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A NEOHOOKEAN MODEL OF PLATES\ast 

TADEUSZ IWANIEC\dagger , JANI ONNINEN\ddagger , PEKKA PANKKA\S , AND TERESA RADICE\P 

Abstract. This article is about hyperelastic deformations of plates (planar domains) which
minimize a neohookean-type energy. Particularly, we investigate a stored energy functional intro-
duced by J. M. Ball [Proc. Roy. Soc. Edinb. Sect. A, 88 (1981), pp. 315--328]. The mappings under
consideration are Sobolev homeomorphisms and their weak limits. They are monotone in the sense
of C. B. Morrey. One major advantage of adopting monotone Sobolev mappings lies in the existence
of the energy-minimal deformations. However, injectivity is inevitably lost, so an obvious question
to ask is, what are the largest subsets of the reference configuration on which minimal deformations
remain injective? The fact that such subsets have full measure should be compared with the notion
of global invertibility, which deals with subsets of the deformed configuration instead. In this con-
nection we present a Cantor-type construction to show that both the branch set and its image may
have positive area. Another novelty of our approach lies in allowing the elastic deformations to be
free along the boundary, known as frictionless problems.
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interpenetration of matter
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1. Introduction. We study hyperelastic deformations of neohookean materials
in planar domains called plates. These problems are motivated by recent remarkable
relations between geometric function theory [3, 17, 18, 34] and the theory of nonlin-
ear elasticity [1, 4, 9]. Both theories are governed by variational principles. Here we
confine ourselves to deformations of bounded Lipschitz domains \BbbX ,\BbbY \subset \BbbR 2 \simeq \BbbC of
finite connectivity. The general theory of hyperelasticity deals with Sobolev home-

omorphisms h : \BbbX onto -  - \rightarrow \BbbY of nonnegative Jacobian determinant, Jh
def
== detDh \geqslant 0,

which minimize a given stored energy functional

\scrE [h] def
==

\int 
\BbbX 
E (| Dh| ,detDh) dx, where E : \BbbR + \times \BbbR + \rightarrow \BbbR .

The stored energy function E : \BbbR + \times \BbbR + \rightarrow \BbbR is determined by the elastic and me-
chanical properties of the material.

Here the 2\times 2 -matrix Dh \in \BbbR 2\times 2 is referred to as the deformation gradient, and
| Dh| denotes its Hilbert--Schmidt norm. We are largely concerned with orientation-
preserving homeomorphisms h : \BbbX onto -  - \rightarrow \BbbY of the Sobolev class W 1,p(\BbbX ,\BbbC ), denoted by
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510 IWANIEC, ONNINEN, PANKKA, AND RADICE

H p(\BbbX ,\BbbY ), as well as their weak and strong limits. If p \geqslant 2, then every h \in H p(\BbbX ,\BbbY )
extends continuously up to the boundary, still denoted by h : \BbbX \rightarrow \BbbY ; see [22].

The term neohookean refers to a stored energy function E which increases to
infinity when Jh approaches zero. The neohookean materials have gained a lot of
interest in mathematical models of nonlinear elasticity [7, 8, 11, 13, 16, 32, 33, 35]. In
particular, one minimizes functionals which are composed by the sum of the L 2-norm
of the deformation gradient and a nonlinear function of Jh; see [36]. A more general
model example takes the form

(1.1) \sansE p
q [h] =

\int 
\BbbX 

\biggl[ 
| Dh| p + 1

(detDh)q

\biggr] 
dx , p > 1 and q > 0 .

Throughout this paper we tacitly assume that the class of admissible homeomorphisms
is nonempty; that is, there is h \in H p(\BbbX ,\BbbY ) such that \sansE p

q [h] < \infty . In particular, \BbbX 
and \BbbY are of the same topological type. As a first step toward understanding the
existence problems we shall accept the weak limits of energy-minimizing sequences of
homeomorphisms as legitimate deformations. Thus, we allow so-called weak interpen-
etration of matter; precisely, squeezing of the material can occur. This changes the
nature of the minimization problem to the extent that the minimal energy (usually
attained) can be strictly smaller than the infimum energy among homeomorphisms.

In a seminal work of Ball [5], injectivity properties were studied for pure displace-
ment problems. That is, the admissible deformations are specified a priori on the
entire boundary of the reference configuration \BbbX . More specifically, choose and fix
\varphi \in H p(\BbbX ,\BbbY ), p \geqslant 2, and introduce the following class of admissible deformations:

\scrA p def
== \{ h \in C (\BbbX ,\BbbC ) \cap W 1,p(\BbbX ,\BbbC ) : J(x, h) > 0 a.e., h = \varphi on \partial \BbbX \} .

Ball [5] proved the following:
\bullet If p > 2 and q > 0, then there exist an energy-minimal map h\circ \in \scrA p such
that

\sansE p
q [h\circ ] = inf

h\in \scrA p
\sansE p
q [h] .

\bullet For every h \in \scrA p with p > 2, the following set has full measure:

(1.2) \BbbY h
def
== \{ y \in h(\BbbX ) : h - 1(y) is a single point\} \subset \BbbY .

This result has been referred to as global invertibility for two reasons: because \BbbY h has
full measure in \BbbY and because any minimizer h\circ on restriction to h - 1

\circ (\BbbY h\circ ) becomes
injective. For further generalizations of the global invertibility result when p \geqslant 2, we
refer the reader to [14].

Ciarlet and Ne\v cas [10] studied mixed boundary value problems (the displacement
is prescribed only on a portion of the boundary of the reference configuration \BbbX ). In
their mixed problems, the pure displacement condition h = \varphi on \partial \BbbX is replaced by

(1.3)

\int 
\BbbX 
detDh(x) dx \leqslant | h(\BbbX )| .

They showed that the minimizers of \sansE p
q , p > 2, subject to such class of deformations

are globally invertible.
Usually, in geometric function theory, the boundary values of homeomorphisms h

are not given. For example, extremal Teichm\"uller quasiconformal mappings are not
prescribed on the boundary; the boundary does not even exist for compact Riemann
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A NEOHOOKEAN MODEL OF PLATES 511

surfaces. In nonlinear elasticity, this is interpreted as saying that the elastic deforma-
tions are allowed to slip along the boundary, known as frictionless problems [4, 6, 9, 10].

Our goal is to enlarge the class of homeomorphisms (as little as possible) to ensure
the existence of minimizers in that class. The right way is to adopt the monotone
Sobolev mappings [25]. Indeed, that this class is a bare minimal enlargement of home-
omorphisms follows from a Sobolev variant of the classical Young's approximation
theorem. Its classical topological setting asserts that a continuous map between com-
pact oriented topological 2-manifolds (such as plates and thin films) is monotone if
and only if it is a uniform limit of homeomorphisms. Monotonicity, the concept of
Morrey [30], simply means that for a continuous h : \BbbX \rightarrow \BbbY , the preimage h - 1(C) of
a continuum (a connected set) C \subset \BbbY is a continuum in \BbbX . The above-mentioned
Sobolev variant reads as follows.

Theorem 1.1 (approximation by Sobolev homeomorphisms ([25])). Let \BbbX and
\BbbY be bounded Lipschitz planar domains. Suppose that h : \BbbX onto -  - \rightarrow \BbbY is a monotone
Sobolev mapping in W 1,p(\BbbX ,\BbbR 2), 1 < p < \infty . Then h can be approximated in norm
topology of W 1,p(\BbbX ,\BbbR 2) (and uniformly) by homeomorphisms hj : \BbbX onto -  - \rightarrow \BbbY .

Let us introduce the notation M p (\BbbX ,\BbbY ) for the class of orientation-preserving
monotone mappings h : \BbbX onto -  - \rightarrow \BbbY in W 1,p(\BbbX ,\BbbC ). We say that a mapping h is orien-
tation preserving if detDh \geqslant 0 a.e. Our first result guarantees the existence of a
minimizer of neohookean energy among Sobolev monotone deformations.

