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ABSTRACT 51 

 52 

Urbanisation and industrialisation led to the increase of ambient particulate matter 53 
(PM) concentration. While subsequent regulations may have resulted in the decrease of 54 
some PM matrices, the simultaneous changes in climate affecting local meteorological 55 
conditions could also have played a role. To gain an insight into this complex matter, this 56 
study investigated the long-term trends of two important matrices, the particle mass (PM2.5) 57 
and particle number concentrations (PNC), and the factors that influenced the trends. Mann-58 
Kendall test, Sen’s slope estimator, the generalised additive model, seasonal decomposition 59 
of time series by LOESS (locally estimated scatterplot smoothing) and the Buishand range 60 
test were applied. Both PM2.5 and PNC showed significant negative monotonic trends (0.03– 61 
0.6 µg.m-3.yr-1 and 0.40–3.8 x 103 particles.cm-3.yr-1, respectively) except Brisbane 62 
(+0.1 µg.m-3.yr-1 and +53 particles.cm-3.yr-1, respectively). For the period covered in this 63 
study, temperature increased (0.03–0.07 °C.yr-1) in all cities except London; precipitation 64 
decreased (0.02–1.4 mm.yr-1) except in Helsinki; and wind speed was reduced in Brisbane 65 
and Rochester but increased in Helsinki, London and Augsburg. At the change-points, 66 
temperature increase in cold cities influenced PNC while shifts in precipitation and wind 67 
speed affected PM2.5. Based on the LOESS trend, extreme events such as dust storms and 68 
wildfires resulting from changing climates caused a positive step-change in concentrations, 69 
particularly for PM2.5. In contrast, among the mitigation measures, controlling sulphur in fuels 70 
caused a negative step-change, especially for PNC. Policies regarding traffic and fleet 71 
management (e.g. low emission zones) that were implemented only in certain areas or in a 72 
progressive uptake (e.g. Euro emission standards), resulted to gradual reductions in 73 
concentrations. Therefore, as this study has clearly shown that PM2.5 and PNC were 74 
influenced differently by the impacts of the changing climate and by the mitigation measures, 75 
both metrics must be considered in urban air quality management. 76 

 77 
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 80 
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Introduction 100 

Air quality has changed throughout history, but particularly over the past few 101 

decades. Elevated concentrations of air pollutants due to industrialisation and urbanisation, 102 

in particular, have become a global problem because of their impacts on human health and 103 

the environment. To address this problem, local and national authorities in an increasing 104 

number of countries have been introducing policies and strategies to mitigate anthropogenic 105 

emissions and improve air quality. As a result, improvements in air quality have been 106 

observed, for example, in the United States (USEPA, 2019), the European Union (EEA, 107 

2018) and China (Fontes et al., 2017). Conversely, where policies and strategies are not 108 

implemented, air quality continues to worsen due to the emissions from an increasing 109 

number of local and regional sources, in particular the transportation sector and fossil fuels 110 

for energy generation (Al-Taani et al., 2019; Pant et al., 2019). 111 

 112 

Airborne particulate matter (PM) is one of the most relevant pollutants to human 113 

health, with both short- and long-term exposure linked to increased morbidity and mortality 114 

(Atkinson et al., 2010; Tobías et al., 2018). To add to the complexity, the impacts of PM on 115 

health are related to the particle size: smaller particles, such as those emitted by combustion 116 

sources, have a lower deposition velocity and therefore stay suspended longer in the air 117 

(Rose et al., 2012; Schmale et al., 2011); and they also deposit deeper in the respiratory 118 

tract causing a range of local and systemic health effects (Fang et al., 2017; Fireman et al., 119 

2017). With the growing understanding of the negative impacts of PM, standards for particle 120 

mass concentration have been introduced in many countries worldwide and compliance 121 

monitoring of PM2.5 and PM10 has been conducted (mass concentration of particles with an  122 

aerodynamic diameter < 2.5 µm and < 10 µm, respectively). However, there are no 123 

standards, and therefore little monitoring is conducted, for ultrafine particles (UFPs, size 124 

<100 nm); although with traffic being a major pollution source in cities around the world, this 125 

size fraction of PM may be more significant in terms of health impacts than larger particles of 126 

higher mass in urban air (Kumar et al., 2014; Rönkkö et al., 2017). UFPs are measured in 127 

terms of particle number concentration (PNC), rather than mass.  128 

 129 

An important factor that affects particles of different sizes somewhat differently is 130 

meteorology. A changing climate, which in turn affects local and global meteorological 131 

parameters, can also have an impact on particle characteristics, irrespective of the impact of 132 

changes in the sources. For example, stronger winds will, in general, result in higher 133 

resuspension of larger particles, but faster dispersal and thus dilution of smaller particles 134 

(Teinilä et al., 2019). On the other hand, colder ambient temperatures with high relative 135 
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humidity (RH) can increase PNC by favouring nucleation, especially during winter (Jeong et 136 

al., 2006; Rönkkö et al., 2006), but higher temperatures with low RH (below 60%) enhance 137 

H2SO4 levels in the air, promoting new particle formation (An et al., 2015; Birmili & 138 

Wiedensohler, 2000; Hamed et al., 2011). 139 

 140 

Smaller and larger particles in the air typically originate from different sources and, 141 

therefore, require different mitigation strategies. Conversely, mitigation strategies have 142 

different impacts on particles of different sizes; therefore, the concentration trends could 143 

differ between PM2.5 and PNC as evidenced by the experience in Eastern Germany after the 144 

German reunification in 1990 (Kreyling et al., 2003; Pitz et al., 2001). A comprehensive 145 

review of the measurement metrics, source apportionment, health effects and legislations on 146 

PM by Heal et al. (2012) revealed that controlling PM2.5 and PM10 resolves only a part of the 147 

problem, and does not necessarily address the problem of UFPs. Therefore, our study of the 148 

long-term trends of both PM2.5 and PNC further illustrates that monitoring and characterising 149 

air quality in terms of PM mass concentrations only, without conducting any monitoring of 150 

PNC, might be insufficient given that the sources and drivers for PM2.5 and PNC differ, as 151 

well as their impacts relating to human health. 152 

 153 

Long-term studies of PM2.5 and PNC have shown that the impacts of emission control 154 

strategies and policies can be either a steady decrease or a step change. For example, the 155 

consistent decrease of PM2.5 in Seoul, South Korea, in the period from 2004 to 2013 can be 156 

partially explained by the implementation of several emission reduction strategies such as 157 

the use of natural gas as a bus fuel and the installation of emission control retrofits (Ahmed 158 

et al., 2015). However, an abrupt reduction in PNC was observed when London, England, 159 

introduced sulphur-free diesel fuel and a traffic pollution charge scheme for heavy goods 160 

vehicles in 2007 (Jones et al., 2012). Trend analysis for PM metrics is commonly done by 161 

using simple linear regression such as the Theil-Sen method to obtain the slope that 162 

quantifies gradual changes. However, this cannot capture significant patterns in time series 163 

data as effectively as curve fitting by applying smoothing functions. Moreover, doing a time 164 

series decomposition prior to analysis to separate trend, seasonality, and noise components 165 

are more precise when specific attribution is desired.  166 

     167 

Considering the need to understand the effectiveness of mitigation measures on 168 

controlling particles in the air, but with the backdrop of other changes occurring, in particular 169 

climatic changes that will affect meteorological parameters, the aims of this work were to: (1) 170 

determine the long-term trends of PM2.5 and PNC in cities using time series analysis; (2) 171 

evaluate the impact of changes in climate (based on key meteorological factors, after 172 
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removing seasonality) on the observed trends of PM2.5 and PNC; and (3) investigate whether 173 

the observed changes in PM2.5 and PNC can be attributed to modifications in the operation 174 

of anthropogenic sources. Analysis of long-term trends in concentration changes using both 175 

PM2.5 and PNC can provide an understanding of the magnitude of changes and of the factors 176 

that influenced their ambient concentrations; in particular, the efficiency of human 177 

interventions (e.g. changes in technology or fuels and the impact of new regulations). This 178 

information can provide a more complete picture for policy makers and state leaders to 179 

design a more effective and efficient regulatory approach. 180 

 181 

 182 

Material and methods 183 

The criteria for inclusion of data in this study were: (1) measurements of PM2.5, PNC 184 

and the selected meteorological parameters (mean air temperature, total precipitation and 185 

mean wind speed) performed for at least 10 years; (2) PM2.5, PNC and the selected 186 

meteorological parameters to be collected concurrently and from the same location or in 187 

proximity; and (3) measurements to be recorded at monthly resolution or higher. Data 188 

acquisition was done through convenience by connecting with colleagues on our 189 

collaborative network based on our knowledge of data availability. Five cities that fulfilled the 190 

above criteria for PM2.5, PNC, and the meteorological parameters are listed in Table 1 191 

together with the sources and mitigation measures. A brief description of the cities and 192 

stations is given in the supplementary material including station type and instruments used 193 

(Table S1). Urban background (UB) measuring stations for PM concentrations were 194 

preferred over roadside (RS) stations to represent the ambient condition of the whole city 195 

area, which has several other sources, rather than be biased to traffic as the source.   196 

 197 

 198 
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Table 1. Climate classification, identified PM sources and relevant legislations on emission control in the study areas 

City  
1Climate 

2Sources 3Regulations 

Augsburg, Germany 
(Cfb, Marine West Coast) 

Local traffic, biomass burning (for 
heating), secondary aerosol (Gu et al., 
2011; Schäfer et al., 2016) 

2005 – Limit values for air pollutants and the first air pollution control plan 
2008 – Federal Emission Control Act 
2009 – Low emission zone 
2010 – Average Exposure Indicator 

Brisbane, Australia 
(Cfa, Humid Subtropical) 

Local traffic, secondary aerosol, biomass 
burning (controlled and forest fires), sea 
salt (Cheung et al., 2011; Friend & 
Ayoko, 2009; Friend et al., 2012) 

