of these data.

The first iteration of Cyto on the Control samples from Van Unen et al. [101],
showed that two samples (52_CtrlAdult5_PBMC and 53_CtrlAdult6_PBMC) are
significantly distinct from the rest (Figure 12). Further inspection of the browser
shows enrichment of a myeloid population in sample 53 and a generalized low
signal in sample 52. The second iteration, including the rest of the samples, shows
a clear recapitulation of the known cell types present in peripheral blood samples.

5.1.2 Integration of clinical data to cellular composition and expression pro-
files

In this study, we used two separate iterations to answer two different questions. First,
we analyzed the general cell population abundance with random cell subsampling
(Figure 13A). Second, we used density-based downsampling to capture as many
tumor cells as possible despite the low purity of ascites samples (Figure 13B).

The first iteration results were used to interrogate the composition of the tumor
microenvironment (Figure 13C). The myeloid and CD8- T cell populations are
the largest in relation to CD8+ T cells, tumor, and stromal compartments. When
comparing solid tumor composition against ascites, we observed more tumor cells
and less myeloid cells, but no clear distinction on T cell abundance by tissue type
was observed.
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Figure 12: Simpson’s diversity index and multidimensional scaling visualization of
Peripheral blood mononuclear cell control samples highlights 52_CtrlAdult5_PBMC
and 53_CtrlAdult4_PBMC as outliers. After removing the two samples, interactive
tSNE and MST visualization recapitulates the cell subpopulations identified by the
authors of the data [101].

30



5 RESULTS

C

Tumor cells

CD8+ T cells

CD8- T cells

Myeloid cells

Stromal cells

A

Tumor cells

B

D

E F

UMAP1 UMAP1

U
M

A
P

2

U
M

A
P

2

Int
er

va
l

Pr
im

ar
y

Pr
og

re
ss

ion

Interval Primary Progression Less than 12 months Less than 12 months Less than 6 months

Figure 13: High-grade serous ovarian cancer samples with random (A) and density-
biased (B). Random sampling helps detect differences in population sizes (C), while
density-biased sampling helps isolate small populations from the rest of the cells and
use them for further analysis. Panel D shows different abundance and expression of the
tumor cell subpopulations by the sample time (D) and by the "time from sample to next
progression".

The second Cyto analysis consisted of using only the tumor cells as the input data.
In this case, we demonstrate the integration of sample annotations within Cyto. The
most interesting finding was that Simpson’s diversity index of tumor cells shows
reduced tumor-cell heterogeneity in relapse samples but not at the time right after
chemotherapy. Cyto summarizes clustering results as minimum spanning trees with
abundance and expression data across different sample annotations. Figure 13E
shows tumor cell populations grouped by time point (i.e., Primary, Interval, and
Progression), where Cluster-10 is the most dominant population in Progression
samples, that have the lowest abundance of Cluster-6. Expression analysis shows
that Cluster-6 cells have high Ki67 expression; on the other hand, Cluster-10 cells
express MUC1 and CD147 and lack Ki67 and ERK1-2 expression. When selecting
the "time from sample to next progression" annotation to group the cells, we see
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a clear enrichment of stemness marker CD24 in samples with a shorter time to
the next progression. CD24 has recently been reported as a potential biomarker of
aggressive ovarian cancer, but further validation studies are needed [121].

5.2 High-resolution analysis of fresh HGSOC ascites samples be-
fore and after platinum-based therapy

qSNE is an optimizer that improves upon the popular tSNE algorithm. It incor-
porates a new optimization function and automatic perplexity estimation. These
features translate into the option of analyzing large datasets without the need for
sub-sampling, thus not missing rare but important information in the data in addition
to highly improved performance speed. We chose ascites samples because they are
often hard to work with due to low tumor purity. Samples from different patients
have high inter-patient variation, while the same patient samples are so similar that
analyses would biased to batch or experimental artifacts. The selected samples were
acquired before and after one cycle of chemotherapy, then processed and stained
immediately after the surgery.

These data were selected as an exclusive application of qSNE’s feature of not
needing to downscale the data. Figure 14A shows the key populations that are
present in either of the two time points. To run the tSNE algorithm, we must reduce
the number of cells, which means we may miss important but rare populations of
cells.