Theorem 1.2. Let p \geqslant 2 and q > 0. Then there exists h\circ \in M p(\BbbX ,\BbbY ) such that

(1.4) \sansE p
q [h\circ ] = inf

h\in Mp(\BbbX ,\BbbY )
\sansE p
q [h] .

All the evidence points to the following.

Conjecture 1.3. Every minimizer h\circ \in M p(\BbbX ,\BbbY ) in (1.4) is a homeomor-
phism.

For example, this conjecture is confirmed when \BbbX and \BbbY are circular annuli;
see [21]. Also, the conjecture is valid if \BbbX = \BbbY , in which case it is relatively easy to
see that the identity map minimizes the energy; see Example 3.1. However, it is not
known whether the identity map minimizes the neohookean energy \sansE p

q when p < 2.
It is worth noting that this is not the case for the p-harmonic energy; see (3.2).

We give an affirmative answer to these questions for neohookean materials whose
associated energy integrand grows sufficiently fast. Precisely, we have the following.

Theorem 1.4. Let p > 2 and q > 1 such that 2
p + 1

q \leqslant 1. Then there exists a

homeomorphism h\circ \in H p(\BbbX ,\BbbY ) such that

\sansE p
q [h\circ ] = inf

h\in Mp(\BbbX ,\BbbY )
\sansE p
q [h] = inf

h\in H p(\BbbX ,\BbbY )
\sansE p
q [h] .

The existence of monotone minimizer h\circ is ensured by Theorem 1.2, and the fact
that h\circ is a homeomorphism follows from the next result.

Theorem 1.5. Let p > 2 and q \geqslant p
p - 2 . If h \in M p(\BbbX ,\BbbY ) and

(1.5)

\int 
\Omega 

\biggl( 
| Dh| p + 1

Jq
h

\biggr) 
dx < \infty for every compact subset \Omega \Subset \BbbX ,

then h : \BbbX onto -  - \rightarrow \BbbY is a homeomorphism.
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512 IWANIEC, ONNINEN, PANKKA, AND RADICE

Remark 1.6. Theorem 1.5 also holds for p = 2 and q = \infty , in which case the
locally finite energy condition (1.5) should be stated as\int 

\BbbX 
| Dh| 2 dx < \infty and

1

detDh
\in L \infty (\BbbX ).

That is, detDh(x) \geqslant 1
C > 0 with a constant C = \| J - 1

h \| L \infty (\BbbX ).

Theorem 1.5 is sharp; namely, it fails if 0 < q < p
p - 2 , as the following example

shows.

Example 1.7. For 0 < q < p
p - 2 , there exists a noninjective h \in M p(\BbbX ,\BbbY ) with

\sansE p
q [h] <\infty .

This example raises a question about partial injectivity of h \in M p(\BbbX ,\BbbY ) with
\sansE p
q [h] <\infty when 0 < q < p

p - 2 . First, we have the following.

Theorem 1.8. Suppose that a monotone map h : \BbbX onto -  - \rightarrow \BbbY of Sobolev class
W 1,2(\BbbX ,\BbbC ) has positive Jacobian determinant a.e. Then

\bullet h is globally invertible in the sense of (1.2);
\bullet in addition, there exists \BbbX h of full measure in \BbbX such that h restricted to \BbbX h

is injective.

In particular, every minimizer h\circ in Theorem 1.2 is globally invertible in the sense
of (1.2).

Next in line is the study of the branch set

\scrB h
def
== \{ x \in \BbbX : h fails to be homeomorphic near x\} 

and its image h(\scrB h). Recall that for the Dirichlet energy, the branch set of the
energy-minimal mapping h \in M 2(\BbbX ,\BbbY ) may have a positive area, whereas h(\scrB h) \subset 
\partial \BbbY (actually a nonconvex part of \partial \BbbY ) [12, 23]. We show, however, that under the
assumptions of Example 1.7, both the branch set and also the image of the branch
set may have a positive area. Recall that if q \geqslant p

p - 2 > 0, then any monotone map h

with \sansE p
q [h] <\infty is injective by Theorem 1.5.

Example 1.9. If 0 < q < p
p - 2 , then there exists h \in M p(\BbbX ,\BbbY ) with \sansE p

q [h] < \infty 
such that | \scrB h| > 0 and | h(\scrB h)| > 0.

Our example is based on a Cantor-type construction; see section 6 for the con-
struction.

Returning to Conjecture 1.3, with the aid of the complex partial derivatives,
hz = \partial h

\partial z and h\=z = \partial h
\partial \=z , we express the energy as

(1.6) \sansE 2
1[h] =

\int 
\BbbX 

\Bigl[ 
2
\bigl( 
| hz| 2 + | h\=z| 2

\bigr) 
+
\bigl( 
| hz| 2  - | h\=z| 2

\bigr)  - 1
\Bigr] 
dz .

Clearly, one cannot perform outer variations h\varepsilon = h+ \varepsilon \eta , with \eta \in C\infty 
\circ (\BbbX ), as they

live out the class of monotone Sobolev mappings M p(\BbbX ,\BbbY ). Thus, we lose the Euler--
Lagrange equation, which is the major source of difficulty here. Such a difficulty is
widely recognized in the theory of nonlinear elasticity. This forces us to rely on the
inner variation of the independent variable z\varepsilon = z + \varepsilon \tau (z), where \tau \in C\infty 

\circ (\BbbX ,\BbbR 2).
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A NEOHOOKEAN MODEL OF PLATES 513

The inner variational equation for the minimizer takes the form

(1.7)
\partial 

\partial z

\biggl[ \Bigl( 
1 - p

2

\Bigr) 
| Dh| p + 1 + q

Jq
h

\biggr] 
= 2p

\partial 

\partial z

\bigl[ 
| Dh| p - 2hzhz

\bigr] 
;

see formula (2.6), page 648 in [20].
Here, the complex partial derivatives \partial 

\partial z and \partial 
\partial \=z are understood in the sense of

distributions. For p = 2 and q = 1, this simplifies as

(1.8) 2
\partial 

\partial \=z

\bigl[ 
hzh\=z

\bigr] 
=

\partial 

\partial z

\biggl[ 
1

detDh

\biggr] 
, with \sansE 2

1[h] <\infty .

Let us name (1.7) and (1.8) neohookean Hopf systems.
It is worth noting that monotone Lipschitz solutions to the neohookean Hopf sys-

tem (1.8) are homeomorphisms. In this connection we recall that for the Dirichlet
energy, the inner-stationary solutions are always Lipschitz continuous; see [20]. Ac-
tually, a solution of (1.8) in M 4(\BbbX ,\BbbY ) will turn out to be a homeomorphism. This
follows from the next result, simply by taking p = 2 and q = 1.

Theorem 1.10. Consider a monotone mapping h : \BbbX onto -  - \rightarrow \BbbY of finite neohookean
energy:

\sansE p
q [h] =

\int 
\BbbX 

\bigl( 
| Dh| p + J - q

h

\bigr) 
dx, p > 1 and q > 0 .

Assume that h \in W 1,s
loc (\BbbX ,\BbbR 2) for some s \geqslant p

q + 2 and s > p satisfies the equation

(1.7). Then h is a homeomorphism of \BbbX onto \BbbY .

2. Preliminaries.

2.1. Monotone in the sense of Lebesgue. There are several notions com-
monly known in literature as monotonicity. To avoid confusion we use the term mono-
tone in the sense of Lebesgue for one of these. This notion goes back to Lebesgue [29]
in 1907.

Definition 2.1. Let \BbbX be an open subset of \BbbR 2. A continuous mapping h : \BbbX \rightarrow 
\BbbR 2 is monotone in the sense of Lebesgue if for every open set \Omega \subset \BbbX we have

(2.1) diamh(\Omega ) = diamh(\partial \Omega ).

