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Abstract. We study the permanence and impermanence for discrete-time
Kolmogorov systems admitting a carrying simplex. Sufficient conditions to

guarantee permanence and impermanence are provided based on the existence

of a carrying simplex. Particularly, for low-dimensional systems, permanence
and impermanence can be determined by boundary fixed points. For a class

of competitive systems whose fixed points are determined by linear equations,

there always exists a carrying simplex. We provide a universal classification via
the equivalence relation relative to local dynamics of boundary fixed points for

the three-dimensional systems by the index formula on the carrying simplex.

There are a total of 33 stable equivalence classes which are described in terms
of inequalities on parameters, and we present the phase portraits on their

carrying simplices. Moreover, every orbit converges to some fixed point in

classes 1− 25 and 33; there is always a heteroclinic cycle in class 27; Neimark-
Sacker bifurcations may occur in classes 26 − 31 but cannot occur in class 32.

Based on our permanence criteria and the equivalence classification, we obtain
the specific conditions on parameters for permanence and impermanence. Only

systems in classes 29, 31, 33 and those in class 27 with a repelling heteroclinic

cycle are permanent. Applications to discrete population models including the
Leslie-Gower models, Atkinson-Allen models and Ricker models are given.

1. Introduction. The theory of the carrying simplex was first developed in [39]1

by Hirsch for continuous-time competitive systems of Kolmogorov ODEs, which2

states that every strongly competitive and dissipative system for which the origin3

is a repeller possesses a globally attracting hypersurface Σ of codimension one,4

called the carrying simplex in [84, 87]. Furthermore, Σ is homeomorphic to the5

(n − 1)-dimensional standard probability simplex ∆n−1 = {x ∈ Rn+ :
∑
i xi =6

1} by radial projection, and has the property that every nontrivial orbit in the7

nonnegative cone Rn+ is asymptotic to one in Σ. It has been proved as a powerful8

tool to investigate global dynamics of competitive systems, especially for the lower9

dimensional systems. The reader can consult, for instance, [44, 80, 83, 85, 86, 61,10

35, 7, 4, 51, 45, 11], for more results on continuous-time competitive systems via11

the carrying simplex.12

The theory of the carrying simplex has been extended to discrete-time compet-13

itive systems due to the early work of de Mottoni and Schiaffino [16], Hale and14

Somolinos [36] and Smith [75]. By introducing mild conditions, Wang and Jiang15

proved in [82] the existence of a carrying simplex for competitive mappings, which16

solved the conjecture on the carrying simplex proposed by Smith in [75] and was17

improved further by Diekman, Wang and Yan [17]. Further, Hirsch announced a18

theory on the existence of a carrying simplex in [40] for the continuous Kolmogorov19

map (not necessarily invertible)20

T (x) = (x1F1(x), . . . , xnFn(x)), x ∈ Rn+, (1)

where Fi are continuous satisfying Fi(x) > 0 for all x ∈ Rn+, i = 1, . . . , n. The21

discrete-time dynamical system induced by such T has been much used to describe22

the interactions of n species with non-overlapping generations; see [63, 47, 42, 20,23

70, 60, 53, 40]. The statement of Hirsch’s Theorem in [40] was rigorously proved24

by Ruiz-Herrera [74] under similar assumptions to Hirsch’s. Other criteria on the25

existence of a carrying simplex for Kolmogorov mappings were also established in26

[5, 50, 49], and we refer the readers to the paper [49] for a review.27

The importance of the existence of a carrying simplex stems from the fact that28

it captures the relevant long-term dynamics. In particular, it contains all non-29

trivial fixed points, periodic orbits, invariant circles and heteroclinic cycles (see, for30
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example, [48, 50, 49, 34]). Therefore, the common approach in the study of these1

systems is to focus on the dynamics on the carrying simplex.2

In [74], Ruiz-Herrera provided an exclusion criterion for discrete-time competitive3

models of two or three species via the carrying simplex. Jiang and Niu derived a4

fixed point index formula on the carrying simplex for three-dimensional maps in5

[48], which states that the sum of the indices of all fixed points on the carrying6

simplex is one. Based on this formula, an alternative classification for 3-dimensional7

Atkinson-Allen models was provided in [48] and an alternative classification for 3-8

dimensional Leslie-Gower models was provided in [49]. Such a classification has also9

been given for the 3-dimensional generalized Atkinson-Allen models [34] and Ricker10

models admitting a carrying simplex [33], respectively. Jiang, Niu and Wang [50]11

studied the occurrence and stability of heteroclinic cycles for competitive maps with12

a carrying simplex. Recently, Niu and Ruiz-Herrera proved in [69] that every orbit13

converges to a fixed point for three-dimensional maps with a carrying simplex when14

there is a unique positive fixed point such that its index is −1. For the geometrical15

properties of the carrying simplex and their impact on the dynamics, we refer the16

readers to [5, 6, 8, 66, 67].17

In population biology, the question of persistence of interacting species is one of18

the most important. There has been many papers on permanence for discrete-time19

Kolmogorov systems; see [47, 42, 62, 55, 53]. Here we study the permanence and20

impermanence for the discrete-time Kolmogorov systems (1) admitting a carrying21

simplex. The main mathematical tools involve average Liapunov functions (see [47,22

50]) and the theory of the carrying simplex. A successful case of combining these two23

approaches is the stability criterion for heteroclinic cycles established by Jiang, Niu24

and Wang in [50]. Our project here is to provide the minimal conditions to ensure25

the permanence for such systems via the carrying simplex. Criteria for permanence26

and impermanence which are simple and easy to apply are provided for systems27

(1) admitting a carrying simplex. In particular, for three-dimensional systems,28

permanence and impermanence can be determined by boundary fixed points. As29

a special case, when the boundary of the carrying simplex is a heteroclinic cycle,30

the system is permanent if the heteroclinic cycle is repelling, while the system is31

impermanent if it is attracting.32

Finally, we restrict attention to the class of maps given by33

Ti(x) = xifi((Ax
τ )i, ri), i = 1, · · · , n, (2)

where ri > 0, A is an n× n matrix with entries aij > 0, fi : R+ × Ṙ+ 7→ Ṙ+ are34

C1, and τ denotes transpose. In addition, in this article, we always assume that fi35

satisfies36

(i) fi(r, r) = 1,
∂fi(z, r)

∂z
< 0, ∀(z, r) ∈ R+ × Ṙ+;

(ii) fi(z, r) + z
∂fi(z, r)

∂z
> 0, ∀(z, r) ∈ R+ × Ṙ+.

(3)

Note that fi enjoys the properties: fi(z, r) > 1 for z < r, fi(z, r) = 1 for z = r, and37

fi(z, r) < 1 for z > r.38

The discrete-time system induced by map (2) is often used in the modeling of39

n-species in competition; see [38, 58, 20, 21, 70, 60, 73, 14, 54, 46]. The variable40

xi is the density of species i and fi is its growth function (or fitness function). Per41

capita growth rate for species i in the absence of competition is given by fi(0, ri).42
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The parameter aij is the competition coefficient which measures the effect of species1

j relative to i on the function fi.2

Note that when we consider T restricted to the i-th coordinate axis, we have3

gi(xi) = xifi(aiixi, ri), which describes the dynamics of the i-th species without4

inter-specific competition. By (3) (i), fi(aiixi, ri) is a decreasing function of xi.5

The biological meaning is that the per capita growth rate of species i is a decreasing6

function of population density due to negative density dependent mechanism such7

as intra-specific competition [19, 78]. By (3) (ii), gi(xi) is an increasing function8

of xi, so the population dynamics of each species is monotone. Biologically, this9

means that the intra-specific competition is contest due to increasing utilization of10

available resources, where each successful competitor gets all resources it requires11

for survival or reproduction (see [81, 37, 10, 79]). Furthermore, it follows from (3)12

that fi(0, ri) > 1 and13

fi(ri, ri) + ri
∂fi
∂z

(ri, ri) > 0, i.e. 1 + ri
∂fi
∂z

(ri, ri) > 0, (4)

so 0 is a repeller (growth of small populations), and xi = ri
aii

is an attracting fixed14

point for gi.15

Many functions satisfy (3), such as

f(z, r) = ( 1+r
1+z )s (0 < s ≤ 1),

f(z, r) = 1+rs

1+zs (0 < s ≤ 1),

f(z, r) = (1+r)(1−c)
1+z + c (0 < c < 1),

f(z, r) = 1+ln(1+r)
1+ln(1+z) .

We refer the readers to [31, 25, 10, 18] for the mechanistic derivation of various16

discrete-time single-species population models with such growth functions.17

By (3) (i), the fixed points of T are determined by the linear algebraic equations18

xi = 0 or (Axτ )i = ri, i = 1, . . . , n. (5)

We call the map (2) fixed points linearly determined. Jiang and Niu proved in19

[49] that all maps given by (2) with fi satisfying (3) admit a carrying simplex un-20

conditionally. In this article, we focus on studying the parameter conditions that21

guarantee permanence and impermanence for the three-dimensional map (2) with22

given functions fi. By noticing the above linear structure, we can define an equiva-23

lence relation on the parameter space for the three-dimensional map (2) as that for24

the two specific cases: the Atkinson-Allen model [48] and Leslie-Gower model [49].25

Two maps (2) are said to be equivalent relative to the boundary of Σ if their bound-26

ary fixed points have the same locally dynamical property on Σ after a permutation27

of the indices {1, 2, 3}. Map (2) is said to be stable relative to the boundary of28

Σ if all the fixed points on the boundary are hyperbolic. Via the index formula29

on the carrying simplex established in [48], we list the equivalence classes for all30

stable maps in Table 1. There are always a total of 33 stable equivalence classes31

which can be described in terms of inequalities on parameters, and the equivalence32

classification is independent of the choice of functions fi, which presents a clear pic-33

ture of the essence of the dynamics for this class of maps. Moreover, based on this34

classification, one can easily get the parameter conditions that guarantee perma-35

nence and impermanence for such systems. Specifically, applying the permanence36

criteria to each class, we obtain that systems in classes 29, 31, 33 and those in class37

27 with repelling heteroclinic cycles are permanent, while systems in classes 1− 26,38
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28, 30, 32 and class 27 with attracting heteroclinic cycles are impermanent. For1

systems in class 33, the permanence can guarantee the global stability of the posi-2

tive fixed point. It is emphasized that the fixed points linearly determined systems3

(2) contain many classical systems, such as the Atkinson-Allen model [48] and the4