1998 – AAQ NEPM (Ambient Air Quality National Environment Protection Measure) 
2001 – Renewable Energy Target 
2002 – Fuel Quality Standards Act 
2003 – PM2.5 standard included in the AAQ NEPM; Ultra-low sulphur diesel (ULSD) in bus 
2010 – Congestion Reduction Unit 
2014 – Emission Reduction Fund 
2015 – PM2.5 become part of the reporting standards 

Helsinki, Finland  
(Dfb, Humid Continental) 

Local traffic, secondary aerosol, biomass 
burning (for heating and regional), long-
range transport (Carbone et al., 2014; 
Kupiainen et al., 2016; Pirjola et al., 
2017; Saarikoski et al., 2008; Timonen 
et al., 2013) 

2005 - “Sulphur-free” (max 10 mg.kg-1 fuel) diesel and petrol 
2008 – City of Helsinki Air Quality Action Plan 2008-2016  
2010 – Low emission zone for city buses and garbage trucks ; Low-sulphur (max 1%) marine 

fuels in the Baltic Sea (IMO) 
2015 – Very low-sulphur (max 0.1%) marine fuels in the Baltic Sea (IMO) 

London, United Kingdom 
(Cfb, Marine West Coast) 

Local traffic, secondary aerosol, crustal, 
sea salt, urban/regional background  
(Beddows et al., 2015; Charron et al., 
2007; Crilley et al., 2017) 

2003 – Congestion Charging Scheme 
2007 – “Sulphur-free” diesel and petrol; Low-sulphur marine fuels in the North Sea and English 

Channel (IMO); UK Air Quality Strategy 
2008 – Low Emissions Zone 
2010 – London Air Quality Strategy 
2011 – Progressive uptake of Euro 5 passenger cars 

Rochester,  
United States of America  
(Dfb, Humid Continental) 

Local traffic, secondary aerosol, crustal, 
biomass burning (for heating and 
wildfires), sea salt (Squizzato et al., 
2018a, 2018b) 

2003 – Regulation to reduce SO2 and NOx emissions from electricity generation 
2004 – Increase renewable energy sources’ contribution to electricity generation from 19% to 

25% by 2013 
2006 – Gasoline sulphur standard (30 ppm refinery average and 80 ppm per gallon cap) 
2007 – Heavy-Duty Highway Rule – on-road diesel fuels with ultra-low sulphur (< 15ppm) 
2010 – Non-road diesel fuel sulphur standard (< 15 ppm)  
2012 – Locomotive and marine diesel fuel sulphur standard (< 15 ppm) from large refiners 
2014 – Locomotive and marine diesel fuel sulphur standard (< 15 ppm) from small refiners 

1Köppen climate classification – a system to classify climate based on the annual and monthly averages of temperature and precipitation 
2Several terminologies are used by different authors to refer to traffic as a source, but for consistency in this paper, local traffic may mean only vehicle exhaust or may include 
resuspended road dust and other non-exhaust emissions; secondary aerosol as secondary ammonium sulphate and secondary ammonium nitrate from new particle formation; 
and long-range transport from airport, harbour and industrial emissions as well as regional sources. 
3EU directives on emission standards and the introduction date, applied to all European cities – for light duty vehicles: Euro 2 (January 1996), Euro 3 (January 2000), Euro 4 
(January 2005), Euro 5 (September 2009) and Euro 6 (September 2014); for heavy duty vehicles: Euro II (October 1996), Euro III (October 2000), Euro IV (October 2005), 
Euro V (October 2008) and Euro VI (January 2013); industrial emission (January 2011)
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Concentration trends – time series analysis 

 Monthly mean concentrations of both PM2.5 and PNC were used for the analysis for 

all cities. Meteorological parameters considered were monthly mean temperature (°C), 

monthly total precipitation (mm) and monthly mean wind speed (m.s-1), all of which 

significantly affect PM concentrations (Barmpadimos et al., 2012) and contribute to the 

process of dilution, removal and recirculation of pollutants. If obtained data were of higher 

resolution (e.g. hourly or daily), to compute for the monthly mean, at least 50% of the daily 

concentrations must be available. Monthly time resolution was preferred over hourly or daily 

to account for the seasonality of the data. Time series analysis by fitting LOESS (locally 

estimated scatterplot smoothing) and GAM (generalised additive model) were applied to 

determine trends in PM2.5 and PNC as well as the effects of the above-mentioned 

meteorological parameters on the concentration. Time series analysis techniques are used 

to determine correlation structure, understand the underlying cyclic content as to how the 

data evolve in time, and develop models that can forecast future trends (Woodward, 2012). 

This method has long been applied to air quality data, but usually in relation to epidemiology 

(Gouveia & Fletcher, 2000; Sagiv et al., 2005; Schwartz & Marcus, 1990). All data analysis 

and visualisation were done in R statistical software (RStudio Team, 2016). 

 

General trends of PM concentration 

The Mann-Kendall test for trend detection and the Sen’s slope test for the magnitude 

of the trend were used to analyse the data. In particular, the correlated seasonal Mann-

Kendall test, a non-parametric test that takes into account the seasonality of the data and is 

preferred when data are correlated, was applied using the csmk.test function of the trend 

package (Pohlert, 2018). The Mann-Kendall test measures the degree to which a trend is 

monotonic (a gradual change over time that is consistent in direction), thus, a p-value < 0.05 

is strong statistical evidence that a monotonic trend exists. However, even if the trend was 

not monotonic, quantifying the rate of change is still important. Thus, the seasonal Sen’s 

slope test using the sea.sens.slope function from the same package, which also considers 

the seasonality of the data, was applied. The Sen’s slope is the median of a set of calculated 

linear slopes. Both csmk.test and sea.sens.slope functions in the R software are currently 

not capable of handling missing data; hence, the tsclean function (which identifies and 

replaces outliers and missing values in a time series) of the forecast package (Hyndman et 

al., 2018) was used to interpolate missing values in the data set. 

 

Trends may occur in two ways: a monotonic trend or a step trend (an abrupt shift at a 

specific point in time). Thus, determining the linear rate of change (slope) may not 
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completely capture the trend and is only appropriate if the change is gradual. In a time 

series, the underlying trend may not be apparent by simply plotting the data, because a 

particular repetitive pattern may emerge. Further, aside from the trend component, a time 

series may contain the seasonality component. Thus, in this study, the stl (seasonal 

decomposition of time series by LOESS) function from the stats package (R Core Team, 

2018) that differentiates the time series data into seasonal, trend and irregular components 

was applied to obtain the long-term trend of the PM2.5, PNC and meteorological parameters. 

LOESS, also known as local polynomial regression, is a non-parametric method for fitting a 

curve with more relaxed linearity assumptions compared with conventional regression. 

Weighted least squares is used to fit a smooth curve through points in a scatter plot, giving 

more weight to points near the point whose response is being estimated. The tsclean 

function was also applied prior to stl. The use of tsclean can potentially make the slope 

flatter in long periods of missing data, but precisely because of this, no inference can be 

made during this particular period. 

 

To visualise the concentration changes in PM2.5 and PNC over time as well as the 

evolution of the meteorology, the trend component was overlaid in the time series data for 

comparison. Then, to determine if the trend component after the LOESS decomposition had 

adequately captured the information in the PM2.5 and PNC data, the mean absolute 

percentage error (MAPE) was computed using the Measures of Accuracy function of the 

DescTools package (Signorell et al., 2019). MAPE is a measure of error, thus high values 

suggest a bad fit, and subtracting this statistical measure from 100 gives the percentage 

accuracy of the model. MAPE is commonly used to evaluate the performance of obtained 

regression models, and is applied to air quality analysis (Cheng et al., 2014; Liu et al., 2015). 

Further, if the trend line has a good fit, the residuals (i.e. the difference between the 

observed and the predicted values): (1) are uncorrelated, (2) have constant variance, (3) are 

normally distributed, and (4) have zero mean. Thus, the checkresiduals function, also from 

the forecast package, was used to evaluate the residuals of the seasonally adjusted trend 

line. 

 

Relationship between meteorology and PM concentration 

Because seasonality was eliminated before establishing the trend, it was vital to 

determine how PM concentrations would have responded to changes in meteorological 

conditions. A GAM was fitted to the monthly PM2.5 and PNC data with monthly mean 

temperature, total precipitation, and mean wind speed as additive predictors together with 

time. GAM is the combination of the additive model and the generalised linear model that 

uses non-parametric functions obtained from a scatterplot smoother, and then sums up 
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these smooth functions instead of the linear combination of the effects of the individual 

predictors. The gam function from the gam package (Hastie, 2018) was applied using the 

LOESS smooth term in the GAM formula. To support the results of the correlation and 

significance between PM2.5 and the meteorological parameters, and then PNC and the 

meteorological parameters, cross-correlation was done using the ccf function of the tseries 

package (Trapletti, 2005). Cross-correlation is used to determine whether one time series is 

affected by the other given a number of lags. 

 

Impacts of changing climates 

The long-term weather pattern in a particular area defines its climate, and climate 

categories are based on average temperature and precipitation then the existing climate 

system in the area dictates the prevailing winds (the heat from the sun creates the 

circulation). Climate variability, on the other hand, is defined by the short-term changes in 

climate patterns caused by factors such as the El Niño Southern Oscillation (ENSO). Thus, 

to analyse effects of the changing climate on PM2.5 and PNC, the trend line of the 

meteorological parameters produced by the stl decomposition was analysed by applying the 

Buishand range test for change-point detection using the br.test function of the trend 

package. The Buishand range test is a non-parametric homogeneity test with a null 

hypothesis that there is no change-point and the p-value is estimated with a Monte Carlo 

simulation (20,000 replicates). The change-point detection analysis was done to assess 

where significant change had occurred in the time series, therefore identifying if the relevant 

meteorological parameters had changed over time (Jaiswal et al., 2015). If a significant 

change-point was detected, it was examined if such a meteorological change coincided with 

a change in PM concentrations to evaluate the impact of climate or the long-term trends in 

meteorology.  