Note that for a real-valued function, (2.1) can be stated as

(2.2) min
\Omega 
h = min

\partial \Omega 
h (minimum principle)

(2.3) max
\Omega 

h = max
\partial \Omega 

h (maximum principle).

2.2. Modulus of continuity and conformal energy. In the next lemma, \BbbX 
and \BbbY are \ell -connected Lipschitz domains in \BbbR 2; see [26, Lemma 4.3].

Lemma 2.2. To every pair (\BbbX ,\BbbY ) of \ell -connected bounded Lipschitz domains, \ell \geqslant 
2, there corresponds a constant C = C(\BbbX ,\BbbY ) such that for h \in H 2(\BbbX ,\BbbY ) and \ell \geqslant 2
we have

(2.4) | h(x1) - h(x2)| 2 \leqslant 
C \cdot 

\int 
\BbbX | Dh| 

2

log
\Bigl( 
1 + diam\BbbX 

| x1 - x2| 

\Bigr) , x1, x2 \in \BbbX ,

whenever h \in H 2(\BbbX ,\BbbY ) and x1 \not = x2 in \BbbX .
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514 IWANIEC, ONNINEN, PANKKA, AND RADICE

Remark 2.3. Inequality (2.4) fails when \ell = 1 and p = 2. For this, consider a
sequence of the M\"obius transformations hk : \BbbD onto -  - \rightarrow \BbbD , k = 1, 2, . . .

hk(z) =
z + ak
1 + akz

, 0 < ak < 1 and ak \nearrow 0 .

The mappings are fixed at two boundary points,

hk(1) = 1 and hk( - 1) =  - 1 ,

and are equiintegrable: \int 
\BbbX 
| Dhk| = 2

\int 
\BbbX 
Jh(x) dx = 2\pi .

The sequence hk : \BbbD onto -  - \rightarrow \BbbD approaches the constant mapping h(z) \equiv 1. Obviously, we
are losing equicontinuity of the boundary mappings hk : \partial \BbbD onto -  - \rightarrow \partial \BbbD , in contradiction
with (2.4).

2.3. Change of variables formula. We say that h : \BbbX \rightarrow \BbbC satisfies the Lusin
(N) condition if for every E \subset \BbbX such that | E| = 0 we have | h(E)| = 0.

Lemma 2.4. Suppose that h \in W 1,2(\BbbX ,\BbbC ) with Jh > 0 a.e. Then h satisfies the
Lusin (N) condition.

Lemma 2.4 follows because a monotone mapping in the sense of Lebesgue in the
Sobolev class W 1,2

loc (\BbbX ,\BbbC ) satisfies the Lusin (N) condition; see, e.g., [15, Lemma 1.2].
On the other hand, a mapping h \in W 1,2(\BbbX ,\BbbC ) with Jh > 0 a.e. is monotone in the
sense of Lebesgue; see [19, Proposition 4.1]. The Lusin property is very important, as
it allows us to obtain the change of variables formula; see [18, Theorem 6.3.2].

Lemma 2.5. Let h : \BbbX \rightarrow \BbbC be a mapping in the Sobolev class W 1,2(\BbbX ,\BbbC ) with
Jh(x) > 0 for almost every x in \BbbX . If \eta is a nonnegative Borel measurable function
on \BbbC and A a Borel measurable set in \BbbX , then

(2.5)

\int 
A

\eta 
\bigl( 
h(x)

\bigr) 
Jh(x) dx =

\int 
h(A)

\eta (y)Nh(y,A) dy ,

where Nh(y,A) denotes the cardinality of the set \{ x \in A : h(x) = y\} .

2.4. Weak compactness of Jacobians.

Lemma 2.6. Let \BbbX be a domain in \BbbC and hk \in W 1,2(\BbbX ,\BbbC ) a sequence of mappings
with J(x, hk) \geqslant 0 a.e. in \BbbX converging weakly in W 1,2(\BbbX ,\BbbC ) to h \in W 1,2(\BbbX ,\BbbC ). Then
the Jacobians J(x, hk) converge weakly in L 1

loc(\BbbX ) to J(x, h) and J(x, h) \geqslant 0 a.e. in
\BbbX . Precisely,

lim
k\rightarrow \infty 

\int 
\BbbX 
\varphi (x)J(x, hk) dx =

\int 
\BbbX 
\varphi (x)J(x, h) dx

for every \varphi \in L \infty (\BbbX ) with compact support.

For a proof of this lemma we refer the reader to [18, Theorem 8.4.2].

2.5. Polyconvexity of neohookean integrand. The remarkable feature of
the neohookean energy is the polyconvexity of its integrand. Instead of the general
definition [4, 31], let us confine ourselves, as a consequence, to the so-called gradient
inequalities.
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A NEOHOOKEAN MODEL OF PLATES 515

Let p \geqslant 2 and q > 0. For arbitrary square matrices A \in \BbbR 2\times 2 and A\circ \in \BbbR 2\times 2, we
have

| A| p  - | A\circ | p =
\bigl( 
| A| 2

\bigr) p
2  - 

\bigl( 
| A\circ | 2

\bigr) p
2 \geqslant 

p

2

\bigl( 
| A\circ | 2

\bigr) p
2 - 1 \bigl( | A| 2  - | A\circ | 2

\bigr) 
\geqslant 
p

2
| A\circ | p - 2 2\langle A\circ , A - A\circ \rangle = \langle p | A\circ | p - 2A\circ , A - A\circ \rangle ,

where \langle \cdot , \cdot \rangle stands for the scalar product of matrices.
For arbitrary positive numbers J and J\circ , we have

1

Jq
 - 1

Jq
\circ 
\geqslant 

q

Jq+1
\circ 

(J\circ  - J) .

Next we show that the lower semicontinuity of neohookean integral follows from the
above gradient inequalities.

Lemma 2.7. Let \BbbX be a domain in \BbbC , p \geqslant 2 and q > 0. Suppose that hk \in 
W 1,p(\BbbX ,\BbbC ) is a sequence of mappings with J(x, hk) > 0 a.e. in \BbbX converging weakly
in W 1,p(\BbbX ,\BbbC ) to h \in W 1,p(\BbbX ,\BbbC ) and \sansE p

q [hk] \leqslant E <\infty . Then

\sansE p
q [h] \leqslant lim inf

k\rightarrow \infty 
\sansE p
q [hk] .

Proof. Choose and fix a positive number \varepsilon and a compact subset F \Subset \BbbX . The
above gradient inequalities imply\int 

F

\bigl[ 
| Dhk(x)| p + [\varepsilon + J(x, hk)]

 - q
\bigr] 
 - 
\int 
F

\bigl[ 
| Dh(x)| p + [\varepsilon + J(x, h)] - q

\bigr] 
\geqslant p

\int 
F

\langle | Dh(x)| p - 2Dh(x), Dhk(x) - Dh(x) \rangle dx

+ q

\int 
F

J(x, h) - J(x, hk)

[\varepsilon + J(x, h)]q+1
dx .

Now letting k \rightarrow \infty , the first integral term goes to zero because Dhk - Dh\rightarrow 0 weakly
in L p(F ), whereas | Dh| p - 2Dh belongs to the dual space of L p(F ). Concerning the
last integral term, we appeal to Lemma 2.6 on weak compactness of the Jacobian
determinants. Accordingly,\int 

F

J(x, h) - J(x, hk)

[\varepsilon + J(x, h)]q+1
dx\rightarrow 0 ,

where our test function \varphi (x) = \chi F (x)
[\varepsilon +J(x,h)]q+1 \leqslant 1

\varepsilon lies in L \infty (\BbbX ) and has compact

support. We thus have an estimate\int 
F

\bigl[ 
| Dh(x)| p + [\varepsilon + J(x, h)] - q

\bigr] 
dx

\leqslant lim inf
k\rightarrow \infty 

\int 
F

\bigl[ 
| Dhk(x)| p + [\varepsilon + J(x, hk)]

 - q
\bigr] 
dx

\leqslant lim inf
k\rightarrow \infty 

\int 
\BbbX 

\bigl[ 
| Dhk(x)| p + [J(x, hk)]

 - q
\bigr] 
dx = lim inf

k\rightarrow \infty 
\sansE p
q [hk] <\infty .