Leslie-Gower model [49]; see Section 5 for more. Our investigations will stimulate5

further study on the global behavior of these systems including the higher order6

bifurcations, multiplicity of closed invariant curves, and so on.7

As we mentioned earlier, many of the important ideas used in this work are due8

to Hutson and Moran [47], Hofbauer, Hutson and Jansen [42], Jiang and Niu [48, 49]9

and Jiang, Niu and Wang [50].10

The paper is organized as follows. In Section 2, we present some notions and recall11

some known results on average Liapunov functions. In Section 3, we provide the12

criteria on permanence and impermanence for dissipative Kolmogorov systems and13

maps admitting a carrying simplex. In Section 4, we define the equivalence relation14

relative to the boundary dynamics on the parameter space for the three-dimensional15

map (2), and derive the 33 stable equivalence classes. Based on this classification,16

we obtain the parameter conditions that guarantee permanence and impermanence.17

In Section 5, we apply our results to some classical discrete population models18

including the Leslie-Gower models, Atkinson-Allen models and Ricker models. The19

paper ends with a discussion in Section 6.20

2. Notation and preliminaries. Suppose that X is a metric space with metric21

dX(·, ·) and T : X → X is a continuous mapping. Let Z+ = {0, 1, 2, . . .}. For any22

x ∈ X, we define the positive orbit through x as γ+(x) := {T kx : k ∈ Z+}, and23

denote the tail from the moment m ≥ 1 of γ+(x) by γ+
m(x) := {T kx : k ≥ m}.24

A negative orbit through x is a sequence {x(−k) : k ∈ Z+} such that x(0) = x,25

Tx(−k− 1) = x(−k) for all k ∈ Z+. The omega limit set ω(x) :=
⋂
k≥0

⋃
m≥k T

mx26

of x is the set of limit points of the positive orbit γ+(x). The alpha limit set α(x) :=27 ⋂
k≥0

⋃
m≥k x(−m) associated to a negative orbit {x(−k) : k ∈ Z+} through x is28

the set of limit points of this negative orbit.29

For a subset D ⊆ X, D and Dc denote the closure of D in X and the complement
of D respectively. Given any set D, let

γ+(D) =
⋃
x∈D

γ+(x), Ω(D) =
⋃
x∈D

ω(x).

Note that Ω(D) is a subset of the omega limit set ω(D) of the orbit through D, i.e.

Ω(D) ⊆ ω(D) :=
⋂
k≥0

⋃
m≥k

TmD.

We denote E(T ) = {x ∈ X : Tx = x} to be the set of the fixed points of T .30

A set D ⊆ X is called positively invariant (with respect to T ) if TD ⊆ D;31

negatively invariant if TD ⊇ D; and invariant if TD = D.32

A set J is said to attract a set D under T if for any ε > 0, there exists a33

k0 ≥ 1 such that T kD belongs to the ε-neighborhood Oε(J) of J for k ≥ k0, where34

Oε(J) = {y ∈ X : dX(y, J) < ε}. A nonempty compact invariant set J ⊆ X is said35

to be a global attractor of T if J attracts each bounded set D ⊆ X. T is said to be36

dissipative if it admits a global attractor.37
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We say that a nonempty, compact, positively invariant subset S ⊆ X repels for T1

if there exists an ε-neighborhood Oε(S) of S such that for all x ∈ X \S there exists2

a k0 = k0(x) > 0 satisfying T kx /∈ Oε(S) for all k ≥ k0, i.e. γ+
k0

(x) ⊆ X \Oε(S).3

In the following part of this section, we recall two known results on average4

Liapunov functions.5

Lemma 2.1 (Lemma 2.1 in [42]). Let T : X 7→ X be a continuous map, where X6

is a metric space. Let W be open with compact closure, and suppose that U is open7

and positively invariant, where W ⊆ U ⊆ X. If γ+(x)∩W 6= ∅ for any x ∈ U , then8

γ+(W ) is compact and positively invariant such that for any x ∈ U , there exists a9

m = m(x) > 0 satisfying γ+
m(x) ⊆ γ+(W ).10

Lemma 2.2 (Repelling Set [47]). Suppose that M is a compact metric space and11

T : M 7→M is a continuous mapping. Assume that S is a compact subset of M with12

empty interior such that S and M \ S are positively invariant under T . Suppose13

that there is a continuous function V : M 7→ R+ satisfying that14

(i) V (x) = 0⇔ x ∈ S,15

(ii) ψM (x) := sup
k>0

ϑM (k, x) > 1 for all x ∈ S, where16

ϑM (k, x) := lim inf
y → x

y ∈ M \ S

V (T ky)

V (y)
, k ∈ Z+. (6)

Then S repels for T .17

Remark 2.1. The function V in Lemma 2.2 is called an average Liapunov function.18

Moreover, by Corollary 2.2 in [47], the condition (ii) in Lemma 2.2 is implied by19

the following condition20

(ii’) ψM (x) > 1 for all x ∈ Ω(S), and ψM (x) > 0 for all x ∈ S.21

Lemma 2.3 (Attracting Set [50]). Suppose that M is a compact metric space and22

T : M 7→M is a continuous mapping. Assume that S is a compact subset of M with23

empty interior such that S and M \ S are positively invariant under T . Suppose24

that there is a continuous function V : M 7→ R+ and a constant C > 0 satisfying25

that26

(i) V (x) = 0⇔ x ∈ S, and V (Tx)
V (x) ≤ C for all x ∈M \ S,27

(ii)ϕM (x) := inf
k>0

ζM (k, x) < 1 for all x ∈ Ω(S), where28

ζM (k, x) := lim sup
y → x

y ∈ M \ S

V (T ky)

V (y)
, k ∈ Z+. (7)

Then S attracts for T , that is, there is an ε-neighborhood Oε(S) of S such that29

ω(x) ⊆ S for every x ∈ Oε(S).30

The following proposition shows that the presence of an invariant repelling set31

S implies the existence of a compact set K contained in Sc that absorbs the orbits32

contained in Sc. See [77] for more details.33

Proposition 2.4. Suppose that M is a compact metric space and T : M 7→M is a34

continuous mapping. Assume that S ⊆M is compact with empty interior such that35

S and M \ S are positively invariant under T . If S repels, then there is a compact36

positively invariant set K ⊆ M \ S such that for every x ∈ M \ S, there exists a37

m = m(x) > 0 satisfying γ+
m(x) ⊆ K.38
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Proof. Set U = M \ S. Since S repels, there exists an ε-neighborhood Oε(S) of S1

such that for any x ∈ U there exists a k = k(x) > 0 satisfying γ+
k (x) ⊆M \Oε(S),2

and hence γ+
k (x) ⊆ W , where W = M \ O ε

2
(S). Thus, γ+(x) ∩W 6= ∅ for any3

x ∈ U . Note that W is open and W ⊆ U is compact, so it follows from Lemma 2.14

that γ+(W ) is compact, positively invariant such that for any x ∈ U , there exists5

a m = m(x) > 0 satisfying γ+
m(x) ⊆ γ+(W ). Let K = γ+(W ), which is the desired6

set. Clearly, K ⊆ U because TU ⊆ U .7

3. Permanence criteria. From now on we reserve the symbol n for the dimension8

of the Euclidean space Rn and the symbol N for the set {1, . . . , n}. We will denote9

by {e1, . . . , en} the usual basis for Rn, and by d(·, ·) the usual Euclidean distance.10

We use Rn+ to denote the nonnegative cone {x ∈ Rn : xi ≥ 0,∀i ∈ N}. The interior11

of Rn+ is the open cone Ṙn+ := {x ∈ Rn+ : xi > 0,∀i ∈ N} and the boundary of Rn+12

is ∂Rn+ := Rn+ \ Ṙn+. The symbol 0 stands for both the origin of Rn and the real13

number 0.14

Given two points x, z in Rn, we write x ≤ z if z−x ∈ Rn+, x < z if z−x ∈ Rn+\{0},15

and x� z if z−x ∈ Ṙn+. The reverse relations are denoted by ≥, >,�, respectively.16

Given an m×m matrix A, we write A ≥ 0 if A is a nonnegative matrix (i.e., all17

its entries are nonnegative) and A > 0 if A is a positive matrix (i.e., all its entries18

are positive). We shall use I to denote the identity matrix.19

Consider the map T : Rn+ → Rn+ given by20

T (x) = (x1F1(x), . . . , xnFn(x)) (8)

with continuous functions Fi satisfying Fi(x) > 0 for all x ∈ Rn+. Note that this21

implies that Ti(x) > 0 if and only if xi > 0, and hence T Ṙn+ ⊂ Ṙn+ and T (∂Rn+) ⊂22

∂Rn+. In particular, T−1({0}) = {0}.23

Definition 3.1 ([42, 47]). The map T is said to be permanent if there exists a24

compact positively invariant set K ⊆ Ṙn+ such that for every x ∈ Ṙn+, there exists a25

m = m(x) > 0 such that the tail γ+
m(x) ⊆ K.26

Remark 3.1. Since K ⊆ Ṙn+ is compact, the distance d(K, ∂Rn+) of K from the27

boundary ∂Rn+ is thus non-zero, and ω(x) ⊆ K for all x ∈ Ṙn+. Equivalently,28

permanence means that there exist δ,D > 0 such that29

δ ≤ lim inf
k→+∞

T ki x ≤ lim sup
k→+∞

T ki x ≤ D, i = 1, . . . , n, (9)

for all x ∈ Ṙn+ ([43, 53, 77]). In a permanent system, species can coexist permanently30

in the sense that when the population densities of all species are positive, after some31

generations each population density will be bounded away from zero and infinity32

for all the time. As a consequence extinction and explosion cannot occur. In this33

paper, the map T is said to be impermanent if it is not permanent.34

3.1. Permanence for dissipative systems. Our first criteria on permanence and35

impermanence for dissipative systems defined on Rn+ is the following theorem based36

on the technique of average Liapunov functions. A similar result was given by37

Garay and Hofbauer for discrete-time replicator dynamics in [22]. See also [77] for38

a detailed discussion on the technique of average Liapunov functions.39
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Theorem 3.2. Suppose that T is dissipative with global attractor J . If there are1

real numbers ν1, . . . , νn > 0 such that2

g(x) =

n∑
i=1

νi lnFi(x) > 0, ∀x ∈ Ω(∂J), (10)

where ∂J = J ∩ ∂Rn+, then T is permanent; if instead3

g(x) =

n∑
i=1

νi lnFi(x) < 0, ∀x ∈ Ω(∂J), (11)

then T is impermanent.4

Proof. We first show that if (10) holds then T is permanent. Let5

V (x) = xν11 x
ν2
2 · · ·xνnn , x ∈ Rn+. (12)

Note that V (x) = 0 if and only if x ∈ ∂Rn+. For x ∈ Ṙn+, we let θ(k, x) =6

V (T kx)/V (x), k ∈ Z+. Then7

θ(1, x) =
V (Tx)

V (x)
= F ν11 (x) · · ·F νnn (x), x ∈ Ṙn+. (13)

Since Fi : Rn+ 7→ R+ \ {0} are continuous, (13) provides a continuous extension of8

θ(1, ·) to Rn+. Thus, we have θ(1, x) = F ν11 (x) · · ·F νnn (x) > 0, ∀x ∈ Rn+. Note that9

for any x ∈ Ṙn+ and k ≥ 2,10

θ(k, x) =
V (T kx)

V (T k−1x)

V (T k−1x)

V (T k−2x)
· · · V (Tx)

V (x)

= θ(1, T k−1x)θ(1, T k−2x) · · · θ(1, x).