 

Effects of mitigation 

 To investigate the impact of the modifications in anthropogenic activities and PM 

sources on the PM2.5 and PNC, which can either be a gradual decrease or an abrupt 

change, the Buishand range test was also used. Subgroups of the data were made to 

identify more change points. Initial analysis covered the whole period (PT) of the time series 

per city, and then the data were broken up into shorter periods, namely P1 (covering the time 

series up to 2006), P2 (covering the time series from 2007 to 2011) and P3 (covering the time 

series from 2012 to 2016). The year 2006 was selected as the base year because the PM 

concentration guidelines by the World Health Organisation (WHO) were released in 2006, 

followed by a five-year interval. The detected change-points were then studied if change 
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corresponded to a particular implemented regulatory control measure and variation in 

contributing sources. 

 

Results and discussion 

The amount of missing data in each city for the period covered in this study varied 

from 0–7.5% for PM2.5, 7–11.0% for PNC except for the 30% in London-RS, 0–6.6% for 

temperature, 0–7.9% for precipitation except for the 45.5% in Augsburg, and 0–6.6% for 

wind speed. The PNC data for Brisbane, on the other hand, were only from 1998 to 2000 

and 2011 to 2015. Despite this limitation in available data, we could still use them to derive 

important information about long-term variations in PM concentration and meteorological 

parameters that could signify the impact of changes. 

 

Concentration trends 

General trends in PM concentration 

The Mann-Kendall test detected that at a level of significance of 0.05, the PM2.5 in all 

cities except London had a monotonic trend, and all had a negative slope except Brisbane 

(+0.1 µg.m-3.yr-1). The magnitude of reduction was greatest in Augsburg (-0.6 µg.m-3.yr-1), 

while Helsinki (-0.2 µg.m-3.yr-1) had the lowest of those that are significant (p < 0.05). London 

(-0.03 µg.m-3.yr-1) had the smallest magnitude of reduction, but no monotonic trend existed. 

The PNC had a significant negative monotonic trend for all cities except in Brisbane 

(+53 particles.cm-3.yr-1), which was positive and not monotonic. The greatest concentration 

reduction was in London-RS (-3.8 x 103 particles.cm-3.yr-1) and the lowest was in Rochester 

(-4.0 x 102 particles.cm-3.yr-1). Results are presented in Table S2.  

 



11 
 

 
Figure 1. Fitted trend of the monthly PM2.5 (µg.m-3) and PNC (particles.cm-3) using LOESS 
(red line) with the change-points detected by the Buishand range test (blue line). 
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The increasing trend observed in Brisbane for PM2.5 may be attributed to 

industrialisation as the location of the station is zoned for industrial land use. Increases in 

vehicle numbers over time and the changing conditions being more favourable to particle 

formation have contributed to PNC, discussed in the subsequent section. In the case of 

London, Font and Fuller (2016) has reported the effectiveness of exhaust emission 

abatement policies therefore reducing PNC especially at the roadside, while PM2.5 is 

influenced more by regional transport, hence improvement is limited. The small decline in 

PNC for Rochester is a combination effect of the increased traffic while simultaneously 

implementing emission reduction strategies (Masiol et al., 2018) since the station is in 

proximity to major roads with ~230,000 vehicles.d-1. Despite population increases and 

economic growth, a decreasing trend in PM concentrations due to pollution control has been 

observed in most cities around the world (Cusack et al., 2012; Lurmann et al., 2015). 

 

Further analysis showed that the two metrics behaved differently over time (i.e. 

significant changes in concentrations occurred at different times and at varying magnitudes) 

and that the reduction in concentration was more evident in PNC than in PM2.5. Figure 1 

presents the generated trend line from the seasonally-adjusted data set. More discussion 

about LOESS and the stl function is given in the supplementary material. Visual observation 

showed that PM2.5 decreased to some extent in some cities, but this was not as evident as in 

the PNC for all cities. It can also be observed that the years in which the reduction in 

concentration occurred do not coincide for PM2.5 and PNC. The difference in trend was 

further confirmed by the Buishand range test that detected several change-points, but none 

for PM2.5 and PNC occurred at the same time. These change-points will be discussed 

subsequently in the sections on change in climate conditions and effects of mitigation. 

Factors responsible for the variation are discussed below. 

 

Relationship between meteorology and PM concentration 

Figure 2 shows how the ambient temperature, amount of precipitation and prevailing 

wind speed differed among the investigated cities. Helsinki is the coldest among the cities 

under investigation, while Rochester has the most varied monthly mean temperature. 

Brisbane is the warmest and has the narrowest temperature range among the cities; 

however, the amount of precipitation is very varied. Rochester has the highest monthly mean 

total precipitation, while Augsburg has the lowest monthly mean total precipitation and the 

weakest wind.  
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Figure 2. Boxplot with the mean (black dot), median, interquartile range (IQR), 5 th percentile, 
and 95th percentile of the monthly mean temperature (°C), total precipitation (mm) and mean 
wind speed (m.s-1) in the investigated cities. 
 

 

Meteorology is one major factor in concentration variation at shorter time scales, with 

the diurnal and seasonal cycle most often pre-determining the occurrence of peak 

concentrations. The main effect of temperature, precipitation and wind speed as a predictor 

of PM2.5 and PNC is indicated by the fitted GAMs (Figures S3 and S4). An autoregressive 

integrated moving average (ARIMA) model was also utilised to determine the effects of the 

meteorological parameters to the PM concentrations and results are, further discussion 

given in the supplementary material. PM2.5 and PNC are mostly negatively correlated with 

the meteorological factors tested, except for the temperature and PNC of Brisbane; when the 

predictors increase, the function (LOESS) of the predictors decreases, hence decreasing the 

response variables (PM2.5 and PNC). The correlation of temperature with PM2.5 and PNC in 

Helsinki and Rochester are similar; for both metrics at temperatures below zero, the curve 

has a steeper downward slope, becomes more stable at higher temperature, and then at 

about 15 °C, the correlation becomes positive for PM2.5 but not for PNC. The precipitation in 

Augsburg and London has a similar effect; the observed decrease in PM2.5 and PNC (i.e. 

more evident for PM2.5) is more pronounced when total precipitation is below 40 mm, and 

then becomes more stable. On the contrary, the PNC at London-RS, develops a positive 

correlation with increasing precipitation. Increasing wind speed has more effect in reducing 

PM2.5 than PNC in cities except in the case of Brisbane, which showed the opposite 

influence of wind speed for PM2.5 and PNC.  

 

A negative correlation between particle concentrations (PM2.5 and PNC) and the 

meteorological parameters (ambient temperature, amount of precipitation, and prevailing 

wind speed) suggests that reduced temperature promotes particle formation, high 

precipitation causes a washout effect, and weak wind speed concentrates particles and 

precursors due to stagnation (Zhang et al., 2016). However, statistically based on the GAMs 
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(Figures S3 and S4), precipitation and wind speed are significant to PM2.5 while PNC is more 

affected by temperature. The dilution effect of increasing wind speed that affects particles 

>30 nm in size (Charron & Harrison, 2003) provides further support for the significance of 

wind speed to PM2.5 rather than PNC, since larger particles have more significant mass. 

Thus, the impact of regional and long-range transported pollutants is important to PM2.5 

concentrations rather than to PNC, which is always dominated by smaller particles (and 

originate mainly from local combustion sources, particularly traffic), especially in urban 

areas. Similarly, the cleansing effectiveness of precipitation is greater to particles with size > 

1 µm (Nicolás et al., 2009). Low temperature can result in the cooling of air masses causing 

stagnation, thus increasing pollution concentration (Hussein et al., 2006) and then 

enhancing nucleation due to the presence of high levels of precursors (Ripamonti et al., 

2013); this increases PNC with less impact on PM2.5 due to the lower mass of the formed 

particles. These results further demonstrate that the factors affecting the two metrics are 

different as those reported by De Hartog et al. (2005) that particle mass and number “are 

two separate indicators of airborne particulate matter” and by de Jesus et al. (2019) that they 

are not representative of each other.  

 

The conditions in Brisbane, where wind speed and temperature were not statistically 

significant to PM2.5 and PNC, respectively, but were positively correlated, can be attributed to 

its humid subtropical climate, with mean temperatures of above 20 °C and lower wind speed. 

The positive correlation of PM2.5 with wind speed happens when the incoming air mass 

contains more air pollutants and the increased rate of nucleation and particle growth during 

relatively windy and warm days increases PNC. Long-range transport from distant sources 

(e.g. Brisbane airport and Port of Brisbane) has been observed in Brisbane (Rahman et al., 

2017); aged particles contribute to PM2.5 while additional precursors during a high insolation 

day favour particle formation elevating PNC (Shi et al., 2001). Thus, the prevailing winds 

must be carrying clean air masses for the dilution effect of winds to occur. Further, the 

positive correlation between PNC and precipitation at London-RS can be associated with the 

prevailing south-westerly winds during heavy rains. The station is located on the southern 

side of the road and. due to the vortex in the canyon, PNC concentrations are enhanced 

when winds have a southerly component (Harrison et al., 2019). The effect of precipitation 

on PM2.5 and PNC as reported by Ikeuchi et al. (2015)  and Zhang et al. (2016), respectively, 

is more on the influence of precipitation pattern (i.e. precipitation duration and precipitation 

occurrence) rather than the precipitation intensity. This could explain the observation in 

Rochester that despite the high monthly total precipitation, it had no significant effect on any 

of the two metrics. 
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Impacts of changing climates 

As observed from the fitted LOESS (Figure 3), the monthly mean temperature 

(±2 °C) was more stable compared with total precipitation (±50 mm except for Augsburg with 

only ±5 mm and the extreme rainfall in Brisbane at the end of 2010) and mean wind speed 

(±1 m.s-1), which were more varied over time. The results of the Mann-Kendall test confirmed 

that the meteorological parameters had no monotonic trend except for the wind speed of 

Augsburg, Brisbane and Rochester (Table S3). Additionally, the magnitude of change from 

the Sen’s slope ranged from 0–0.07 °C.yr-1 for temperature (positive for all cities), 0.02–1.43 

mm.yr-1 for precipitation (Helsinki is the only positive) and 0.01–0.03 m.s-1.yr-1 for wind speed 

(negative for both Brisbane and Rochester). Further, the Buishand range test detected 

change-points in the ambient temperature, precipitation and wind speed for the duration 

considered in this study (dates of shift shown in Table S8) and the trends agreed with the 

obtained Sen’s slopes. Based on the fitted LOESS (Figure 3), except for London (~ -1 °C), 

there was a slight increase in the mean monthly temperature for the cities after the change-

point. The trend for precipitation was in contrast with ambient temperature; the amount of 

rainfall decreased in all cities after the change-point except for Helsinki (~ +10 mm). For 

wind speed, the shift was varied; a minute increase for Augsburg, Helsinki and London but a 

slight decrease in Brisbane and Rochester.  

