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Antigen (Ag), antigen-presenting cells (APC), complete Freund’s adjuvant (CFA), delayed-type 

hypersensitivity (DTH), dendritic cells (DC), gluten-free diet (GFD), granulocyte-macrophage 

colony-stimulating factor (GM-CSF), human equivalent dose (HED), human leukocyte antigen 

(HLA), interferon gamma (IFNG), interleukin 2 (IL2), interleukin 4 (IL4), interleukin 10 (IL10), 

interleukin 17 (IL17), macrophage receptor with collagenous structure (MARCO), multiple 

sclerosis (MS), peripheral blood mononuclear cells (PBMC), poly(ethylene-alt-maleic acid) 

(PEMA), poly(lactide-co-glycolide) (PLGA), poly(vinyl acetate) (PVA), T-helper 1 (Th1) cell, T-

helper 17 (Th17) cell, transforming growth factor beta (TGFB), T-regulatory cells (Treg cells), 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), standard deviation 

(SD), standard error of the mean (SEM), tolerogenic immune-modifying nanoparticles (TIMP), 

tolerogenic immune-modifying nanoparticles containing gliadin (TIMP-GLIA), type 1 diabetes 

(T1D). 
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Abstract:  

Background & Aims: Celiac disease could be treated, and potentially cured, by 

restoring T-cell tolerance to gliadin. We investigated the safety and efficacy of 

negatively charged, 500 nm, poly(lactide-co-glycolide) nanoparticles encapsulating 

gliadin protein (TIMP-GLIA) in 3 mouse models of celiac disease. Uptake of these 

nanoparticles by antigen-presenting cells was shown to induce immune tolerance in 

other animal models of autoimmune disease.  

 

Methods: We performed studies with C57BL/6, RAG1–/– (C57BL/6), and HLA-DQ8, 

huCD4 transgenic Ab0 NOD mice. Mice were given 1 or 2 tail-vein injections of TIMP-

GLIA or control nanoparticles. Some mice were given intradermal injections of gliadin in 

complete Freund’s adjuvant (immunization), or of soluble gliadin or ovalbumin (ear 

challenge). RAG–/– mice were given intraperitoneal injections of CD4+CD62L–CD44hi T 

cells from gliadin-immunized C57BL/6 mice, and were fed with AIN-76A-based diet 

containing wheat gluten (oral challenge), or without gluten. Spleen or lymph node cells 

were analyzed in proliferation and cytokine secretion assays, or by flow cytometry, RNA 

sequencing or real-time quantitative PCR. Serum samples were analyzed by gliadin 

antibody ELISA, and intestinal tissues were analyzed by histology. Human PBMC, or 

immature dendritic cells derived from human PBMC, were cultured in medium 

containing TIMP-GLIA, anti-CD3 antibody, or LPS (controls) and analyzed in 

proliferation and cytokine secretion assays or by flow cytometry. Whole blood or plasma 

from healthy volunteers was incubated with TIMP-GLIA, and hemolysis, platelet 

activation and aggregation, and complement activation or coagulation were analyzed. 
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Results: TIMP-GLIA did not increase markers of maturation on cultured human 

dendritic cells or induce activation of T cells from patients with active or treated celiac 

disease. In the delayed-type hypersensitivity (model 1), the HLA-DQ8 transgenic (model 

2), and the gliadin memory T cell enteropathy (model 3) models of celiac disease, 

intravenous injections of TIMP-GLIA significantly decreased gliadin-specific T cell 

proliferation (in models 1 and 2), inflammatory cytokine secretion (in models 1, 2, and 

3), circulating gliadin-specific IgG/IgG2c (in models 1 and 2), ear swelling (in model 1), 

gluten-dependent enteropathy (in model 3), and body weight loss (in model 3). In model 

1, the effects were shown to be dose dependent. Splenocytes from HLA-DQ8 

transgenic mice given TIMP-GLIA nanoparticles, but not control nanoparticles, had 

increased levels of FOXP3, and gene expression signatures associated with tolerance 

induction. 

 

Conclusions: In mice with gliadin sensitivity, injection of TIMP-GLIA nanoparticles 

induced unresponsiveness to gliadin, and reduced markers of inflammation and 

enteropathy. This strategy might be developed for treatment of celiac disease. 

Keywords: Gluten sensitivity, tolerogenic vaccine, immunotherapy, immunomodulation 
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Introduction 

Celiac disease is a gluten-sensitive enteropathy with a prevalence of 0.3-2.4% in 

most populations. Celiac disease results from the failed immune regulation of gluten-

specific CD4+ T cells in individuals carrying human leukocyte antigen (HLA)-DQ2 or 

HLA-DQ8 risk alleles.1 In celiac disease  patients, exposure to gluten leads to the 

activation of gluten-specific-T cells, culminating in immune-mediated intestinal damage.2 

Therapeutic approaches that render T cells tolerant to gluten have the potential to cure 

celiac disease. The induction of sustained unresponsiveness to gluten could eliminate 

the life-time burden of dietary restriction, clinical symptoms associated with accidental 

gluten exposure, and the risk of severe long-term complications, such as malignancies, 

secondary autoimmune diseases or bone loss.3 However, until now no attempt to 

induce tolerance in autoimmune disease patients has shown clinical efficacy.  

Recently, we demonstrated the tolerogenic potential of antigen loaded, 

negatively charged nanoparticles (referred to as Tolerogenic Immune Modifying 

Nanoparticles, TIMP) in murine models of multiple sclerosis (MS), transplantation, 

airway allergy, and type 1 diabetes (T1D).4,5,6,7 Previous studies have shown that TIMP, 

when injected intravenously, are mainly directed to the spleen and the liver.8,9,10 In these 

organs, tissue-resident antigen presenting cells (APC), including splenic marginal zone 

macrophages expressing macrophage receptor with collagenous structure (MARCO), 

take up TIMP.8,9,10,11 A recent mechanistic study demonstrated uptake of TIMP by both 

macrophages and dendritic cells, TIMP localization to endolysosomes, altered APC 

transcriptional activity following TIMP uptake, upregulation of surface MHC class II 
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presentation of specific peptide, and induced downregulation of co-stimulatory 

molecules CD80 and CD86 on the surface of APC.12 Studies using nanoparticles or 

apoptotic cells have shown that treatment resulted in the upregulation of inhibitory 

ligands on macrophages, such as PD-L1, and the production of regulatory cytokines, 

such as interleukin 10 (IL10) and transforming growth factor beta (TGFB), in the 

spleen.7,13,14 Additionally, these antigen-specific therapies induced CD4+ T cell anergy, 

and the activation of CD4+ T-regulatory (Treg) cells.4,7,13,14 The overall result was a 

decrease in pro-inflammatory CD4+ and CD8+ T cell activity, reduction in leukocyte 

accumulation in tissues, and decreased clinical signs of disease.  

Based on these observations, we hypothesized that intravenous administration of 

gliadin protein encapsulated in TIMP (referred to as TIMP-GLIA), harboring 

immunodominant and subdominant gliadin epitopes 15,16, may restore peripheral 

tolerance to gluten. Here, we report results of the generation and subsequent preclinical 

evaluation of TIMP-GLIA, produced to good-manufacturing practices, and currently 

being tested in human phase 1/2 clinical trials. Administration of TIMP-GLIA proved 

highly effective at inducing gliadin immune tolerance and reduction of gliadin-specific 

inflammatory responses, including gluten enteropathy, in three rodent models of celiac 

disease. Previously identified gene targets of TIMP were confirmed, and several novel 

targets identified. Additional studies showed that TIMP-GLIA were biocompatible in 

human blood. 
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Materials and Methods 

Particle synthesis 

PLGA particles encapsulating gliadin from wheat (Sigma-Aldrich, St. Louis, MO) were 

fabricated using a double emulsion technique, by first dissolving 400 mg of PLGA 

(Lactel Absorbable Polymers, Birmingham, AL) in 2 mL of ethyl acetate. Subsequently, 

10 mg of gliadin was dissolved at 25 mg/ml in 0.05 M acetic acid, and added to the 

PLGA solution. The solution was emulsified by sonication for 30s at 100% amplitude 

using a Cole-Parmer CPX130 Ultrasonic Processor, equipped with a Cole-Parmer CV 

18 ultrasonic probe adapter and a Cole-Parmer 3 mm probe with stepped tip. 

Immediately after sonication, 10 ml of 1% w/v poly(ethylene-alt-maleic anhydride) 

(PEMA) or 2% poly(vinyl alcohol) (PVA; both from Polysciences, Warrington, PA) was 

poured into the first emulsion, and sonicated for an additional 30s at 100% amplitude. 

Following the second sonication, the emulsion was poured into 200 ml 0.5% PEMA or 

0.5% PVA, and was stirred overnight to remove residual organic solvents. The 

nanoparticles were then washed three times in 0.1 M sodium carbonate-sodium 

bicarbonate buffer, pH 9.6. The nanoparticles were then resuspended in 20 ml 3% w/v 

aqueous D-mannitol and 4% w/v aqueous sucrose, frozen in liquid nitrogen, lyophilized 

and stored for future use. The amount of protein encapsulated were determined from 

nanoparticles dissolved in DMSO, using the CBQCA Protein assay (Molecular Probes, 

Waltham, MA). PLGA nanoparticles encapsulating Cy5.5 dye, ovalbumin or lysozyme 

were prepared as previously described.4,6   
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Animals  

C57BL/6, RAG1-/- (C57BL/6) and HLA-DQ8, huCD4 transgenic Ab0 NOD mice 17 were 

purchased from The Jackson Laboratory, Bar Harbor, ME. All mice were housed under 

specific pathogen-free conditions in the Northwestern University Center for Comparative 

Medicine, or the University of Helsinki Laboratory Animal Centre, and were raised on 

normal chow, or gluten-free, standardized diet (AIN-76A; Research Diets, New 

Brunswick, NJ), as indicated. Some groups of mice were challenged with AIN-76A-

based diet containing 2.5 g wheat gluten/kg (Sigma Aldrich; prepared by Research 

Diets). To compare the effects of different treatments, some groups of mice were 

injected one or two times into the tail vein with TIMP-GLIA, control nanoparticles 

containing lysozyme (TIMP-LYS), ovalbumin (TIMP-OVA) or unloaded (TIMP; 

nanoparticle dose range 0.025-2.5mg, time points as indicated; each in 200µl of PBS), 

or 25-40µg soluble gliadin in 200µl of PBS. 