(14)

So (14) provides a continuous extension of θ(k, ·) to Rn+, ∀k ≥ 2.11

Consider the maps T |J : J 7→ J and V |J : J 7→ R+ given by (12), where T |J12

denotes the restriction of T on J , and similarly for V |J . Note that V |J(x) = 0 if13

and only if x ∈ ∂J . For x ∈ ∂J , one has14

ϑJ(k, x) := lim inf
y → x

y ∈ J \ ∂J

V |J(T ky)

V |J(y)
= lim inf

y → x
y ∈ J \ ∂J

θ(k, y) = θ(k, x). (15)

Let ψJ(x) := supk>0 ϑJ(k, x) for x ∈ ∂J . By condition (10), exp{g(x)} > 1 for all15

x ∈ Ω(∂J), that is16

ϑJ(1, x) = F ν11 (x) · · ·F νnn (x) > 1, ∀x ∈ Ω(∂J). (16)

Therefore, ψJ(x) > 1 for all x ∈ Ω(∂J), and obviously ψJ(x) ≥ ϑJ(1, x) > 0 for all17

x ∈ ∂J . In Lemma 2.2 take M = J , S = ∂J and T = T |J . Then by Remark 2.1,18

we have ψJ(x) > 1 for all x ∈ ∂J .19

Let W = Oε(J) be an ε-neighborhood of J in Rn+. Since J is the global attractor,20

for all x ∈ Rn+, γ+(x) ∩W 6= ∅. It then follows from Lemma 2.1 that γ+(W ) is21

compact and positively invariant such that for any x ∈ Rn+, there exists a k =22

k(x) > 0 satisfying γ+
k (x) ⊆ γ+(W ).23

Now take M = γ+(W ) and S = M ∩ ∂Rn+, which are compact. Consider the24

maps T |M : M 7→ M and V |M : M 7→ R+ given by (12). Obviously, S and M \ S25

are positively invariant under T |M . We show that S repels for T |M .26
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Note that J ⊆ M,∂J ⊆ S and V |M (x) = 0 if and only if x ∈ S. For x ∈ S, one1

has2

ϑM (k, x) := lim inf
y → x

y ∈ M \ S

V |M (T ky)

V |M (y)
= lim inf

y → x
y ∈ M \ S

θ(k, y) = θ(k, x). (17)

Let ψM (x) := supk>0 ϑM (k, x) for x ∈ S. Note that for all x ∈ ∂J ,

ϑM (k, x) = θ(k, x) = ϑJ(k, x),

so we get ψM (x) = ψJ(x) > 1 for all x ∈ ∂J . Since ω(x) ⊆ J for all x ∈ Rn+, one
has

ω(x) ⊆ J ∩ ∂Rn+ = ∂J, ∀x ∈ S.
Thus, Ω(S) ⊆ ∂J , which implies that ψM (x) > 1 for all x ∈ Ω(S). Clearly,3

ψM (x) ≥ ϑM (1, x) > 0 for all x ∈ S. It then follows from Remark 2.1 that4

ψM (x) > 1 for all x ∈ S, and hence S repels for T |M by Lemma 2.2. Therefore,5

there exists a compact set K ⊆M\S of the subspace M which is positively invariant6

under T |M , such that for every x ∈ M \ S, there exists a m = m(x) > 0 such that7

γ+
m(x) ⊆ K by Proposition 2.4. Of course, K is also a compact subset of Rn+ and8

positively invariant under T . Note that K ⊆M \ S ⊆ Ṙn+.9

Recall that for any x ∈ Ṙn+, there exists a k = k(x) > 0 such that T k(x) ∈M , and10

hence T k(x) ∈M \ S because T Ṙn+ ⊆ Ṙn+. Therefore, there exists a m = m(x) ≥ k11

such that the tail γ+
m(x) ⊆ K, that is T is permanent.12

Now suppose that (11) holds. Consider the maps T |J : J 7→ J and V |J : J 7→ R+13

given by (12). In Lemma 2.3 take M = J, S = ∂J and T = TJ . Since θ(1, ·) :14

Rn+ 7→ R+ is continuous, there exist a constant C > 0 such that V |J (Tx)
V |J (x) ≤ C for15

all x ∈ J \ ∂J . It follows from (11) that exp{g(x)} < 1 and hence θ(1, x) < 1, for16

all x ∈ Ω(∂J). Then for all x ∈ Ω(∂J), one has ϕJ(x) ≤ ζJ(1, x) = θ(1, x) < 1,17

where ϕJ(x) and ζJ(1, x) are defined in Lemma 2.3. Thus, ∂J attracts for TJ .18

Therefore, there exists some x ∈ Ṙn+ such that ω(x) ⊆ ∂J ⊆ ∂Rn+, and hence T is19

impermanent.20

3.2. Permanence via carrying simplex. Before presenting the permanence and21

impermanence criteria for the map T given by (8) admitting a carrying simplex Σ,22

we first recall the properties of carrying simplex.23

A carrying simplex for the map T is a subset Σ of Rn+ \ {0} with the following24

properties:25

(P1) Σ is compact and invariant under T ;26

(P2) for any x ∈ Rn+ \{0}, there exists some z ∈ Σ such that lim
k→∞

|T kx−T kz| = 0;27

(P3) Σ is unordered (i.e. if x, z ∈ Σ such that xi ≥ zi for all i ∈ N , then x = z),28

and homeomorphic to the probability simplex ∆n−1 via radial projection;29

(P4) T : Σ 7→ Σ is a homeomorphism.30

(P1) and (P2) imply that the long-term dynamics of T is accurately reflected by31

that in Σ, and (P3) means that Σ is topologically simple. We denote the boundary32

of Σ, i.e. Σ ∩ ∂Rn+ by ∂Σ, and the interior of Σ, i.e. Σ \ ∂Σ by Σ̇.33

We denote by H+
i the i-th positive coordinate axis and by πi = {x ∈ Rn+ : xi = 0}34

the i-th coordinate plane. Note that each πi is positively invariant under T and35

∂Σ ∩ πi is the carrying simplex of T |πi
, that is ∂Σ is composed of the carrying36

simplices of T |πi , i = 1, . . . , n. Σ contains all non-trivial fixed points, periodic37

orbits and heteroclinic cycles, etc. Every vertex of Σ is a fixed point of T , where Σ38
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and some positive coordinate axis meet, and denote by q{i} = qiei the fixed point1

at the vertex where Σ and H+
i meet. For one-dimensional case, T admits a carrying2

simplex if and only if it has a globally attracting positive fixed point in R+ \ {0}.3

A map T : Rn+ → Rn+ is competitive (or retrotone) in a subset W ⊂ Rn+ if for all4

x, z ∈W with Tx < Tz one has that xi < zi provided zi > 0.5

We first recall a readily checked criterion provided by Jiang and Niu [49] on the6

existence of a carrying simplex for the competitive map T of type (8).7

Lemma 3.3 (Existence Criterion of Carrying Simplex [49]). Suppose Fi are C1,8

i = 1, . . . , n. Assume that9

Υ1) ∂Fi(x)/∂xj < 0 holds for any x ∈ Rn+ and i, j ∈ N ;10

Υ2) ∀i ∈ N , T |H+
i

: H+
i → H+

i has a fixed point q{i} = qiei with qi > 0;11

Υ3) ∀x ∈ [0, q] \ {0}, Fi(x) +
∑
j∈κ(x) xj

∂Fi(x)
∂xj

> 0 holds for any i ∈ κ(x) (or12

Fi(x) +
∑
j∈κ(x) xi

∂Fi(x)
∂xj

> 0 holds for any i ∈ κ(x)), where q = (q1, . . . , qn)13

and κ(x) = {i : xi > 0} is the support of x.14

Then T possesses a carrying simplex Σ ⊂ [0, q].15

Condition Υ1) means that Fi(y) < Fi(x) for all i ∈ N provided x < y. This
follows from

Fi(y)− Fi(x) =

∫ 1

0

DFi(xs)(y − x)ds,

where xs = x + s(y − x) with s ∈ [0, 1]. Together with Υ2), Υ1) implies Fi(0) >16

Fi(q{i}) = 1 for all i ∈ N , i.e. 0 is a hyperbolic repeller for T . Υ3) implies that17

detDT (x) > 0 for all x ∈ [0, q], and together with Υ1) it guarantees (DT (x)κ(x))
−1 >18

0 for all x ∈ [0, q] \ {0} (see [49, Theorem 3.1]), so T is competitive and one-to-one19

in [0, q] by [74, Proposition 4.1].20

Theorem 3.4. Assume that T admits a carrying simplex Σ. If there are real21

numbers ν1, . . . , νn > 0 such that22

g(x) =

n∑
i=1

νi lnFi(x) > 0 ∀x ∈ Ω(∂Σ), (18)

then T is permanent; if instead23

g(x) =

n∑
i=1

νi lnFi(x) < 0 ∀x ∈ Ω(∂Σ), (19)

then T is impermanent.24

Proof. We first show that if (18) holds then T is permanent. Since Σ is invariant25

and compact such that ω(x) ⊆ Σ for all x ∈ Rn+\{0}, there exists an ε-neighborhood26

Oε(Σ) ⊂ Rn+ \ {0} of Σ such that Oε(Σ) ⊆ Rn+ \ {0} and γ+(x) ∩ Oε(Σ) 6= ∅ for27

all x ∈ Rn+ \ {0}. Then it follows from Lemma 2.1 that γ+(Oε(Σ)) is a compact28

positively invariant set. Clearly, M = γ+(Oε(Σ)) is a compact neighborhood of Σ.29

Set S = M ∩∂Rn+. By the property (P2) of Σ, one has ω(x) ⊆ Ω(∂Σ) for any x ∈ S,30

and hence Ω(S) ⊆ Ω(∂Σ). So, if (18) holds, then g(x) > 0 for all x ∈ Ω(S).31

Now consider the map T |M : M 7→ M . Let V (x) = xν11 · · ·xνnn , x ∈ M . Note
that V (x) = 0 if and only if x ∈ S. By the above analysis, we know exp{g(x)} > 1
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for all x ∈ Ω(S), that is, F ν11 (x) · · ·F νnn (x) > 1 for all x ∈ Ω(S). On the other hand,
for x ∈ S, one has

ϑM (1, x) = lim inf
y → x

y ∈ M \ S

V (Ty)

V (y)

= lim inf
y → x

y ∈ M \ S

F ν11 (y) · · ·F νnn (y)

= F ν11 (x) · · ·F νnn (x).