 

The change-points in the meteorological parameters (Tables S8), did not match any 

of the change-points for PM2.5 (Table S9, versus precipitation and wind speed) and PNC 

(Table S10, versus temperature) except for the PM2.5 and wind speed of Rochester. 

However, trends of PM2.5 and PNC during the change-points were visually inspected using 

Figures 1 and 3 then summarised in Table S11. For Rochester, wind speed and PM2.5 

declined in July 2008. Although wind speed is significant to PM2.5 based on GAM and 

ARIMA, they are negatively correlated. Thus, this observed decline in concentration is not 

due to a weakening wind speed in Rochester. Similarly, the observations in PM2.5 trends and 

wind speed in London (increase) and Brisbane (decrease) were as expected based on GAM. 

On the contrary, the change in wind speeds for Augsburg (increase) and Helsinki (increase) 

may have had effects on PM concentrations. Additionally, since precipitation is also 

significant to PM2.5, its increase in Helsinki and decrease in Brisbane in 2003 and 2012, 

respectively, may have influenced the reduction in PM2.5, while having no effect in other 

cities. 
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Figure 3. Fitted trend of the monthly mean temperature (°C), total precipitation (mm) and 
mean wind speed (m.s-1) in the investigated cities using LOESS (red line) with the change-
point detected by the Buishand range test (blue line). 

 

 

For the effect of temperature as a significant factor on PNC in Helsinki and 

Rochester, no change-points were detected in PNC in 2006 and 2011, respectively (Figure 

3), but there was an observable decrease in PNC at the same time the temperature 

increased. Hence, since temperature is significantly negatively correlated with PNC, this 

change in concentration may be partly attributed to the change in temperature in Helsinki 

and Rochester. Further, for London, although a change occurred in 2007 for both 

temperature and PNC, the observed trends are of the same direction, contrary to the results 

of GAM and ARIMA. Therefore, long term changes in meteorological parameters could 
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impact PM concentrations; an increase in temperature in cold cities (Helsinki and Rochester) 

may slow down particle formation, a decrease in precipitation in a relatively wet city 

(Brisbane) or an increase in a relatively dry city (Helsinki) may minimise or promote wet 

deposition, respectively, and an increase in wind speed in less windy cities (Augsburg and 

Helsinki) when incoming air masses are cleaner supports particle dilution.  

 

One important driver of the year-to-year variability in climate particularly in the Pacific 

region is the ENSO, which impacts wind circulation, precipitation, and temperature. The 

shifting from the warm phase (El Niño) to the cool phase (La Niña) happens every two to 

seven years and triggers a very predictable disruption affecting global climate. In this study’s 

timeframe, two very strong El Niño events (1997–1998 and 2015–2016) and three strong La 

Niña events (1999–2000, 2007–2008, and 2010–2011) occurred. However, these particular 

events did not have observable effects in the meteorological parameters (Figure 3) of the 

cities under study except for the 2011 extreme precipitation in Brisbane, being in proximity to 

Pacific Ocean; a corresponding decreasing concentration trend in PM2.5 can be observed. In 

contrast, another phenomenon called the Indian Ocean Dipole (IOD) played an important 

role in the Australian drought in 2009 (i.e. a positive IOD dominated the weak El Niño) 

causing bushfires and dust storms (Cai et al., 2009), and resulting in an abnormally high 

PM2.5 in Brisbane.  

 

The North Atlantic Oscillation (NAO) is another climate fluctuation but with effects 

that are more local than global like the ENSO. NAO strongly affects the winter weather in 

Europe and North America particularly precipitation (Dai et al., 1997). When a positive NAO 

is accompanied by an El Niño, European winters tend to be wetter and less severe; during a 

La Niña, formation of Atlantic hurricanes is favoured but the position of the Azores high 

influences the direction (Huang et al., 1998; Nakamura et al., 2015; Oshika et al., 2015). The 

winter of 2009–2010 was linked with the presence of negative NAO during an El Niño 

affecting the eastern North America and northern Europe (Seager et al., 2010). Rochester 

and Helsinki received less precipitation during this time based on the precipitation data 

(Figure 3), and a corresponding increase in PM2.5 with no such effect in PNC can be 

observed in Figure 1. London, in contrast, received an unusually high amount of 

precipitation, and a decrease in PM2.5 in the urban background can be seen.  
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Effects of mitigation 

Table 2 lists the years detected by the Buishand range test (the change-point dates 

are in Tables S8 and S9) and the changes in concentration that occurred in the PM2.5 and 

PNC of every city. When the change-points overlaid in the fitted LOESS (Figure 1) were 

examined, some points were positioned along a step-change (i.e. a rapid decrease within a 

year), but some were contained within periods of gradual change. The probable cause was 

identified by studying the existing conditions prior to, during, and after each change-point, 

ensuring that the lag effects of policy were considered. Step-changes occurred for PM2.5 in 

2006 – Augsburg (decrease), in 2009 – Brisbane (increase), in 2005 – Helsinki (increase), 

2008 – London (increase) and 2002 – London-RS (decrease). For PNC, they were in 2014 

and 2015 for Brisbane (increase and decrease, respectively), in 2003 – Helsinki (decrease), 

and in 2007 – London and London-RS (both decrease). The rest of the change-points were 

part of a period with gradual changes. It can also be observed that at some points, the 

changes in PM2.5 and PNC were not the same.  

 

Mitigation is another important factor that affects ambient PM concentration, and 

causes either a step-change or a monotonic change. Control techniques that involve traffic 

management usually result in localised and gradual reductions, and those that modify the 

quality of emissions using cleaner technologies have varying results; control retrofits reduce 

PM2.5 but not always PNC (Järvinen et al., 2019), natural gas as fuel may increase PNC with 

little or no clear reducing effect on PM2.5 depending on operating conditions (Pirjola et al., 

2016), and fuel with reduced sulphur content causes an abrupt reduction in PNC as 

observed in Helsinki and London. The application of traffic schemes has been reviewed in 

the following cities: in London, UK (Atkinson et al., 2009; Beevers et al., 2016), Delhi, India 

(Kumar et al., 2017), Dublin, Ireland (Tang et al., 2017), and Lanzhou, China (Zhao et al., 

2014). Shifting to low emission vehicles and fuels was applied in India (Gurjar et al., 2016), 

Japan (Hasunuma et al., 2014) and California, USA (Kuwayama et al., 2013). Integrated 

emission control strategies and regulatory policies have been proven effective in reducing 

ambient PM concentrations despite population growth and the increased vehicle count in 

urban centres (Lurmann et al., 2015; Wu et al., 2017).  
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Table 2. Trends of PM2.5 and PNC at the detected change-points and the probable cause of 
change in concentration in relation to modifications in emission sources. 
Change-
point 

Trend at change-point Probable cause 

PM2.5 PNC 

Augsburg 

2005 Decrease Increase No particular attribution 

2006 Decrease Decrease Reduced sulphur content in diesel and petrol 

2008 Increase None Warm and calm year 

2009 None Decrease No particular attribution 

2014 Decrease Decrease Continued improvement from Euro 5 passenger cars uptake 

Brisbane 

1998 Increase Decrease No particular attribution 

2001 Increase N/A Start of extreme drought in Australia causing bushfires and dust 
storms, with very low wind speed 

2003 Increase N/A Drought continued, with low wind speed 

2009 Increase N/A Dust storm (September 2009) due to extreme drought 

2014 Increase Increase Relatively warm and dry year and increase in vehicle count 

2015 Decrease Decrease Increased in precipitation; monitoring of PM2.5 for compliance 
started 

Helsinki 

2003 Decrease Decrease Reduced sulphur content in diesel and petrol 

2005 Increase None Long-range transported particles during regional wildfires and 
agricultural burns causing high PM in 2006 

2007 None Decrease No particular attribution 

2009 None Decrease No particular attribution 

2010 Decrease None Long-range transported particles during regional wildfires causing 
high PM in summer 2010 

2014 Decrease Decrease Very low sulphur (max 0.1%) marine fuels in the Baltic Sea (IMO) 
and warm winter in 2015 causing low PM 

London 

2003 Decrease Decrease No particular attribution 

2005 Increase Increase Calm weather and Smog episodes 

2007 None Decrease Reduced sulphur content in diesel and petrol 

2008 Increase None Calm and dry 2009 

2013 Increase None No particular attribution 

2016 Increase Increase Warm and dry year  

London - RS 

2002 Decrease None Reduction of traffic volume due to implementation of bus lanes in 
2001 

2003 Decrease Increase No particular attribution 

2007 Decrease Decrease Reduced sulphur content in diesel and petrol 

2010 Increase None No particular attribution 

2012 Decrease Decrease Low emissions zone with Euro IV heavy duty trucks and Euro 5 
passenger cars 

2013 Decrease Decrease Continued improvement from Euro 5 passenger cars uptake 

2014 Decrease Increase No particular attribution 

Rochester 

2004 Increase Decrease No particular attribution 

2005 Decrease Decrease Car fleet change; implementation of emission standards for on-
road vehicles, use of after treatment technologies.  