 

Gliadin delayed-type hypersensitivity (DTH) model 

Female C57BL/6 mice (6-7 weeks old) were immunized subcutaneously with 100µl of 

an emulsion containing 200µg of M. tuberculosis H37Ra (BD Biosciences, San Jose, 

CA) and 100µg of gliadin, distributed over three sites on the flank. Gliadin (SAFC, 

Madison, WI) was reconstituted from lyophilized powder in 50mM acetic acid (5 mg/ml).  

This gliadin solution was then further diluted for use in PBS.  Mice were treated 

intravenously with different nanoparticle preparations, on days -7, 0 or 7, as indicated. 
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On day 14 after priming, mice were bled, and tested for delayed type hypersensitivity 

(DTH). Mice were anaesthetized by inhalation of isoflurane, and baseline pinna 

thickness was measured for both ears using calipers (Mitutoyo Thickness Gage; Global 

Industrial, Port Washington, NY). Immediately following pinna thickness assessments, 

using a Hamilton syringe with a 30G1/2 needle, gliadin or negative control OVA protein 

(10µl at 1mg/ml) in PBS was intradermally injected into the left and right ear, 

respectively. The increase in ear thickness was determined after 24h, and the change in 

pinna thickness (∆ T) was calculated using the following equation: (∆T = (pinna 

thickness at 24hrs following elicitation) – (pinna thickness prior to elicitation)). Mice were 

then sacrificed, and cell suspensions from draining lymph nodes or spleens were 

prepared. 

 

HLA-DQ8 transgenic mouse model 

2 groups of female HLA-DQ8 mice were treated intravenously on days -11 and -3 with 

TIMP-GLIA, or TIMP-OVA, while 2 other groups remained without treatment 

(2.5mg/dose; n=11-19, 10-12 weeks of age, raised on gluten-free diet AIN-76A). On day 

0, mice from both the TIMP-GLIA, the TIMP-OVA and 1 control group of mice (IMMU 

ONLY) were injected at the base of the tail with 100 µg gliadin in complete Freund’s 

adjuvant, followed by 50 µg gliadin in incomplete Freund's adjuvant on day 14 (Sigma-

Aldrich). The second control group (NO TREATMENT) remained untreated. On days 

28-30, mice were anesthetized with ketamine/xylazine. Blood was collected retro-

orbitally, and serum stored at -20°C. Spleens were harvested for analyses. 
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Gliadin Memory T cell Enteropathy Model. Male C57BL/6 donor mice, raised on 

gluten-free diet AIN-76A, were injected at the base of the tail with 100 µg gliadin in 

complete Freund’s adjuvant, followed by 50 µg gliadin in incomplete Freund's adjuvant 

after 2 weeks (Sigma-Aldrich). CD3+ T cells were isolated after 4-5 weeks from spleen 

cell suspensions, using antibody-coated columns. Memory CD4+ T cells were isolated 

from CD3+ T cells using CD4+CD62L-CD44hi T cell columns, as reported (both 

columns from R&D Systems, Minneapolis, MN).18,19 Four groups of male Rag1-/- mice 

(n=16, 6-10 weeks of age, matched for body weight) were injected intraperitoneally on 

day 0 with 3 × 105 splenic CD4+CD62L-CD44hi T cells. Recipient mice were challenged 

until the end of the experiment with AIN-76A-based diets containing 2.5 g wheat 

gluten/kg, or no gluten added. Mice from 2 groups were either injected into the tail vein 

with TIMP-GLIA (2.5mg dose, in 200µl of PBS), or with 2.5mg of TIMP-LYS 

(nanoparticle treatment control), both on day 10 and 24. Mice were monitored and body 

weights were recorded for 8 weeks after adoptive transfers, and then mice were 

sacrificed for organ harvest. 

 

Statistics 

RNA sequencing data were analyzed with edgeR.20 Other data were analyzed with 

Prism 8 software (GraphPad, La Jolla, CA). Statistical comparisons were performed 

using paired or unpaired Student's t-tests, t-tests corrected for multiple testing using the 

Holm-Sidak method (alpha=0.05), one-way ANOVA and Tukey’s tests for comparisons 
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between multiple groups, or Kruskal-Wallis and Dunn’s tests for nonparametric data, as 

indicated. Means, medians, SD, SEM and interquartile ranges were calculated. 

Results 

Development of Tolerogenic Immune-Modifying Nanoparticles 

encapsulating gliadin extracted from wheat (TIMP-GLIA)  

Previous studies have demonstrated the importance of negative charge in 

nanoparticle tolerance induction.21 Therefore, we tested the potential for poly(lactide-co-

glycolide) (PLGA) nanoparticles with different zeta potentials to be taken up by 

macrophages, and for inducing immune tolerance in a gliadin-specific delayed-type 

hypersensitivity (DTH) model. Different formulations were prepared, using a double 

emulsion-solvent evaporation, and either poly(ethylene-alt-maleic acid) (PEMA)  as the 

stabilizing anionic surfactant, or poly(vinyl acetate) (PVA) as the neutral stabilizing 

surfactant. Particles encapsulated either the fluorescent dye Cy5.5, gliadin isolated from 

wheat, ovalbumin or no dye/protein (Fig 1A). PLGA-PEMA-Cy5.5 nanoparticles with 

high negative zeta potential (approx. -40 mV) interacted strongly with bone marrow-

derived macrophages, whereas PLGA-PVA-Cy5.5 nanoparticles with a more neutral 

zeta potential (approx. -20 mV) did not reach the same levels (Fig 1B). Correspondingly, 

in a gliadin DTH mouse model, intravenous treatment on days 0 and 7 with two 

injections of 2.5 mg/mouse PLGA-PEMA-GLIA following gliadin/CFA priming was 

associated with significant decreases in ear swelling when compared to control animals 

receiving either PLGA-PVA-GLIA, or PLGA-PEMA-OVA (Fig 1C). This result was similar 

to our previous findings 8,21, demonstrating that nanoparticles with higher negative 
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charge showed increased efficacy in reducing ear swelling in DTH models.  

Furthermore, the importance of nanoparticle encapsulation of protein was also 

confirmed, as the intravenous injection of 25 μg soluble (free) gliadin alone did not show 

any efficacy in reducing ear swelling in the gliadin DTH model (Fig 1D).  

 

Based on this experience, PLGA-PEMA nanoparticles encapsulating gliadin were 

prepared (now referred to as TIMP-GLIA; structure shown schematically in Fig 2A). 

Nanoparticles containing no protein, ovalbumin (TIMP-OVA), or lysozyme (TIMP-LYS) 

were synthesized as control particles (Fig 2B).6,8 The loading of TIMP with gliadin was 

controlled by adjusting the concentration of gliadin during formulation, and was aimed at 

10 ± 5 µg protein per mg of PLGA. To determine whether TIMP-GLIA or TIMP-OVA 

displayed antigen on the particle surface, surface protein binding of antigen-specific 

antibodies was measured by FACS. Less than 1% of TIMP were found to be positive for 

surface protein. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) and Western Blot confirmed the presence of gliadin α/β, γ and ω proteins in 

TIMP-GLIA (Fig 2C; Supplementary Fig 1). Scanning electron microscopy of TIMP-GLIA 

suspensions confirmed the size and a spherical morphology with a smooth surface (Fig 

2D). Additionally, in use stability testing showed that reconstituted TIMP-GLIA remained 

stable for up to at least 8 hours after rehydration, with burst release, average size and 

zeta potential remaining unchanged during this time (Fig 2E-G).  
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TIMP-GLIA tolerance induction in mice with delayed-type hypersensitivity 

to gliadin is dose-dependent, and effective when given before or after 

gliadin immunization. 

To analyze further the efficacy and specificity of TIMP-GLIA tolerance induction, 

we pre-treated mice on days -7 and day 0 in the DTH model. Intravenous pre-treatment 

with two injections of 0.025 mg - 2.5 mg/mouse (1.25 - 125 mg/kg) TIMP-GLIA prior to 

gliadin/CFA priming was not associated with any clinical symptoms or adverse events in 

mice. While pre-treatment with 0.025 mg/mouse (1.25 mg/kg) failed to show efficacy, 

doses of 0.25-2.5 mg/mouse (12.5-125 mg/kg) TIMP-GLIA were associated with 

significant decreases (p<0.0001) in ear swelling when compared to control animals 

receiving unloaded nanoparticles (IMP; Fig 3A). Immediately after measuring ear 

swelling, the spleens were collected and the CD4+ T cell populations present within the 

spleen examined by flow cytometry. The spleens of animals that had received two 

infusions of TIMP-GLIA had significantly reduced numbers of proliferating, interferon 

gamma (IFNG)-producing CD4+ effector T cells in the spleen, as determined by 

intracellular cytokine staining (Fig 3B; gating strategy in Supplementary Fig 2). The 

decrease in effector T cells observed in TIMP-GLIA treated animals correlated with a 

dose-dependent reduction in T cell proliferation (Fig 3C) in splenocyte cultures when 

restimulated with gliadin. Therefore, pre-treatment of mice with TIMP-GLIA prior to 

gliadin/CFA immunization induced a tolerogenic phenotype in gliadin-specific CD4+ T 

cells. Furthermore, this phenotype appeared to result in reduced T cell help, required for 

anti-gliadin antibody production, as treatment with 2.5mg/mouse TIMP-GLIA resulted in 

significant reduction in circulating levels of gliadin-specific IgG (Fig 3D).  
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Subsequently, TIMP-GLIA tolerization was also tested in mice following 

immunization. TIMP-GLIA was administered several hours after priming (day 0), and 

again on day 7 after immunization. While treatment with 0.025 mg/mouse (1.25 mg/kg) 

failed to show efficacy, doses of 0.25-2.5 mg/mouse (12.5-125 mg/kg) were associated 

with significant decreases in ear swelling when compared to controls (Fig 3E). The most 

robust decrease in DTH was observed in animals receiving 2.5 mg/mouse (a human 

equivalent of 10.16 mg/kg using body surface area). Animals that had received 0.25-2.5 

mg/mouse TIMP-GLIA had reduced numbers of proliferating, IFNG-producing CD4+ 

effector T cells in the spleen, compared to the lowest dose (Fig 3F). Gliadin recall 

experiments further demonstrated a dose-dependent effect. While spleen cells from 

animals receiving 0.025mg/mouse TIMP-GLIA showed unchanged T cell proliferation, 

two infusions of 0.25-2.5 mg/mouse/dose resulted in a significant inhibition of T cell 

proliferation (Fig 3G). Furthermore, TIMP-GLIA administration after immunization was 

associated with a reduction in circulating gliadin specific IgG (Fig 3H).  