Figure 14: tSNE visualization of cells from the same patient before (purple) and after
(orange) chemotherapy. (A) Coordinates produced by qSNE for the full size data
(173,374 cells); (B) Coordinates produced by Rtsne package for a subsample of the
data (10,000 cells).
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5.3 Tumor-immune microenvironment profiles and response to
PD1 and PARP1 inhibitors

The main contributions of this thesis to high-dimensional microscopy image
analysis are part of Publication III. Cyclic multiplexed immunofluorescence is
a modern methodology in which we can scan multiple microscopy images with
different staining markers from the same slide. After careful processing methods,
these images can be compiled into a large dataset of single-cell mean intensity
measurements (MFI) from up to 50 antibody markers. In Publication III, we
produced tCyCIF data from 26 whole tissue slides from HGSOC patients enrolled
in the Topacio clinical trial [102] Figure 15A. Each sample was stained and scanned
following the tCyCIF protocol for 12 cycles. The antibody panel covered antibodies
to detect the tumor, stromal, and seven different immune cell types, in addition
to functional markers related to DNA damage, interferon signaling, and immune
checkpoint. Each sample produced an average of 500,000 cells.

5.3.1 Automatic cell type calling characterizes potential mechanisms of response

We devised an algorithm to assign a cell type label to each cell before cell type based
analyses. The expected noise-to-signal ratio from tCyCIF data differs from that of
CyTOF or mRNA sequencing in that overlapping cells and imperfect segmentation
capture signal from neighboring cells. Using multiple channels helps determine
cell identity. Our cell-type caller uses the self-organized maps clustering method
because it is fast and can find clusters of different sizes. However, the dissimilarity
among immune cell types is less than that among global cell types. We solved this
by applying our cell type caller on different levels of the data separately. First, all
cells are classified into level 1 categories (Figure 15B): immune, stromal, and tumor
cells. The immune cells are then treated as a separate dataset to call level 2 of
immune cell types (Figure 15C): CD4 T cells, CD8 T cells, B cells, macrophages,
NK cells, neutrophils, and antigen-presenting cells. Some of these cells’ subsets
are further classified to detect level 3, which comprises macrophage types and T
cell subtypes.

Cell type abundance was not enough to confidently associate cell proportions
to therapy response on this dataset. However, we observed a larger immune
compartment in chemo-exposed samples, in agreement with a positive immune
score from the nanostring analysis described in Publication III. Chemo-exposed
samples also had significantly more antigen-presenting cells and neutrophils. While
cell type proportions were not significantly associated with the response, interferon
signaling marker pSTAT1 was upregulated in PD1 CD8 T cells from samples with
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Figure 15: (A) Topacio clinical trial samples were acquired either at diagnosis time
or after chemotherapy. Cell type composition of the tumor microenvironment in each
sample by global cell types (B) and by immune cell types (C). (D) Cell types with
significant attraction or avoidance to PD1+ CD8+ T cells as a result of permutation
testing. (E) Correlation analysis of fraction of PD-L1 positive neighbor cells around
PD1+ CD8+ T cells with therapy response and genomic mutation biomarker.
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the highest objective response to this combination treatment.

5.3.2 Spatial cellular organization associated with clinical data

Overall, cell-type expression of PD-L1 ligand did not show the striking association
one would expect in response to PD1 inhibitors. However, PD-L1 positive cells in
close physical proximity to PD1+ CD8+ T cells did show a significant correlation.
Here, we developed the hypothesis that the cell type variable is not independent of
the type of neighboring cells. We created new features in the form of the fraction of
neighbors of each level 3 cell type in the sample.

Neighborhood analysis showed that both the fraction of PD-L1 positive tumor cells
and PD-L1 positive macrophages neighboring PD1+ CD8+ T cells were higher on
the responders’ group regardless if the sample was or not chemo-exposed. The
strongest correlation observed in this analysis was that samples with mutational
signature 3, associated with DNA damage, had the highest fraction of PD-L1
positive tumor cells around PD1+ CD8+ T cells. This finding shows in human
samples the hypothesis about the synergistic mechanism between PD1 checkpoint
and PARP1 inhibitors is due to an interplay between DNA damage and interferon-
primed CD8 T cells.

5.4 High-throughput screening of compounds as pre-treatment
for resistant DLBCL

Drug sensitivity and resistance testing have been demonstrated as a pre-clinical
screening method for personalized medicine [122]. In Publication IV, we built
on this methodology by designing, through systematic testing, an assay to screen
non-simultaneous drug combinations. The need for this development stems from
the mechanism of action of epigenetic inhibitors, a promising family of drugs that
promise few side effects and a wide range of reprogramming outcomes on the cells.
By taking advantage of microplate handling robots available at high-throughput
core facilities of most institutes with personalized medicine programs. Screening
methods have the problem of keeping the cells alive long enough to observe the
effects of slow drug treatments.