2008 Decrease Decrease Reduced economic activity due to recession (2007 – 2009); new 
heavy-duty diesel vehicles equipped with catalytic regenerative 
traps (CRT) and reduced sulphur content in diesel (2007) 

2009 Decrease Decrease Reduced use of coal for power generation 

2013 Increase Increase Increased vehicular traffic (recovery from 2008 recession) 

2014 Decrease Decrease Reduced sulphur content in diesel for non-road, locomotive and 
marine 
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The extent of changes in PM concentration is very much dependent on the type of 

fleet and volume of vehicles if traffic is a main contributor, and on other existing contributors 

such as energy generation sources. The Euro standards, for instance, apply only to new 

vehicles, which then take time to penetrate the vehicle fleet, and hence any improvements 

take place over a number of years. Squizzato et al. (2018b) and Masiol et al. (2018), on the 

contrary, reported in separate studies that the decrease in PM2.5 and PNC trends in 

Rochester that accounted for a significant change in concentration could be attributed to a 

shift in fuel use for power generation due to price changes and lowered activity in 2007–

2009 because of the economic recession on top of policy initiatives. In New York City when 

emissions from burning heating oil were being regulated, Kheirbek et al. (2014) calculated 

that a complete phase-out scenario of high sulphur heating fuel could reduce PM2.5 by about 

0.71 µg.m-3. Additionally, precursors originating from other sources besides local traffic (e.g. 

harbours and airports, industrial, agricultural, forest and marine) via long-range transport are 

also substantial in increasing PM concentration (including both PM2.5 and PNC) in urban air 

(Aranda et al., 2015; Donateo et al., 2014; Hasheminassab et al., 2014; Sarkar et al., 2019; 

Stettler et al., 2011). In a study done by Venkataraman et al. (2018) about different emission 

pathways involving the source sectors in India, significant reduction in PM2.5 can be achieve 

through aggressive regulation of biomass-fuelled technologies, industrial coal-burning and 

agricultural burning. 

 

Conclusions 

The long-term trends in PM2.5 and PNC in five cities in Australia, Europe, and the 

United States were assessed with regard to the changing climates and regulatory policies. 

However, determining which of the factors affecting PM concentration took effect in a 

particular event is complicated because of the complex dynamics of pollution formation and 

transport. Both PM2.5 and PNC declined in all cities except Brisbane for the course of the 

study, with a greater magnitude of reduction for PNC. In general, PM2.5 and PNC were 

negatively correlated with temperature, precipitation and wind speed. Temperature is 

significant to PNC, while PM2.5 is greatly affected by precipitation and wind speed. The long-

term changes observed in the meteorological conditions caused changes in PM2.5 and PNC 

that were similar to the changes caused by seasonality, such as low particle formation at 

higher temperatures, higher rate of wet deposition during increased precipitation and dilution 

enhanced by strong winds (Fontes et al., 2017). Both PM2.5 and PNC had a monotonic 

downward trend while long-term measurements of temperature, precipitation, and wind 

speed had no particular trend. Additionally, the increasing intensity and frequency of climate 
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variabilities causing extreme events due to changing climates also influenced PM 

concentrations (Jeong et al., 2018; Markakis et al., 2016; Messori et al., 2018). 

Given the complex interplay of available emission sources and mitigation strategies, 

then the influence of climate, controlling anthropogenic emissions through improved 

technology still has significant impacts in the concentrations of PM in urban ambient air. The 

same findings have been reported about emission management in terms of PM2.5 in China 

(Vu et al., 2019) and PNC in Germany (Sun et al., 2019). The planning and implementing of 

urban air quality management will be more effective and efficient if both PM2.5 and PNC are 

considered. As PM2.5 and PNC were affected differently by the above-mentioned factors, a 

separate regulatory standard for particulate mass and number would be a positive step in 

abating negative health and environment effects. Additionally, a separate emission targets 

should be applied since the sources of PM2.5 and PNC are different. 
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Supplementary Material 
 

Long-term trend in PM2.5 mass and number concentrations in the 
urban air: the impacts of mitigation and extreme events due to 

changing climates 
 
 
 

1. Site description 

Augsburg, Germany 

An urban district in southeast Germany, Augsburg is the third largest city in the state 
of Bavaria with Munich as the largest and the capital city. In 2013, the population density is 
1,896 persons.km-2 but the number of inhabitants in the built-up area is much higher since 
the city has a large forest area (2,420 km-2 if excluding Districts XV and XVI). Augsburg is 
situated beside the Lech Valley and the Wertach River on the west side. Augsburg has warm 
summers and no dry season, the wetter season is from May – August while the driest month 
is October. Though the summer (June- Aug) mean temperature is still comfortable at about 
20°C, winter (November – February) is chilly and windy with mean temperature of 6°C but 
can go as low as -3°C in February. In spring up to autumn, the wind becomes calmer but 
prevailing wind is from the west throughout the year. The Fachhochschule station is located 
in Innenstadt and the nearest main road from the station is 152 m with 19,503 vehicles.d-1 
(2008). Though there is a nearby road (110 m away) but the estimated daily vehicles is only 
500.  

 
Brisbane, Australia 

Brisbane is located in the South East Queensland region, which is mountainous with 
urban centres mostly at the coast. Brisbane City is the state capital and its CBD lies along 
the Brisbane River that extends in all direction within the floodplain. Brisbane’s climate is 
described as warm humid summer and mild winter without extreme seasonal variability; the 
four seasons are not distinct but changes in temperature can be experienced. The hottest 
month is January, the wettest is February and the coldest is July. The Wet/Dry pattern is 
more appropriate in describing Brisbane’s climate, where the wet season is between 
November and March while the dry season is from April to October. The PNC measurement 
was done at the Gardens Point Campus, Queensland University of Technology. This area is 
where the air quality monitoring for Brisbane CBD is done and is <100 m away from the 
South East Freeway (aka M3 Pacific Motorway). The Rocklea station, on the other hand, is 
surrounded by light industry and residential areas.  

 
Helsinki, Finland 

A city along the coast of the Baltic Sea with a fairly flat terrain, Helsinki is the centre 
of Finland’s cultural, educational, financial and political activities. Like any other city, 
vehicular traffic is the major source of air pollutants in the metropolitan area, the inner city 
with busy roads and streets lined with tall buildings are the most challenging places and 
springtime is the worst for fine particles when road surfaces start to dry out. During winter 
(December – March), the days only last for almost 6 hours, with the average temperature at 
around -4°C in January and February but in summer (June- August), Helsinki enjoys the 
longest daylight for almost 19 hours. Thunderstorms occur during summer. The SMEAR III 
station, which monitors the urban environment, is located in the Kumpula Campus, 
University of Helsinki, beside the Finnish Meteorological Institute about 5 km northeast of the 
city centre. The Kallio station is located in the Kallio Sports Field to measure air quality of the 
residential areas in the inner city of Helsinki. The Kaisaniemi station (FMISID100971) is 
located 3.5 km distance from SMEAR III station.  
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London, United Kingdom 

London, located in the south east of the island of Great Britain, is the capital city of 
England, a part of the United Kingdom. London is considered as one of the most important 
cities in the global economic system; with the busiest airspace and ports, has one of the 
longest metro system, and one of the largest bus network. The city is situated along the 
River Thames then surrounded by gently rolling hills. London has a temperate oceanic 
climate, which features cool summer but not so cold winter; an average temperature of 24°C 
in the warmest month and above 0°C in the coldest month. Winter (January – February) is 
relatively damp and cloudy, with less chances of snowfall while summers (June- August) are 
mild but occasional heat waves are experienced. In general, the city of London is warmer 
compared to the suburbs and outskirts due to urban heat island effect. North Kensington 
station is located in the Sion Manning School surrounded mainly by a residential area with 
the nearest road in 5 m while Marylebone station is located in a street canyon and with 
A501, a 6-laned frequently congested road (~72,000 vehicles.d-1) just 1 m away. North 
Kensington is 4km west of Marylebone. The Heathrow station (25 masl, ID 708) measures 
weather data for Greater London.  