Consider a sequence \{ \varepsilon j\} of positive numbers converging to zero and an increasing
sequence of compact subsets F1 \subset F2 \subset . . . with

\bigcup 
Fn = \BbbX . Thus,\int 

Fn

\bigl[ 
| Dh(x)| p + [\varepsilon n + J(x, h)] - q

\bigr] 
dx \leqslant lim inf

k\rightarrow \infty 
\sansE p
q [hk] <\infty .
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516 IWANIEC, ONNINEN, PANKKA, AND RADICE

Letting n\rightarrow \infty , by the monotone convergence theorem, the desired estimate \sansE p
q [h] \leqslant 

lim infk\rightarrow \infty \sansE p
q [hk] follows.

3. The case of \BbbX = \BbbY . When \BbbX = \BbbY , the identity map is a natural candidate
for the minimizer. The case 1 < p < 2, however, offers further challenges. First of all,
when p \geqslant 2 we have the following.

Example 3.1. The identity mapping h\circ = Id: \BbbX onto -  - \rightarrow \BbbX minimizes the neohookean
energy \sansE p

q when p \geqslant 2 and q > 0 subject to all homeomorphisms in H p(\BbbX ,\BbbX ). In
fact, this follows from the inequality

(3.1) \sansE p
q [h] \geqslant (2

p
2 + 1)| \BbbX | = \sansE p

q [h\circ ] for all h \in H p(\BbbX ,\BbbX ) .

The proof of this inequality is obtained by the methods of free Lagrangians. A
free Lagrangian is a special case of null Lagrangian [4]. This is a nonlinear differential
2-form defined on Sobolev homeomorphisms h : \BbbX onto -  - \rightarrow \BbbY whose integral depends only
on the homotopy class of h; see [23]. The simplest free Lagrangians is the area form
detDh(x) dx for h \in W 1,p(\BbbX ,\BbbX ) with p \geqslant 2. This is a key player in the proof of (3.1).
The unavailability of the area form is exactly why our arguments for Theorem 1.5
do not apply when p < 2. Nevertheless, it is not clear whether (3.1) remains valid
for p < 2. In [28] it is shown that the identity mapping h\ast = Id: \BbbD \circ 

onto -  - \rightarrow \BbbD \circ from
the punctured disk \BbbD \circ = \{ z \in \BbbC : 0 < | z| < 1\} onto itself does not minimize the
p-harmonic energy when 1 \leqslant p < p1 for some 1 < p1 < 2. Namely,

(3.2) inf
h\in H p(\BbbD \circ ,\BbbD \circ )

\int 
\BbbA 
| Dh(x)| p dx <

\int 
\BbbA 
| Dh\ast (x)| p dx .

Let us point out that the identity mapping is always a minimizer in the class of radially
symmetric homeomorphisms.

Proof of Example 3.1. First, applying Young's inequality ab \leqslant a\alpha 

\alpha + b\beta 

\beta , 1
\alpha +

1
\beta = 1,

we observe a pointwise inequality

| Dh| p \geqslant p 2
p - 4
2 | Dh| 2  - (p - 2)2

p - 2
2 .

Equality occurs if | Dh| 2 = 2. Then Hadamard's inequality | Dh| 2 \geqslant 2Jh, Jh = detDh,
yields

| Dh| p \geqslant p 2
p - 2
2

\biggl[ 
Jh  - 1 +

2

p

\biggr] 
.

Again, we have the equality when h = Id. Hence,

| Dh| p + 1

Jq
h

\geqslant 
\Bigl( 
p 2

p - 2
2  - q

\Bigr) 
Jh  - (p - 2)2

p - 2
2 + qJh +

1

Jq
h

,

where qJh + 1
Jq
h
\geqslant q + 1. Therefore,

| Dh| p + 1

Jq
h

\geqslant 
\Bigl( 
p 2

p - 2
2  - q

\Bigr) 
Jh  - (p - 2)2

p - 2
2 + q + 1 .

This gives us a desired estimate of the stored energy integrand by means of free
Lagrangians, namely, Jh and a constant function. Integrating over the domain \BbbX = \BbbY ,
the claimed estimate (3.1) follows. Equality occurs for the identity map and only for
isometries h : \BbbX onto -  - \rightarrow \BbbX .
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A NEOHOOKEAN MODEL OF PLATES 517

4. Proof of Theorem 1.8.

Proof. Step 1. (| \BbbY \bfith | = | \BbbY | ). First, since h \in W 1,2(\BbbX ,\BbbC ) and Jh(x) > 0 a.e.,
Lemma 2.5 gives

(4.1)

\int 
\BbbX 
Jh(x) dx =

\int 
\BbbY 
Nh(y,\BbbX ) dy ,

where Nh(y,\BbbX ) denotes the cardinality of the set \{ x \in \BbbX : h(x) = y\} .
Second, for an orientation-preserving homeomorphism g : \BbbX onto -  - \rightarrow \BbbY in the Sobolev

class W 1,2(\BbbX ,\BbbC ), we have

(4.2)

\int 
\BbbX 
Jg(x) dx = | \BbbY | .

Now combining this with Theorem 1.1 and Lemma 2.6 for an orientation-preserving
monotone h : \BbbX onto -  - \rightarrow \BbbY in W 1,2(\BbbX ,\BbbC ), we have

(4.3)

\int 
\BbbX 
Jh(x) dx = | \BbbY | .

Therefore, by (4.1) and (4.3) for a monotone h : \BbbX onto -  - \rightarrow \BbbY in W 1,2(\BbbX ,\BbbC ) with Jh(x) > 0
a.e. in \BbbX , we obtain Nh(y,\BbbX ) = 1 for a.e. y in \BbbY ; that is, | \BbbY h| = | \BbbY | . Since \BbbY is a
Lipschitz domain, it holds that | \partial \BbbY | = 0.

Step 2. (| \BbbX \bfith | = | \BbbX | ). The claim is that | h - 1(\BbbY h)| = | \BbbX | . Indeed, according to
Lemma 2.5, we have \int 

\BbbX \setminus h - 1(\BbbY h)

Jh(x) = | \BbbY \setminus \BbbY h| = 0 .

Furthermore, since Jh(x) > 0 a.e. in \BbbX , we have | \BbbX \setminus h - 1(\BbbY h)| = 0.

5. Constructing Example 1.7.

Proof of Example 1.7. Consider the rectangles \BbbX = ( - 1, 1) \times ( - 2, 2) = \BbbY . To
construct a monotone map h : \BbbX onto -  - \rightarrow \BbbY , we choose and fix parameters a >  - 1

p ;

b > 1 - 1
p such that a+ b < 1

q . This choice is possible because 0 < q < p
p - 2 . The map

in question is defined by the rule

h(x, y) = (u(x, y), v(x, y)), where

u(x, y) = x| x| a for  - 1 \leqslant x \leqslant 1,

v(x, y) =

\Biggl\{ 
y| x| b for | y| \leqslant 1,

(2 - | x| b)y + 2(| x| b  - 1) y
| y| for 1 \leqslant | y| \leqslant 2 .

It is worth noting that for x fixed the function y \rightarrow v(x, y) is linear in each of the
following intervals: y \in [ - 1, 1], y \in [1, 2], and y \in [ - 2, - 1]; see Figure 1. Clearly, we
have

h - 1(0, 0) = \BbbI def
== \{ (0, y) : | y| \leqslant 1\} .

Outside this interval, h is a bijection h : \BbbX \setminus \BbbI onto -  - \rightarrow \BbbY \setminus \{ (0, 0)\} . Its inverse h - 1 : \BbbY \setminus 
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518 IWANIEC, ONNINEN, PANKKA, AND RADICE

Fig. 1.

