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Highlights 

● Intra-specific competition becomes stronger under prolonged drought. 

● Combined competition and drought greatly decline nitrogen uptake. 

● Strong competition significantly lowers leaf δ13C and ABA under prolonged 

drought. 

● Combined competition and prolonged drought are highly harmful to growth. 

 

Abstract 

Plant-plant competition is a dynamic and complicated process that is strongly 

influenced by abiotic conditions. Drought is a critical threat to forests, particularly to 

young plantation forests. Temporal changes in competition combined with the effects 

of drought may dramatically influence the physiological traits of plants. 

Cunninghamia lanceolata plants exposed to intra-specific competition and 

no-competition conditions were investigated under two soil water levels 

(well-watered and drought). Changes in plant-plant competition relationships and 

nitrogen uptake rates were measured at different harvest times. The effects of drought 

and plant competition on physiological traits, for example, leaf nitrogen allocation, 

δ13C, and levels of abscisic acid (ABA), indole acetic acid (IAA) and jasmonic acid 

(JA), were also explored. Our results indicated that C. lanceolata shifted from intense 

neighbor competition to facilitation under well-watered conditions, whereas under 

drought neighbor competition became much stronger at the second harvest compared 

to the first harvest. Strong competition significantly decreased N uptake under 
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drought. Leaf NH4
+, NO3

- and N allocation to water-soluble proteins increased under 

drought at the first harvest, but significantly declined under prolonged drought. Leaf, 

stem and root starch concentrations were enhanced by drought. However, during 

prolonged drought, the root starch concentrations, leaf δ13C, leaf ABA and starch 

content of C. lanceolata were much lower under strong neighbor competition than in 

no-competition conditions, which demonstrated that the combined effects of drought 

and strong competition were more harmful to plant growth and survival compared to 

single effects. Our study demonstrated that drought combined with competition 

strongly affected the N uptake, N allocation and physiological traits of plants. Intense 

competition imposed by neighbors is a great threat to the growth and survival of 

young C. lanceolata plantations under prolonged drought. 

 

Keywords: forest plantation; nitrogen allocation; nitrogen uptake; prolonged drought 
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1. Introduction 

 

When the climate changes, forests experience more serious droughts at a higher 

frequency, which causes increased mortality and declined productivity, as observed 

during recent decades (Assal et al., 2016; Gessler et al., 2016). Competition is another 

crucial factor that limits plant growth and affects species’ distribution patterns and 

adaptations (Baudis et al., 2014; Guo et al., 2018). A wealth of studies has focused on 

interactions between competition and drought. Many of them have suggested that 

competition among plants becomes weaker or even shifts to facilitation when soil 

water reduces (e.g. He et al., 2013; Baudis et al., 2014; Verwijmeren et al., 2019); on 

the contrary, many studies have reported an opposite pattern (e.g. Tielbörger and 

Kadmon, 2000; Hommel et al., 2016; Zhang et al., 2017). One possible reason for 

such contrasting results is that species’ traits change along environmental stress 

gradients (He et al., 2016). Another likely reason is that plant-plant competition 

patterns change in the course of time (Biswas and Wagner, 2014; Ploughe et al., 

2019). 

 

Distinct competitive traits for capturing resources depend on the neighbor’s identity 

and environmental conditions (Guo et al., 2016; Xia et al., 2020). Biomass allocation, 

nutrient uptake and storage are traits that are strongly impacted by drought and 

competition (Chen et al., 2014; Hommel et al., 2016; Walker et al., 2017; Han et al., 
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2019). In Chinese fir (Cunninghamia lanceolata), root traits, such as the total root 

length and root depth, are impacted by neighbors (Xia et al., 2019), implying variation 

in resource capture, e.g. soil nitrogen (Broadbent et al., 2018; Guo et al., 2018). 

Superior competitors are always more effective at nitrogen uptake when compared to 

their neighbors (Trinder et al., 2012; Walker et al., 2016). Both drought and 

competition promote plants to invest more energy in root growth and development to 

enhance access to limited soil water (Chen et al., 2014; Han et al., 2019) or to 

compete for soil nitrogen with their neighbors (Broadbent et al., 2018). However, 

nitrogen uptake and biomass accumulation rates are a dynamic process and vary 

during different growth stages, which leads to changes in plant-plant competition 

(Trinder et al., 2012). 

 

Plant-plant competition affects plants’ responses and resistance to environmental 

stresses (Andersen et al., 2000; He et al., 2016). Andersen et al. (2000) have reported 

that when grown in competition with grasses, soluble sugar concentrations of Pinus 

ponderosa significantly reduce and it becomes more susceptible to ozone. Soluble 

sugars, which are the main component of non-structural carbohydrates (NSC: the sum 

of soluble sugars and starch), play a crucial role in cell functioning, for example, in 

the maintenance of cell turgor or in membrane protection by an enhanced proline 

accumulation (Hüve et al., 2012; Hartmann and Trumbore, 2016). Plants adapt to 

water deficit by altering functions, such as osmotic adjustment, and increased soil 

water uptake and use efficiency (Flexas et al., 2016; Han et al., 2019). Plant-plant 
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competition is a dynamic process across time (Trinder et al., 2012; Zhang et al., 2017). 