 
Rochester, United States of America 

 Rochester is in the north-eastern United States, situated along the southern shore of 
Lake Ontario and is the third largest city in the State of New York. Several hills and mounds 
as well as numerous streams and ponds can be found in Rochester, which were formed 
when the continental glacier reached standstill. The Genesee River, a tributary of Lake 
Ontario, traverses the city and giving it a fertile valley that lead to the development of a 
manufacturing hub that founded Rochester as one of America’s boomtowns. Downtown 
Rochester, on the other hand, is lined with skyscrapers for both residential and office space. 
Rochester has cold, snowy winters and moderately humid summers with generally 
comfortable temperatures but with significant precipitation year round. The month with most 
sunshine is July while January has the most number of rainy days. Before April 2004, the 
data for PM were collected from a site situated within 1 km of downtown Rochester on the 
roof of the central fire headquarters, 100 m south of an inner loop road (~86,000 vehicles.d-

1). It was transferred to its present location (130 masl, USEPA Site code 36-055-1004) in a 
residential area ~300 m from the intersection of two major highways (I-490 and I-590) with 
an average traffic count of ~230,000 vehicles.d-1. The Rochester Greater International 
Station (164 masl) is about 5 km southwest of the metropolitan area and 18 km to the north 
of Lake Ontario. 
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Table S1. Location and characteristics of the monitoring sites and the data used for the different cities 

City 
Monitoring station/s 

Coordinates 1Station 
type 

Parameters 
measured 

Period 
(years) 

Instrument 

PM2.5 PNC (size range) 

Augsburg, Germany  

Fachhochschule Station by the Helmholtz 
Zentrum München 

48.36°N, 10.91°E UB PM2.5, PNC, Temp., 
3Prec., WS 

2004–2016   TEOM 1400A / 
FDMS 8500 

CPC TSI 3025A 
(3 – 3000 nm) 

Brisbane, Australia  

Rocklea Station by the Department of Science, 
Information Technology and Innovation 

27.54°S, 152.99°E UB PM2.5, Temp., 
Prec., WS 

1998–2016 TEOM 1405-DF --- 

Queensland University of Technology (QUT) by 
the International Laboratory for Air Quality and 
Health 

27.48°S, 153.03°E UB PNC 1998–2000  
 2011–2015  

---  CPC TSI 3787 
(5 – 1000 nm) 

Helsinki, Finland  

Kallio Station by the Helsinki Region 
Environmental Services Authority 

60.19°N, 24.95°E UB PM2.5, 2001–2016 4TEOM 1400AB and 
Eberline FH 62 I-R  

--- 

SMEAR III Station by the Department of 
Physical Sciences, Chemistry and Forest 
Ecology, University of Helsinki 

60.20°N, 24.96°E UB PNC 2001–2016  --- CPC TSI 3022 
7nm size  

Kaisaniemi Station by the Finnish 
Meteorological Institute 

60.18°N, 24.94°E NA Temp., Prec., 
WS 

2001–2016 --- --- 

London, United Kingdom  

(1) North Kensington Station by the Automatic 
Urban and Rural Network (AURN) 

51.52°N, 0.21°W UB PM2.5, PNC 
 

2001–2016 TEOM Thermo 
1400AB /FDMS 8500 

CPC TSI 3022A 
(7 – 1000 nm) 

(2) Marylebone Road Station by the Automatic 
Urban and Rural Network (AURN) 

51.52°N, 0.15°W 2RS PM2.5, PNC 
 

2001–2016 TEOM Thermo 
1400AB /FDMS 8500 

CPC TSI 3022A 
(7 – 1000 nm) 

Heathrow Station by the Met Office  51.48°N, 0.45°W NA Temp., Prec., WS 2001–2016 --- --- 
Rochester, United States of America 

Rochester Station by the New York State 
Department of Environmental Conservation 

46.16°N, 77.6°W UB PM2.5, PNC 
 

2002–2003 TEOM 1400A CPC TSI 3010 
(11 – 500 nm) 

Rochester Station by the New York State 
Department of Environmental Conservation 

43.17°N, 77.55°W UB PM2.5, PNC 
 

2004–2016 TEOM 1400A CPC TSI 3010 
(11 – 500 nm) 

Rochester Greater International Station by the 
National Centres for Environmental Information 

43.12°N, 77.68°W NA Temp., Prec., WS 2002–2016 --- --- 

1UB: urban background; RS: roadside station (classification for PM monitoring); NA: not applicable (for stations collecting only meteorological data) 
2Since data were available for a roadside station; we opted to present the difference in trend between the two site categories 
3Precipitation data for Augsburg is only from 2009 
4Eberline was used from 2001–2006 and TEOM from 2007 – 2016. Methods are reliably comparable after using calibration functions (Waldén et al., 2010) 
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2. Trend Analysis 

1. Trend Analysis using Mann-Kendall test and Sen’s slope 

Table S2. The obtained p-value from the Mann-Kendall test and the Sen’s slope for PM2.5 

(µg.m-3.yr-1) and PNC (particles.cm-3.yr-1) for each city. 

City PM2.5 (µg.m-3) PNC (particles.cm-3) 

p-value slope p-value slope 

Augsburg 0.020 -0.6 0.004 -497 

Brisbane 0.037 0.1 0.194 53 

Helsinki 0.001 -0.2 <0.001 -436 

London 0.536 -0.03 0.003 -752 

London - RS 0.022 -0.3 <0.001 -3769 

Rochester <0.001 -0.3 <0.001 -397 

 

Table S3. The obtained p-value from the Mann-Kendall test and the Sen’s slope for 

temperature (°C.yr-1), precipitation (mm.yr-1), and wind speed (m.s-1.yr-1) for each city. 

City Temperature (°C) Precipitation (mm) Wind Speed (m.s-1) 
p-value slope p-value slope p-value slope 

Augsburg 0.096 0.07 0.540 -0.017 0.008 0.03 
Brisbane 0.246 0.03 0.111 -1.429 0.049 -0.02 
Helsinki 0.093 0.05 0.437 0.417 0.079 0.02 
London 0.704 0 0.776 -0.134 0.274 0.01 
Rochester 0.305 0.05 0.306 -0.408 0.040 -0.03 

 
 

2. Trend Analysis using Locally Estimated Scatterplot Smoothing (LOESS) 

Smoothing by LOESS is a non-parametric fitting that uses local regression wherein a 
line is fitted to the points that fall within a specified window. The points nearest to the centre 
of the window are given more weight (i.e. they have the greatest effect on the calculation of 
the regression line). As the points move further away from the regression line, the weighting 
is reduced. The regression process is repeated several times within the window then moving 
the window across the data to obtain the LOESS curve. Each point on the resulting LOESS 
curve is the intersection of the regression line and the centre of each window. In order to 
obtain the PM2.5 and PNC trends, an additive time series decomposition by applying the 
LOESS smoothing was done. In an additive model, the seasonal variation remains constant 
and does not change with increasing time unlike the multiplicative model. Further discussion 
about decomposition by LOESS is given by Cleveland et al. (1990). 

 
In the stl function, the s.window was set to ‘periodic’ where the seasonal component 

was computed by getting the mean values for each month. Seasonality in a time series is the 
regular and predictable pattern that recurs at a fixed interval of time, while trend is the overall 
direction of the data. The seasonally adjusted data is then LOESS-smoothed to determine 
the trend. After decomposition, the seasonal component corresponds to the variations in the 
data associated to calendar cycles; the trend component gives the overall pattern of the time 
series that are not seasonal and the remaining component of the time series that cannot be 
attributed to either seasonal or trend, often referred as the residual or error. The mean 
absolute percentage error (MAPE) of the LOESS trend line is presented in Table S4. The 
values ranged from 12.1 to 33.5% for PM2.5 and from 15.3 to 23.9% for PNC, these values 
are comparable to the calculated MAPE values by other regression techniques applied to 
ambient particulate matter (Sajjadi et al., 2017). The residuals were also tested by getting 
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the correlation and distribution. Checking the residuals is necessary to demonstrate the 
validity of the fitting of the LOESS. Figure S1 showed that the residuals were uncorrelated 
and were normally distributed. 

 
 
Table S4. Mean absolute percentage error of the LOESS trend line for the monthly PM2.5 
and PNC. 

City MAPE (%) 

PM2.5 PNC 

Augsburg 33.5 16.3 

Brisbane 20.7 23.9 

Helsinki 22.9 16.6 

London 18.0 20.8 

London - RS 12.1 19.0 

Rochester 21.0 15.3 

 
 
Four plots were generated for each PM2.5, PNC, temperature, precipitation and wind 

speed per city (Figure S2 a to f). The plot on top is the original data, next is the extracted 

periodic seasonal pattern, then the trend and the remaining components. The y-axis scale is 

placed alternatingly on each side and a scale bar on the right hand side of each graph is for 

relative comparison of the magnitude of each component. The decomposition showed 

different patterns for the seasonal component, not only among parameters, but even 

between the same parameters of different cities (e.g. precipitation data of Helsinki against 

London against Rochester). Only the seasonal component of temperature is comparable for 

all cities. 
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Figure S1. Time plot, ACF plot, and histogram of the residuals of the LOESS trend line for 
the monthly PM2.5 and PNC. 



35 
 

 
Figure S2a. Decomposition of the monthly PM2.5 (µg.cm-3), PNC (particles.cm-3), mean temperature 
(°C), total precipitation (mm) and mean wind speed (m.s-1) time series into seasonal, trend and 
stochastic (remainder) components using stl then the fitted trend for Augsburg. 
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Figure S2b. Decomposition of the monthly PM2.5 (µg.cm-3), PNC (particles.cm-3), mean temperature 
(°C), total precipitation (mm) and mean wind speed (m.s-1) time series into seasonal, trend and 
stochastic (remainder) components using stl then the fitted trend for Brisbane. 
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Figure S2c. Decomposition of the monthly PM2.5 (µg.cm-3), PNC (particles.cm-3), mean temperature 
(°C), total precipitation (mm) and mean wind speed (m.s-1) time series into seasonal, trend and 
stochastic (remainder) components using stl then the fitted trend for Helsinki. 
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Figure S2d. Decomposition of the monthly PM2.5 (µg.cm-3), PNC (particles.cm-3), mean temperature 
(°C), total precipitation (mm) and mean wind speed (m.s-1) time series into seasonal, trend and 
stochastic (remainder) components using stl then the fitted trend for London – UB 
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Figure S2e. Decomposition of the monthly PM2.5 (µg.cm-3), PNC (particles.cm-3), mean temperature 
(°C), total precipitation (mm) and mean wind speed (m.s-1) time series into seasonal, trend and 
stochastic (remainder) components using stl then the fitted trend for London – RS.  
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Figure S2f. Decomposition of the monthly PM2.5 (µg.cm-3), PNC (particles.cm-3), mean temperature 
(°C), total precipitation (mm) and mean wind speed (m.s-1) time series into seasonal, trend and 
stochastic (remainder) components using stl then the fitted trend for Rochester. 
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3. Predictor Analysis 

1. Predictor Analysis using Generalised Additive Model (GAM) 

The Generalised Additive Model (GAM) is an enhanced generalised linear model that 
uses a smoothing function to get the contribution of the linear predictors (a.k.a. explanatory 
variables) and with the properties of an additive model, which is a non-parametric regression 
method. GAM is preferred for analysis that does not favour a fitted straight line but rather a 
‘squiggly’ line that best describes the data. The obtained smoothed curve (Figure S3 and S4) 
is the sum of the smooth functions based on the smoothing term applied (e.g. cubic 
regression splines, LOESS). A GAM can also be used for time series analysis since a time 
series can be viewed as a summation of individual trends. The effects of each predictors on 
the response variable are not based on the explanatory variables themselves but on the 
functions, therefore, are not restricted by the linearity assumption of regression. 
 