\{ (0, 0)\} onto -  - \rightarrow \BbbX \setminus \BbbI takes the form f(u, v) = (x(u, v), y(u, v)), where

x(u, v) = u| u| 
 - a
1+a ,  - 1 \leqslant u \leqslant 1,

y(u, v) =

\left\{     
v \pm 2(1 - | u| 

b
1+a )

2 - | u| 
b

1+a

whenever \pm v \geqslant | u| 
b

1+a , respectively,

v| u| 
 - b
1+a whenever | v| \leqslant | u| 

b
1+a .

Thereby, h is a monotone map because h - 1(0, 0) = \BbbI and outside this interval h is an
injective.

Concerning the energy of h, because of symmetries it is enough to evaluate the
energy over the rectangle (0, 1)\times (0, 2). The formula takes the form

\sansE p
q [h] = 4

\int 1

0

\biggl[ \int 1

0

\sansE (x, y)dy +

\int 2

1

\sansE (x, y)dy

\biggr] 
dx,

where

\sansE (x, y) = | Dh(x, y)| p + 1

Jh(x, y)q
for x, y \geqslant 0.

Consider two cases:
Case 1. 0 \leqslant y \leqslant 1, so\Biggl\{ 

u(x, y) = xa+1, so ux = (a+ 1)xa and uy = 0,

v(x, y) = xby, so vx = bxb - 1y and vy = xb.

Hence, | Dh(x, y)| p \leqslant Cxap+x(b - 1)p and Jh(x, y) = uxvy - uyvx = uxvy = (a+1)xa+b.
Since ap >  - 1 and (b - 1)p >  - 1, we have\int 1

0

\int 1

0

| Dh(x, y)| pdxdy <\infty .
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A NEOHOOKEAN MODEL OF PLATES 519

On the other hand, Jh(x, y)
q = (a+ 1)qx(a+b)q. Since a+ b < 1

q , we have\int 1

0

\int 1

0

dx dy

Jh(x, y)q
<\infty .

In conclusion, the energy over the square 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 1 is finite.
Case 2. 1 \leqslant y \leqslant 2, so\Biggl\{ 

u(x, y) = xa+1, so ux = (a+ 1)xa and uy = 0

v(x, y) = 2y  - xby + 2xb  - 2, so vx = bxb - 1(2 - y) and vy = 2 - xb.

Hence,
| Dh(x, y)| p \leqslant Cxap + x(b - 1)p,

Jh(x, y) = uxvy  - uyvx = uxvy = (a+ 1)xa(2 - xb) \geqslant (a+ 1)xa .

As in Case 1, \int 1

0

\int 1

0

| Dh(x, y)| pdxdy <\infty .

On the other hand,\int 1

0

\int 1

0

dxdy

Jh(x, y)q
\leqslant 

1

(a+ 1)q

\int 1

0

\int 1

0

dx dy

xaq
<\infty 

because aq \leqslant (a+ b)q < 1. In conclusion, \sansE p
q [h] <\infty , as desired.

5.1. An extension. We just have constructed a monotone map h : \BbbX onto -  - \rightarrow \BbbY 
of finite energy which equals the identity on the vertical sides of the rectangle \BbbX =
[ - 1, 1]\times [ - 2, 2] . However, restricted to the horizontal sides, it is not the identity; it
takes the form

h(x, 2) = (x| x| a, 2) and h(x, - 2) = (x| x| a, - 2) for  - 1 \leqslant x \leqslant 1 .

We shall still need a map that is equal to the identity on the entire boundary. For
this reason we extend h to a map \widetilde h : \widetilde \BbbX onto -  - \rightarrow \widetilde \BbbY , where \widetilde \BbbX = \widetilde \BbbY = [ - 1, 1]\times [ - 3, 3] , by
the rule

(5.1) \widetilde h(x, y) =
\left\{       
\Bigl( 
x| x| a(3 - y) + x(y  - 2) , y

\Bigr) 
when 2 \leqslant y \leqslant 3,

h(x, y) when  - 2 \leqslant y \leqslant 2,\Bigl( 
x| x| a(3 + y)  - x(y + 2) , y

\Bigr) 
when  - 3 \leqslant y \leqslant  - 2 .

Clearly, \widetilde h is monotone and equal to the identity on \partial \widetilde \BbbX . Just as in the computation
above, we see that \sansE p

q [
\widetilde h] < \infty . Proceeding further in this direction, we may extend\widetilde h to the square S

def
== [ - 4, 4] \times [ - 4, 4] by letting it be equal to the identity outside\widetilde \BbbX . Let us record this in the following lemma.

Lemma 5.1. For every p > 2 and 0 < q < p
p - 2 , there exists a noninjective

monotone map \Phi \in M p(S,S) of finite \sansE p
q -energy, which is the identity near the

boundary of S . Precisely, we have the following average energy:

(5.2) \sansE p
q [\Phi ] =

1

| S| 

\int 
\bfS 

\biggl[ 
| D\Phi (y)| p + 1

[ detD\Phi (y)]q

\biggr] 
dy

def
== E <\infty ,

where | S| = 16 is the area of the square S = [ - 4, 4]\times [ - 4, 4].
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520 IWANIEC, ONNINEN, PANKKA, AND RADICE

5.1.1. Rescaling. Formula (5.2) can be rescaled to an arbitrary square Q \subset \BbbR 2

in place of S . Let us discuss it in a somewhat greater context. Choose and fix a
prototype energy integral over a square S \subset \BbbR 2 centered at the origin and of side
length L :

(5.3) E [\Phi ]
def
==

1

| S| 

\int 
\bfS 

E(D\Phi (y)) dy .

This integral is assumed to exist for some adequate mappings \Phi : S onto -  - \rightarrow S , \Phi (0) = 0 .
Note that the stored-energy integrand depends solely on the deformation gradient
D\Phi . Now take any square Q centered at a \in \BbbR 2 and of side length \ell . Then the
mapping

(5.4) hQ : Q onto -  - \rightarrow Q , defined by hQ(x)
def
== a+

\ell 

L
\Phi 

\biggl( 
L

\ell 
(x - a)

\biggr) 
,

has the same average energy as \Phi :

(5.5) E [hQ] =
1

| Q| 

\int 
\bfQ 

E(DhQ(x)) dx = E [\Phi ] .

This is an obvious consequence of the chain rule DhQ(x) = D\Phi (y) , where y =
L
\ell (x  - a) is a variable used as a substitution in the integral (5.3). For later use, it
should be noted that if \Phi is monotone, then so is hQ . Also, if \Phi is the identity map
near \partial S , then so is hQ near \partial Q .

6. Cantor-type construction of Example 1.9.

6.1. Construction of Cantor set. We shall work with closed squares whose
sides are parallel to the standard coordinate axes of \BbbR 2, but most of the definitions
and formulas will be coordinate free.

6.1.1. Cornersquares. Suppose we are given a square Q \subset \BbbR 2 and a parameter
0 < \varepsilon < 1 . Write it as Q = I \times J , where I, J \subset \BbbR are closed intervals of the same
length \ell = | I| = | J | . These might be called, respectively, the horizontal and the
vertical factors of Q . The notation \varepsilon I and \varepsilon J will stand for the intervals of the
same centers but \varepsilon -times smaller in length, respectively. Cutting them out from I
and J gives the decompositions

I \setminus \varepsilon I = I - \cup I+ and J \setminus \varepsilon J = J - \cup J+

into the left and the right, as well as into the lower and the upper subintervals. Note
that we suppressed the explicit dependence on \varepsilon in the notation. This parameter
will be determined later during our induction procedure. Now the Cartesian product
consists of four subsquares:

(I \setminus \varepsilon I)\times (J \setminus \varepsilon J) = Q+
+ \cup Q+

 - \cup Q - 
 - \cup Q - 

+ .