Thus, ϑM (1, x) > 1 for all x ∈ Ω(S), and ϑM (1, x) > 0 for all x ∈ S. An application1

of Lemma 2.2 and Remark 2.1 to such M , S and T = T |M shows that S repels for2

TM . Then the rest of the proof can be completed by repeating the same arguments3

as in Theorem 3.2.4

If (19) holds, then ∂Σ attracts for T |Σ by [50, Theorem 2], and hence there exists5

some x ∈ Ṙn+ such that ω(x) ⊆ ∂Σ ⊆ ∂Rn+, which implies that T is impermanent.6

7

Remark 3.2. Note that in the proof of Theorem 3.4, we do not need the properties8

(P3) and (P4) of the carrying simplex. In fact, the results in Theorem 3.4 hold for9

other kinds of maps which have an attracting and invariant manifold S, that is10

ω(x) ⊆ S for all x ∈ Rn+ \ {0}, although we mainly focus on the maps with a11

carrying simplex here.12

For the two-dimensinal (i.e. n = 2) map T given by (8) with a carrying simplex Σ,13

we know that T |Σ is topologically conjugate to a strictly increasing homeomorphism14

h taking [0, 1] onto [0, 1] (similarly for (T |Σ)−1) because Σ is homeomorphic to [0, 1]15

and T |Σ is a homeomorphism taking Σ onto Σ, and hence every nontrivial orbit of16

T converges to some fixed point on Σ (see also [75, 76]). In particular, it follows17

from Theorem 3.4 that T is permanent if Fi(q{j}) > 1 for i 6= j, i, j = 1, 2, where18

q{j} is the fixed point on H+
j .19

By the above arguments, we know that for the two-dimensional map T which20

admits a carrying simplex, the dynamics is relatively simple, that is ω(x) ⊆ E(T ) for21

all x ∈ R2
+, and hence Ω(Σ) ⊆ E(T ). For the three-dimensional case, since ∂Σ ∩ πi22

is the carrying simplex of T |πi
, which is a two-dimensional map, the boundary23

dynamics for T is simple, i.e. Ω(∂Σ) ⊂ E(T ).24

Corollary 3.5. Let n = 3. Suppose that T (x) = (x1F1(x), x2F2(x), x3F3(x)) taking25

R3
+ into R3

+ admits a carrying simplex Σ. If there are real numbers ν1, ν2, ν3 > 026

such that27

g(x̂) =

3∑
i=1

νi lnFi(x̂) > 0 (resp. < 0), ∀x̂ ∈ E(T ) ∩ ∂Σ, (20)

then T is permanent (resp. impermanent).28

Proof. The conclusion follows from the above analysis and Theorem 3.4 immedi-29

ately.30

For low-dimensional systems, one remarkable phenomenon is the occurrence of31

heteroclinic cycles, i.e., the cyclic arrangements of saddle fixed points and hetero-32

clinic connections; see [73, 72, 15, 13, 50].33

Let n = 3. Suppose that Fi are C1 and T admits a carrying simplex Σ (homeo-34

morphic to ∆2) with three axial fixed points q{1} = (q1, 0, 0), q{2} = (0, q2, 0) and35
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q{3} = (0, 0, q3), which lie at the vertices of Σ. Assume that q{1}, q{2}, q{3} are1

saddles on Σ, and ∂Σ ∩ πi is the heteroclinic connection between q{j} and q{k}.2

In this case, there are no other fixed points on ∂Σ which is a heteroclinic cycle of3

May-Leonard type: q{1} → q{2} → q{3} → q{1} (or the arrows reversed); see Fig. 1.4

For more details, see [41, 43, 50].5

Figure 1. A carrying simplex Σ with a repelling heteroclinic cycle ∂Σ.

Lemma 3.6 (Theorem 3 in [50]). Suppose Fi are C1, i = 1, 2, 3. Assume that6

T admits a carrying simplex Σ, and ∂Σ is a heteroclinic cycle above. Then the7

heteroclinic cycle ∂Σ repels (resp. attracts), if8

% :=

3∏
i=1

lnFi(q{i−1}) +

3∏
i=1

lnFi(q{i+1}) > 0 (resp. < 0), (21)

where i ∈ {1, 2, 3} is considered cyclic.9

Corollary 3.7. Suppose Fi are C1, i = 1, 2, 3. Assume that T admits a carrying10

simplex Σ, and ∂Σ is a heteroclinic cycle above. If % > 0 (resp. < 0), i.e. ∂Σ11

repels (resp. attracts), where % is defined by (21), then T is permanent (resp.12

impermanent).13

Proof. Under the assumption, one has Ω(∂Σ) = {q{1}, q{2}, q{3}}. It follows from14

the proof of Theorem 3 in [50] that there are real numbers ν1, ν2, ν3 > 0 such that15

(18) holds if % > 0, so T is permanent by Theorem 3.4; see Fig. 1. If % < 0, then16

∂Σ attracts, and hence T is impermanent.17

4. Extensions to competitive systems. In this section, we study the Kol-18

mogorov map T given by (2).19

For the convenience of the study, we set aij = riµij . Let R = diag[ri], the n× n20

diagonal matrix with diagonal entries ri, i = 1, . . . , n, and U be the n× n matrix21

with entries µij > 0. Then A = RU , and (2) is written as22

Ti(x) = xiFi(x) = xifi((RUx
τ )i, ri) = xifi(ri

n∑
j=1

µijxj , ri), i = 1, · · · , n. (22)
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In this form, the fixed points of T are determined by the linear equations

xi = 0 or

n∑
j=1

µijxj = 1, i = 1, . . . , n,

which depend only on the parameters µij .1

Denote by F the collection of all C1 functions f : R+× Ṙ+ → Ṙ+ satisfying (3).
Let Fn = {f = (f1, . . . , fn) : fi ∈ F , i = 1, . . . , n}. Given f ∈ Fn, denote by

DCS(n, f) = {T ∈ T (Rn+) : Ti(x) = xifi(ri

n∑
j=1

µijxj , ri), µij > 0, ri > 0}

the set of all maps on Rn+ of the from (22) with the given function f ∈ Fn, where2

T (Rn+) denotes the set of all maps taking Rn+ into itself. f ∈ Fn is called a generating3

function for the map (22). For T ∈ DCS(n, f), we always let Fi(x) = fi((RUx
τ )i, ri)4

such that Ti(x) = xiFi(x), i = 1 . . . , n.5

Let T ∈ DCS(n, f). The entries of the Jacobian matrix DT (x) at x are given by6

(DT (x))ij =


δijFi(x) + xi

∂fi
∂z ((RUxτ )i, ri)riµij , i ∈ κ(x),

Fj(x), i /∈ κ(x), j = i,

0, i /∈ κ(x), j 6= i,

(23)

where δij = 1 for i = j and δij = 0 for i 6= j, i, j = 1, . . . , n. DT (x) “splits” into two7

blocks: the square matrix DT (x)κ(x) defines the “internal” block which corresponds8

to the Jacobian matrix of the restriction of T to the subspace R
κ(x)
+ = {x ∈ Rn+ :9

xi = 0 for i /∈ κ(x)}, where DT (x)κ(x) is the submatrix of DT (x) with rows and10

columns from κ(x); the square matrix DT (x)N\κ(x) is the “external” block which is11

a diagonal matrix with diagonal entries Fj(x) > 0, where j /∈ κ(x) and DT (x)N\κ(x)12

is the submatrix of DT (x) with rows and columns from N \ κ(x).13

Let x̂ = (x̂1, . . . , x̂n) be a fixed point of T . Then Fi(x̂) = 1 for any i ∈ κ(x̂), and14

(DT (x̂))ij =


δij + x̂i

∂fi
∂z (ri, ri)riµij , i ∈ κ(x̂),

Fj(x̂) = fj((RUx̂
τ )j , rj), i /∈ κ(x̂), j = i,

0, i /∈ κ(x̂), j 6= i.

(24)

The external block DT (x̂)N\κ(x) of DT (x̂) is a diagonal matrix whose entries are15

the external eigenvalues Fj(x̂) > 0 (we call it the external eigenvalue in direction16

j), where j /∈ κ(x̂).17

The eigenvalues of DT (0) are fi(0, ri) > 1, i.e. Fi(0) > 1, i = 1, . . . , n, so the18

trivial fixed point 0 is a hyperbolic repeller.19

Lemma 4.1 (Gerschgorin Circle Theorem [65]). Let B be an n × n matrix with20

entries bij. Define the i-th Gerschgorin disc Di in the complex plane to be the21

closed disc centered at bii with radii
∑
j 6=i |bij |. Each Di contains an eigenvalue22

of B and, moreover, for any distinct i1, · · · , im, there are at least m eigenvalues23

(counting multiplicities) of B in
⋃m
k=1Dik .24

Lemma 4.2 (Lemma 2.3.4 in [12]). Suppose that M ⊂ Rn is a connected compact25

set and the continuous function g : M 7→ g(M) is a local homeomorphism. Then26

the cardinal number of g−1({z}) is finite and constant for all z ∈ g(M).27

Proposition 4.3. Every T ∈ DCS(n, f) is a diffeomorphism from Rn+ to its image28

and also a competitive map on Rn+.29
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Proof. We first show that T is a local diffeomorphism. According to the inverse
function theorem, it suffices to prove that detDT (x) > 0 for all x ∈ Rn+. Recall
that DT (x) splits into two blocks: the internal block DT (x)κ(x) and the external
block DT (x)N\κ(x) which is a diagonal matrix with positive diagonal entries, so we
only need to show that detDT (x)κ(x) > 0. Therefore, without loss of generality,

we assume that x ∈ Ṙn+, and show detDT (x) > 0. By (23), DT (x) can be written
as DT (x) = diag[Fk(x)] + diag[xk]W, where W is the matrix whose (i, j)-th entry

is given by ∂Fi(x)
∂xj

< 0. Note that diag[xk] is invertible because xk > 0. Therefore,

DT (x) is similar to

B := diag[xk]−1DT (x) diag[xk] = diag[Fk(x)] +W diag[xk].

Note that the (i, j)-th entry of W diag[xk] is given by1

xj
∂Fi(x)

∂xj
= riµijxj

∂fi
∂z

((RUxτ )i, ri) < 0. (25)

Then by (3) (ii) one has2

Fi(x) +

n∑
j=1

xj
∂Fi(x)

∂xj

= Fi(x) +

n∑
j=1

riµijxj
∂fi
∂z

((RUxτ )i, ri)

= fi((RUx
τ )i, ri) + (RUxτ )i

∂fi
∂z

((RUxτ )i, ri) > 0.