GAM was used to estimate the relationships between the response variables (PM2.5 
and PNC) and the explanatory variables (time, temperature, precipitation, and wind speed). 
LOESS was used as the smoother and the formula used in the gam function were: 
 
PM2.5 ~ lo(time) + lo(temp) + lo(prec) + lo(wind)      (1) 
PNC ~ lo(time) + lo(temp) + lo(prec) + lo(wind)      (2) 
 
In order to evaluate the GAMs, the deviance explained (Table S4) were computed as 

follows: 
 
Deviance Explained = [(null deviance – residual deviance) / null deviance] *100  (3) 

 
Deviance is a measure of goodness-of-fit of a model, similar to the R2 of Gaussian data. 
There are two forms, the null deviance and the residual deviance. The null deviance reflects 
how well the response variable is predicted by the model with just a constant term (an 
intercept) while the residual deviance is just the same as the basic residuals of a fitted 
model, therefore deviance explained is the percentage of the null deviance explained by the 

model.  
 

The obtained deviance explained ranged from 23.3 to 75.6% for PM2.5 and 38.1 to 
79.0% for PNC (Table S5). The performance of the GAMs was better (i.e. higher values 
indicate a good fit) for PNC than PM2.5; therefore, the effects of meteorology on PM2.5 are 
more difficult to model. Among the cities, Brisbane has the lowest deviance explained, 
indicating that the GAMs have poorly captured the effects of meteorology for both PM2.5 and 
PNC, in contrast with Rochester, which has high deviance explained for both metrics. 

Helsinki and London have similar GAM performance for both metrics; the models can 
explain the variability in PNC due to meteorology more than the variability in PM2.5. The 
GAMs for Augsburg have the reverse performance; the effects of meteorology are captured 
more for PM2.5 than for PNC. London-RS has an interesting response wherein the GAM 
satisfactorily explained the variability of PNC due to meteorology (high deviance explained at 
79.0%) but was ineffective for PM2.5 (low deviance explained at 37.0%).  

 
 

Table S5. Deviance explained for the GAMs of the monthly PM2.5 and PNC with the 

meteorological parameters as additive explanatory variables. 

City Deviance Explained (%) 

PM2.5 PNC 

Augsburg 75.6 57.6 

Brisbane 23.3 38.1 

Helsinki 58.2 77.1 
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London 53.0 70.1 

London – RS  37.0 79.0 

Rochester 64.1 79.0 
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Figure S3. Fitted GAM for PM2.5 (solid line) including standard error (dashed line) with 
monthly mean temperature (°C), total precipitation (mm) and mean wind speed (m.s-1) as 
predictors. Significant (p < 0.05) parametric and non-parametric effects are denoted by a 

blue star and red cross, respectively. (Note: graphs have a different scale for the y-axis).  
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Figure S4. Fitted GAM for PNC (solid line) including standard error (dashed line) with 
monthly mean temperature (°C), total precipitation (mm) and mean wind speed (m.s-1) as 
predictors. Significant (p < 0.05) parametric and non-parametric effects are denoted by a 
blue star and red cross, respectively. (Note: graphs have a different scale for the y-axis). 

An analysis of variance (ANOVA) as a post-test was also part of the gam function, 
which is similar to a classical F test for the mean square if a linear model with multiple 
covariates (or functions of covariates) is fitted. The parametric and non-parametric effects of 
all the terms in the model – time, temperature, precipitation and wind speed – were 
estimated and significance tested. The parametric effects correspond to the linear parts of 
the fitted smoother, while the non-parametric effects correspond to the non-linear portion; 
their significance per predictor to PM2.5 and PNC per city is indicated in Figures S3 and S4. 
The parametric effects of wind speed and precipitation dominate PM2.5, while temperature is 
more linearly significant for PNC. The time factor has a more significant non-parametric 
effect for PM2.5, but a more significant parametric effect for PNC. 
 
2. Predictor Analysis using SARIMA Model 

An autoregressive integrated moving average (ARIMA) model was fitted in the time 
series to determine how meteorology played a role in the variation of the PM concentrations 
in the cities investigated. Temperature, precipitation, and wind speed were considered as the 
explanatory variables or regressors. An ARIMA model is a stochastic time series model and 
a special type of regression model mostly used for forecasting that can account for shocks 
and not only seasonality. Understanding the time series is vital prior to any model fitting and 
the preliminary step is examining the autocorrelation (ACF) and partial autocorrelation 
(PACF) plots to determine whether the time series is stationary or not. These plots present a 
summary of the relationship strength of an observation in a time series with the observations 
of the previous time period. ACF shows the correlation of the series with itself at different 
lags while PACF shows the amount of autocorrelation at a particular lag that is not yet 
accounted for. The Acf and Pacf functions of the forecast package (Hyndman et al., 2018) 
were used to obtain the ACF and PACF plots, respectively. Both ACF and PACF were used 
to identify initially the number of terms the time series needs to address the lags for a 
stationarised series. 
 

ARIMA is classified as a non-stationary time series model wherein the process of 
interest have (a) a non-constant mean, (b) an infinitive variance, or (c) an autocorrelation 
function that depends on time. In an ARIMA process, being autoregressive (AR) means that 
the value of Y at time t depends on its value in the previous time period and a random term. 

Being integrated (I) implies that the time series needs to be converted into stationary. The 
moving average (MA) process, which is a type of linear filter, indicates that Yt is equal to a 
constant and a moving average of the current and past error terms. Hence, in developing the 
ARIMA model, three terms were needed to be identified: p is the AR order that addresses 
the autocorrelation and the lags of the ‘stationarised’ series, d is the difference order or the 
number of times the series needs to be ‘differenced’ to become stationary, and q is the MA 
order that deals with the lags of the forecast errors. However, the model was extended since 
the data was known to possess a seasonal pattern, therefore applying the seasonal ARIMA 
(SARIMA), which depends on seasonal lags and differences. Four more additional terms 
were then required: P is the seasonal AR order, D is the seasonal difference order, Q is the 
seasonal MA order and S is the seasonal period (e.g. 4 for quarterly data and 12 for monthly 

data). 
 

 In identifying the best fit model for PM2.5 and PNC data, the ndiffs, nsdiffs and 
auto.arima functions of the forecast package were utilised in conjunction with the Box-
Jenkins Approach. The ndiffs function estimates the number of differences required to make 
the time series stationary (i.e. gives the value for d) applying the KPSS test (Kwiatkowski et 
al., 1992). The nsdiffs, on the other hand, determines the number of seasonal differences 
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required (i.e. gives the value for D) using the measure of seasonal strength (Wang et al., 
2006). Given the d and D, the auto.arima was employed with the Bayesian information 

criterion (BIC)(Schwarz, 1978) for model selection and the Augmented Dickey-Fuller 
(ADF)(Dickey & Fuller, 1979) for the stationarity test. The BIC is a residual analysis partly 
based on the likelihood function that provides an estimate of how much information would 
be lost if a given model is chosen; the model with the least BIC is the most preferred. ADF 
test has a null of a unit root and a non-stationarity assumption. After obtaining the best fit 
model, the sarima function of the astsa package (Stoffer, 2017) was used with temperature, 
precipitation and wind speed as external regressors to determine the relationship between 
these meteorological parameters and the two PM metrics.  
 

The identified d was 1 while D was 0 using the ndiffs and nsdiffs functions with the 
KPSS test. Then running the auto.arima with the ADF test for the stationarity assumption 

and the BIC as the information criterion, the model that best fit all data is 
ARIMA(1,1,1)(1,0,0)[12]. Thus the equation for ARIMA(1,1,1)(1,0,0)[12] model is 

 
Ŷt = Yt-1 + α1Yt-1 - α1Yt-2 - α1β1Yt-13 + α1β1Yt-14 + β1Yt-12 - β1Yt-13 + et + θ1et-1   (4) 

 
where α1 is the non-seasonal autoregressive (AR) coefficient,  β1 is the seasonal AR (SAR) 
coefficient and θ1 is the non-seasonal moving average (MA) coefficient. Table S6 gives the 
estimates for the AR(1), MA(1) and the SAR(1) term in the model then an asterisk to indicate 
significance at 0.05. The lower the α1 in an AR(1), the quicker is the rate of convergence to 
the mean. It can be observed that PNC returns to its mean slower than PM2.5 and that AR(1) 
term is significant for all PNC. Since the sum of AR(1) and SAR(1) is less than 1, the fitted 
model is therefore stationary. The MA(1) coefficient is the fraction of the “shock” from the last 
period that is still felt in the current period. The relatively high value of the θ1 in the MA(1), on 
the other hand, suggests that substantial smoothing was done to estimate the local level and 
trend. The negative sign attached to θ1 is merely a convention used by Box and Jenkins. 
The p-value for the term determines if the association between the response and each term 

in the model is statistically significant. Significant terms can also be interpreted as having 
significant effects. 
 

Both PM2.5 and PNC apparently undergo random “shocks” in a similar way for all 
urban background stations; the PNC pattern at the London roadside station seemed to be 
more stable. The values for the BIC ranged from 0.9 – 3.2 for PM2.5 and 14.3 – 18.2 for PNC. 
The computed MAPE ranged from 13.1 – 27.4 for PM2.5 and 13.5 – 21.5 for PNC (Table S6). 
These values are comparable to other SARIMA models for air quality (Rahman et al., 2015). 
Based on the ACF plot of the residuals and the Ljung-Box statistics (Figure S5 a-c), no 
significant correlations for the autocorrelation function of the residuals can be observed from 
for all cities (i.e. residuals are randomly distributed with no regular pattern and are very small 
that are generally within the significance bounds) and most p-values for the Ljung-Box chi-

square statistics are >0.05, hence the residuals are independent and that the model meets 
the assumption (Figure S3 a to c). Further, the standardized residuals indicated no trend, 
generally no outliers and no changing variance across time. In the Q-Q plot, showed a 
normally distributed residuals. 