Plants suffering from strong competition may be more sensitive to drought (Lu et al., 

2019), and their physiological responses, such as water use efficiency and hormone 

levels, may be influenced by changes in competition. 

 

C. lanceolata is a widely planted fast-growing evergreen conifer species that provides 

timber and important ecological functions (Dong et al., 2019). During recent decades, 

drought has become frequent within its distribution region (Yang et al., 2012). In the 

present study, we firstly focused on changes in the intra-specific competition of C. 

lanceolata under drought. According to the stress gradient hypothesis, the intensity of 

plant-plant competition will become weaker or shift to facilitation under stress 

(Bertness and Callaway, 1994). Based on that, we hypothesized that intra-specific 

competition would be weaker under water deficit and much weaker or even shifting to 

facilitation during prolonged drought. Secondly, we investigated the effects of 

different competition intensities on N uptake, and N use efficiency, allocation and 

storage. Finally, we explored physiological responses to the combined drought and 

competition conditions, aiming to find out whether plants under competition are more 

affected by drought. 
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2. Material and methods 

 

2.1. Experimental design 

 

One-year-old C. lanceolata seedlings were obtained from the Huitong Experimental 

Station of Forest Ecology, Chinese Academy of Sciences (26°40′-27°09′ N, 109°26′ 

-110°08′ E; 300-1000 m) and then transplanted into a greenhouse located in the 

Hangzhou Normal University in Zhejiang (30°19′ N, 120°23′ E), as detailed by Xia et 

al. (2019). Seedlings were planted in plastic cylindrical pots with a height and external 

diameter of 33 cm and 56 cm (about 35 kg soil), respectively. The chemical properties 

of the homogenized soil were as follows: soil organic matter 4 g kg-1, total N 1.5 g 

kg-1 and pH 7.1 (the ratio of soil to CaCl2 solution was 1:2.5). 

 

We selected seedlings of C. lanceolata with a similar height and conducted 

competition experiments by planting two seedlings in each pot (a total of 20 pots). 

One seedling in a pot represented no-competition conditions (a total of 20 pots). All 

seedlings were planted in late December 2017. By the middle of May 2018, the 

surviving and well growing C. lanceolata plants included 18 pots representing 

competition and 20 pots being without competition. To monitor the dynamics of the 

soil water content, we selected 6 pots from those 38 pots and divided them into two 

groups, those exposed to well-watered or drought conditions. We collected soil with a 
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soil sampler (diameter 0.5 mm) every four to five days and weighed the soil samples. 

All of them were dried at 75 ºC for 48 h, then weighed again and finally returned to 

original pots. These six pots were only used to monitor soil water conditions and not 

harvested. Finally, the remaining 16 pots representing competition and 16 pots being 

without competition were used to monitor plant growth in four different conditions: 

no competition under well-watered condition (WS), competition under well-watered 

condition (WC), no competition under drought (DS) and competition under drought 

(DC). The soil water levels were either 80% of field capacity (soil water ~28.48%) or 

30% of field capacity (soil water 10.68%) to represent well-watered or drought 

conditions, respectively. The 30% field capacity treatment represented more extensive 

drought than the conditions in Dong et al. (2016) with 35% field capacity used in a 

study on C. lanceolata. The treatments began in the middle of May 2018. The 

information on soil water dynamics is displayed in Supplementary Fig. S1. 

 

2.2. Harvesting and measurements 

 

Before planting in late December 2017, 10 additional even-sized seedlings of C. 

lanceolata were randomly selected and separated into leaves, stems and roots. 

Samples were dried at 75 ºC for 72 h and weighed. Then, the samples were ground 

into power to measure nitrogen concentrations. After water treatments, we conducted 

two harvests (four replicates of every treatment at each harvest), in the middle of 

September and in the middle of December 2018. All samples were separated into 
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leaves, stems and roots, and dried at 75 ºC for 72 h and weighed. Fresh leaves and 

roots were preserved at -80 ºC until measurements. The relative growth rate was 

calculated based on biomass accumulation: relative growth rate at the first harvest = 

(ln (biomass1) - ln (biomass0)) / (t1 - t0); relative growth rate at the second harvest = 

(ln (biomass2) - ln (biomass1)) / (t2 - t1). Biomass0, biomass1 and biomass2 represented 

C. lanceolata biomasses before transplantation, and at the first and second harvest, 

respectively. 

 

The relative interaction index (RII) indicates changes in growth performance when 

grown with and without neighbors (Armas et al., 2004): RII = (BiomassC - BiomassS)/ 

(BiomassC + BiomassS), where BiomassC is the performance of a target plant with its 

neighbor, and BiomassS is the performance of a single plant without a neighbor. RII 

ranges from 1 (maximum facilitation) to -1 (maximum competition). 