In an additional experiment, we tested the effects of 2.5mg TIMP-GLIA vs. IMP, 

administered intravenously to mice both on days 0 and 7 after gliadin immunization, on 

cytokine secretion of ear draining lymph node cells or spleen cells restimulated with 

gliadin on day 15. The results demonstrated significant reductions in inflammatory 

cytokines IFNG and interleukin 17 (IL17), but not in regulatory cytokine IL10, in mice 

treated with TIMP-GLIA (Supplementary Fig 3A-F). Taken together, the data obtained in 

the DTH model showed that TIMP-GLIA induced gliadin-specific tolerance in a dose-

dependent fashion even in the context of a robustly activated immune response, without 

causing any apparent adverse effects.   
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TIMP-GLIA tolerance induction in transgenic mice expressing celiac 

disease-associated HLA-DQ8 

To address the potential of TIMP-GLIA to induce tolerance in the context of the 

human leukocyte antigen DQ8 risk allele (HLA-DQ8) associated with celiac disease, 

Ab0 NOD mice (mouse MHC II deficient) expressing HLA-DQ8 and human CD4 

transgenes were used.15 These mice, raised and maintained on a gluten free diet and 

subsequently immunized with gliadin/CFA, develop gliadin-specific B cell and CD4+ T 

cell responses. In this study, treatment of HLA-DQ8 mice with 2.5 mg/mouse (125 

mg/kg) TIMP-GLIA or TIMP-OVA control on days -11 and -3 prior to immunization with 

gliadin/CFA (Fig 4A), did not appear to alter the levels of circulating anti-gliadin IgG1 

(Supplementary Fig 4), but reduced the amount of T-helper 1 (Th1) cell-associated, 

complement-fixing anti-gliadin IgG2c, compared to TIMP-OVA control-treated mice (Fig 

4B). In addition, TIMP-GLIA treatment resulted in significant reductions of T cell 

proliferation (Fig 4C) and inflammatory cytokine secretion in response to gliadin 

restimulation of splenocytes (IFNG, IL17; Fig 4D, E). While only non-significant 

reductions were observed for interleukin 2 (IL2) and the regulatory cytokine IL10 (Fig 

4F, G), TIMP-GLIA treatment increased regulatory T cell specific forkhead box P3 

(Foxp3) mRNA expression by gliadin-restimulated splenocytes in RT-qPCR (resulting in 

significant reductions of ∆CT values vs. TIMP-OVA, Fig 4H). Together, these results 

demonstrate gliadin-specific tolerance induction by TIMP-GLIA in HLA-DQ8 mice, and 

the involvement of FOXP3+ Tregs in the modulation of the gliadin recall response.  

To further characterize mechanistic pathways involved in TIMP-GLIA tolerance 

induction, we performed RNA sequencing of gliadin-restimulated splenocytes from three 
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groups of treated HLA-DQ8 mice (TIMP-GLIA, TIMP-OVA, IMMU ONLY; Fig 4A), more 

than four weeks after the last dose of TIMP-GLIA had been administered. We found 77 

genes differentially expressed, either between TIMP-GLIA vs. TIMP-OVA treated mice, 

or TIMP-GLIA vs. IMMU ONLY (Supplementary Fig 5). Of these, 15 genes showed 

significant differences in both comparisons, thus reconfirming results. A comparison 

between TIMP-OVA and IMMU ONLY did not reveal any differentially expressed genes, 

supporting an antigen-specific effect on gene regulation by TIMP-GLIA (Venn diagram, 

Fig 4I). The identities of these 15 genes, and their expression levels between samples 

from different groups, revealed long-term changes induced by TIMP-GLIA treatment in 

pathways of APC function (Tspan13, Cd83, Nrp2), B cell activation and differentiation 

(Cd79a, Ms4a1/Cd20, Ms4a4c), MHC II peptide loading (H2-DM, H2-O) and T cell 

cytokine secretion (Il17a, Il17f; gene expression heatmap, Fig 4J). The RNA sequence 

data has been deposited to NCBI Gene Expression Omnibus (Accession No.: 

GSE140736). 

 

TIMP-GLIA tolerance induction reverses gliadin memory T cell enteropathy in 

mice  

Based on the robust treatment responses observed above, we determined the 

efficacy of TIMP-GLIA in an adoptive gliadin memory T cell transfer model of celiac 

disease. In contrast to the animal models above, this model mimics the gluten-

dependent enteropathy characteristic of celiac disease.18,19 Splenic CD4+CD62L-

CD44hi memory T cells isolated from gliadin immunized C57BL/6 donor mice were 

transferred into four groups of male Rag1-/- mice (n=16; matched for body weight). On 
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the same day, three of the groups were introduced to a gluten-containing diet, while one 

group remained on gluten-free diet (GFD negative control). Mice from two groups on 

gluten-containing diet were subsequently treated on days 10 and 24 with 2.5 mg/mouse 

(125 mg/kg) of TIMP-GLIA i.v., or TIMP-LYS (nanoparticle treatment control), while the 

third group on gluten-containing diet did not receive injections with nanoparticles 

(GLUTEN diet positive control; Fig 5A). For statistical analysis, we combined four 

matched experiments, all showing similar results. As is typically seen in this model, the 

GLUTEN positive control group gained less body weight until week 4, and subsequently 

lost weight more rapidly, when compared to the GFD control. However, mice in the 

TIMP-GLIA group were protected from weight loss over the entire study period, similar 

to gluten free diet control animals. In comparison, the TIMP-LYS treatment control 

group lost weight, and did not differ significantly from GLUTEN diet control (Fig 5B). In 

agreement with this result, treatment with TIMP-GLIA significantly reduced the severity 

of histological duodenitis compared to GLUTEN positive control, while TIMP-LYS 

treatment did not, indicating that the effect of TIMP-GLIA on small bowel pathology was 

antigen-specific (Fig 5C). Duodenal sections that exemplify histological duodenitis 

severity scores of normal, mild, moderate or severe duodenitis are shown (Fig 5D-G; 

hematoxylin/eosin staining). 

Consistent with results in HLA-DQ8 mice, treatment with TIMP-GLIA reduced 

secretion of pro-inflammatory IFNG, IL17, and IL2 cytokines by spleen cells 

restimulated with gliadin, compared to GLUTEN positive control or TIMP-LYS treatment 

control (Fig 5H-J), but not of regulatory cytokine IL10 (Fig 5K). Thus, TIMP-GLIA 

treatment inhibited gliadin-specific Th1/T-helper 17 (Th17) cell responses, while not 
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altering the IL10-mediated regulatory response. In summary, treatment with TIMP-GLIA 

reversed the effects of dietary gluten exposure also in this intestinal celiac disease 

model, similar to the effect of GFD (negative control), while control treatment with TIMP-

LYS showed minor effects only. Therefore, the findings confirmed that TIMP-GLIA 

treatment induced a tolerogenic phenotype within the gliadin-specific T cell population. 

 

TIMP-GLIA clearance and biodistribution 

To determine TIMP-GLIA circulating time, C57BL/6 mice were injected intravenously 

with 2.5mg TIMP-GLIA vs. 40µg soluble gliadin. Gliadin in plasma was quantified over 

24h. The gliadin plasma concentration after injection of TIMP-GLIA peaked at 1h, 

rapidly declined until 4h, and had returned to basline at 24h after injection, as 

determined by ELISA (Fig 6A).  

 

Human peripheral blood monocyte (PBMC)-derived dendritic cells maintain an 

immature phenotype when treated with TIMP-GLIA, consistent with the induction 

of tolerance 

TIMP induced antigen-specific tolerance has been shown in rodent models to 

harnesses physiological systems of apoptotic cellular debris clearance and homeostasis 

to induce T cell non-responsiveness. To address whether TIMP-GLIA is being perceived 

as apoptotic by APCs, such as dendritic cells (DC), in humans, we next examined the 

potential for TIMP-GLIA to induce PBMC derived DC maturation, following a reference 

protocol. Primary cultures of human monocytes were treated with interleukin 4 (IL4) and 

granulocyte-macrophage colony-stimulating factor (GM-CSF) for 7 days to generate 
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immature DC. Maturation of DC was assessed by flow cytometry, following culture of 

the resultant immature DCs in the presence of TIMP-GLIA at increasing doses for 48hrs 

(0.008 mg/ml – 2 mg/ml). No increases in the surface expression of HLA-ABC, HLA-DR, 

CD14, CD83, CD80 or CD86 were observed in comparison to negative control, or 

immature DC that were cultured in the presence of LPS (Fig 6 B-D). Together the data 

show that TIMP-GLIA did not result in activation of human monocyte-derived DC, but in 

maintenance of low levels of co-stimulatory molecules and HLA, suggesting a 

tolerogenic DC phenotype.  

 

TIMP-GLIA shows promising human in vitro biocompatibility, and is non-

activating when incubated with PBMC from CD patients and controls 

The induction of tolerance using the TIMP platform is contingent upon 

intravenous infusion. Following reference protocols, we determined the biocompatibility 

of TIMP-GLIA, by adding into human blood increasing doses of TIMP-GLIA, spanning 

the theoretical plasma concentration, calculated from the TIMP-GLIA mouse 

optimum/human equivalent dose (0.127mg/ml; Supplementary Fig 6A). TIMP-GLIA did 

not trigger hemolysis (Supplementary Fig 6B), platelet activation (Supplementary Fig 

6C), platelet aggregation (Supplementary Fig 6D), or complement activation (as 

determined by levels of Bb plus, C4d and iC3b; Supplementary Fig 6E-G). Coagulation 

studies showed no abnormalities in prothrombin time (extrinsic pathway) at any 

concentration, whereas prolonged partial thromboplastin time (intrinsic pathway) and 

thrombin time (common pathway) were observed only at concentrations exceeding the 
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theoretical plasma concentration (Supplementary Figure 5H-J). Taken together, the 

findings suggest compatibility of TIMP-GLIA for intravenous infusion.  

Finally, the potential of TIMP-GLIA to non-specifically activate CD3+ T cells of 

celiac disease patients or healthy controls was analyzed (clinical data shown in 

Supplementary Table 2). No proliferation of PBMC was detected with increasing 

concentrations of TIMP-GLIA, exceeding the theoretical plasma concentration, 

confirming that no direct activation of blood T cells by TIMP-GLIA occurred (Fig. 6E). 

This was further supported by a lack of IFNG or IL2 T cell cytokine secretion (Fig. 6F, 

G).  
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Discussion 

Immune tolerance is a state of unresponsiveness of the immune system to foreign or 

self-antigens. The natural development of unresponsiveness to harmless stimuli from 

food, including gluten, is called oral tolerance. Oral tolerance to gluten is broken in 

celiac disease, for reasons unknown, and the re-establishment of oral tolerance to 

gluten is the goal of antigen-specific immunotherapy of celiac disease with TIMP-GLIA. 