(26)

It follows from (25) and (26) that the diagonal entries Fi(x) + xi
∂Fi(x)
∂xi

of B are3

positive and, moreover, each Gerschgorin disc Di of B which is centered at Fi(x) +4

xi
∂Fi(x)
∂xi

with radii −
∑
j 6=i xj

∂Fi(x)
∂xj

lies in the right half-plane. Then by Lemma 4.15

all the eigenvalues of B have positive real parts, and hence detDT (x) = detB > 0.6

At this moment we have proved that T is a local diffeomorphism.7

Now we show that T is one-to-one. By a contradiction argument assume that
there exist x 6= y such that Tx = Ty. Then one can choose some l > 0 such that
0, x, y ∈ Bl, where

Bl = {z ∈ Rn+ : |z| ≤ l}.
Consider the restriction

T |Bl
: Bl 7→ TBl.

It follows from Lemma 4.2 that T |−1

Bl
({z}) is finite and constant for all z ∈ TBl.8

Since, as noticed above, T |−1

Bl
({0}) = {0}, this constant is one and hence T |Bl

is9

one-to-one, contradicting that T |Bl
(x) = T |Bl

(y). Thus, we have proved that T is10

a diffeomorphism.11

The competitiveness of T will now follow once we have proved (DT (x)κ(x))
−1 > 012

for all x ∈ Rn+ \{0} by Proposition 4.1 in [74]. Recall that ∂Fi(x)
∂xj

< 0 for all x ∈ Rn+13

and i, j ∈ N , so the (i, j)-th entry of DT (x)κ(x) is negative for i 6= j. Then it follows14

from the proof of Theorem 3.1 in [49] that (26) implies (DT (x)κ(x))
−1 > 0 for all15

x ∈ Rn+ \ {0}. This completes the proof.16

By (26), we know that each map T ∈ DCS(n, f) satisfies the condition Υ3)17

in Lemma 3.3. Since each map T ∈ DCS(n, f) also satisfies the conditions Υ1)18
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and Υ2), it has a carrying simplex by Lemma 3.3, which had been proved in [49,1

Corollary 3.3].2

Lemma 4.4. Each map T ∈ DCS(n, f) admits a carrying simplex Σ.3

Remark 4.1. By Proposition 4.3 and Lemma 4.4, any map T given by (22) is4

one-to-one and competitive on Rn+, and it has a carrying simplex unconditionally5

if each fi satisfies (3) (i) and (3) (ii). However, if (3) (ii) does not hold for some6

fi, then T may not be one-to-one or competitive on Rn+. For example, the (Ricker)7

map T with fi(z, r) = exp(r − z), i = 1, . . . , n, is not one-to-one or competitive8

on Rn+ and in particular, it has a carrying simplex only under certain additional9

conditions; see [33] for details.10

Remark 4.2. Let T ∈ DCS(n, f). If T admits a unique positive fixed point p =11

(p1, · · · , pn), i.e.,12

(Uxτ )i = 1, i = 1, · · · , n (27)

has a unique positive solution, then 1 is not an eigenvalue of13

DT (p) = I + diag[pi] diag[
∂fi
∂z

(ri, ri)]RU. (28)

Otherwise, 0 is an eigenvalue of the matrix DT (p)− I, and hence detU = 0. Then
(27) has either no solution, or infinitely many solutions, a contradiction. Therefore,
the index of p which is given by (−1)m is either 1 or −1, where m is the sum of
the multiplicities of all the eigenvalues of DT (p) which are greater than one (see
[2, 30]). Let

A = − diag[pi] diag[
∂fi
∂z

(ri, ri)]RU, B = −diag[
∂fi
∂z

(ri, ri)]RU diag[pi].

Then DT (p) = I −A, and A is similar to B. By the property (3) (i) of fi, we know14

that A,B are positive matrices. Note that (Upτ )i = 1, so the sum of the i-th row15

of B is −ri ∂fi∂z (ri, ri) < 1 (see (4)). It then follows from Perron-Frobenius theorem16

that ρ(B), the spectral radius of B, is an eigenvalue of B satisfying 0 < ρ(B) < 1 and17

the magnitudes of the other eigenvalues of B are all less than 1. Set λ∗ := 1− ρ(B).18

Since A and B have the same eigenvalues, 0 < λ∗ < 1 is a real eigenvalue of DT (p)19

whose associated eigenvector is strictly positive and all the other eigenvalues possess20

real parts greater than 0 and less than 2. In particular, for the two-dimensional21

case, i.e. n = 2, both of the two eigenvalues of DT (p) are positive real numbers22

with one less than 1, and p is hyperbolic.23

In the remainder of this article, we will focus on analyzing the map T ∈ DCS(3, f)24

modeling three mutually competing species. We define an equivalence relation rel-25

ative to local stability of fixed points on the boundary of Σ for the set DCS(3, f)26

as that for all the three dimensional Leslie-Gower maps [49]27

T : R3
+ 7→ R3

+, Ti(x) =
(1 + ri)xi

1 +
∑3
j=1 aijxj

, ri > 0, aij = riµij > 0, i, j = 1, 2, 3. (29)

We show that the classification via this equivalence relation for three dimensional28

Leslie-Gower maps is valid for any DCS(3, f), and independent of the choice of gen-29

erating function f ∈ F3. Furthermore, according to the equivalence classification,30

one can easily derive the permanence conditions in terms of simple inequalities on31

the parameters for T ∈ DCS(3, f).32
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4.1. Classification via boundary dynamics. In this subsection, we study the1

map T ∈ DCS(3, f):2

Ti(x) = xifi(ri

3∑
j=1

µijxj , ri) = xifi((RUx
τ )i, ri), i = 1, 2, 3. (30)

It follows from Lemma 4.4 that T admits a 2-dimensional carrying simplex Σ3

homeomorphic to ∆2. Each coordinate plane πi is positively invariant under T , and4

the restriction of T to πi is a 2-dimensional map T |πi
∈ DCS(2, f [i]), where f [i] =5

(fj , fk) ∈ F2, j < k, so ∂Σ is composed of the one-dimensional carrying simplices6

of T |πi
. Therefore, before studying the three-dimensional map T ∈ DCS(3, f), we7

first study the two-dimensional case.8

4.1.1. The two-dimensional case. Consider the map T ∈ DCS(2, f):9

Ti(x) = xifi(ri

2∑
j=1

µijxj , ri) = xifi((RUx
τ )i, ri), i = 1, 2. (31)

By Lemma 4.4, T admits a one-dimensional carrying simplex Σ which is homeo-10

morphic to the line segment joining the two points (0, 1) and (1, 0). By Lemma 4.411

and the arguments in Section 3.2, we conclude the following proposition.12

Proposition 4.5. Each map T ∈ DCS(2, f) has trivial dynamics, i.e., every non-13

trivial orbit converges to some fixed point on Σ.14

Besides the trivial fixed point 0 which is a hyperbolic repeller, T admits two15

axial fixed points q{1} : (1/µ11, 0), q{2} : (0, 1/µ22). The fixed point q{i} is just the16

intersection of the line Si = {x ∈ R2
+ : µi1x1 + µi2x2 = 1} and the i-th positive17

coordinate axis H+
i . If S1 and S2 intersect in Ṙ2

+, then there also exists a positive18

fixed point p at the intersection of S1 and S2.19

Set R2
+ \ Si = Ui ∪Bi, where Ui and Bi are the unbounded and bounded disjoint20

components of R2
+ \ Si, respectively. Let γij := µii − µji for i, j = 1, 2 and i 6= j.21

Then q{i} ∈ Uj (resp. Bj) if and only if γij < 0 (resp. > 0).22

Lemma 4.6. If γij > 0 (resp. < 0), then q{i} is a saddle (resp. an asymptotically23

stable node), and hence repels (resp. attracts) along Σ. Moreover, q{i} is hyperbolic24

if and only if γij 6= 0.25

Proof. Say q{1}. The Jacobian matrix

DT (q{1}) =

[
1 + r1

∂f1
∂z (r1, r1) r1µ12

µ11

∂f1
∂z (r1, r1)

0 f2(µ21r2
µ11

, r2)

]
,

so 1 + r1
∂f1
∂z (r1, r1), f2(µ21r2

µ11
, r2) are its two positive eigenvalues. Note that 0 <26

1 + r1
∂f1
∂z (r1, r1) < 1 and H+

1 is positively invariant, so every orbit emanating from27

H+
1 converges to q{1}. If f2(µ21r2

µ11
, r2) > 1 (resp. < 1), i.e., γ12 > 0 (resp. < 0),28

then q{1} is a saddle (resp. an asymptotically stable node), and hence repels (resp.29

attracts) along Σ. The last result is obvious.30

Remark 4.3. In fact, the external eigenvalue at the axial fixed point q{i} in direc-31

tion j is Fj(q{i}) = fj((RUq
τ
{i})j , rj) by (24). Therefore, the sign of rj − (RUqτ{i})j32

is just the sign of Fj(q{i})− 1 (see the comments below (3)), that is33

sgn(Fj(q{i})− 1) = sgn(rj − (RUqτ{i})j) = sgn(γij). (32)
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Moreover, recall that γij > 0 (resp. < 0) if and only if q{i} ∈ Bj (resp. Uj). So the1

dynamics of the fixed point q{i} can be determined by the position of q{i} relative2

to the line Sj , i 6= j. Moreover, if γ12γ21 > 0 (resp. < 0), then S1 and S2 intersect3

(resp. do not intersect) in Ṙ2
+, i.e., there exists (resp. does not exist) a positive4

fixed point p.5

Proposition 4.7 states that there are only four dynamical outcomes in DCS(2, f),6

which follows from Lemma 4.6 and Remark 4.3 directly. Just repeat the similar7

arguments in [49, Theorem 4.1].8

Proposition 4.7. Let T ∈ DCS(2, f).9

(a) If γ12 < 0, γ21 > 0, then the positive fixed point p does not exist and q{1} attracts10

all points not on the x2-axis.11

(b) If γ12 > 0, γ21 < 0, then the positive fixed point p does not exist and q{2} attracts12

all points not on the x1-axis.13

(c) If γ12, γ21 > 0, then T has a hyperbolic positive fixed point p attracting all points14

in Ṙ2
+.15

(d) If γ12, γ21 < 0, then T has a positive fixed point p which is a hyperbolic saddle.16

Moreover, every nontrivial orbit tends to one of the asymptotically stable nodes17

q{1} or q{2} or to the saddle p.18

The following definition of equivalence appears to be unnecessarily pompous, but19

it prepares the way for the analogous definition in higher dimensions.20

Definition 4.8. Two maps T, T̂ ∈ DCS(2, f) are said to be equivalent relative to
∂Σ if there exists a permutation σ of {1, 2} such that T has a fixed point q{i} if and

only if T̂ has a fixed point q̂{σ(i)}, and further

sgn(Fj(q{i})− 1) = sgn(F̂σ(j)(q̂{σ(i)})− 1)

for j 6= i, that is (see (32))

sgn(γij) = sgn(γ̂σ(i)σ(j))

for j 6= i.21

Definition 4.9. A map T ∈ DCS(2, f) is said to be stable relative to ∂Σ if all the22

fixed points on ∂Σ are hyperbolic. An equivalence class is said to be stable if each23

map in it is stable relative to ∂Σ.24

Remark 4.4. Note that ∂Σ ∩ E(T ) = {q{1}, q{2}}, so it follows from Lemma 4.625

that T is stable relative to ∂Σ if and only if γ12, γ21 6= 0, and hence an equivalence26

class is stable if there is a map in it which is stable relative to ∂Σ. Suppose that27

T ∈ DCS(2, f) is stable relative to ∂Σ and possesses a positive fixed point p. Then28

the positive fixed point p is unique, and hence detU 6= 0, where29

p =
( γ21

detU
,
γ12

detU

)
.