 

Dried materials were ground to fine powder to measure nitrogen, non-structural 

carbohydrates (soluble sugars and starch), δ13C and δ15N. Then, 100 mg fine power 

was digested by H2SO4-H2O2 and measured by the semi-micro Kjeldahl method (Luo 

et al., 2015), and 50 mg fine powder was extracted in 80% (v/v) ethanol at 80 ºC for 

30 min and centrifuged at 7000 g for 5 min. The supernatant was used to determine 

soluble sugars at 625 nm (LabTech, UV2100, USA) according to Yemm and Willis 

(1954). The residues were hydrolyzed with 9.2 M HClO4 and then used to measure 

starch after centrifugation at 5000 g according to Guo et al. (2016). Leaf δ13C and 
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δ15N were determined by measuring 13C/12C and 15N/14N, respectively, by using an 

isotope ratio mass spectrometer (DELTA V Advantage, Thermo Fisher Scientific, Inc., 

USA). The Pee Dee Belemnite (PDB) standard and N2 were used as standards to 

calculate δ13C and δ15N, respectively. Four replicates of each treatment were included 

in these measurements. 

 

Fresh materials were ground into fine powder in liquid nitrogen before measurements. 

However, the amount of fine roots (diameter < 2 mm) at the first harvest was 

sufficient only for the measurements mentioned above. Therefore, root traits like 

NH4
+, NO3

-, peroxidase (POD) activity and proline were measured only at the second 

harvest. The measurements of leaf chlorophyll pigments were conducted according to 

Guo et al. (2018). The leaf and fine root NH4
+ concentrations were measured based on 

the Berthelot reaction (Bräutigam et al., 2007) with minor modifications (Luo et al., 

2015). Briefly, 100 mg fine power was extracted in a solution with 1 ml 100 mM HCl 

and 500 µl chloroform and shaken for 15 min at 4 ºC. Then, the aqueous proportion 

was transferred to a new tube, and 100 µl extraction solution was added into 500 µl 1% 

(v/v) phenol-0.005% (w/v) sodium nitroprusside solution followed by addition of 500 

µl 1% (v/v) sodium hypochlorite-0.5% (w/v) sodium hydroxide solution. Finally, the 

mixture was incubated at 37 ºC for 30 min and measured at 620 nm (LabTech, 

UV2100, USA). Another 100 mg fine powder was extracted in 1 ml deionized water 

at 45 ºC to measure NO3
- concentrations. Briefly, after adding 0.8 ml 5% (w/v) 

salicylic acid (SA) in concentrated H2SO4 to 0.2 ml of supernatant, the mixture was 
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incubated at room temperature for 20 min, followed by the addition of 19 ml of 2 M 

NaOH to adjust pH > 12 and measurements at 410 nm (Luo et al., 2015). 

 

Leaf nitrogen allocation to detergent-insoluble proteins (Nin-SDS), detergent-soluble 

proteins (NS), water-soluble proteins (NW) and other N was determined based on the 

methods of Takashima et al. (2004) and Liu et al. (2018). Other N concentration here 

represents non-protein N (Nnp), which mainly contains inorganic N and small 

molecules, such as amino acids. 

Nnp = total N - Nin-SDS- NW - NS. 

In brief, 0.5 mg leaf powder was homogenized with 100 mM of Na phosphate buffer 

(pH 7.5, containing 0.4 M d-sorbitol, 2 mM MgCl2, 10 mM NaCl, 5 mM iodoacetate, 

5 mM phenylmethylsulphonyl fluoride, and 5 mM DTT). After centrifugation at 

10000 g for 15 min at 4 ºC, the supernatant (NW) was separated. The rest was mixed 

with 1 ml phosphate buffer, including 3% SDS, and heated in 90 ºC water for 5 min. 

The supernatant (NS) collection was repeated three times. The residue (Nin-SDS) was 

washed with ethanol into a quantitative filter paper. To denature the proteins, 20% 

trichloroacetic acid was added to the supernatant mixture, followed by filtering with a 

quantitative filter paper. Finally, the quantitative filter papers were dried and digested 

with H2SO4-H2O2 and N concentrations were measured by the semi-micro Kjeldahl 

method. 

 

The nitrogen uptake rate was calculated as described in Walker et al. (2017):  
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nitrogen uptake rate at the first harvest = (Δ total N pool/t)*((ln(root mass1) - ln(root 

mass0))/ Δ root mass); nitrogen uptake rate at the second harvest = (Δ total N 

pool/t)*((ln(root mass2) - ln(root mass1))/ Δ root mass). Nitrogen use efficiency was 

calculated as the dry weight of the target plant divided by the total N uptake of the 

plant (Li et al., 2012). 

 

The peroxidase (POD) activities were measured according to the method of Bi et al. 

(2020). For proline measurements (Han et al., 2019), 200 mg fine powder was 

extracted by 3% (w/v) aqueous sulfosalicylic acid solution. 1 ml supernatant was 

mixed with 2 ml acid ninhydrin and boiled for 60 minutes, and proline concentrations 

were determined at 520 nm using L-proline as a standard after adding 2.5 ml toluene. 

 

Leaf hormones, including abscisic acid (ABA), indole acetic acid (IAA) and jasmonic 

acid (JA), were determined by the UPLC-ESI-MS/MS method using the ACQUITY 

UPLC H-Class system (Waters, USA). Briefly, 200 mg leaf powder was mixed with 

1.5 ml extraction solution (methanol : water : formic acid = 7.9 : 2: 0.1) in a 5-ml tube. 