While sustained unresponsiveness to food antigen may be achieved as a result of an 

intervention, as exemplified by oral immunotherapy of food allergy 22, such therapies are 

not available for the treatment of celiac disease. 

Gliadin-specific CD4+T cells of celiac disease patients secrete cytokines IFNG and IL2 

in response to dietary gluten, provide T cell help to gliadin- or TG2-specific B cells for 

antibody production, and orchestrate the immune response in the celiac mucosa, 

leading to villous atrophy, crypt hyperplasia and mononuclear cell infiltration.1, 2 In 

addition, several reports demonstrate that the CD4+ T cell cytokine IL17 is 

overexpressed in active celiac disease 23,24, and is detected early in serum in response 

to gluten challenge.25 There is no single experimental model that fully reflects human 

celiac disease.26 Therefore, testing of TIMP-GLIA was performed using three different 

mouse models, each featuring major disease characteristics associated with human 
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celiac disease. The presented results demonstrate preclinical efficacy and safety 

supporting the clinical translation of TIMP-GLIA for the treatment of celiac disease. 

TIMP-GLIA inhibited the proliferation and cytokine IL2, IFNG and IL17 secretion of 

gliadin-stimulated T cells, while secretion of the regulatory cytokine IL10 remained 

unchanged. In addition, TIMP-GLIA increased Foxp3 expression by Treg cells 

stimulated with gliadin, decreased the anti-gliadin antibody production by B cells, and 

reduced gliadin-specific DTH, histological gluten-dependent enteropathy and body 

weight loss. Unloaded or control antigen-loaded TIMP used as treatment control did not 

show comparable effects. In summary, TIMP-GLIA induced gluten unresponsiveness in 

mice in an antigen-specific and dose-dependent fashion. If similar effects were induced 

by treatment of celiac disease patients with TIMP-GLIA, this might lead to 

unresponsiveness to oral gluten, and potentially, cure of celiac disease. 

 

TIMP-GLIA was designed with antigenic gliadin protein that encompasses an array of 

gliadin-specific T cell epitopes. Importantly, not a single one of the many identified 

gliadin T cell peptides is recognized by more than two thirds of celiac disease patients.27 

Therefore, treatments aimed at restoring unresponsiveness to gliadin may need to 

modulate a variety of T cell clones, specific for a broad set of gliadin peptides.15,16,28 

Gliadin was successfully solubilized and encapsulated into PLGA nanoparticles with a 

zeta potential of approximately -40 mV, under current good manufacturing practices. 

The TIMP-GLIA treatment approach is based on harnessing the physiological 

propensity of ‘tolerogenic’ APCs to process and present peptide epitopes from intact 

proteins, thus avoiding gliadin peptide selection bias, and allowing APCs to present the 
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full spectrum of T cell epitopes from gliadin protein.  

 

Since gliadin T cell epitopes frequently contain deamidated glutamine (glutamic acid) 

residues 15,16,28, we note that as a result of the protein solubilization procedure in acetic 

acid, gliadin encapsulated in TIMP-GLIA is already partially deamidated.29 Processing of 

TIMP-GLIA by APC, equipped with enzymes that can further deamidate glutamine 

residues of gliadin peptides, most importantly tissue transglutaminase (TG2) 30,31, may 

lead to the presentation of both native and deamidated gliadin peptides. Irrespective, 

gliadin-specific T cells isolated from the intestine of celiac disease patients have 

frequently been shown to respond to both deamidated and native gliadin protein. 

 

In this study, TIMP-GLIA was not associated with any drug-related toxicity in mice. In 

addition, a good laboratory practice repeat dose toxicology study was conducted in rats. 

This study found that TIMP-GLIA had a no observed adverse effect level of 75 mg/kg 

(human equivalent dose of ~12 mg/kg/day; HED), a level exceeding the HED calculated 

from the mouse optimum dose in our study (10.16 mg/kg/day). Further, a toxicokinetic 

(pK) analysis was performed in rats with increasing doses of TIMP-GLIA. This study 

determined that the maximum concentration and the area under the curve increased in 

proportion to the dose of TIMP-GLIA administered. The maximum plasma fraction was 

reached at 0.083 hours after dosing. The half-life of TIMP-GLIA ranged from 5.94 to 

6.94 hours. In a completed, FDA-monitored phase 1 safety study of TIMP-GLIA 

(NCT03486990), and in a completed randomized, double-blind, placebo-controlled 

phase 2 trial of TIMP-GLIA (NCT03738475), no toxicity was noted in celiac disease 
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patients (unpublished results). Our human studies in vitro showed that TIMP-GLIA does 

not cause complement activation, hemolysis, platelet activation or aggregation, or 

activation/interference with coagulation at the estimated plasma concentration. Similar 

findings have been described for other PLGA nanoparticle formulations.32 Surface 

characteristics, charge, and size have been identified as key factors important in limiting 

adverse interactions of nanoparticles with blood components and the innate immune 

system. Although TIMP-GLIA does not possess direct T cell targeting moieties, in this 

study the response by PBMCs isolated from celiac disease patients to TIMP-GLIA was 

also assessed. The results demonstrate that TIMP-GLIA does not lead to direct, broad 

T cell activation or T cell inflammatory cytokine secretion. Together these observations 

indicate safety of TIMP-GLIA, and its compatibility with intravenous administration.  

 

Until now, none of the attempts to induce tolerance in human autoimmune diseases 

through oral, subcutaneous, or intramuscular antigen administration have led to the 

development of an approved drug. This has been proposed to be a result of antigen 

delivery to pro-inflammatory APC populations in the periphery, expressing high levels of 

MHC II and positive co-stimulatory molecules, which are associated with robust Th1 cell 

immune responses.33 Induction of tolerance with intradermal injection of a solution of 

three immunodominant gliadin peptides has recently been attempted (NexVax2; 

ImmusanT, Inc.).34, 35 Administration of gliadin peptides via this route triggered cytokine 

release, nausea and vomiting in celiac patients. Interestingly, plasma cytokine levels 

and treatment-emergent adverse events were diminished upon repeated intradermal 

administration of peptides. No evidence for unresponsiveness to dietary gluten was 
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demonstrated in these clinical studies. Here, we show that the targeted delivery of 

gliadin to apoptotic pathways in the spleen by intravenous infusion of TIMP-GLIA in 

mice leads to the suppression of inflammatory T and B cell responses upon gliadin 

recall, and the reduction of gliadin-/gluten-dependent organ pathology. Clinical efficacy, 

safety and durability of gliadin-specific immunotherapies remains to be demonstrated in 

celiac disease patients. 

 

TIMP-GLIA size, charge, and route of administration are designed to direct gliadin to 

APCs within the spleen and liver. Similar PLGA particles have been shown to be taken 

up in a tolerogenic fashion by APCs.4,5,6,7,8,12 Here we show that TIMP-GLIA at 

concentrations derived from mouse optimum/human equivalent doses does not trigger 

human monocyte-derived dendritic cell maturation, or proinflammatory pathways. In 

addition to these direct effects on APC, we characterized the long-term 

immunomodulatory signature of TIMP-GLIA. Changes in the gliadin recall response of 

spleen cells from tolerized HLA-DQ8 transgenic mice were identified more than four 

weeks after the last dose had been administered (RNAseq; RT-qPCR; cytokine ELISA). 

Genes modulating APC function (Tspan13, Cd83, Nrp2), MHC class II peptide 

presentation (H2-DM, H2-O), B cell activation/differentiation (Cd79b, Ms4a1/Cd20, 

Ms4a4c) and T cell differentiation/cytokine secretion (Foxp3, Ifng, Il17, Il2) were 

identified as directly or indirectly regulated targets, confirming earlier but more limited 

results using antigens coupled to apoptotic cells 13,14 or contained in PLGA 

nanoparticles.7 Collectively, these results indicate that TIMP-GLIA modulates the 
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response of gliadin memory B and T cells, consistent with the treatment outcomes in 

three celiac mouse models in our study.  

 

Interestingly, the modulation of HLA class II gliadin presentation by HLA-DM and HLA-

DO has already been identified as a therapeutic opportunity in celiac disease. The 

celiac disease-associated risk alleles HLA-DQ2.5 and HLA-DQ8 appear to interact 

poorly with HLA-DM, resulting in prolonged retention of gliadin peptides, and increased 

effector T cell stimulation.36 Increased expression of HLA-DM and/or HLA-DO in APCs, 

as a long-term effect of TIMP-GLIA treatment, may improve the efficiency of gliadin 

peptide exchange, thus inhibiting HLA-DQ2.5- and HLA-DQ8-restricted gliadin 

presentation.  

 

Successful reintroduction of durable immune tolerance to gluten would represent a cure 

for celiac disease patients. The evidence provided here supports the ability for TIMP-

GLIA to establish sustained unresponsiveness to gluten in mice, which in the context of 

human disease may not only alleviate the need for a gluten-free diet, but might also 

reduce disease complications such as secondary autoimmune diseases, bone loss or 

lymphoma. The therapeutic potential of TIMP-GLIA is currently under investigation in 

phase 1/2 clinical trials (NCT03486990 and NCT03738475). 
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Figure Legends 

Figure 1: Development of Tolerogenic Immune-Modifying Nanoparticles 

encapsulating gliadin (TIMP-GLIA) (I). A) Six different formulations of nanoparticles 

were prepared for testing, using either PEMA or PVA as stabilizing surfactant, and 

encapsulating either Cy5.5 dye, gliadin or ovalbumin (or remaining unloaded). Size, 

charge and protein loading were measured (mean +/- SD). B) PLGA-PEMA-Cy5.5 or 

PLGA-PVA-Cy5.5 particles were added to bone marrow-derived macrophage cultures. 

Cells were analyzed by flow cytometry for mean fluorescence intensity, or for 

percentage of Cy5.5+/DAPI- live cells (triplicates; mean +/- SD). C) Intravenous 

treatment effect of PLGA-PEMA-GLIA, PLGA-PVA-GLIA or PLGA-PEMA-OVA in the 

gliadin DTH mouse model. Ear thickness was measured 24h after injection of either 

gliadin or ovalbumin (n=5; ∆ mean ear thickness +/- SEM; x10-4in). D) Treatment effect 

of PLGA-PEMA-GLIA, soluble gliadin or PLGA-PEMA (unloaded) in the gliadin DTH 

mouse model (n=5; ∆ mean ear thickness +/- SEM; x10-4in). Statistical analyses were 

performed using one-way ANOVA and Tukey’s multiple comparison test (C, D; *p≤0.05, 

**p≤0.01, ***p≤0.001) 

 



 

28 

Figure 2: Development of Tolerogenic Immune-Modifying Nanoparticles 

encapsulating gliadin (TIMP-GLIA) (II). A) Schematic representation of TIMP. B) Four 

different formulations of PLGA-PEMA nanoparticles were prepared for testing, 

encapsulating either gliadin (TIMP-GLIA), ovalbumin (TIMP-OVA) or lysozyme (TIMP-

LYS), or remaining unloaded (IMP). Size, charge, protein loading (mean +/- SD) and 

percentage of particles positive for surface protein (FACS) were analyzed. C) SDS-

PAGE of gliadin preparation used for production of TIMP-GLIA (duplicates, central 

rows). D) Scanning electron microscopy of a representative TIMP-GLIA suspension. E-

G) Analysis of TIMP-GLIA stability in water over 8h, measuring protein release (E), size 

(F) and charge (G; triplicates, mean +/- SD). 