Explicitly, we have the formulas

Q+
+

def
== I+ \times J+ , Q+

 - 
def
== I - \times J+ , Q - 

 - 
def
== I - \times J - , Q - 

+
def
== I+ \times J - .

Each of these subsquares touches exactly one corner of Q , which motivates our calling
Q+

+ , Q
+
 - , Q

 - 
 - , Q

 - 
+ the cornersquares of Q , more precisely, the first generation of

cornersquares. We shall also spot the so-called centersquare of Q , defined by \varepsilon Q =
\varepsilon I \times \varepsilon J ; see the left-hand side of Figure 2.
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A NEOHOOKEAN MODEL OF PLATES 521

Fig. 2. Cornersquares as building blocs for a Cantor-type construction.

6.1.2. Second generation of cornersquares. Choose another positive \varepsilon -
parameter, say, \varepsilon = \varepsilon 2 . Then every cornersquare of Q gives rise to its own four
cornersquares determined by this parameter; see the middle part of Figure 2. In this
way we obtain 16 cornersquares of so-called second generation. According to our
notation, these are

Q++
++ Q++

+ - Q+ - 
+ - Q+ - 

++

Q++
 - + Q++

 -  - Q+ - 
 -  - Q+ - 

 - +

Q - +
 - + Q - +

 -  - Q -  - 
 -  - Q -  - 

 - +

Q - +
++ Q - +

+ - Q -  - 
+ - Q -  - 

++

See also the third generation of 64 cornersquares in the right-hand side of Figure
2.

6.1.3. The induction procedure. Fix a sequence of \varepsilon -parameters rapidly de-
creasing to 0, say, (\varepsilon 1, \varepsilon 2, . . .) with \varepsilon n = 4 - n . We begin with the base 1\times 1 square
\BbbQ \subset \BbbR 2 and the first \varepsilon - parameter equal to \varepsilon 1 . This gives us the first generation of
four cornersquares Q\beta 1

\alpha 1
\subset \BbbQ , where both indices run over the set \{ + ,  - \} . We let

\scrF 1 denote this family of cornersquares.
In the second step we take \varepsilon 2 as the \varepsilon -parameter and look at the cornersquares of

every Q\beta 1
\alpha 1

. Denote them by Q\beta 1 \beta 2
\alpha 1 \alpha 2

\subset Q\beta 1
\alpha 1

, where \alpha 2, \beta 2 \in \{ + ,  - \} . They form the
family \scrF 2 of second generation. More generally, given the family \scrF n of cornersquares

Q\beta 1 \beta 2,...,\beta n
\alpha 1 \alpha 2...,\alpha n

\subset Q
\beta 1 \beta 2,...,\beta n - 1
\alpha 1 \alpha 2,...,\alpha n - 1 \in \scrF n - 1 , we take \varepsilon n+1 as the \varepsilon -parameter and adopt to

the family \scrF n+1 the \varepsilon -cornersquares of Q\beta 1 \beta 2,...,\beta n
\alpha 1 \alpha 2,...,\alpha n

, namely,

Q\beta 1 \beta 2,...,\beta n+
\alpha 1 \alpha 2,...,\alpha n+ , Q\beta 1 \beta 2,...,\beta n+

\alpha 1 \alpha 2,...,\alpha n - , Q\beta 1 \beta 2,...,\beta n - 
\alpha 1 \alpha 2,...,\alpha n - , Q\beta 1 \beta 2,...,\beta n - 

\alpha 1 \alpha 2,...,\alpha n+ \in \scrF n+1 .

Thus, \scrF n+1 consists of 4n+1 cornersquares denoted by Q\beta 1 \beta 2,...,\beta n\beta n+1
\alpha 1 \alpha 2,...,\alpha n\alpha n+1

. This process
continues indefinitely.

6.1.4. The size of squares in \scrF n and their total area. Let us compare
the side length of squares in \scrF n+1 with those in \scrF n . Every member of \scrF n+1 is a
cornersquare of a Q \in \scrF n via the parameter \varepsilon = \varepsilon n+1 . Let \ell denote the side length
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of Q . We remove from Q its centersquare \varepsilon Q . Thus, each of the remaining four
cornersquares has side length 1

2 (1 - \epsilon )\ell . For n = 1 , this equals 1
2 (1 - \epsilon 1) . Hence, by

induction, the side length of squares in \scrF n equals 1
2n (1 - \varepsilon 1)(1 - \varepsilon 2) \cdot \cdot \cdot (1 - \varepsilon n) <

1
2n .

We have 4n such squares. This sums up to the total area of the union\bigm| \bigm| \bigm| \bigcup \scrF n

\bigm| \bigm| \bigm| = (1 - \varepsilon 1)
2(1 - \varepsilon 2)

2 \cdot \cdot \cdot (1 - \varepsilon n)
2.

6.1.5. The Cantor set. We have a decreasing sequence of compact sets
\bigcup 

\scrF 1 \supsetneq \bigcup 
\scrF 2 \supsetneq , . . . ,\supsetneq 

\bigcup 
\scrF n, . . . . Cantor's theorem tells us that their intersection is not

empty:

\scrC def
==

\infty \bigcap 
n - 1

\Bigl( \bigcup 
\scrF n

\Bigr) 
\not = \emptyset .

The measure of this Cantor set is positive:

(6.1) | \scrC | = lim
n\rightarrow \infty 

\bigm| \bigm| \bigm| \bigcup \scrF n

\bigm| \bigm| \bigm| = \infty \prod 
k=1

(1 - \varepsilon k)
2 > 0.

The latter inequality is a consequence of
\sum \infty 

k=1 \varepsilon k <\infty . Every point in \scrC is obtained
as the intersection of exactly one decreasing sequence of the form

Q\beta 1
\alpha 1

\supsetneq Q\beta 1\beta 2
\alpha 1\alpha 2

\supsetneq . . . \supsetneq Q\beta 1\beta 2,...,\beta n
\alpha 1\alpha 2,...,\alpha n

. . . .

An obvious consequence of this is the following.

Lemma 6.1. Every open set that intersects \scrC contains a square, say, Q \in \scrF n,
for sufficiently large n , which, in turn, contains its centersquare \varepsilon nQ \subset Q .

The idea behind this lemma is a monotone mapping h : \BbbQ onto -  - \rightarrow \BbbQ whose branch
set will materialize in the centersquares.

6.2. A monotone map \bfith : \BbbQ onto - \rightarrow \BbbQ . We let G denote the family of cen-
tersquares of all generations. From now on, the need will not arise for the explicit
dependence on multi-indices in the notation of centersquares. For every Q \in G , we
have a monotone map hQ : Q onto -  - \rightarrow Q defined by Formula (5.4) with \Phi given in
Lemma 5.1. Thus, the average \sansE p

q -energy of hQ does not depend on Q and equals
E . In particular,

(6.2)

\int 
Q

| DhQ(x)| p dx <

\int 
Q

\Bigl( 
| DhQ(x)| p + [JhQ

(x)] - q
\Bigr) 
dx = | Q| E .

Recall that hQ equals the identity map near \partial Q . Now we can define the map
h \in M p(\BbbQ ,\BbbQ ) that is hunted by Example 1.9.

Definition 6.2. We define the map h : \BbbQ onto -  - \rightarrow \BbbQ by setting

(6.3) h(x) =

\Biggl\{ 
hQ(x) whenever x \in Q \in G ,

x otherwise.

Let us subtract the identity map:

(6.4) h(x) - x =

\Biggl\{ 
hQ(x) - x

def
== fQ(x) whenever x \in Q \in G ,

0 otherwise.
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One advantage of using this is that fQ \in W 1,p
0 (Q) . Actually, fQ vanishes near \partial Q .

We have the infinite series

h(x) - x =
\sum 
\BbbQ \in G

fQ(x) , in which
\sum 
\BbbQ \in G

\int 
Q

| DfQ| p <\infty .

This latter inequality is due to the estimate (6.2). Now comes a general fact (rather
folklore) about Sobolev functions.