After 30-min ultrasound on ice, the samples were kept at 4 ºC for 12 h. The 

supernatant was collected after centrifugation at 4 ºC, 12000 rpm for 20 min. Samples 

were let to flow through a MAX SPE column (Waters, USA) followed by drip 

washing with 0.1 M ammonium hydroxide -60% (v/v) methanol solution and elution 

with 1.25 M formic acid -70% (v/v) methanol solution. The mobile phase consisted of 

0.1% (v/v) formic acid (mobile phase A) and acetonitrile (mobile phase B) at a flow 
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rate of 0.4 ml/min. The total run time was 3 min per sample and the injection volume 

was 1 μl. The standards of determined hormones were purchased from Sigma. 

 

2.3. Statistical analyses 

 

Normality and homogeneity of variances of all data were checked and 

log-transformed when needed before analyses. Nitrogen uptake was analyzed with the 

Kruskal Wallis test, because it failed to meet these conditions. The effects of drought, 

competition and harvest time as well as their interactions were determined by 

three-way analyses of variance (ANOVA) followed by Tukey’s tests as post hoc tests 

when a significant difference was found. For some measurements performed only at 

the second harvest, two-way analyses of variance (ANOVA) were applied to 

determine the effects of competition, drought and their interactions. The software 

Statistical Package for Social Science (SPSS) version 20.0 was used for data analyses. 
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3. Results 

 

3.1. Growth characteristic and competition intensity 

 

At the first harvest, the leaf biomass of C. lanceolata declined under drought, while at 

the second harvest, drought strongly decreased its stem and total biomass and growth 

rate (Table 1, Supplementary Fig. S2). The interactive effect between competition and 

drought significantly affected the root biomass and root/shoot ratio (R/S). Specifically, 

at the second harvest, the root biomass and R/S of well-watered C. lanceolata 

exposed to intra-specific competition were significantly higher than in no-competition 

conditions, whereas the tendency was reverse under drought (Table 1). The relative 

interaction index (RII) also displayed these clear changes in competition: the strong 

intraspecific competition of C. lanceolata shifted to facilitation under well-watered 

conditions, while competition was very strong under drought at the second harvest 

(Fig. 1). 

 

3.2. Nitrogen allocation and uptake rate 

 

The leaf N concentration significantly decreased by competition (Fig. 2a), while the 

root N concentrations remained relative stable under competition and drought (Fig. 

2b). The NH4
+ concentration of leaves was lower under competition than without 
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competition under drought at the first harvest, while no significant differences among 

treatments were detected at the second harvest (Fig. 3a). Drought significantly 

enhanced the NO3
- concentration of leaves at the first harvest (Fig. 3b). The NH4

+ and 

NO3
- concentrations of roots were not impacted by drought and competition (Fig. 3c, 

d). Nin-SDS and NS concentrations were higher at the second harvest in all experiments 

(Fig. 4a, b). NW was affected by drought, competition and their interactions (Fig. 4c). 

The NW concentration of leaves was lower under competition than in no-competition 

conditions at the first harvest, but the situation became reversed at the second harvest 

(Fig. 4c). Similarly as the N concentration of leaves, Nnp significantly decreased under 

competition (Fig. 4d). 

 

Nitrogen uptake showed little variation among treatments at the first harvest. 

However, at the second harvest, N uptake was much higher in well-watered 

conditions than under drought, particularly when comparing WC and DC (Fig. 5a). 

The N use efficiency tended to be higher under competition than without competition 

(Fig. 5b). Drought significantly decreased δ15N of leaves at the first harvest but 

increased it at the second harvest (Fig. 5c). 

 

3.3. Physiological responses to drought and competition 

 

The concentrations of leaf chlorophyll a and b were significantly lower in DS than in 

DC at the first harvest, while the total chlorophyll concentration in WC was 
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significantly higher than that in WS at the second harvest (Supplementary Table S1). 

The proline concentration of leaves in WC was significantly lower than that in WS at 

the first harvest, while it was much higher in DC than in DS at the second harvest (Fig. 

6a). POD of leaves showed little variation among treatments at the second harvest 

(Fig. 6b). The proline concentration of roots was lowest in WS at the second harvest 

(Fig. 6c). However, POD of roots significantly increased under drought and was 

significantly higher under competition regardless of the water availability (WC vs WS 

and DC vs DS) (Fig. 6d). 

 

Drought, competition and their interactions significantly impacted the starch 

concentration of leaves and roots (Table 2). Drought significantly increased the starch 

concentration of stems and roots at each harvest time. The root starch concentration in 

DS was higher than that in DC under drought at the second harvest. Competition 

significantly increased δ13C, and δ13C in DS was significantly higher than that in DC 

at the second harvest (Fig. 7). 

 

The ABA concentration of leaves was significantly affected by competition and the 

interaction between competition and drought (Fig. 8a). ABA in DS was significantly 

higher than that in DC at the second harvest. IAA of leaves was affected by drought 

and its interaction with competition. The IAA concentration was much higher in WS 

than in WC at the second harvest (Fig. 8b). The JA concentration of leaves stayed 

stable in different treatments (Fig. 8c). 
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3.4. Carbon and nitrogen storage 

 

The amounts of nitrogen, starch and soluble sugars exhibited little variation at the first 

harvest, but they significantly declined under drought at the second harvest (Fig. 9). 