By the positivity of p, γ12 and γ21 have the same sign as detU . Therefore, it follows30

from Proposition 4.7 (c) and (d) that p attracts (resp. repels) on Σ if and only if31

detU > 0 (resp. detU < 0). Moreover, it follows from Remark 4.2 that if p attracts32

on Σ then its two positive eigenvalues are less than 1 while it has one eigenvalue33

greater than 1 if it repels on Σ.34

By Proposition 4.7 we conclude the following result immediately.35
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Corollary 4.10. There are a total of 3 stable equivalence classes in DCS(2, f).1

The three dynamical scenarios are presented in Fig. 2.2

1 2 3

Figure 2. The phase portrait on Σ replaced by ∆1. A closed dot
• denotes a fixed point which attracts on Σ, and an open dot ◦
denotes the one which repels on Σ. Each Σ stands for an equiv-
alence class. Class 1 corresponds to Proposition 4.7 (a) and (b);
class 2 corresponds to Proposition 4.7 (c); class 3 corresponds to
Proposition 4.7 (d).

Corollary 4.11. For a map T ∈ DCS(2, f) which is stable relative to ∂Σ, it is3

permanent if and only if it is in the stable class 2, i.e. γ12, γ21 > 0.4

Proof. Note that γij > 0 (resp. < 0) if and only if fj(
µjirj
µii

, rj) > 1 (resp. < 1),5

i.e., Fj(q{i}) > 1 (resp. < 1). So, it follows from the arguments in Section 3.26

that T is permanent if γ12, γ21 > 0, and in this case there is a globally attracting7

positive fixed point. If some γij < 0, then q{i} is an attractor, so T is impermanent8

in classes 1 and 3.9

Remark 4.5. The statements of Proposition 4.7, Corollaries 4.10 and 4.11 have10

clear biological interpretations.11

(i) If γij > 0, then species j can invade species i while it cannot invade if γij < 0.12

(ii) If species j can invade species i but not vice versa, then species i is driven to13

extinction, whilst species j remains extant. In this case, the map is imperma-14

nent.15

(iii) In the case of mutual invadability, that is, if both species can invade the other,16

then the map is permanent, and there will be coexistence in the form of an17

asymptotically stable positive fixed point.18

(iv) If neither species can invade (mutual noninvadability), there is no coexistence:19

one of the species will oust the other. The surviving species depends on the20

initial conditions. (Convergence to the positive saddle happens only for initial21

conditions in a set of measure zero and is hence impossible in nature). In this22

case, the map is also impermanent.23

(v) When there is a positive fixed point, detU > 0 means in that both species can24

invade and the map is permanent, while detU < 0 means that none of them25

can and the map is impermanent (Remark 4.4).26

The situations mentioned above are of particular interest when the two populations27

1 and 2 are not different species, but different traits (resident and mutant) of the28

same species. To begin with, the resident (i = 1) is at the fixed point q{1} and29

then the mutant q{2} is introduced in small quantities. Case (i) γ12 > 0 gives the30

condition for successful invasion. Case (ii) describes trait substitution. Case (iii) is31

an example of protected dimorphism. For a discussion of these notions and their32

consequences for evolutionary dynamics we refer the reader to [27, 26, 24, 23].33
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4.1.2. The three-dimensional case. Now we analyze the 3-dimensional map (30).1

We will define the equivalence relation on DCS(3, f) as Definition 4.8 and list the2

equivalence classification.3

Besides the trivial fixed point 0, T has three axial fixed points q{1} = ( 1
µ11

, 0, 0),4

q{2} = (0, 1
µ22

, 0), q{3} = (0, 0, 1
µ33

). In the interior of πk, there may exist a planar5

fixed point v{k} satisfying6

µiixi + µijxj + µikxk = 1, xk = 0, i 6= j 6= k. (33)

In this case, v{k} is just the positive fixed point of the map T |πk
. T may also admit7

a positive fixed point p in Ṙ3
+ which satisfies8

µi1x1 + µi2x2 + µi3x3 = 1, i = 1, 2, 3. (34)

Hereafter, denote by

Si = {x ∈ R3
+ : µi1x1 + µi2x2 + µi3x3 = 1}, i = 1, 2, 3.

Let R3
+ \ Si = Ui ∪ Bi, where Ui and Bi are the unbounded and bounded disjoint9

components of R3
+ \Si, respectively. If Si and Sj intersect in the interior of πk, then10

T has a fixed point v{k}. There exists a positive fixed point p if and only if S1, S211

and S3 intersect in Ṙ3
+.12

Let γij := µii − µji for i, j = 1, 2, 3 and i 6= j. By (24), we know that13

the external eigenvalue at the axial fixed point q{i} in direction j is Fj(q{i}) =14

fj((RUq
τ
{i})j , rj), and the external eigenvalue at the planar fixed point v{k} is15

Fk(v{k}) = fk((RUvτ{k})k, rk). Therefore, the sign of rj − (RUqτ{i})j is just the sign16

of Fj(q{i})− 1, and that the sign of rk − (RUvτ{k})k is just the sign of Fk(v{k})− 117

(see the comments below (3)). Specifically,18

sgn(Fj(q{i})− 1) = sgn(rj − (RUqτ{i})j) = sgn(γij),

sgn(Fk(v{k})− 1) = sgn(rk − (RUvτ{k})k) = sgn(1− (Uvτ{k})k).
(35)

By the positive invariance of πi and the analysis of the 2-dimensional case, the19

statements, proofs and classification program in [49] carry over to DCS(3, f) in a20

straightforward way, so we do not re-do it unless the need for special details and we21

only state the corresponding conclusions.22

Proposition 4.12. If γij > 0 (resp. < 0) then q{i} repels (resp. attracts) along23

∂Σ ∩ πk, where i, j, k are distinct. Furthermore, if γij , γik > 0 (resp. < 0) then the24

fixed point q{i} is a repeller (resp. an attractor) on Σ; if γijγik < 0, then the fixed25

point q{i} is a saddle on Σ; and q{i} is hyperbolic if and only if γijγik 6= 0.26

Proposition 4.13. If γjkγkj > 0 (resp. < 0) then there is a unique (resp. no)27

fixed point v{i} in the interior of the coordinate plane πi, where i, j, k are distinct.28

Moreover, if γjk, γkj < 0 (resp. > 0) then v{i} repels (resp. attracts) along ∂Σ.29

The biological meaning of the condition γij > 0 (resp. < 0) in Propositions 4.1230

and 4.13 is that species j can (resp. not) invade species i in the absence of species31

k; here i, j, k are distinct.32

Proposition 4.14. Suppose the planar fixed point v{i} exists. Then (Uvτ{i})i <33

1 (resp. > 1) implies that v{i} locally repels (resp. attracts) in Σ̇. Moreover, v{i} is34

hyperbolic if and only if (Uvτ{i})i 6= 1.35
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Propositions 4.12–4.14 imply that the local dynamics of q{i} and v{k} is generally1

determined by their external eigenvalues, i.e., Fj(q{i}) (j 6= i) and Fk(v{k}).2

Definition 4.15. Two maps T, T̂ ∈ DCS(3, f) are said to be equivalent relative to3

∂Σ if there exists a permutation σ of {1, 2, 3} such that4

(i) T has a fixed point q{i} if and only if T̂ has a fixed point q̂{σ(i)}, and further

sgn(Fj(q{i})− 1) = sgn(F̂σ(j)(q̂{σ(i)})− 1)

for all j 6= i, that is (see (35))

sgn(γij) = sgn(γ̂σ(i)σ(j))

for all j 6= i;5

(ii) T has a fixed point v{k} if and only if T̂ has a fixed point v̂{σ(k)}, and further

sgn(Fk(v{k})− 1) = sgn(F̂σ(k)(v̂{σ(k)})− 1),

that is (see (35))

sgn(1− (Uvτ{k})k) = sgn(1− (Û v̂τ{σ(k)})σ(k)).

Definition 4.16. A map T ∈ DCS(3, f) is said to be stable relative to ∂Σ if all the6

fixed points on ∂Σ are hyperbolic. An equivalence class is said to be stable if each7

map in it is stable relative to ∂Σ.8

Remark 4.6. By Propositions 4.12 and 4.14, a map T ∈ DCS(3, f) is stable relative9

to ∂Σ if and only if γij 6= 0 and (Uvτ{k})k 6= 1 (if v{k} exists) for i, j, k = 1, 2, 3 and10

i 6= j, and hence an equivalence class is stable if there is a map in it which is stable11

relative to ∂Σ.12

Suppose γij , γji 6= 0 (here i 6= j). It follows from Proposition 4.13 that v{k} exists
if and only if γijγji > 0, which implies that detU{i,j} 6= 0 (i.e., µiiµjj − µijµji 6= 0)
by noticing that v{k} is the unique positive fixed point of T |πk

(see Remark 4.4),
where

U{i,j} =

[
µii µij
µji µjj

]
.

Therefore, for a map T ∈ DCS(3, f) which is stable relative to ∂Σ, if v{k} exists13

then µiiµjj − µijµji 6= 0 (here i, j, k are distinct), and it is easy to check that14

(Uvτ{k})k < 1 (> 1)⇔ µkiβij + µkjβji < 1 (> 1)⇔ v{k} ∈ Bk (Uk), (36)

where

βij :=
µjj − µij

µiiµjj − µijµji
.