Lemma 6.3. Let \Omega \subset \BbbR n be a bounded domain and \Omega i \subset \Omega , i = 1, 2, . . . ,
disjoint open subsets. Suppose we are given functions fi \in W 1,p

0 (\Omega i) such that\sum \infty 
i=1

\int 
\Omega i

| Dfi(x)| p dx <\infty . Then the function

f(x) =

\Biggl\{ 
fi(x) whenever x \in \Omega i,

0 otherwise

lies in the space W 1,p
0 (\Omega ) .

We conclude that h \in W 1,p(\BbbQ ,\BbbQ ) with p > 2 and, as such, is continuous on
\BbbQ . As regards monotonicity, for each square (continuum) Q \in G , the mapping
h : Q onto -  - \rightarrow Q is monotone, and h is the identity outside those continua. This is
enough to conclude that h : \BbbQ onto -  - \rightarrow \BbbQ is monotone. We leave the details to the
reader.

Finally, every point of the Cantor set \scrC belongs to the branch set of h . Indeed,
by Lemma 6.1, any neighborhood of this point contains a square Q \in G in which
h = hQ fails to be injective. Thus, the branch set \scrB h contains the Cantor set \scrC and,
therefore, has positive measure. On the other hand, by the very definition, h(x) \equiv x
on \scrC . Therefore, h(\scrB h) also contains \scrC , so h(\scrB h) has positive measure as well.

Remark 6.4. The branch set \scrB h consists precisely of the Cantor set \scrC and ver-
tical segments in the centersquares Q \in G , which are squeezed to the centers. This
makes it clear that h(\scrB h) = \scrC . It should be noted that the branch set \scrB h can have
nearly full measure. This follows from the formula (6.1) by letting \varepsilon k > 0 arbitrarily
small.

The proof of Example 1.9 is complete.

6.3. Greater generality. We are now in a position to appreciate a more general
approach to the construction presented above. Let us begin with an arbitrary bounded
discrete set G of points in \BbbR 2 whose limit set, denoted by C , has positive area; see
Figure 3. Clearly, G is necessarily countable. Moreover, C\cup G is a compact subset
of a bounded domain \Omega \subset \BbbR 2 . Given a point in G , we may (and do) choose a square
Q \subset \Omega \setminus C centered at this point and small enough so that the family of all such
squares, denoted as before by G , is disjoint. Analogously to Lemma 6.1, every open
set that intersects C contains a square in G .

To every Q \in G there corresponds a monotone map hQ : Q onto -  - \rightarrow Q equal to the
identity near \partial Q . Recall the inequality (6.2):

(6.5)

\int 
Q

| DhQ(x)| p dx <

\int 
Q

\Bigl( 
| DhQ(x)| p + [JhQ

(x)] - q
\Bigr) 
dx = | Q| E .

This yields\sum 
Q\in G

\int 
Q

| DhQ(x)| p dx <
\sum 
Q\in G

\sansE p
q [hQ] = E

\sum 
Q\in G

| Q| < E| \Omega | <\infty .
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Fig. 3. Squares approaching the limit set.

It is precisely this property that one needs to infer g \in W 1,p(\Omega )\cap C (\Omega ) . Exactly the
same way as in Formula (6.3), we define a map g : \Omega onto -  - \rightarrow \Omega by the rule

(6.6) g(x) =

\Biggl\{ 
hQ(x) whenever x \in Q \in G ,

x otherwise.

Then we conclude in much the same way that g \in M p(\Omega ,\Omega ) , \sansE p
q [g] <\infty , | \scrB g| > 0 ,

and | g(\scrB g)| > 0 .

7. Proof of Theorem 1.2. Let \BbbX and \BbbY be \ell -connected bounded Lipschitz
domains in \BbbR 2. Consider a family \scrF of Sobolev orientation-preserving monotone
mappings h : \BbbX onto -  - \rightarrow \BbbY such that

(7.1) \sansE p
q [h] =

\int 
\BbbX 

\biggl( 
| Dh| p + 1

Jq
h

\biggr) 
\leqslant E

for all h \in \scrF . Here \BbbX ,\BbbY , p \geqslant 2, q > 0, and E <\infty are fixed.

Lemma 7.1. The family \scrF is equicontinuous. Precisely, there is a constant C
such that

(7.2) | h(x1) - h(x2)| 2 \leqslant 
C \cdot E

log
\Bigl( 
1 + C

| x1 - x2| 

\Bigr) 
for all h \in \scrF and distinct points x1, x2 \in \BbbX .

Proof. Since Jh \geqslant 0 almost everywhere in \BbbX , we have h \in M p(\BbbX ,\BbbY ). Now, for
proving (7.2) we may assume (equivalently) that h \in H p(\BbbX ,\BbbY ) with \sansE p

q [h] < \infty ,
thanks to Theorem 1.1. If \BbbX is multiple connected \ell \geqslant 2, then the modulus of
continuity estimate (7.2) simply follows from the fact that the Dirichlet energy of h is
uniformly bounded by the value of neohookean energy E; see Lemma 2.2. Therefore,
it suffices to consider the case of simply connected domains and p = 2. It is worth
recalling that if \ell = 1, then

\int 
\BbbX | Dh| 

2 \leqslant E is not enough to imply (7.2); see Remark 2.3.
Let \ell = 1 and p = 2. We may assume without loss of generality that \BbbX = \BbbD = \BbbY .

Indeed, for any bounded Lipschitz domain \BbbY , there exists a global bi-Lipschitz change
of variables \Phi : \BbbC \rightarrow \BbbC for which \Phi (\BbbY ) is the unit disk. Since the finiteness of the
\sansE 2
q-energy is preserved under a bi-Lipschitz change of variables in both the target \BbbY 
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and the domain \BbbX , we assume that \BbbX and \BbbY are unit disks. Choose and fix any disk
B = B(x\circ , \delta ) \Subset \BbbX . We have, for every h \in \scrF ,

| B| =
\int 
B

J
q

q+1

h \cdot 1

J
q

q+1

h

\leqslant 

\biggl( \int 
B

Jh

\biggr) q
q+1

\biggl( \int 
B

1

Jq
h

\biggr) 1
q+1

\leqslant | h(B)| 
q

q+1 \cdot E
1

q+1 .

Hence,

| h(B)| \geqslant | B| 
q+1
q E - 1

q constant independent of h \in \scrF .

Choose and fix \varepsilon > 0 such that the annulus

\Delta \varepsilon = \{ y \in \BbbY : dist(y, \partial \BbbY ) \leqslant \varepsilon \} 

has measure smaller than | B| 
q+1
q E - 1

q . Thus, h(B) \not \subset \Delta \varepsilon , and therefore there is a
point a \in B \Subset \BbbX such that | h(a)| < 1  - \varepsilon . In other words, for every h \in \scrF we can
find a point a \in \BbbX , with | a| \leqslant 1 - \delta , and b = h(a) \in \BbbY , with | b| < 1 - \varepsilon . Now consider
conformal mappings \varphi : \BbbX onto -  - \rightarrow \BbbX , \varphi (a) = 0, and \psi : \BbbY \rightarrow \BbbY , \psi (b) = 0. Both mappings
are bi-Lipschitz with bi-Lipschitz constants independent of a and b. Thus, the energy
\psi \circ h\circ \varphi : \BbbX onto -  - \rightarrow \BbbY is controlled from above by that of h uniformly in \scrF . Therefore, we
may (and do) assume that h(0) = 0. This leads us to the case of a homeomorphism
h : \BbbD \setminus \{ 0\} onto -  - \rightarrow \BbbD \setminus \{ 0\} , that is, between doubly connected domains. Finally, the
inequality (7.2) follows from Lemma 2.2, completing the proof of Lemma 7.1.