The amounts of starch and soluble sugars greatly increased during the experiments 

regardless of water availability. Nitrogen levels showed no significant differences 

under drought. Starch levels were significantly higher in DS than in DC at the second 

harvest (Fig. 9b). 
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4. Discussion 

 

4.1. Temporal changes in plant-plant competition and N uptake 

 

Competitive traits of plants, for example, carbon assimilation and allocation, and 

nitrogen uptake and storage, vary across time (Trinder et al., 2012; Craine and 

Dybzinski, 2013; He et al., 2013; Guo et al., 2017, 2018). A higher competition 

intensity (indicated by more negative RII) under well-watered conditions, and a lower 

competition intensity (less negative RII) under water deficit conditions detected in C. 

lanceolata at the first harvest supported the stress gradient hypothesis of plant-plant 

interactions (Bertness and Callaway, 1994). However, at the second harvest, the 

plant-plant interactions shifted from intense competition to facilitation under 

well-watered conditions, while competition became stronger under water deficit 

conditions (Fig. 1). The total chlorophyll concentration became higher when plants 

were in lesser competition (Supplementary Table S1) indicating temporal changes in 

carbon assimilation affected by plant-plant competition (Guo et al., 2018). Therefore, 

our results failed to support the hypothesis that the intensity of intra-specific 

competition would be weaker under water deficit, possibly even shifting to facilitation 

under prolonged drought. Trinder et al. (2012) have argued that studies based on 

one-time harvest could not fully explain how and to what extent competition affects 

biomass. Instead, we should combine information on biomass accumulation and 
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nutrient uptake across time. Our results also proved that competition relationships and 

N uptake of C. lanceolata changed across time under different soil water conditions 

(Fig. 1, 5). A greater root size likely enhances N uptake and competitive superiority 

belowground (Broadbent et al., 2018). Under prolonged drought, root biomass and 

R/S were greater in WC than in DC (Table 1), implying greater changes in N uptake 

under drought and competition. 

 

Several studies have showed that a plant’s lower N concentration or N uptake is 

caused by water deficit or competition (Walker et al., 2017; Guiz et al., 2018). In our 

study, C. lanceolata exposed to strong competition showed a lower N uptake rate (Fig. 

5a). Previously, Miller et al. (2007) have found that plants under strong competition 

showed a 50% decrease in N uptake compared to plants without competition. Leaf 

δ15N is associated with the presence and type of mycorrhizal associations (Stackpoole 

et al., 2008; Barthelemy et al., 2017). Higher δ15N contributes to the presence of 

ectomycorrhizae and arbuscular mycorrhizae, but lower δ15N associates with ericoid 

mycorrhizae (Craine et al., 2009; Barthelemy et al., 2017). Guo et al. (2019) have 

found that a decreasing competition intensity of Larix kaempferi is closely related to 

soil bacterial and fungal communities. For example, the fungal composition shifted 

from the Basidiomycota dominance to Ascomycota dominance, which is suggested to 

affect nitrogen absorption (Leroy et al., 2017). The δ15N value was much lower at the 

first harvest but tended to be higher at the second harvest under drought (Fig. 5c), 

which implied that a decreasing N uptake caused by drought may be partly related to 
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changes in soil microbial communities and consequent effects on plant-plant 

competition relationships. 

 

4.2. Effects of competition and drought on N allocation 

 

Leaves are more sensitive to drought and competition compared to 

non-photosynthetic organs, but root modifications strongly impact the physiological 

processes of leaves during periods of drought (Hommel et al., 2016; Puértolas et al., 

2017). A lower leaf carbon/nitrogen content caused by drought (McDowell et al., 2011) 

or competition (Guiz et al., 2018) implies changes in plants’ physiological and 

metabolic processes (Chen et al., 2014; Sardans et al., 2015). We found that N, NH4
+ 

and NO3
- concentrations of leaves are more sensitive to drought and competition than 

those of roots (Fig. 2, 3). A higher leaf NH4
+ concentration and R/S in DS indicated 

that those plants enhanced water absorption more than plants in DC at the first harvest 

(Table 1, Fig. 3a). However, as N uptake was strongly limited under prolonged 

drought, the dramatic decline in leaf NH4
+ and NO3

- possibly indicated translocation 

to the cell wall (Nin-SDS) and cell membrane (Ns) or allocation to produce related 

drought-resistant compounds like proline (Fig. 4, 6). The results illustrated that when 

N uptake greatly declines, C. lanceolata has to enhance N use efficiency and allocate 

limited internal N resources to maintain functions and to resist prolonged drought (Fig. 

5c, 7). 
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Leaf N contains four fractions: water-soluble proteins, SDS-soluble proteins, 

SDS-insoluble proteins and other N (Takashima et al., 2004; Liu et al., 2018). 

Nitrogen allocated into SDS-insoluble proteins (Nin-SDS), which represent cell wall 

proteins (Takashima et al., 2004), showed little effects caused by drought and 

competition. However, the allocation of nitrogen into SDS-soluble proteins (Ns), 

which contain soluble enzymes in stroma and cytosol and membrane-associated 

proteins (Evans and Seemann, 1989), was much more sensitive to the interactions of 

drought and competition. Drought damages cell membrane systems, which is visible 

in the cellular ultrastructure (Chen et al., 2014; Han et al., 2019). The lowest Ns of DC 

at the second harvest implied that prolonged drought combined with competition may 

further destroy membranes. Nitrogen participating in water-soluble proteins (Nw) 

(about one-half is represented by RuBPCase, Takashima et al., 2004) was greatly 

affected by drought and competition (Fig. 4c).  