Thus a map T ∈ DCS(3, f) is stable relative to ∂Σ if and only if γij 6= 0 and15

µkiβij + µkjβji 6= 1, i.e., (Uvτ{k})k 6= 1 (if v{k} exists). Suppose that T is stable16

relative to ∂Σ. It follows from Propositions 4.12–4.14 and (36) that the existence17

and local dynamics of boundary fixed points on ∂Σ for T are completely determined18

by the parameters µij , i.e. the values γij and µkiβij+µkjβji, which are independent19

of the generating function f .20

Moreover, if T admits a positive fixed point p which satisfies (34), then p is the21

unique positive fixed point. Otherwise, assume that T has two different positive22

fixed points p and p̃. Now ps := sp+(1−s)p̃ is a solution of (34) for any s ≥ 0. Let23

s̄ := sup{s > 0 : ps ∈ Σ}. Then ps̄ ∈ ∂Σ is a fixed point, which is not hyperbolic,24

contradicting that T is stable relative to ∂Σ. Thus, 1 is not an eigenvalue of DT (p)25
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by Remark 4.2. Therefore, T has only finitely many fixed points on Σ, i.e. three1

axial fixed points q{i}, at most three planar fixed points v{i} and at most one positive2

fixed point p, and 1 is not an eigenvalue of any of their Jacobian matrices.3

Let Q = id − T , where id is the identity mapping. Let x be a fixed point of T ,4

that is, a zero of Q. The index of T at x is denoted by Ind(x, T ) and the index of5

Q at the zero x is denoted by I (x,Q). The index I (x,Q) is defined as the sign6

of detDQ(x) if detDQ(x) 6= 0, and the index Ind(x, T ) as I (x,Q); for the general7

theory see [30].8

Lemma 4.17 (Index Formula on Carrying Simplex [48]). Suppose that T : R3
+ →

R3
+ given by (8) satisfies ∂Fi/∂xj < 0 for all x ∈ R3

+. Assume that T possesses
a carrying simplex Σ and the continuous-time system ẋ = G(x) = T (x) − x is
dissipative with the origin 0 being a repeller. If T has only finitely many fixed points
on Σ and 1 is not an eigenvalue of any of their Jacobian matrices, then∑

x̂∈Ev

Ind(x̂, T ) + 2
∑
x̂∈Es

Ind(x̂, T ) + 4
∑
x̂∈Ep

Ind(x̂, T ) = 1,

where Ev, Es, and Ep denote the set of all nontrivial axial, planar, and positive fixed9

points, respectively.10

Proposition 4.18. Assume that T ∈ DCS(3, f) is stable relative to ∂Σ. Then we11

have the formula12

3∑
i=1

(Ind(q{i}, T ) + 2Ind(v{i}, T )) + 4Ind(p, T ) = 1. (37)

Proof. Let G(x) = T (x)− x. Consider the continuous-time system13

ẋi = Gi(x) = xi(Fi(x)− 1), i = 1, 2, 3. (38)

The origin 0 is an equilibrium of system (38), and the eigenvalues of DG(0) are
Fi(0)− 1 > 0, that is, 0 is a repeller. Note that

∂Fi
∂xj

=
∂fi
∂z

(ri

3∑
j=1

µijxj , ri)riµij < 0,

so system (38) is totally competitive. Since

Gi(x) = xi(Fi(x)− 1) = xi(fi(ri

3∑
j=1

µijxj , ri)− 1) < 0, i = 1, 2, 3,

for |x| sufficiently large, so system (38) is dissipative. Recall that T ∈ DCS(3, f)14

admits a carrying simplex, so the result follows from Remark 4.6 and Lemma 4.17.15

16

Lemma 4.19. Suppose that T ∈ DCS(3, f) is stable relative to ∂Σ. Then17

(i) Ind(q{i}, T ) = 1 (resp. Ind(v{k}, T ) = 1) if q{i} (resp. v{k}) is a repeller or an18

attractor on Σ;19

(ii) Ind(q{i}, T ) = −1 (resp. Ind(v{k}, T ) = −1) if q{i} (resp. v{k}) is a saddle on20

Σ;21

(iii) Ind(p, T ) 6= 0 if the positive fixed point p exists.22
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Proof. It follows from the analysis for the two-dimensional maps, (35) and Remark1

4.2 that all the eigenvalues of q{i} and v{k} (if any) are positive real numbers and do2

not equal 1. If q{i} (resp. v{k}) is a repeller or an attractor on Σ then the number3

of the eigenvalues of DT (q{i}) (resp. DT (v{k})) greater than 1 is even, and hence4

Ind(q{i}, T ) = 1 (resp. Ind(v{k}, T ) = 1). If q{i} (resp. v{k}) is a saddle on Σ then5

the number of the eigenvalues of DT (q{i}) (resp. DT (v{k})) greater than 1 is odd,6

and hence Ind(q{i}, T ) = −1 (resp. Ind(v{k}, T ) = −1). If there is a positive fixed7

point p, then it follows from Remark 4.6 that it is unique and 1 is not an eigenvalue8

of DT (p). Thus, Ind(p, T ) 6= 0.9

Remark 4.7. For a map T ∈ DCS(3, f) which is stable relative to ∂Σ, it follows10

from Proposition 4.18 and Lemma 4.19 that the existence of the positive fixed point11

p and its index can be determined by the local dynamics of boundary fixed points.12

Theorem 4.20. There are a total of 33 stable equivalence classes in DCS(3, f),13

where the parameter conditions for each class with the corresponding phase portrait14

on the carrying simplex are listed in Table 1.15

Recalling Remark 4.6, the existence and local dynamics of boundary fixed points16

on ∂Σ for T ∈ DCS(3, f) are completely determined by the parameters µij , i.e. the17

values γij and µkiβij + µkjβji, which are independent of f , and the same as the18

Leslie-Gower map (29). Therefore, the classifications are the same for them, which19

are independent of the choice of the generating function f ∈ F3. Any stable map20

in DCS(3, f) belongs to one of the 33 classes in Table 1 (modulo permutation of21

the indices). Moreover, there is no positive fixed point in classes 1− 18, which have22

trivial dynamics, i.e. every orbit converges to some fixed point. Each map from23

classes 19− 25 admits a unique positive fixed point with index −1, and every orbit24

also converges to some fixed point for these classes. Each map in classes 26−33 has25

a unique positive fixed point with index 1; and the positive fixed point is globally26

asymptotically stable in class 33; see Subsection 4.2 for details. Such a classification27

is also valid for the Ricker models admitting a carrying simplex [33], and we will28

discuss in Section 5.29

4.2. Stability and permanence. As befits the context, we shall consider the30

families of maps given in Table 1 by permutation of the indices, i.e., we assume the31

parameters µij , ri of the corresponding class satisfy the conditions listed in Table32

1.33

Lemma 4.21 (Theorem 2.2 in [74] and Theorem 3.1 in [69]). Consider the three-34

dimensional map T given by (8) which satisfies the conditions Υ1), Υ2) and Υ3)35

in Lemma 3.3. Suppose that T has only a finite number of fixed points. Then the36

following conclusions hold:37

• If T has no positive fixed point, then every nontrivial orbit converges to some38

fixed point on the boundary of the carrying simplex.39

• If T has a unique positive fixed point p such that Ind(p, T ) = −1, then p is a40

saddle on the carrying simplex, and moreover, every nontrivial orbit converges to41

some fixed point on the boundary of the carrying simplex, except those on the stable42

manifold of p.43

Remark 4.8. For the three-dimensional map T in Lemma 4.21 which has a unique44

positive fixed point p such that Ind(p, T ) = −1, it is proved in [68] that both the45

stable manifold and unstable manifold of the saddle p are simple curves, and the46
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phase portrait on the carrying simplex can be described clearly together with the1

dynamics on the boundary of the carrying simplex.2

Recall that each map T ∈ DCS(3, f) satisfies the conditions Υ1), Υ2) and Υ3) in3

Lemma 3.3. Moreover, if T is stable relative to ∂Σ, then there is at most one positive4

fixed point, say p, and Ind(p, T ) 6= 0 if p exists. Thus, together with Lemma 4.21,5

Proposition 4.18 and Remark 4.6 imply the following trivial dynamics via boundary6

fixed points.7

Proposition 4.22. Assume that T ∈ DCS(3, f) is stable relative to ∂Σ. Suppose8

that9
3∑
i=1

(Ind(q{i}, T ) + 2Ind(v{i}, T )) = 1 (39)

or10
3∑
i=1

(Ind(q{i}, T ) + 2Ind(v{i}, T )) = 5. (40)

Then T has trivial dynamics, i.e. every nontrivial orbit converges to some fixed11

point on Σ.12

Note that, each map T in classes 1 − 18 satisfies (39) in Proposition 4.22, and13

hence T has no positive fixed point. Therefore, such T has trivial dynamics. That14

is, we have the following proposition.15

Proposition 4.23. For each map T in classes 1 − 18, every nontrivial orbit con-16

verges to some fixed point on ∂Σ.17

In the biological sense, Proposition 4.23 means that for three competing species18

modeled by T , if there is no coexistence state, then some of the species will be19

extinct.20

For each map T in classes 19 − 33, there exits a unique positive fixed point p.
Recall that DT (p) = I −A, where

A = −diag[pi] diag[
∂fi
∂z

(ri, ri)]RU.

Lemma 4.24. For each map in classes 19 − 25, we have Ind(p, T ) = −1 and21

detU < 0; while for each map in classes 26 − 33, we have Ind(p, T ) = 1 and22

detU > 0.23

Proof. For classes 19− 25 (resp. classes 26− 33), it follows from the local dynamics24

of fixed points on ∂Σ in Table 1, Lemma 4.19 and formula (37) that Ind(p, T ) = −125

(resp. Ind(p, T ) = 1). Moreover, if Ind(p, T ) = −1, then all the three eigenvalues of26

DT (p) are positive real numbers with one eigenvalue greater than 1 and the other27

two less than 1 by Remark 4.2. So, two eigenvalues of A are greater than 0 and28

one is less than 0, which implies that detA < 0, and hence detU < 0. While29

Ind(p, T ) = 1 ensures that there are zero or two eigenvalues of DT (p) greater than30

1 by Remark 4.2. For the former case, also by Remark 4.2 we have one eigenvalue31

of A is greater than 0 and the other two are either complex numbers or greater than32