Figure 16A shows the key steps of this method. In brief, cells are seeded on
precoated plates and passaged every day in situ with epigenetic inhibitor in the
culture media. In Publication IV, we showed two applications of this methodology:
tailoring the plate design first to measure single drug dose-response curves and,
second, computing dose-response combination matrices of two drugs to study
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Figure 16: (A) Non-simultaneous drug screening with in-plate passaging, the outcome
is the maximum difference between the pretreated cells with standard treatment
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compound collection sorted by compound class; successful reprogramming at 9 days
of pretreatment is marked in orange. (C) Top drug candidates are further validated
for synergistic reprogramming to ensure the observed effect is not only the result of
cytotoxic doses.

synergistic effects between the combination of epigenetic inhibitors and standard
treatment.

We computed the reprogramming score from single-drug dose-response curves
to classify them as sensitizing or not. Figure 16B shows that all cell lines were
successfully sensitized with various inhibitors. Riva-I turned out to be the most
reprogramming resistant, while Oci-Ly-3, the most rituximab- and doxorubicin-
resistant, had the most hits. Drug-drug synergy analysis was used to validate the
effects on the most promising hits (Figure 16C); entinostat and tazemetostat had the
highest synergy, particularly in Su-Dhl-4. Importantly, all the tested combinations
had either additive or synergistic effects, but no antagonistic effects were detected.
Again, Oci-Ly-3 was sensitized by multiple inhibitors, while Riva-I was only
successfully reprogrammed by the pan-HDAC inhibitor belinostat. Taken together,
this result shows that rituximab and doxorubicin resistance can be epigenetically
reverted.
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5.4.1 Epigenetic reprogramming of DNA repair mechanisms reverts doxoru-
bicin resistance

Doxorubicin cytotoxicity is caused by double-strand DNA breakage when dox-
orubicin molecules intercalate with the DNA. We hypothesized that part of the
sensitization effect observed in the reprogramming screening (Figure 16) was
due to changes in DNA repair ability. We repeated the same setting of 9 days
of epigenetic pre-treatment every 3 days. At the end of the treatment, we used
immunofluorescence microscopy to identify double-strand break repair activation
in cells affected by doxorubicin.

Figure 17 shows the quantitative result for this experiment as proportions of cells
positive for each antibody marker scanned. The cells without induced DNA damage
with doxorubicin show their own levels of endogenous DNA damage and repair
on the left. The entinostat dose was too high for Su-Dhl-4 cells, which means that
a dose-tuning step is necessary to avoid cytotoxic effects. All other cell lines and
drug pairs showed no additional DNA damage (gH2Ax) or cell death (cCasp3) than
the baseline for each cell line. All HDACi treated cells were unable to activate HR
(RAD51) as much as the untreated cells, which shows greater DNA damage and
apoptosis levels.

5.4.2 Genotyping cell lines by drug response

We used Whole Exome sequencing and RNA-seq to investigate genetic factors in
these cell lines in the context of epigenetic reprogramming in addition to the effects
on pathway regulation before and after epigenetic treatment. RNA-seq analysis
showed agreement with the image analysis on the dysregulation of DNA repair.
Hence, we used functional genomic variant prediction for pathways resulting from
RNA-seq and database annotation for previously known targets of the drugs used in
our experiment. Table 4 summarizes the findings on each of these groups.

Among epigenetic genes, EZH2 presented a missense variant in the cell line that
responded the most to the EZH2 inhibitor tazemetostat suggesting that R-CHOP
resistant patients with EZH2 mutations may benefit from tazemetostat pretreatment
to revert resistance. Genomic variants in genes from DNA repair machinery and
known drug targets may create new research that leads to potential biomarkers.
Oci-Ly-3, the most doxorubicin and rituximab resistant cell line, was successfully
sensitized but had fewer mutations in the regions analyzed. This result lead to the
hypothesis that polymorphisms in the XRCC3 gene, within DNA repair machinery,
could be a key difference between Riva-I, the most epigenetically resistant cell line.

Taken together, careful functional genomic characterization of the cell lines and
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Figure 17: Quantitative results from 4-plex immunofluorescence imaging of the
effect of synergistic combinations on the cells response to induced DNA damage via
doxorubicin. We quantified proportion of cells positive for NHEJ (represented by
53BP1 expression in blue), HR repair activation (RAD51 in yellow), apoptosis (cCasp3
in green), and DSB (gH2Ax in pink).

their response to epigenetic reprogramming highlighted genes that are commonly
mutated in clinical samples from DLBCL patients (18% of patients show MYD88,
10% CREBBP, ARID1A, TP53, and 6% EZH2) [123].
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Gene Classification Oci-Ly-19 Oci-Ly-3 Riva-I Su-Dhl-4