 

Drought increases soluble proteins in leaves, which together with proline and 

antioxidants (POD) function as osmoprotectants contributing to the cellular osmotic 

adjustment, stabilization of enzymes and protection of membrane integrity (Ahmad et 

al., 2019). At the first harvest, C. lanceolata exposed to weaker competition under 

drought (DC) had higher Nw than plants exposed to stronger competition under 

well-watered conditions (WC). This result implied that C. lanceolata may have an 

increased soluble protein content in response to drought (Ahmad et al., 2019). 

However, at the second harvest, Nw was higher in WC than in DC when competition 
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was stronger. The soluble proteins, which are an important internal N source, may be 

decomposed and then allocated to SDS-soluble proteins (Fig. 4b) or to proline (Fig. 

6a), since the N uptake was severely inhibited by interactions between drought and 

competition under prolonged drought (Liu et al., 2018). 

 

4.3. Combined effect of drought and competition 

 

Plants adapt to water deficit by increasing soil water uptake and water use efficiency 

(Puértolas et al., 2017; Han et al., 2019). Competition combined with drought causes 

different physiological responses in photosynthetic traits, leaf water potential and 

long-term water use efficiency (δ13C), as shown by Chen et al. (2014). We found that 

C. lanceolata enhances its water use efficiency under drought regardless of 

competition and harvest time, as indicated by higher leaf δ13C in those conditions (Fig. 

7). However, the leaf δ13C of C. lanceolata exposed to competition was much lower 

than that in plants kept in isolation under prolonged drought. In addition, leaf ABA 

was lower under competition than in isolation at the second harvest (Fig. 8a). A higher 

ABA level has been shown to promote drought resistance (Puértolas et al., 2017; Song 

et al., 2019). The primary functions of NSC are to provide building components and 

energy storage during different growth stages. Many studies have demonstrated that 

plants with higher NSC show a better ability to resist drought (Niinemets, 2010; Dong 

et al., 2016; Hesse et al., 2019). As a crucial energy storage, starch plays an important 

role in buffering environmental changes under long-term drought periods by releasing 
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soluble sugars when photosynthesis is limited (MacNeill et al., 2017). To survive 

better under drought, plants accumulate more starch (Hesse et al., 2019). We 

discovered that drought greatly promoted starch accumulation in C. lanceolata stems 

and roots, particularly at the second harvest (Table 2). The amount of starch in C. 

lanceolata roots in DC was significantly lower than that in DS (Table 2, Fig. 9b). 

Therefore, the combined drought and competition effects impact more seriously the 

physiological processes of C. lanceolata under prolonged drought. 
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5. Conclusions 

 

Our study demonstrated a temporal change in the competition relationships of C. 

lanceolata under different soil water conditions. At the early growth stage of C. 

lanceolata, when having neighbors, light availability had a minor effect, while 

competition for underground resources was evidently the major force influencing 

plants’ performance. Intense competition imposed by neighbors was a great threat to 

the growth and survival of young C. lanceolata plants under prolonged drought, 

because they were seriously damaged by the combined effects of drought and 

competition. 
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Table 1 Effects of competition on biomass and biomass allocation of C. lanceolata under well-watered and drought conditions (mean ± S.E., n = 

4). The first and second harvest were in September and December, respectively. 

Harvest time Treatment Leaf (g) Stem (g) Root (g) Total (g) R/S 

First harvest WS 9.35 ± 0.81b 5.37 ± 0.36b 3.29 ± 0.32c 18.00 ± 1.46b 0.22 ± 0.01d 

 WC 9.21 ± 0.57ab 5.06 ± 0.38b 3.96 ± 0.45c 18.23 ± 1.20b 0.28 ± 0.02d 

 DS 6.58 ± 0.38d 3.79 ± 0.22b 3.81 ± 0.24c 14.19 ± 0.67b 0.37 ± 0.01c 

 DC 6.65 ± 0.42d 4.36 ± 0.22b 3.18 ± 0.16c 14.19 ± 0.50b 0.29 ± 0.02d 

Second harvest WS 17.10 ± 0.52a 13.44 ± 0.75a 7.88 ± 0.26b 38.42 ± 0.53a 0.26 ± 0.01d 

 WC 15.25 ±0.29a 13.66 ± 0.89a 12.98 ± 0.57a 41.88 ± 1.53a 0.45 ± 0.01ab 

 DS 7.53 ± 0.61abc 5.25 ± 0.35b 6.24 ± 0.47b 19.03 ± 0.87b 0.49 ± 0.03a 

 DC 6.75 ± 0.39bc 4.58 ± 0.29b 4.48 ± 0.10c 15.81 ± 0.52b 0.40 ± 0.01bc 

P value D <0.001 <0.001 <0.001 <0.001 <0.001 

 C 0.088 0.893 0.004 0.876 0.106 

 T <0.001 <0.001 <0.001 <0.001 <0.001 

 D×C 0.412 0.989 <0.001 0.033 <0.001 

 D×T <0.001 <0.001 <0.001 <0.001 0.689 

 C×T 0.105 0.622 0.005 0.996 0.012 

 D×C×T 0.576 0.230 <0.001 0.046 0.003 

Different letters denote significant differences among treatments according to Tukey’s HSD test at a significance level of P < 0.05. P values of 

three-way ANOVAs indicate the significance of drought (D), competition (C), harvest time (T) and their interaction effects on biomass and 

biomass allocation. WS and WC represent C. lanceolata grown in isolation and competition under well-watered conditions, respectively. DS and 