 

Figure 3: TIMP-GLIA tolerance induction in mice with delayed-type 

hypersensitivity to gliadin.  A-H) C57BL/6 female mice (n=5) were treated with TIMP-

GLIA, or unloaded control particles (IMP), either on days -7 and 0 (A-D), or days 0 and 

7 (E-H). Mice were primed with gliadin in CFA on day 0. A, E) On day 14 post priming, 

mice were injected with gliadin or ovalbumin (OVA) into the ear pinna for DTH analysis 

(∆ mean ear thickness after 24h +/- SEM; x10-4in). B, F) The numbers of live, 

CD3+/CD4+/Ki67+/IFNG+ splenic effector T cells were determined (Teffs; mean +/- 

SEM; flow cytometry). C, G) To assess proliferation, spleen cells were stimulated with 

anti-CD3, OVA, or gliadin (mean counts per minute +/- SEM; 3H-TdR incorporation). D, 

H) Serum anti-gliadin IgG antibody levels were analyzed, testing serial dilutions (mean 

concentration +/- SEM; ELISA). Statistical analyses were performed using one-way 
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ANOVA and Tukey’s multiple comparison test (A-H; *p≤0.05, **p≤0.01, ***p≤0.001, 

****p≤0.0001). 

 

Figure 4. TIMP-GLIA tolerance induction in transgenic mice expressing celiac 

disease-associated HLA-DQ8.  A) Experimental design. B) Serum anti-gliadin IgG2c 

antibody titers in groups of HLA-DQ8 mice, treated according to A (n=11-19; ELISA). C) 

Proliferation of spleen cells (n=8-9; BrdU ELISA). Data expressed as proliferation ratios, 

relating to anti-CD3/anti-CD28 positive control. D-G) IFNG, IL17, IL2 and IL10 cytokine 

concentrations in supernatants of spleen cells stimulated with gliadin, ovalbumin 

(negative control) or anti-CD3/anti-CD28 (positive control; n=11-19; ELISA). H) Foxp3 

mRNA expression by spleen cells in response to gliadin restimulation (n=9-18; RT-

qPCR). Results expressed in ∆CT values (reductions of ∆CT reflect increases in Foxp3 

mRNA expression). I) Venn diagram depicting the numbers of genes differentially 

expressed in spleen cells restimulated with gliadin, in 3 separate comparisons between 

3 groups of HLA-DQ8 mice (n=13-16; RNAseq). J) Heat map depicting the up- (red) or 

down-regulation (yellow) of 15 genes differentially expressed after treatment with TIMP-

GLIA (n=13-16, adjusted p-value p≤0.05; RNAseq). Statistical analyses were performed 

using one-way ANOVA and Tukey’s multiple comparison test (B, H), t-tests corrected 

for multiple testing using the Holm-Sidak method (C-G) or edgeR (I, J). In plots B-H, 

significant results are indicated for comparisons between TIMP-GLIA and TIMP-OVA 

groups only (*p≤0.05, **p≤0.01). 
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Figure 5. TIMP-GLIA tolerance induction reverses gliadin memory T cell 

enteropathy in mice. A) Experimental design. B) Total body weight development in 

four groups of Rag1-/- mice, treated according to A (n=14-16; data expressed as 

percentage of starting weight). C) Histological duodenitis severity scores (n=14-16; max. 

score 9). D-G) Hematoxylin/eosin staining of duodenal sections. Examples represent 

histological scores of D) 0 (normal), E) 3 (mild), F) 6 (moderate), or G) 9 (severe) 

duodenitis. Note increased villus and basal mononuclear cell infiltration, reduced villus-

to-crypt ratios, and development of crypt abscesses with increasing scores. H-K). IFNG, 

IL17, IL2 and IL10 cytokine secretion in response to gliadin, or ovalbumin (Ova, 

negative control), in relation to anti-CD3/anti-CD28 antibody (positive control; n=9-12; 

ELISA; data expressed as cytokine secretion ratios). Statistical analyses were 

performed using one-way ANOVA and Tukey’s multiple comparison test (*p≤0.05, 

**p≤0.01, ***p≤0.001). 

 

Figure 6. TIMP-GLIA clearance, and interaction with human peripheral blood 

mononuclear cells (PBMC). A) Naïve C57BL/6 mice (n=3 per time point) were injected 

intravenously with either 2.5mg of TIMP-GLIA, or 40ug of free gliadin (corresponding 

amount). Mice were bled at 5min, 1h, 4h, and 24h. Collected plasma samples were 

assessed for the level of free gliadin (ELISA; mean concentration +/- SEM). B-D) 

Immature dendritic cells derived from human PBMC (n=6-9) were treated with vehicle 

(PBS), LPS 20 ng/mL (positive control) or TIMP-GLIA at increasing concentrations for 

48 hours. Surface expression of HLA-ABC and HLA-DR (B), CD80 and CD86 (C) and 

CD14 and CD83 (D) were determined by flow cytometry (mean channel fluorescence; 
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mean ± SD). E-G) Human PBMC from celiac disease patients on normal or gluten free 

diet, or healthy controls, were stimulated with anti-CD3 antibody (positive control) or 

TIMP-GLIA at increasing concentrations (triplicates; n=9-11). Proliferation (E), and IFNG 

(F) or IL2 (G) cytokine secretion were measured after 72h. Data is expressed as 

proliferation index (relating to unstimulated cells; luminescent cell viability assay), or 

cytokine concentrations (V-Plex assay). Statistical analyses were performed using 

paired t-test, compared to vehicle group (B-D; *p≤0.05).  
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Supplementary Figure Legends 

Supplementary figure 1. Western Blot of gliadin preparation used for production of 

TIMP-GLIA (duplicates; molecular weight (kDa) of standard proteins indicated). 

 

Supplementary figure 2. Gating scheme for flow cytometric analysis, of results 

presented in figure 3B and F. 

 

Supplementary figure 3. Cytokine secretion in the gliadin DTH model of draining 

lymph node or spleen cells restimulated with gliadin ex vivo. C57BL/6 mice (n=5) 

were treated both on days 0 and 7 with 2.5mg TIMP-GLIA i.v., or unloaded control 

particles (IMP). Mice were primed with gliadin (100µg/mouse) in CFA on day 0. On day 14, 

mice were injected with 10ug gliadin into the ear pinna. On day 15, draining lymph node 

(A-C) or spleen cells (D-F) were collected, and restimulated in culture medium with anti-

CD3 (1µg/ml), OVA, or gliadin (20µg/ml). Cytokines IFN, IL-17 and IL-10 were measured 

in supernatants. Data are presented as the mean concentration +/- S.E.M. Statistical 

analyses were performed with t-tests, corrected for multiple testing using the Holm-Sidak 

method (alpha=0.05; *p≤0.05, **p≤0.01, ***p≤0.001). 

 

Supplementary figure 4. Serum anti-gliadin IgG1 antibody titers in groups of HLA-

DQ8 mice, treated according to figure 4A (n=11-19; ELISA). Statistical analyses were 

performed using one-way ANOVA and Tukey’s multiple comparison test (****p≤0.0001). 

Results for comparisons between TIMP-GLIA, TIMP-OVA and IMMU ONLY groups were 

non-significant. 

 



Supplementary figure 5. Gene expression in gliadin-restimulated spleen cells from 

transgenic mice expressing celiac disease-associated HLA-DQ8. Heat map depicting 

the expression of 77 genes in three groups of HLA-DQ8 mice (TIMP-GLIA, TIMP-OVA, 

and additional immunized control receiving no treatment with nanoparticles (IMMU 

ONLY)). Shown is the up- (red) or down-regulation (yellow) of 77 genes differentially 

expressed in spleen cells restimulated with gliadin, either in comparison between TIMP-

GLIA and TIMP-OVA, or between TIMP-GLIA and IMMU ONLY (n=13-16, adjusted p-

value p≤0.05; RNAseq). No genes were differentially expressed between TIMP-OVA and 

IMMU ONLY. Statistical analyses were performed using edgeR. 

 

Supplementary figure 6. TIMP-GLIA human biocompatibility in vitro. A) Calculation of 

TIMP-GLIA human equivalent dose (HED) and theoretical plasma concentration, 

calculated from mouse optimum dose. B-D) Effects of TIMP-GLIA on red blood cells and 

platelets. Hemolysis (B) was analyzed by incubation of whole blood with TIMP-GLIA at 

increasing concentrations vs. Triton X-100 (positive control), PBS (negative control) or 

nanoparticle formulation buffer (vehicle control), followed by measurement of hemoglobin 

concentration in supernatants (spectrophotometry). Data expressed as percentage of 

whole blood hemoglobin concentration. Platelet activation (C) and aggregation (D) was 

analyzed by measuring  ATP release from platelets (luciferase:luciferin bioluminescence), 

or sample turbidity, after incubation of platelet rich plasma with TIMP-GLIA at increasing 

concentrations vs. collagen (positive control) or PBS (negative control). Area under the 

curve (AUC) was calculated for each sample. E-G) Effects of TIMP-GLIA on complement. 

Production of complement factors Bb (E), C4d (F) and iC3b (G), indicative of complement 

activation, were analyzed by EIA after incubation plasma with TIMP-GLIA at increasing 

concentrations vs. cobra venom factor (CVF) and heat aggregated gamma globulin 



(HAGG) positive controls, or PBS and nanoparticle formulation buffer (saline) negative 

controls. H-J) Effects of TIMP-GLIA on coagulation. Prothrombin time (H), activated partial 

thromboplastin time (I) and thrombin time (J) was measured after addition to plasma of 

TIMP-GLIA at increasing concentrations vs. control (saline). Abnormal and normal plasma 

samples were run as quality controls. All samples were tested in duplicate. Shown is the 

mean ± SD. Statistical analyses were performed using paired t-test, compared to vehicle 

group (B-J; paired t-test, comparison to negative control, *p≤0.05).  