Drug targets
or reported
association

Doxorubicin DPYD*,
NQO1* - AKT1,

TP53

DPYD*,
FGFR4*,
NQO1*,
TP53

Rituximab DPYD* - CREBBP DPYD*

Tazemetostat - - - EZH2

Histone deacetylase in-
hibitors (HDACi) - MYD88 TP53 EZH2,

TP53

Epigenetic

Histone
acetyltransferases
(HATs)

- - CREBBP -

Histone methyltrans-
ferases (HMTs) - - - EZH2

Epigenetic regulation DPYD* - - DPYD*

Chemoresponse
associated
cell
mechanisms

Cell cycle - -
CREBBP,
STAG2,
TP53

TP53

DNA repair XRCC3* XRCC3* ERCC4*,
TP53

TP53,
XRCC3*

Transcription factors CIC BCL6 ARID1A,
CIC RCOR1

Table 4: Summary of genomic variants. Marked with an asterisk the potentially
germline variants.

5.4.3 Interactive browser of epigenetic reprogramming results

To navigate and visualize data resulting from different types of assays, we built
an interactive web application (Figure 18). The results browser is built with the R
library Shiny coupled with Plotly visualizations and Heatmaply.

The data proceeding from the reprogramming screening are shown with the raw
curves to easily explore whether the reprogramming scores were showing pointing
to actual curve differences. The synergy assay can be explored as a matrix or
a 3-dimensional visualization of the types of landscapes that each combination
produces. The analysis and preprocessing of the dose-response data was done
by developing new Anduril components. RNA-seq data can be explored as cell
line-centric visualizations with different normalization levels of the read counts.
Genomic variant results are shown with the VAF, but hovering with the mouse will
let the user see the variants detected.
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Figure 18: Integration of multi-omics data into an interactive results browser to help
during and after the project to share results between the authors and with the community.
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6 Discussion

The work throughout this thesis aimed at placing new techniques and reinforcing
existing translational steps in the fight against cancer. The first two methodologies
describe efficient and effective solutions to interpret mass cytometry data and
translate it into biologist-friendly information. The third publication results from an
international collaboration, where the novel methodologies described here served
as a bridge between the high-throughput experimental side and the doctors seeking
answers from a valuable clinical trial for modern treatments of chemotherapy-
resistant cancer. The fourth study is the culmination of a human experiment on
becoming an interdisciplinary scientist, which resulted in an innovative pre-clinical
protocol that highlighted promising findings on epigenetic reprogramming of drug
resistance.

6.1 Advances in cytometry data analysis in cancer

Recent technological advances in cytometry produce large amounts of single-cell
data to discover new insights into the tumor microenvironment, but they pose
new challenges for computational scientists [124]. Additionally, the complexity
of single cell analyses also poses challenges to reproducibility. While standard
procedures have been set in place to improve the reproducibility of the experiment,
the computational analyses still depend on single bioinformaticians modifying
scripts on each step of the analysis. Workflow paradigm, containerized applications,
and interactive visualizations have been proposed to share results and reproducible
steps [106, 98, 100].

Publications I and II provide high and low-level methodologies respectively to tackle
limitations in this field and produce new insights on the effects of chemotherapy on
HGSOC cellular composition. In Publication I, we published Cyto, an interactive
open-source Docker container that enables researchers to run large cytometry
analysis pipelines while producing the log and settings files needed to reproduce
and share their results through multiple analysis iterations. Cyto integrates state-
of-the-art tools tailored to single-cell measurements; however, it also highlighted
the limitations on the current standard practice of downsampling large datasets
due to limited computational resources. Publication II identifies such limitations
and offers a rapid optimization algorithm to compute tSNE coordinates on large
datasets.

The application of both methods contributes to the efforts of making use of ascites
samples from ovarian cancer patients [56]. Both publications demonstrate how to
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visualize tumor cell populations in ascites samples despite the low tumor purity of
this type of specimen. Our analysis showed reduced heterogeneity at the time of
relapse and stem-like populations in samples with shorter prognosis. Identifying
chemotherapy-resistant tumor cells is a critical step to be able to challenge them.

6.2 Image-based interrogation of the tumor-immune microenvi-
ronment

New treatment strategies combining PARPi and checkpoint inhibitors showed
promising synergy through interferon pathway activation [125, 126]. Publication
III reports two novel biomarkers of response to this drug combination; the presence
of mutational signature associated with DNA damage scars [127], and interferon
response in T cells as measured with nanostring pathway analysis [128]. Further
interrogation of the tumor microenvironment with highly multiplexed imaging [79]
identified spatial organization patterns linked to therapy response and mutational
signatures.