DC represent C. lanceolata grown in isolation and competition under drought, respectively. 
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Table 2 Effects of competition on non-structural carbohydrate concentrations (starch and soluble sugars) of C. lanceolata under well-watered 

and drought conditions (mean ± S.E., n = 4). The first and second harvest were in September and December, respectively. 

Harvest time Treatment Starch concentration Soluble sugar concentration 

Leaf Stem Root Leaf Stem Root 

First harvest WS 4.94 ± 0.93e 7.70 ± 1.11c 4.48 ± 1.08e 58.04 ± 7.23c 40.39 ± 2.41b 26.82 ± 1.86b 

 WC 5.86 ± 0.38de 7.88 ± 0.28c 7.04 ± 1.31de 68.86 ± 0.12c 46.71 ± 1.80b 32.53 ± 1.60b 

 DS 8.54 ± 0.75cd 12.52 ± 1.17c 15.41 ± 1.67d 73.69 ± 4.98bc 38.59 ± 4.97b 26.61 ± 3.30b 

 DC 4.48 ± 0.58e 13.78 ± 1.22c 9.90 ± 1.10de 73.95 ± 8.11bc 49.27 ± 6.04b 34.06 ± 1.03b 

Second harvest WS 11.11 ± 0.11abc 25.59 ± 1.93b 60.36 ± 1.68b 108.72 ± 7.49a 75.96 ± 4.79a 70.85 ± 5.53a 

 WC 9.94 ± 0.75bc 24.31 ± 1.09b 47.27 ± 2.43c 110.74 ± 5.40a 83.30 ± 8.39a 57.98 ± 3.42a 

 DS 14.00 ± 0.83a 32.85 ± 1.37a 90.66 ± 3.90a 100.85 ± 5.74ab 94.75 ± 4.16a 63.12 ± 3.97a 

 DC 12.38 ± 0.50ab 34.80 ± 2.03a 63.90 ± 2.36b 115.32 ± 3.51a 96.17 ± 5.91a 63.26 ± 3.42a 

P value D 0.001 <0.001 <0.001 0.308 0.047 0.899 

 C 0.005 0.590 <0.001 0.113 0.108 0.961 

 T <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 D×C 0.009 0.277 0.001 0.910 0.920 0.105 

 D×T 0.117 0.082 <0.001 0.164 0.057 0.669 

 C×T 0.855 0.841 <0.001 0.749 0.597 0.007 

 D×C×T 0.026 0.583 0.343 0.183 0.511 0.210 

Different letters denote significant differences among treatments according to Tukey’s HSD test at a significance level of P < 0.05. P values of 

three-way ANOVAs indicate the significance of drought (D), competition (C), harvest time (T) and their corresponding interaction effects. WS 

and WC represent C. lanceolata grown in isolation and competition under well-watered conditions, respectively. DS and DC represent C. 

lanceolata grown in isolation and competition under drought, respectively.
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Figure legends 

 

Figure 1 Relative interaction index (RII) of C. lanceolata under well-watered and 

drought conditions. The white bars indicate first harvest in September, while the black 

bars indicate second harvest in December. WC: competition under well-watered 

conditions; DC: competition under drought. Different letters indicate significant 

differences among treatments according to Tukey’s HSD test at a significance level of 

P < 0.05. 

 

Figure 2 Leaf and root nitrogen concentrations of C. lanceolata under well-watered 

and drought conditions. The white bars indicate first harvest in September, while the 

black bars indicate second harvest in December. WS: no competition under 

well-watered conditions; WC: competition under well-watered conditions; DS: no 

competition under drought; DC: competition under drought. Significant or marginally 

significant P values show drought, competition, harvest time and their interaction 

effects, as analyzed by three-way analysis of variance (ANOVA). D: drought effect; C: 

competition effect; D×T: drought and harvest time interaction effect. Different letters 

indicate significant differences among treatments according to Tukey’s HSD test at a 

significance level of P < 0.05. 

 

Figure 3 Leaf and root NH4
+ and NO3

- concentrations of C. lanceolata under 

well-watered and drought conditions. The white bars indicate first harvest in 
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September, while the black bars indicate second harvest in December. WS: no 

competition under well-watered conditions; WC: competition under well-watered 

conditions; DS: no competition under drought; DC: competition under drought. 

Significant or marginally significant P values show drought, competition, harvest time 

and their interaction effects, as analyzed by three-way analysis of variance (ANOVA). 

D: drought effect; C: competition effect; T: harvest time effect; D×C: drought and 

competition interaction effect; C×T: competition and harvest time interaction effect; 

D×T: drought and harvest time interaction effect; D×C×T: drought, competition and 

harvest time interaction effect. Different letters indicate significant differences among 

treatments according to Tukey’s HSD test at a significance level of P < 0.05. Note that 

root NH4
+ and NO3

- concentration measurements were conducted only at second 

harvest, as described in material and methods, and were analyzed by two-way analysis 

of variance (ANOVA). 