 

 

Supplementary Tables 

Supplementary table 1. Primers used in this study for RNA sequencing. Design 

based on the oligonucleotides used by Macosko EZ et al.20 

 

Supplementary table 2. CD patient and healthy PBMC donor characteristics. Donors 

with diagnosed celiac disease were divided into two cohorts, based on their dietary 

treatment status (gluten free vs. non-gluten free diet). Age, gender, and year of celiac 

diagnosis were self-reported. HLA-DQ2/-DQ8 status was determined by PCR-SSOP. 
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Supplementary figure 4 
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Supplementary figure 5 
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(i) Mouse to human dose translation (modified from NCI National Nanotechnology Laboratory study protocols)
From the experiments displayed in figures 3-5, the optimum dose of TIMP-GLIA in mice is 125 mg/kg.
Human equivalent dose (HED), calculated from mouse optimum dose: 125 mg/kg ÷12.3 =10.16 mg/kg

(ii) Translation of HED to in vitro dose
An average person of 70 kg body weight has approximately 5.6 L of blood. Assuming all nanoparticles injected 
go into the systemic circulation, this provides a rough approximation of the potential maximum nanoparticles 
concentration in a human. The theoretical plasma concentration, i.e. in vitro test concentration is calculated by:

Theoretical Plasma Concentration    = Human dose ÷ human blood volume
= (70 kg x 10.16 mg/kg) ÷5.6 L
= 0.127 mg/mL

Supplementary Figure 6
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percent of hemolysis was 78.9%.  The hemoglobin levels for the negative and vehicle control 

samples were below the level of detection. In this assay, removal of TIMP-GLIA2 Batch #36092 

was not performed but was tested at all four concentrations in the presence (Figure 3A) and absence 

of TBH (Figure 3B). 
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Figure 3. Percent Hemolysis from Blood Treated with TIMP-GLIA2 Batch #36092 vs. 
TIMP-GLIA2 Batch #36092 Alone. TIMP-GLIA2 Batch #36092 with total blood hemoglobin 
diluted (TBHd) (Panel A) and TIMP-GLIA2 Batch #36092 without TBHd (Panel B). 

 

The assay also included IEC controls to determine the potential interaction of the test nanoparticle 

and PFH which might mask Bb from detection by the assay.  The IEC was prepared by spiking 

cell-free supernantants, obtained from the positive control sample, with nanoparticle at 

concentrations matching those analyzed in the assay.  To determine if the Sponsor’s nanoparticle 

TIMP-GLIA2 Batch #36092 interfered with the detection of the assay, PFH along with TBH were 

exposed to TIMP-GLIA2 Batch #36092 (2.0, 0.2, 0.04, and 0.08 mg/mL) (Figure 4).  The 

Sponsor’s nanoparticle showed no influence on the detection levels with each control. 
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Supplementary Materials and Methods: 

Nanoparticle size and ζ potential  

Particle size and surface ζ potential distributions were obtained using dynamic light 

scattering on a Zetasizer Nano ZSP (Malvern Instruments, Westborough, MA).  

 

Macrophage cell culture 

Bone marrow from the tibia and femurs of C57BL/6J mice were harvested to obtain a 

primary population of antigen presenting cells (APCs). Cell media consisted of RPMI 1640 

supplemented with glutamine (Life Technologies, Carlsbad, CA), penicillin (100 units/mL), 

streptomycin (100 mg/mL), 10% heat-inactivated fetal bovine serum (Invitrogen 

Corporation, Carlsbad, CA). For Bone marrow derived macrophages (BMMΦ), the 

culturing media was further supplemented with 20% L929 conditioned media on days 3 

and 6. Unless otherwise mentioned, day-8 BMMΦ were used for all in vitro experiments. 

The macrophages were removed using versene treatment. The cell numbers and viability 

were determined using Trypan blue solution and Countess™ Automated Cell Counter (Life 

Technologies, Carlsbad, CA).  

Day-8 BMMΦs were seeded in sterile 24-well plates at a concentration of 1.25 x 105 

cells/well. They were treated with 30 µg/mL of PLGA-PEMA-Cy5.5 or PLGA-PVA-Cy5.5 

nanoparticle formulations, and incubated at 37°C an d 5% CO2 for up to 8h. Cells were 

collected at different time points and analyzed by flow cytometry for mean fluorescence 

intensity, or for percentage of Cy5.5+/DAPI- live cells.   

 

Nanoparticle surface protein measurement 

The surface protein of TIMP-OVA and TIMP-GLIA was measured as previously 

described.6 Briefly, 50 µg of nanoparticles were incubated with 10 µg/mL of anti-OVA-IgG1 



(Sigma-Aldrich) or anti-alpha gliadin (clone G12; Biomedal, Sevilla, Spain) for 30 minutes 

at 4°C, washed, incubated with biotinylated anti-Ig G1 (BD Biosciences, San Jose, CA) 

followed by washing and incubation with 2.5 µg/mL streptavidin-FITC (eBioscience, San 

Diego, CA). After a final wash, fluorescence was measured on a BD FACSCanto 

cytometer (BD Biosciences). 

 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gliadin 

extract 

SDS-PAGE was carried out using a 4-15% Mini-PROTEAN TGX Stain-Free gel and Tris-

glycine running buffer (pH 8.3) containing SDS. The purified gliadin extract (10 µg protein) 

was dissolved in 15 µL of 0.05M acetic acid, to which Laemmli sample buffer and 2-

mercaptoethanol were added. The sample was heated at 95°C for 5 min before allowing to 

cool to room temperature and loading the sample into the gel. BIO-RAD Precision Plus 

Protein Unstained Standards (10-250 kD) were used as markers. The running time was 75 

min at 110 V. The gel was scanned using a ChemiDoc imaging system (Bio-Rad, 

Hercules, CA).  

 

Gliadin Western Blot 

A solution of gliadin in 50 mM acetic acid (5 mg/ml) was mixed with Bolt LDS Sample 

Buffer (cat #B0007; Invitrogen) and Bolt Sample Reducing Agent (cat #B0009; Invitrogen), 

and reduced on a shaker at 70°C for 10 min. A Bolt 4-12% Bis-Tris Plus gel (cat 

#NW04120BOX; Invitrogen) was loaded with 10 µg of reduced gliadin per well, and ran in 

MES SDS running buffer (cat #B0002; Invitrogen) at 165V for 45 min. Protein bands were 

transferred to a nitrocellulose membrane using an iBlot 2NC Regular Stack in an iBlot 2 

Gel Transfer Device (Invitrogen) at 20-25V for 7min. After blocking the membrane in 



PBS/Tween-20 0.05%/milk 5% for 1 h at RT on a rotating table, the membrane was 

incubated at 4oC with rabbit anti-gliadin fractionated antiserum (cat #G9144; Sigma-

Aldrich), at a dilution of 1/10,000 in PBS/Tween/milk. After washing in PBS/Tween-20 

0.05%, the membrane was incubated with goat anti-rabbit IgG-HRP (cat #111-035-144; 

Jackson ImmunoResearch, Ely, UK) for 1 h at RT, at a dilution of 1/10,000 in 

PBS/Tween/milk. Protein bands were detected on film, using enhanced 

chemiluminescence reagent (cat #ORT2251; Perkin Elmer). 

 

Electron microscopy 

The surface morphology of TIMP-GLIA was examined using scanning electron microscopy 

on a FEI/Philips XL30 FEG (FEI, Hillsboro, OR). The cryoprotectant was removed from 

lyophilized nanoparticles by washing with MilliQ water. A drop of washed particle 

suspension was placed on carbon adhesive tape, mounted onto an aluminum stub, and 

dried for at least 2 hr. Samples were sputter coated using gold, and visualized at an 

accelerating voltage of 5 kV and 7 mm working distance.  

 

Burst release assay 

The release of protein from TIMP-GLIA was measured over 8 hr. Three different 

concentrations (2 mg/mL, 15 mg/mL, and 40 mg/mL) of TIMP-GLIA were dispersed in PBS 

and incubated at 37 °C. At pre-determined time poin ts, the nanoparticles were centrifuged 

at 7000 x g for 5 min and the supernatant was collected. The nanoparticles were 

resuspended in fresh PBS and incubated at 37 °C unt il the following timepoint. All 

supernatant samples were stored at -20°C until the experiment was completed. After the 

final time point, the pellet of nanoparticles was dissolved in DMSO and the total amount of 



remaining protein was determined. Protein concentration was determined using the 

CBQCA assay (Molecular Probes, Waltham, MA).  

 

Flow cytometry. For analysis of mouse cells, spleens were collected, dissociated into 

single cell suspensions, and red blood cells lysed. Splenocytes were cultured in vitro in the 

presence of PMA (50ng/ml) and Ionomycin (500ng/ml) for 2h at 37°C, followed by an 

additional 2h of culture in the presence of brefeldin A (10µg/ml). At the end of the culture 

time, cells were collected were subjected to flow cytometric analysis for evaluation of T 

effector cells (CD3+CD4+CD25+CD44hiFoxp3-) and Treg cells 

(CD3+CD4+CD25hiFoxp3+) as follows: Cells were washed three times in PBS, and 

resuspend with 100µl of LIVE⁄DEAD® Fixable Aqua Dead Cell Stain Kit (405 nm 

excitation; Invitrogen, Carlsbad, CA) for 20min on ice, followed by three washes in PBS 

5% fetal calf serum. Cells were then resuspended in 100µl of mouse Fc Block (anti-

CD16/32; clone 93), diluted 1:100 in 1 PBS 5% FCS, and incubated at 4°C for 20min.  The 

cells were washed three times in PBS 5% FCS, and then stained for 30min in surface 

staining cocktail of the following antibodies, in a final volume of 100µl:  Anti-CD3 (clone 

145-2C11), Anti-CD4 (clone GK1.5), Anti-CD25 FITC (clone 7D4), and Anti-CD44 (clone 

IM7; all antibodies from ThermoFisher Scientific, Grand Island, NY). The cells were then 

washed three times in PBS, and resuspend 200µl in freshly made Fix/Perm solution 

(ThermoFisher Scientific), to incubate overnight (or 30min) at 4°C. Following three washes 

in permeabilization buffer, the cells were resuspended in intracellular staining cocktail 

containing anti-Foxp3 (clone FJK-16s), anti-IFN-γ (clone XMG1.2), and anti-Ki67 (clone 

SolA15) in a final volume of 100µl of permeabilization buffer for 30min at 4°C. The cells 

were then washed three times with permeabilization buffer, and two times with PBS 5% 

FCS, resuspended in 400µl of PBS 5% FCS, and analyzed by flow cytometry, using the 



following gating scheme: Singlets (FSC-A vs. FSC-H) -> Cells (SSC-A vs. FSC-A) -> Live 

(dead cell stain negative cells) -> CD3/CD4+. Viable cells were analyzed per individual 

sample using a BD Canto II cytometer (BD Bioscience), and the data analyzed using FloJo 

Version 9.5.2 software (Tree Star, Ashland, OR). 