Proof of Theorem 1.2. We apply the direct method in the calculus of variations.
For that we take a minimizing sequence hk \in M p(\BbbX ,\BbbY ) of the neohookean energy \sansE p

q

which converges weakly to h\circ in W 1,p(\BbbX ,\BbbC ). Note that here we also used our standing
assumption that the class of admissible homeomorphisms is nonempty. Therefore, by
Lemma 2.7 we have

(7.3) \sansE p
q [h\circ ] \leqslant lim inf

k\rightarrow \infty 
\sansE p
q [hk] = inf

h\in Mp(\BbbX ,\BbbY )
\sansE p
q [h] .

Since \sansE p
q [hk] \leqslant E < \infty for every k \in \BbbN and hk \rightarrow h\circ weakly in W 1,p(\BbbX ,\BbbC ), applying

Lemma 7.1 we see that the sequence hk also converges uniformly to h\circ in \BbbX . Now the
mapping h\circ , being a uniform limit of monotone mappings hk : \BbbX onto -  - \rightarrow \BbbY , is a monotone
map from \BbbX onto \BbbY . Therefore, h\circ \in M p(\BbbX ,\BbbY ). Combining this with (7.3) we have

\sansE p
q [h\circ ] \leqslant inf

h\in Mp(\BbbX ,\BbbY )
\sansE p
q [h] \leqslant \sansE p

q [h\circ ] ,

finishing the proof of Theorem 1.2.

8. Proof of Theorem 1.5.

Proof. First we are going to estimate the distortion function

1 \leqslant Kh(x)
def
==

| Dh(x)| 2

2Jh(x)

by using Young's inequality:

ABC \leqslant \alpha A
1
\alpha + \beta B

1
\beta + \gamma C

1
\gamma , A,B,C \geqslant 0; \alpha , \beta , \gamma \geqslant 0, \alpha + \beta + \gamma = 1,
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where we add here to the convention that \gamma C
1
\gamma = 0 for \gamma = 0. The pointwise estimate

of Kh by means of the energy integrand reads as, when p > 2,

2Kh(x) \leqslant 
2

p
| Dh| p + 1

q

1

Jq
h

+

\biggl( 
1 - 2

p
 - 1

q

\biggr) 
\cdot 1

\leqslant 
2

p
| Dh| p + 1

q

1

Jq
h

+

\biggl( 
1 - 2

p
 - 1

q

\biggr) 
Kh .

Hence,

Kh \leqslant | Dh| p + 1

Jq
h

= \sansE (| Dh| ,detDh) .

Integrating over \Omega we obtain

\| Kh\| L 1(\Omega ) =

\int 
\Omega 

Kh(x)dx <\infty .

For Remark 1.6 concerning the case p = 2 and q = \infty , we argue as follows:

Kh =
| Dh| 2

2Jh
\leqslant 

C

2
| Dh| 2 .

Hence, \int 
\BbbX 

Kh <
C

2

\int 
\BbbX 
| Dh| 2 < \infty .

In either case p > 2 or p = 2, we see that the map h \in W 1,2(\Omega ,\BbbR 2) has integrable
distortion. It is known [27] that such mappings h : \Omega \rightarrow \BbbR 2 are discrete and open. In
particular, h(\Omega ), being an open subset of \BbbY , is contained in \BbbY . Next, we show that
h : \Omega onto -  - \rightarrow h(\Omega ) is injective. To this effect, suppose, to the contrary, that h(x1) =

h(x2)
def
== y\circ \in h(\Omega ) for some points x1 \not = x2 in \Omega . The preimage h - 1(y\circ ) under the

map h : \BbbX onto -  - \rightarrow \BbbY is a continuum in \BbbX which contains x1, x2 \in \Omega . This contradicts
discreteness of h : \Omega \rightarrow \BbbR 2.

Since \Omega \Subset \BbbX is arbitrary, it follows that h : \BbbX onto -  - \rightarrow h(\BbbX ) is a homeomorphism as
well. Finally, it remains to show that h(\BbbX ) = \BbbY . Certainly, h(\BbbX ), being an open
subset of \BbbY , is contained in \BbbY .

Suppose there is y\circ \in \BbbY \setminus h(\BbbX ). But y\circ \in \BbbY = h(\BbbX ), so y\circ = h(x\circ ) for some
x\circ \in \BbbX . On the other hand, the map h : \BbbX onto -  - \rightarrow \BbbY , being monotone, takes \partial \BbbX onto
\partial \BbbY . This means that x\circ /\in \partial \BbbX because h(x\circ ) = y\circ /\in \partial \BbbY .
In conclusion,

h(\BbbX ) = \BbbY .

9. Proof of Theorem 1.10.

Proof. First, note that s > p and | Dh| s \in L 1
loc(\BbbX ). The idea of the proof is to

infer from (1.7) that

(9.1)
1

Jh
\in L

sq
p

loc (\BbbX ) .

For this purpose, consider the functions

(9.2) \Phi =
\Bigl( 
1 - p

2

\Bigr) 
| Dh| p + 1 + q

Jq
h

\in L 1
loc(\BbbX ),

(9.3) \Psi = 2p| Dh| p - 2hzhz \in L r
loc(\BbbX ,\BbbC ), where r =

s

p
> 1 .
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Equation (1.7) reads as

(9.4) \Phi z = \Psi z in the sense of distributions.

We first observe the following.

Lemma 9.1. For every subdomain \Omega \Subset \BbbX compactly contained in \BbbX , it holds that

\Phi \in L r(\Omega ) .

Proof of Lemma 9.1. Choose and fix a function \lambda \in C\infty 
0 (\BbbX ) which equals 1 in a

neighborhood of \Omega \subset \BbbX . Then consider the expression defined in the entire complex
plane by the rule

(9.5) \lambda \Phi  - S\lambda \Psi ,

where S : L r(\BbbC ) \rightarrow L r(\BbbC ) is the Beurling--Ahlfors transform

(Sf)(z) =  - 1

\pi 

\int 
\BbbC 

\int 
f(\xi )d\xi 

(z  - \xi )2
for f \in L r(\BbbC ) .

The following identity is characteristic of Beurling--Ahlfors transform:

\partial 

\partial z
(Sf) =

\partial 

\partial z
f for f \in L r(\BbbC ) .

The complex derivatives are understood in the sense of distributions. We may (and
do) apply this identity to f = \lambda \Psi . Differentiating the expression (9.5) with respect
to z yields

\partial 

\partial z
[\lambda \Phi  - S\lambda \Psi ] =

\partial 

\partial z
[\lambda \Phi ] - \partial 

\partial z
[\lambda \Psi ]

= \lambda z\Phi + \lambda \Phi z  - \lambda z\Psi  - \lambda \Psi z

= \lambda z\Phi  - \lambda z\Psi = 0 in a neighborhood of \Omega .

Here we used (9.4) and the fact the \lambda \equiv 1 in a neighborhood of \Omega . Thus, by Weyl's
lemma, the function

H = \lambda \Phi  - S\lambda \Psi 

is holomorphic in a neighborhood of \Omega \subset \BbbX , so H \in L r(\Omega ). In this neighborhood we
express H as

H(z) = \Phi (z) +
1

\pi 

\int 
\BbbC 

\int 
\lambda (\xi )\Psi (\xi )d\xi 

(z  - \xi )2
.

The latter integral, being the Beurling--Ahlfors transform of \lambda \Psi \in L r(\BbbC ), represents
a function in L r(\BbbC ). In conclusion, \Phi \in L r(\Omega ).

Now it follows by (9.2) that J - q
h \in L r

loc(\Omega ), as claimed in (9.1). Combining this
with the assumption | Dh| s \in L 1

loc(\BbbX ), we have\int 
\Omega 

\Bigl( 
| Dh| s + J

 - sq
p

h

\Bigr) 
<\infty ,

where \Omega \Subset \BbbX , s > 2, and sq
p \geqslant s

s - 2 . We are now in a position to apply Theorem 1.5

for s in place of p and sq
p in place of q. Therefore,

h : \BbbX onto -  - \rightarrow \BbbY 

is a homeomorphism.
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