 

Figure 4 Leaf nitrogen allocation of C. lanceolata under well-watered and drought 

conditions. The white bars indicate first harvest in September, while the black bars 

indicate second harvest in December. Nin-SDS: leaf nitrogen allocation to 

detergent-insoluble proteins, NS: leaf nitrogen allocation to detergent-soluble proteins, 

NW: leaf nitrogen allocation to water-soluble proteins; Nnp: leaf nitrogen allocation to 

others. WS: no competition under well-watered conditions; WC: competition under 

well-watered conditions; DS: no competition under drought; DC: competition under 

drought. Significant or marginally significant P values show drought, competition, 
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harvest time and their interaction effects, as analyzed by three-way analysis of 

variance (ANOVA). D: drought effect; C: competition effect; T: harvest time effect; 

D×C: drought and competition interaction effect; C×T: competition and harvest time 

interaction effect; D×T: drought and harvest time interaction effect; D×C×T: drought, 

competition and harvest time interaction effect. Different letters indicate significant 

differences among treatments according to Tukey’s HSD test at a significance level of 

P < 0.05. 

 

Figure 5 Nitrogen uptake, use efficiency and δ15N of C. lanceolata under 

well-watered and drought conditions. The white bars indicate first harvest in 

September, while the black bars indicate second harvest in December. WS: no 

competition under well-watered conditions; WC: competition under well-watered 

conditions; DS: no competition under drought; DC: competition under drought. 

Significant or marginally significant P values show drought, competition, harvest time 

and their interaction effects, as analyzed by three-way analysis of variance (ANOVA). 

D: drought effect; C: competition effect; T: harvest time effect; D×T: drought and 

harvest time effect. Different letters indicate significant differences among treatments 

according to Tukey’s HSD test at a significance level of P < 0.05. Nitrogen uptake 

was analyzed using Kruskal Wallis test, as described in material and methods. 

 

Figure 6 Proline concentrations and POD activities of C. lanceolata under 

well-watered and drought conditions. The white bars indicate first harvest in 
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September, while the black bars indicate second harvest in December. WS: no 

competition under well-watered conditions; WC: competition under well-watered 

conditions; DS: no competition under drought; DC: competition under drought. 

Significant or marginally significant P values show drought, competition, harvest time 

and their interaction effects, as analyzed by three-way analysis of variance (ANOVA). 

D: drought effect; C: competition effect; T: harvest time effect; D×C: drought and 

competition interaction effect; C×T: competition and harvest time interaction effect; 

D×T: drought and harvest time interaction effect; D×C×T: drought, competition and 

harvest time interaction effect. Different letters indicate significant differences among 

treatments according to Tukey’s HSD test at a significance level of P < 0.05. Note that 

root proline concentration and POD activity measurements were conducted only at 

second harvest, as described in material and methods, and were analyzed by two-way 

analysis of variance (ANOVA). 

 

Figure 7 Leaf δ13C of C. lanceolata under well-watered and drought conditions. The 

white bars indicate first harvest in September, while the black bars indicate second 

harvest in December. WS: no competition under well-watered conditions; WC: 

competition under well-watered conditions; DS: no competition under drought; DC: 

competition under drought. Significant or marginally significant P values show 

drought, competition, harvest time and their interaction effects, as analyzed by 

three-way analysis of variance (ANOVA). D: drought effect; C: competition effect; T: 

harvest time effect; D×C: drought and competition interaction effect; D×C×T: drought, 
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competition and harvest time interaction effect. Different letters indicate significant 

differences among treatments according to Tukey’s HSD test at a significance level of 

P < 0.05. 

 

Figure 8 Abscisic acid (ABA), indole acetic acid (IAA) and jasmonic acid (JA) levels 

in the leaves of C. lanceolata under well-watered and drought conditions at second 

harvest. WS: no competition under well-watered conditions; WC: competition under 

well-watered conditions; DS: no competition under drought; DC: competition under 

drought. Significant or marginally significant P values show drought, competition and 

their interaction effects, as analyzed by two-way analysis of variance (ANOVA). D: 

drought effect; C: competition effect; D×C: drought and competition effect; Different 

letters indicate significant differences among treatments according to Tukey’s HSD 

test at a significance level of P < 0.05. 

 

Figure 9 Nitrogen, starch and soluble sugar amounts of C. lanceolata under 

well-watered and drought conditions. The white bars indicate first harvest in 

September, while the black bars indicate second harvest in December. WS: no 

competition under well-watered conditions; WC: competition under well-watered 

conditions; DS: no competition under drought; DC: competition under drought. 

Significant or marginally significant P values show drought, competition, harvest time 

and their interaction effects, as analyzed by three-way analysis of variance (ANOVA). 

D: drought effect; C: competition effect; T: harvest time effect; D×C: drought and 
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competition interaction effect; D×C×T: drought, competition and harvest time 

interaction effect. Different letters indicate significant differences among treatments 

according to Tukey’s HSD test at a significance level of P < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



44 
 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



52 
 

Figure 9 
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