 

Ex vivo recall proliferation (3H-TdR) in the gliadin DTH model. After testing for DTH, 

mice were sacrificed, and single cell suspensions from spleens were cultured (5x105 

cells/well) in the presence of anti-CD3 (1µg/ml), ovalbumin, or gliadin (both 20µg/ml). At 

24h post-culture initiation, the wells were pulsed with 1µCi of 3H-TdR and the cultures 

harvested at 72h, to measure spleen cell proliferation. Results are expressed as the mean 

CPM of triplicate cultures.  

 

Serum anti-gliadin antibody ELISA 

To determine the level of anti-gliadin-specific antibody present within serum, 96-well plates 

were coated with 1 mg gliadin (Sigma-Aldrich) per well. Mouse sera were assayed in serial 

dilutions. Horseradish peroxidase-labelled anti-mouse IgG (Sigma-Adrich), IgG1 (Serotec, 

Oxford, UK) or IgG2c (Bethyl Lab, Montgomery, TX; dilutions 1:10 000 to 1:100 000) was 

followed by tetramethylbenzidine substrate (Sigma-Aldrich) and spectrophotometric 

detection at 450 nm. Antibody titres were calculated according to the formula: (OD of 

sample - OD of blank) x serum dilution.   

 

Ex vivo recall proliferation (BrdU) in the HLA-DQ8 transgenic mouse model 

To measure T cell proliferation, spleen cells from individual mice were cultured in flat-

bottom 96-well plates in complete RPMI 1640 at 37°C  (105/well; triplicates), and stimulated 



with either a combination of anti-CD3 and anti-CD28 antibodies (positive control, 3 µg and 

2 µg/ml; clones 145–2C11 and 37.51; eBioscience, San Diego, CA), gliadin or endotoxin-

free ovalbumin (negative control, Hyglos, Bernried, Germany; both proteins 20 µg/ml). 

BrdU was added after 2 days of culture, and cells harvested after 6h incubation. 

Proliferation was measured using a colorimetric BrdU ELISA kit, following the 

manufacturer’s protocol (Roche, Mannheim, Germany).  

 

Mouse cytokine analyses 

IFN-γ, IL-17, IL-2 and IL-10 cytokine ELISAs (R&D Systems) were performed with 

supernatants from spleen cell cultures, restimulated over 72h in 24-well plates (7.5 x 

106/well). Cytokine concentrations and ratios between results from individual stimulated 

samples and corresponding positive control samples were calculated. 

 

RNA extraction. RNA was extracted from mouse spleen cells cultured and stimulated for 

72h at 37°C in RPMI 1640, and then stored at -20°C in RNAlater (ThermoFisher 

Scientific), using the RNeasy Mini Kit (Qiagen) and following manufacturer’s guidelines. 

Cells were homogenized with QIAshredder columns (Qiagen). DNA digestion was 

performed using RNase-free DNase (Qiagen). After extraction, RNA was quantified using 

a NanoDrop spectrophotometer (ThermoFisher Scientific), or a Qubit 2 fluorometer 

(Invitrogen) with the Qubit RNA HS Assay Kit (ThermoFisher Scientific). RNA integrity was 

assessed using the LabChip GXII Touch HT electrophoresis system, with the RNA Assay 

and the DNA 5K / RNA / Charge Variant Assay LabChip (all PerkinElmer). RNA samples 

were stored at -70°C. 



 

 

RT-qPCR 

RT-qPCR reactions were performed using a CFX384 detection system (Bio-Rad, 

Hercules, CA). Each reaction (final volume of 15 µl) contained 7.5 µl of 2x RT-PCR buffer, 

1.5 µl of enzyme mix (both components of the Path-ID™ Multiplex One-Step RT-PCR kit, 

ThermoFisher Scientific), 25 ng of RNA, 400nM of each primer and 111nM of each 

hydrolysis probe. 2 optimized, pre-mixed primer/probe sets were used in parallel in the 

same reaction, a mouse Foxp3-specific set with FAM dye (TaqMan® Gene expression 

assays, assay ID Mm00475162_m1, cat# 4331182; Applied Biosystems, Waltham, MA) 

and a mouse GAPDH-specific set with VIC dye (TaqMan® Gene expression assays, 

assay ID Mm99999915_g1, cat# 4331182, Applied Biosystems). Thermal cycling was 

performed following the kit protocol (Path-ID™ Multiplex One-Step RT-PCR kit, 

ThermoFisher Scientific). A validation experiment demonstrated that the efficiency of the 

target and reference gene amplification were approximately equal. All samples were 

analyzed in triplicates. Additionally, a negative control (RNA-free water), reference control 

(only GAPDH-specific probe), and target gene control (only Foxp3-specific probe) were 

included. The level of expression of the Foxp3 target gene was normalized to the level of 

expression of the GAPDH reference gene in each sample, calculating ∆CT values (∆CT = 

Mean CT Foxp3 – mean CT GAPDH). ∆CT values were used for group comparisons. 

 

RNA-sequencing. RNA sequencing method was designed based on the Drop-seq 

protocol.20 Briefly, 10 ng of RNA was mixed with Indexing Oligonucleotides (Integrated 

DNA Technologies, Coralville, IA; Supplementary table 1). After 5 minutes of incubation at 



ambient temperature the RNA was combined with RT mix, containing 1 x Maxima RT 

buffer, 1 mM dNTPs, 10 U/µl Maxima H- RTase (all ThermoFisher Scientific), 1 U/µl 

RNase inhibitor (Lucigen, Middleton, WI) and 2.5 µM Template Switch Oligo (Integrated 

DNA Technologies). Samples were incubated in a T100 thermal cycler (BioRad) for 30 

minutes at 22°C and 90 minutes at 42°C. The constru cted cDNA was amplified by PCR in 

a volume of 15 µl using 5 µl of RT mix as template, 1x HiFi HotStart Readymix (Kapa 

Biosystems, Wilmington, MA) and 0.8 µM SMART PCR primer. The samples were 

thermocycled in a T100 thermocycler (BioRad) as follows:   95°C 3 min; subsequently four 

cycles of: 98°C for 20 sec, 65°C for 45 sec, 72°C f or 3 min; following 16 cycles of: 98°C for 

20 sec, 67°C for 20 sec, 72°C for 3 min; and with t he final extension step of 5 min at 72°C. 

The PCR products were pooled together in sets of 12 samples containing different 

Indexing Oligos and purified with 0.6X Agencourt AMPure XP Beads (Beckman Coulter, 

Brea, CA) according to manufacturer’s instructions. They were eluted in 10 µl of molecular 

grade water. The 3’-end cDNA fragments for sequencing were prepared using the Nextera 

XT (Illumina, San Diego, CA) tagmentation reaction with 600 pg of each PCR product 

serving as an input. The reaction was performed according to manufacturer’s instruction, 

with the exception of the P5 SMART primer that was used instead of S5xx Nextera primer. 

Each set of 12 samples that was pooled after the PCR reaction was tagmented with a 

different Nextera N7xx index. Subsequently, the samples were PCR amplified as follows: 

95°C for 30 sec; 11 cycles of 95°C for 10 sec, 55°C  for 30 sec, 72°C for 30 sec; with the 

final extension step of 5 min at 72°C. Samples were  purified twice using 0.6X and 1.0X 

Agencourt AMPure Beads (Beckman Coulter) and eluted in 10 µl of molecular grade 

water. The concentration of the libraries was measured using a Qubit 2 fluorometer 

(Invitrogen) and the Qubit DNA HS Assay Kit (ThermoFisher Scientific). The quality of the 

sequencing libraries was assessed using the LabChip GXII Touch HT electropheresis 



system (PerkinElmer), with the DNA High Sensitivity Assay (PerkinElmer, Waltham, MA) 

and the DNA 5K / RNA / Charge Variant Assay LabChip (PerkinElmer). Samples were 

stored at -70°C. The libraries were sequenced on a Illumina NextSeq 500, with a custom 

primer (Supplementary table 1) producing read 1 of 20 bp and read 2 (paired end) of 50 

bp. Sequencing was performed at the Functional Genomics Unit of the University of 

Helsinki, Finland. 

 

Read alignment and generation of Digital Expression Data. Raw sequence data was 

filtered to remove reads shorter than 20 bp. Subsequently, the original pipeline suggested 

in by Macosko EZ et al. for processing of drop-seq data was used.20 Briefly, reads were 

additionally filtered to remove polyA tails of length 6 or greater, then aligned to the mouse 

(mm10) genome using STAR aligner 37, with default settings. Uniquely mapped reads 

were grouped according to the 1-12 barcode, and gene transcripts were counted by their 

Unique Molecular Identifiers (UMIs) to reduce bias emerging from the PCR amplification. 

Digital expression matrices (DGE) reported the number of transcripts per gene in a given 

sample (according to the distinct UMI sequences counted). Differentially expressed genes 

were identified using edgeR.38 

 

Histological Duodenitis Score. Duodenal samples (2cm length) were fixed in formalin 

and embedded in paraffin, and sections (6 µm) were stained with hematoxylin and eosin. 

To identify proliferating cells, longitudinal sections were stained using polyclonal rabbit 

anti-mouse Ki-67 IgG (dilution 1:500; Bethyl Laboratories), biotinylated goat anti-rabbit 

IgG, avidin-biotin complex reagent, and diaminobenzidine substrate (all from Vector 

Laboratories). Hematoxylin was used for counterstaining. The severity of duodenitis was 



assessed in a blinded fashion in well-oriented sections and at sites representative for 

maximal damage, adapting a previously described method.18 Villus/crypt architecture 

scores were assigned, as follows: Score 0 (V/C ratio >3.00), 0.5 (2.50– 3.00), 1.0 (2.00–

2.49), 1.5 (1.50–1.99), 2.0 (1.00–1.49), 2.5 (0.50–0.99), 3.0 (<0.5). Villus cellular infiltration 

was graded, as follows: score 0 (villus lamina propria diameter <0.5 x crypt diameter), 1 

(0.5-1x), 2 (1-2x), 3 (>2x). Due to a relatively high baseline of active inflammation in 

comparison to previous experience, the scores for basal infiltration with neutrophils were 

adjusted. New scores were based on a statistical distribution analysis including all animals 

(using 25-percentile, median and 75-percentile as cut-offs): score 0 (normal crypts), 1 [1-7 

crypt abscesse(s) per duodenal section], 2 (8-15 crypt abscesses), 3 (>15 crypt 

abscesses). Each animal was assigned a composite duodenitis score by combining the 

three separate parameters (maximum score 3 + 3 + 3 = 9). 