 
Initially, our premise was that different SARIMA would fit the PM2.5 and PNC data, 

knowing that these two metrics behave differently. ARIMA(1,1,1)(2,0,0)[12] was used for 
PM2.5 while ARIMA(0,1,1) for PNC. But it turned out that ARIMA(1,1,1)(1,0,0)[12] had lower 
BIC and lower MAPE for both PM2.5 and PNC compared to the first two. Therefore, only one 
model was used to analyse the effects of meteorology. The coefficients of the regressors 
(Table S7) can be interpreted similarly to a linear model, that temperature, precipitation and 
wind speed were negatively related to both PM2.5 and PNC in all cities except for Brisbane’s 
PM2.5 and the temperature, Brisbane’s PNC with temperature and precipitation and for the 
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London – RS station with precipitation and wind speed. The negative correlation means PM 
concentration decreases as temperature, precipitation, and wind speed increases. 

 
 
 

Table S6. Coefficients and significance of each term in the SARIMA(1,1,1)(1,0,0)[12] model 
fitted to the monthly PM2.5 and PNC data of each city with temperature (°C), precipitation 
(mm) and wind speed (m.s-1) as external regressors and the mean absolute percent error 
(MAPE). 

City PM2.5 PNC 

AR1 MA1 SAR1 MAPE AR1 MA1 SAR1 MAPE 
Augsburg 0.12 -0.88* 0.38* 27.4 0.28* -0.89* 0.05 15.3 
Brisbane 0.63* -0.98* 0.10 18.2 0.39* -1.00* -0.84* 21.5 
Helsinki 0.13 -0.93* 0.21* 21.6 0.64* -0.94* 0.24* 15.1 
London 0.30* -0.93* 0.10 18.3 0.68* -0.92* 0.05 13.5 
London-RS 0.34* -0.92* 0.17* 13.1 0.55* -0.81* 0.26* 17.3 
Rochester 0.33* -0.94* 0.36* 19.3 0.42* -0.91* 0.17* 15.7 

*term is statistically significant (p-value ≤ 0.05) 
 
 

Table S7. Coefficients and significance of the external regressors, temperature (°C), 
precipitation (mm) and wind speed (m.s-1) to the monthly PM2.5 and PNC data of the fitted 
SARIMA(1,1,1)(1,0,0)[12] model for each city. 

City PM2.5 PNC 

Temperature Precipitation Wind Speed Temperature Precipitation Wind Speed 
Augsburg -0.58* -0.04* -8.21* -114* -13 -1834* 
Brisbane 0.04 -0.01* -0.17 394 4.6 -3473 
Helsinki -0.13* -0.01* -2.60* -212* -3.7 -1355* 
London -0.27* -0.03* -2.76* -700* -8.6 -1240* 
London-RS -0.01 -0.00 -1.55* -748* 53 2695* 
Rochester -0.01 -0.00 -1.20* -81* -1.6 -552* 
*term is statistically significant (p-value ≤ 0.05) 

 
 

Both models GAM and ARIMA, determined the effects of the meteorological 
parameters on PM2.5 and PNC conjointly. The effect of the meteorological parameters on the 
particulate matter concentrations can only be determined by fitting a model (He et al., 2017; 
Kumar & Goyal, 2011; Pearce et al., 2011). A temporal dependence between particle 
concentration and the predictors was also captured in the ARIMA and alternatively including 
time in the GAM. The advantage of an ARIMA model is that when dealing with the existence 
of time correlations, adjacent observations may not be independent and identically 
distributed (temporal dependence) and the model can account for both seasonal variability 
and shocks. However, GAM is better for exploratory analysis and predicting correlations if no 
high-order autocorrelation errors exist (Chen et al., 2001). ARIMA has more rigid 
assumptions, such as that trends should have regular periods (i.e. hence the differentiation) 
with constant mean and variance; therefore, GAM is more flexible. Nevertheless, the results 
on the effects of meteorology are the same – mostly negatively correlated and with 
precipitation and wind speed as the most important factors for PM2.5 and temperature to 
PNC. In the fitted SARIMA model, the precipitation effect is not significant to PNC in all cities 
(Table S7). The cross-correlation plots further demonstrate this (Figure S6 a–c). A strong 
autocorrelation mostly occurs at lag 0 but there are also other autocorrelations that occur 
throughout the series at different lags. The PM2.5 and PNC correlation plots with temperature 
evidently illustrate a six-month pattern of dependence, which did not exist with precipitation 
and wind speed. 
 



 
 

 

 
Figure S5a. ACF of Residuals and the Ljung-Box statistics for SARIMA(1,1,1)(1,0,0)[12] model fitted in the PM2.5 and PNC data of each city with temperature 

(°C), precipitation (mm) and wind speed (m.s-1) as external regressors. 



 
 

 
Figure S5b. ACF of Residuals and the Ljung-Box statistics for SARIMA(1,1,1)(1,0,0)[12] model fitted in the PM2.5 and PNC data of each city with temperature 

(°C), precipitation (mm) and wind speed (m.s-1) as external regressors. 
 



 
 

 
Figure S5c. ACF of Residuals and the Ljung-Box statistics for SARIMA(1,1,1)(1,0,0)[12] model fitted in the monthly PM2.5 and PNC data of each city with mean 

temperature (°C), total precipitation (mm) and mean wind speed (m.s-1) as external regressors. 
  



 
 

 199 
Figure S6a. Cross-correlation of monthly PM2.5 and PNC data of each city with mean temperature 200 

(°C), total precipitation (mm) and mean wind speed (m.s-1). 201 



 
 

 202 
Figure S6b. Cross-correlation of monthly PM2.5 and PNC data of each city with mean temperature 203 

(°C), total precipitation (mm) and mean wind speed (m.s-1). 204 



 
 

 205 
Figure S6c. Cross-correlation of monthly PM2.5 and PNC data of each city with mean temperature 206 

(°C), total precipitation (mm) and mean wind speed (m.s-1). 207 



 
 

4. Change-point detection 208 

Table S8. Detected change-points for the imputed monthly meteorological parameters using 209 
Buishand Range Test. 210 

Parameter Augsburg Brisbane Helsinki London Rochester 

n 156 228 192 192 180 

 Temperature 
Date of shift Aug 2013 Nov 2012 Jun 2006 Aug 2007 May 2011 
Precipitation 

Date of shift Nov 2013 Apr 2012 Dec 2003 Feb 2003 Apr 2014 

Wind Speed 

Date of shift Jun 2009 Aug 2009 Jun 2006 Jun 2002 Jul 2008 

 211 
 212 

Table S9. Detected change-points for the imputed monthly PM2.5 using Buishand Range 213 
Test for different periods. 214 

Period Augsburg Brisbane Helsinki London London-RS Rochester 

PT 

n 156 228 192 192 192 180 

Date of shift Sep 2006 Aug 2003 Jan 2011 Feb 2013 Jul 2012 Jul 2008 

P1 (≤2006) 

n 36 108 72 72 72 60 

Date of shift May 2005 Aug 2001 Sep 2005 Nov 2003 Aug 2002 Dec 2004 

P2 (2007 – 2011) 

n 60 60 60 60 60 60 

Date of shift Jul 2008 Mar 2009 Dec 2010 Sep 2008 Oct 2010 Dec 2008 
P3 (2012 – 2016) 

n 60 60 60 60 60 60 

Date of shift Apr 2014 Dec 2014 Jan 2015 May 2013 Dec 2013 Jun 2014 

 215 

 216 

Table S10. Detected change-points for the imputed monthly PNC using Buishand Range 217 
Test for different periods. 218 

Period Augsburg Brisbane1 Helsinki London London-RS Rochester 

PT  

n 156 228 192 192 192 180 

Date of shift Apr 2009 May 2015 Jun 2007 Mar 2008 Jan 2008 Jan 2008 
P1 (≤2006) 

n 36 36 72 72 72 60 

Date of shift May 2005 Nov 1998 Jun 2003 Apr 2005 Nov 2003 Aug 2005 

P2 (2007 – 2011) 

n 60 --- 60 60 60 60 

Date of shift Feb 2009 --- Feb 2009 Mar 2008 Mar 2008 Jun 2009 

P3 (2012 – 2016)  

n 60 60 60 60 60 60 

Date of shift Aug 2014 Jun 2014 Jul 2014 Nov 2015 Jul 2014 Oct 2013 
1Note: Brisbane data is only from 1998 – 2000 and P3 is 2011 – 2015 219 

 220 
 221 
 222 
 223 
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 225 
Table S11. Summary of trends at the detected change-points for the selected meteorological 226 
parameters and for PM2.5 and PNC. 227 
City Change-

point 
Trend Change-

point 
Trend Change-

point 
Trend 

Prec. PM2.5 Wind PM2.5 Temp. PNC 

Augsburg 2013 dec dec 2009 inc dec 2013 inc inc 
Brisbane 2012 dec inc 2009 dec inc 2012 inc dec 
Helsinki 2003 inc dec 2006 inc dec 2006 inc dec 
London 2003 dec dec 2002 inc inc 2007 dec dec 
London-RS 2003 dec dec 2002 inc dec 2007 dec dec 
Rochester 2014 dec dec 2008 dec dec 2011 inc dec 
Note: Prec. Is precipitation, Wind is wind speed, and Temp. is temperature, while dec means 228 
decrease and in is increase. 229 
 230 
 231 
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