Spatial analysis of high dimensional images is a field under development [129].
While in this study, we designed a tailored analysis to evaluate cell states in function
of neighbor’s identity. This set of features opens the possibility of countless further
analysis of the tumor microenvironment’s spatial organization. Taken together, we
suggested a model for the synergistic combination of PARPi and PD1 checkpoint
blockade in HGSOC, the most aggressive subtype of ovarian cancer.

6.3 The role of epigenetic reprogramming in preclinical models

A major challenge in cancer research is to find options for relapse and refractory
cancers. Epigenetic inhibitors are a promising option to revert drug resistance in
these cases [130]. Publication IV reports a novel experimental protocol to identify
epigenetic mechanisms able to revert resistance to anti-cancer therapeutics.

We demonstrate its value by screening 60 epigenetic inhibitors to revert resis-
tance on four cell lines representing DLBCL subtypes. While all cell lines were
successfully (re)sensitized to the combination of doxorubicin and rituximab, the
reprogramming effects were different. Immunofluorescence, transcriptomics, and
genomics analyses pointed to DNA repair and cell cycle dysregulation as the main
reprogrammed mechanisms via HDACi and HMTi. Careful genomic analysis of the
cell lines in association with the response to epigenetic reprogramming highlighted
mutations commonly detected in DLBCL patients [113]. This opens new leads for
validation of potentially predictive biomarkers of epigenetic reprogramming.
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Future applications of this method could, however, overcome explicit limitations
on this study. The main limitation is an imbalanced number of drugs for each
epigenetic inhibitor class due to availability when making the collection, including
new drugs, which may shed light on HDM and HAT compounds. Additionally,
while rituximab has multiple mechanisms of action, our study with cell lines cannot
measure the impact of the tumor microenvironment. Recent and future advances
in in vitro models may enable measuring reprogramming effects on rituximab’s
tumor immunity effects [131, 59]. These limitations notwithstanding, this is the first
high-throughput method to test non-simultaneous drug combinations and promising
area for treatment development.

6.4 Conclusion and future directions

Cancer can be considered a battle inside our body [5]. Rogue cells lose control,
stop performing their function, and hinder the ability of the rest of the cells to
keep the whole system alive. The cancer cells replicate and evolve fast. It is
very diverse that, although they have commonalities, we now know that cancer
is not one disease and we will need multiple strategies to cure them all. In
the same manner that interactions between cells and their collective behaviors
shape the battlefield, collaborative efforts between multiple disciplines are needed
to identify weaknesses within the highly complex system that makes the tumor
microenvironment. The space between the bench and the bedside contains hectic
movement of new technologies, data, hypotheses, clinical trials, and policy makers
too [132]. This thesis proposes methodologies both, in silico and in vitro, to aid
traffic control in this space by solving roadblocks and building bridges.

In summary, this work presents two computational cytometry solutions to support
iterative analysis of clinical samples, even in cases where tumor purity would
be a challenge. These solutions identify stem-like cell abundance as a potential
culprit of drug resistance in HGSOC. Future Cyto analysis of many matched pre-,
on-, and post-chemotherapy laparoscopy samples paired with an antibody panel
representing current knowledge of drug resistance mechanisms, would be necessary
to identify actionable cell populations that remain active after chemotherapy.
Additionally, ascites samples are readily available and, biomarkers stemming
from mass cytometry analysis can be easily transferred to flow cytometry, hence
applicable to clinical settings.

Cytometry analysis is further expanded with the application to highly multiplexed
microscopy images. Genomic and immune profiling highlight potential biomarkers
of response in clinical trials, and spatial analysis decipher the cellular organization
associated with response to the combination of PARP and PD1 inhibitors. Future
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analysis of cell signaling associated with immune evasion and cell adhesion
pathways can shed light on druggable targets to disrupt communication between
malignant cells. The fourth study shows a novel pre-clinical protocol to screen
for epigenetically reprogrammable mechanisms of drug resistance. Interestingly,
homologous recombination repair, modulated in the third study through PARP
inhibitors in ovarian cancer, is indirectly regulated via epigenetic reprogramming
in lymphoma cells. Our screening approach takes advantage of the plasticity
of the epigenome to treat with non-cytotoxic drug doses. Future screening of
non-simultaneous drug combinations applied to recent organoid models would be
necessary to link epigenetic reprogramming to cellular interactions.

The road towards eradicating cancer is paved with small incremental steps as well
as surprising turns. We propose valuable steps to characterize the actors on the
battlefield and their weaknesses. I wish to conclude this thesis by seeding the idea
that sharing specialized knowledge from one discipline and making it usable for
other disciplines will be the backbone of this decade’s translational research.
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