 

Serum gliadin ELISA 

To determine gliadin serum levels after intravenous injection of soluble gliadin or TIMP-

GLIA into C57BL/6 mice, blood samples were collected by retroorbital bleeding from each 

group of mice at 0 or 5min, 1, 4, or 24h from injection. Gliadin was quantified using a 

Wheat/Gluten (Gliadin) ELISA Kit (Crystal Chem, Elk Grove Village, Illinois, USA), using 

the manufacturer’s instructions.   

 

DC maturation assay 

The effects of TIMP-GLIA on the maturation of human monocyte-derived DC was 

evaluated in vitro, following a published protocol  



(https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_ITA-14.pdf). Total PBMCs 

were isolated via Ficoll-Plaque (15ml/tube) from human buffy coats obtained from healthy 

donors (San Diego Blood Bank, San Diego, CA). Total PBMCs were incubated at 3 x 106 

cells/ml in DC medium (RPMI-1640 supplemented with 10% fetal bovine serum, 2mM L-

glutamine, 25mM HEPES, 100IU/ml penicillin, 100µg/ml streptomycin, 0.1mM MEM 

NEAA, 1mM sodium pyruvate, and 50µM β-mercaptoethanol) for 1.5h at 37oC to remove 

non-adherent cells, and the adherent cells were cultured in the presence of DC medium 

supplemented with IL-4 (50ng/ml) and GM-CSF (100IU/ml) at 37oC for 7 days. On day 7, 

the non-adherent cells were removed, and the adherent cells were collected for the 

experimental cultures via incubation with 5mM sterile EDTA in PBS for 15min at room 

temp. The resulting cells were washed and suspended in fresh DC media (without IL-4 and 

GM-CSF), and cultured at 0.5 x 106 cells/ml in a 24-well plate in the presence of vehicle, 

LPS (20ng/ml), or TIMP-GLIA (2, 0.2, 0.04 and 0.008 mg/ml) for 48-hours. Following 

culture, the resultant cells were collected, and the level of HLA-ABC, HLA- DR, CD86, 

CD80, CD83, and CD14 expression analyzed by flow cytometry.   

 

Analysis of hemolytic properties 

The effects of TIMP-GLIA on red blood cells were evaluated in vitro, following published 

protocols (https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_ITA-1.pdf). 

Whole blood samples were drawn from healthy donors, and quality assessed by 

measuring free hemoglobin concentration in plasma. Only samples with a hemoglobin 

concentration less than 1 mg/ml were used. Whole blood was diluted with PBS to adjust 

total hemoglobin concentration to 10 ± 2mg/ml. TIMP-GLIA at increasing doses was 

incubated with whole blood. Tubes containing TIMP-GLIA only were used as background 



control. Triton X-100 at 0.56% was used as positive control, and PBS or saline as negative 

controls. Inhibition/Enhancement control (IEC) tubes contained 100 µL of 5% Triton X-100, 

100µl of TIMP-GLIA suspension, 100µl of plasma, whole blood or diluted whole blood, and 

600µl PBS. All tubes were placed in a 37oC water bath for 3hrs and 15min. Samples were 

mixed gently every 30min. Tubes were then centrifugated at 800xg for 15min at room 

temp. Supernatants were collected, and centrifuged at 18,000xg for 30min at RT to 

remove TIMP-GLIA from the solution. After addition of Drabkin’s solution, 

cyanmethemoglobin was measured by spectrophotometry at 540nm using a plate reader 

(Spectra Max i3X, Molecular Devices). 

 

Analysis of platelet activation and aggregation 

The effects of TIMP-GLIA on human platelets were evaluated in vitro, following published 

protocols (https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_ITA-2.2.pdf). 

Briefly, platelet rich plasma and platelet poor plasma were prepared from freshly drawn 

human blood. Plasma from three donors were pooled. Platelet poor plasma was used as 

background control. Platelet rich plasma was incubated with ChronoLum reagent and test 

samples, and sample turbidity was measured using an optical Lumi-aggregometer (both 

from Chrono-Log, Havertown, PA). To measure platelet activation, ATP release from 

platelets was measured using ChronoLum reagent, based on luciferase:luciferin 

bioluminescence detection. 

 

Analysis of complement activation by EIA 



The effects of TIMP-GLIA on human complement activation in vitro were evaluated, 

following published protocols 

(https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_ITA-5.2.pdf). Human 

blood was collected from healthy donors using K2-EDTA containing vacutainer tubes. The 

first 5ml of blood collected was discarded, and the following 5ml blood was collected for 

the study. Blood was kept at room temperature during the entire processing of the plasma 

samples. The vacutainer tube was centrifuged (2,500xg; 10min) and the resulting plasma 

(upper phase) was evaluated for the presence of hemolysis. The resulting plasma (2.5ml) 

from the vacutainer was carefully transferred to a sterile 15ml conical tube. The assay 

consisted of four controls; negative (phosphate buffered saline (PBS)), vehicle (saline), 

positive control (cobra venom factor (CVF) 3.5IU) and a second positive control (Heat 

Aggregated Gamma Globulin (HAGG)), and testing TIMP-GLIA (0.008, 0.04, 0.2 and 

2mg/ml). Samples were prepared in 1.5ml microfuge tubes, containing (100µl of each) 

veronal buffer, human plasma, and a test sample (CVF 0.35 IU/µl, HAGG (166µM), PBS, 

saline and TIMP-GLIA (3X final). The assay also included inhibition/enhancement (IEC) 

controls to determine whether TIMP-GLIA interfered with detection of the complement split 

product by EIA. The IEC uses the positive control sample after the incubation step. Prior to 

adding the sample onto the EIA plate, TIMP-GLIA was added to the same final 

concentrations as used in the study samples. All of the assay samples were vortexed and 

centrifuged to bring down components (3,000 rpm, 2 minutes at room temp) and incubated 

in a water bath maintained at 37oC. After the incubation step, aliquots from each sample 

were further diluted with the corresponding EIA kit sample diluent buffers prior to the 

addition of the samples to the corresponding EIA detection plates, to assess levels of 

iC3b, C4d, and Bb (Quidel Corp.; San Diego, CA).  After the addition of the stop solution 



the optical densities were read using SpectraMax plate reader (450nm for Bb EIA assay 

and 405nm for iC3b and C4d EIA assay).   

 

 

 

Coagulation analyses 

The effects of TIMP-GLIA on human plasma coagulation time were evaluated in vitro, 

following published protocols 

(https://ncl.cancer.gov/sites/default/files/protocols/NCL_Method_ITA-12.pdf). Briefly, 

twenty milliliters of blood were collected from two healthy donors into tubes containing Na-

citrate. The blood was immediately centrifuged (2500g; 10 minutes at RT) and the 

resulting plasma was collected from each tube and maintained at room temp. The resulting 

plasma layer from each tube was collected and either pooled or kept separate in a sterile 

15 mL conical tube maintained at room temp.  Aliquots (450µl) of the collected plasma 

were transferred into 1.5ml Eppendorf tubes.  50µl of TIMP-GLIA (0.008, 0.04, 0.2 and 

2mg/ml final concentration), or saline (control), were added to the appropriate tubes, and 

vortexed.  The tubes were incubated at 37oC for 30 minutes, centrifuged (18000g; 5 

minutes at 37oC), and the resulting treated plasma supernatants were then tested in 

triplicate for activated partial thromboplastin time (APTT), prothrombin time (PT), and 

thrombin time (TT), using a Sysmex AC-600 System (Siemens Healthcare Diagnostics; 

Tarrytown, NY). 

 

Human PBMC proliferation and cytokine secretion assay 



Peripheral blood was collected from healthy donors (n=11), CD donors treated with gluten-

free diet (Gluten free) (n=9), and non-treated CD donors (Non-gluten free) (n=11). All 

donors were between the ages of 18-65, and were HLA-typed for DQ2 and DQ8, using a 

polymerase chain reaction (PCR)/sequence specific oligonucleotide probes (SSOP) 

technique on the Luminex platform (Labcorp HLA Laboratory, Burlington, NC; 

supplementary table 2). PBMC were isolated by density gradient centrifugation. Purified 

PBMC were stimulated with medium only (negative control), 1 µg/mL anti-CD3 antibody 

(positive control), or TIMP-GLIA (12.5, 125, or 1250 µg/mL) for 72 h. Proliferation was 

measured using the CellTiter-Glo Luminescent Cell Viability Assay (Promega, Madison, 

WI) on the SpectraMax M5 using SoftMax Pro analysis software (Molecular Devices, 

Downingtown, PA). Proliferation index (PI) values were calculated, relating signals from 

samples to the signal generated by cells stimulated with medium only. Cytokines in culture 

supernatants were measured using the MSD Proinflammatory Panel 1 (human) V-Plex kit 

on the QuickPlex SQ 120, using MSD Discovery WorkBench analysis software (Meso 

Scale Discovery, Rockville, MD). 
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38.  Robinson, M.D., McCarthy, D.J., Smyth, G.K. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 26, 139-
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Name Oligonucleotide sequence

DSbI_001 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACACGTACGTACGTNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_002 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACCGTACGTACGTANNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_003 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACGTACGTACGTACNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_004 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACTACGTACGTACGNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_005 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACACGTCGTACGTANNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_006 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACCGTAGTACGTACNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_007 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACGTACTACGTACGNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_008 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACTACGACGTACGTNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_009 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACACGTGTACGTACNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_010 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACCGTATACGTACGNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_011 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACGTACACGTACGTNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

DSbI_012 TTTTTTTAAGCAGTGGTATCAACGCAGAGTACTACGCGTACGTANNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTT

TSO AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG

SMART PCR primer AAGCAGTGGTATCAACGCAGAGT

P5 SMART primer AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C

Sequencing read 1 GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC

Supplementary Table 1
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What you need to know: 
BACKGROUND AND CONTEXT: Celiac disease might be cured by restoring T-cell tolerance 
to gliadin. 
 
NEW FINDINGS: In mice with gliadin sensitivity, injection of TIMP-GLIA nanoparticles 
induced unresponsiveness to gliadin, and reduced markers of inflammation and enteropathy. 
 
LIMITATIONS: This study was performed in mice.  
 
IMPACT: Gliadin nanoparticles might be developed for treatment of celiac disease. 
 
 
 
Lay Summary: We developed nanoparticles that reduce sensitivity to wheat proteins in mice, and 
might be used to treat celiac disease in patients.  
 