0. For the latter case, two eigenvalues of A are less than 0 and one is greater than33

0. Therefore, one always has detA > 0, and hence detU > 0.34

Proposition 4.25. The positive fixed point p is a saddle on Σ in classes 19− 25,35

and every nontrivial orbit converges to some fixed point on the boundary of the36

carrying simplex, except those on the stable manifold of p.37
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Proof. Since Ind(p, T ) = −1 implies (40) holds, the result is immediate from Propo-1

sition 4.22 and Lemma 4.24.2

Proposition 4.26. The positive fixed point p is a repeller on Σ in class 32.3

Proof. For each map T in class 32, there exists a planar fixed point v{k} in the4

interior of πk for each k = 1, 2, 3, which is repelling along ∂Σ∩πk (see Table 1 (32)),5

so v{k} is a saddle for T |πk
. It then follows from Remark 4.4 that detU{i,j} < 06

for any i < j, where U{i,j} =

[
µii µij
µji µjj

]
is the principal 2 × 2 submatrix of U .7

Therefore, detA{i,j} < 0 for any i < j. By detU > 0, one also has detA > 0.8

It follows from Proposition 3.8 in [87] and detA > 0 that A has two eigenvalues9

with negative real parts. Therefore, DT (p) = I − A has two eigenvalues with real10

parts greater than 1, i.e, DT (p) has two eigenvalues with magnitudes greater than11

1 except λ∗, where 0 < λ∗ < 1 is defined in Remark 4.2. So p is a hyperbolic fixed12

point and it follows from [68, Theorem 4.6] that the local dynamics of p on Σ is13

reflected by the other two eigenvalues except λ∗, which implies that p is a repeller14

on Σ and its two-dimensional unstable manifold is contained in Σ (see [68, Corollary15

4.5]).16

The following lemma is the 3D specialization of Theorem 2.4 in [9] (see also17

Theorem 1.2 in [32]), which can be used to establish our global stability for class18

33.19

Lemma 4.27 ([9]). Consider the three-dimensional map T : R3
+ 7→ R3

+ given by20

(1), where Fi are C1 satisfying Fi(x) > 0 for all x ∈ R3
+, i = 1, 2, 3. Assume that21

(a) detDT (x) > 0 for all x ∈ R3
+;22

(b) DT (x)−1 > 0 for all x ∈ Ṙ3
+;23

(c) for each i = 1, 2, 3, T |πi
has a unique interior fixed point v{i} that is globally24

asymptotically stable in the interior of πi, but a saddle for T ;25

(d) T admits a carrying simplex;26

(e) T has a unique positive fixed point p ∈ Ṙ3
+.27

Then p is globally asymptotically stable in Ṙ3
+ for T .28

Figure 3. The phase portrait on Σ for class 33. Every orbit in
the interior of Σ converges to p. The fixed point notation is as in
Table 1.
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Theorem 4.28. The positive fixed point p is globally asymptotically stable in Ṙ3
+1

for each map T in class 33, and the phase portrait on Σ is as shown in Fig. 3.2

Proof. By Table 1, the map T ∈ DCS(3, f) is in class 33 if the parameters satisfy3

the following inequalities4

(i) γ12 > 0, γ13 > 0, γ21 > 0, γ23 > 0, γ31 > 0, γ32 > 0;5

(ii) µ12β23 + µ13β32 < 1;6

(iii) µ21β13 + µ23β31 < 1;7

(iv) µ31β12 + µ32β21 < 1.8

Besides the three axial fixed points q{1}, q{2} and q{3}, which are all local repellers9

by (i), T has three planar fixed points v{1}, v{2} and v{3} and a unique positive10

fixed point p ∈ Ṙ3
+. By Proposition 4.7 (c) and Remark 4.4, each v{i} is globally11

asymptotically stable for T |πi
in the interior of πi and the two internal eigenvalues12

of DT (v{i}) are both positive and less than one. Conditions (ii)-(iv) and (35) imply13

that the external eigenvalue of DT (v{i}), i.e. Fi(v{i}), is greater than one for each14

v{i}, that is each v{i} is a saddle for T . Thus, the condition (c) in Lemma 4.2715

holds for T . By Proposition 4.3, we know that detDT (x) > 0 for all x ∈ R3
+ and16

DT (x)−1 > 0 for all x ∈ Ṙ3
+, that is conditions (a) and (b) in Lemma 4.27 hold17

for T . Therefore, the conclusion follows from Lemma 4.27 immediately, because18

conditions (d) and (e) hold naturally for each map T in class 33.19

Remark 4.9. Propositions 4.23 and 4.25 and Theorem 4.28 imply that nontrivial20

dynamics, e.g. bifurcations and invariant circles, can only occur in classes 26− 32.21

Proposition 4.26 implies that the positive fixed point p in class 32 is always hyper-22

bolic, and has no eigenvalues of modulus 1. So Neimark-Sacker bifurcations cannot23

occur in class 32. However, within classes 26−31, Neimark-Sacker bifurcations may24

occur for some specific f ∈ F3, such as the Atkinson-Allen model [48, 34] and the25

Leslie-Gower model [49]; see Section 5 for details.26

For any map T in class 27, each axial fixed point q{i} is a saddle on Σ, and27

∂Σ∩πi is the heteroclinic connection between q{j} and q{k}, where i, j, k are distinct.28

Therefore, ∂Σ is a heteroclinic cycle of May-Leonard type: q{1} → q{2} → q{3} →29

q{1} (or the arrows reversed), i.e., any map T in class 27 admits a heteroclinic cycle30

(see Table 1 (27)).31

Set Gij = lnFj(q{i}) = ln fj((RUq
τ
{i})j , rj), where i 6= j. Now the % which is32

defined in (21) is written as33

% = G12G23G31 + G21G13G32. (41)

Proposition 4.29. Assume that T ∈ DCS(3, f) is in class 27. If % > 0 (resp. < 0),34

then the heteroclinic cycle ∂Σ of T repels (resp. attracts).35

Proof. The conclusion follows from Lemma 3.6 immediately.36

From a biological point of view, these cycles in class 27 may be seen to correspond37

to the biological environment where in purely pairwise competition species 2 can38

invade species 1 but not vice versa, species 3 can invade species 2 but not vice39

versa, and species 1 can invade species 3 but not vice versa. It is this intransitivity40

in the pairwise competition, which underlies the cycle behavior. Gij > 0 (resp. < 0)41

means that species j can (resp. not) invade species i; see Remark 4.5.42

Proposition 4.30. Assume that T ∈ DCS(3, f) is stable relative to ∂Σ. Then43

(i) T is permanent if it is in classes 29, 31, 33 and class 27 with % > 0;44
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(ii) T is impermanent if it is in classes 1− 26, 28, 30, 32 and class 27 with % < 0.1

Proof. (i) Since the proofs for classes 29, 31 and 33 are completely analogous, we
only consider the class 29; see Fig. 4.

Figure 4. The phase portrait on Σ for class 29. The fixed point
notation is as in Table 1.

Note that

E(T ) ∩ ∂Σ = {q{1}, q{2}, q{3}, v{3}}.
By Corollary 3.5, it suffices to prove that there are real numbers ν1, ν2, ν3 > 0 such
that the following inequalities hold:

ν1 lnF1(q{1}) + ν2 lnF2(q{1}) + ν3 lnF3(q{1}) > 0; (42a)

ν1 lnF1(q{2}) + ν2 lnF2(q{2}) + ν3 lnF3(q{2}) > 0; (42b)

ν1 lnF1(q{3}) + ν2 lnF2(q{3}) + ν3 lnF3(q{3}) > 0; (42c)

ν1 lnF1(v{3}) + ν2 lnF2(v{3}) + ν3 lnF3(v{3}) > 0. (42d)

Recall that for a fixed point x̂ ∈ E(T ), one has Fi(x̂) = 1 for all i ∈ κ(x̂). Therefore,
Fi(q{i}) = 1, i = 1, 2, 3 and F1(v{3}) = F2(v{3}) = 1. By (35), Remark 4.6 and the
condition (ii) in Table 1 (29), we have

µ31β12 + µ32β21 < 1⇔ (Uvτ{3})3 < 1⇔ F3(v{3}) > 1.

So, (42d) holds for any ν1, ν2, ν3 > 0. Since γ12, γ13 > 0 by condition (i) in Table
(29), one has F2(q{1}), F3(q{1}) > 1 (see (35)). Thus, (42a) holds for any ν1, ν2, ν3 >
0. The inequalities (42b) and (42c) can be written as

ν1 lnF1(q{2}) + ν3 lnF3(q{2}) > 0; (43a)

ν1 lnF1(q{3}) + ν2 lnF2(q{3}) > 0. (43b)

We first fix a ν2 > 0. It follows from γ32 > 0 and (35) that lnF2(q{3}) > 0, and2

hence for sufficiently small ν1 > 0 one has (43b) holds. Now fix some ν1 > 0 such3

that (43b) holds. Note that γ21 > 0, so lnF1(q{2}) > 0 (see (35)). Then we can4

choose some ν3 > 0 sufficiently small such that (43a) holds. Such ν1, ν2, ν3 > 05

ensure that the inequalities (42a)–(42d) hold. This proves that each map T in class6

29 is permanent. For the map T in class 27 such that % > 0, the conclusion follows7

from Corollary 3.7.8
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(ii) For each map T in classes 1 − 26, 28, 30 and 32, there always exists a fixed1

point on ∂Σ which is an attractor on Σ (see Table 1), so it is impermanent. For the2

map T in class 27 such that % < 0, the conclusion follows from Corollary 3.7.3

5. Applications to population models. In this section we apply the previous4

results in some concrete population models. Throughout this section, A denotes5

the 3× 3 matrix with entries aij > 0, R = diag[ri] with ri > 0, and U is the 3× 36

matrix with entries µij > 0 such that A = RU , where i, j = 1, 2, 3.7

5.1. Leslie-Gower model. Consider the Leslie-Gower model (29) due to Leslie8

and Gower [59]. The two-dimensional Leslie-Gower model is thoroughly analyzed9

by Cushing et al. [14]. The higher dimensional case was analyzed in [40, 74, 50, 49].10

Denote the set of all Leslie-Gower maps (29) by CLG(3). In symbols:

CLG(3) := {T ∈ T (R3
+) : Ti(x) =

(1 + ri)xi

1 +
∑3
j=1 aijxj

, ri > 0, aij > 0, i, j = 1, 2, 3}.

Set fi(z, r) = 1+r
1+z , i = 1, 2, 3. Then the map T = (T1, T2, T3) with

Ti(x) = xifi((Ax
τ )i, ri) =

(1 + ri)xi
1 + (RUxτ )i

is just the Leslie-Gower model (29), i.e. CLG(3) is a special case of DCS(3, f).11

Jiang and Niu [49] have listed the 33 stable equivalence classes in CLG(3); see12

also Table 1. For CLG(3), Proposition 4.30 is written in the following manner:13

Proposition 5.1. The Leslie-Gower model T ∈ CLG(3) is permanent if it is in14

classes 29, 31, 33 and class 27 with % > 0 (defined by (41)), while T is impermanent15

if it is in classes 1− 26, 28, 30, 32 and class 27 with % < 0.16

In [49], it was shown that for CLG(3), Neimark-Sacker bifurcations can occur17

within each of classes 26 − 31, so these classes can admit invariant closed curves.18

Here, we provide an example to show that the supercritical Neimark-Sacker bifur-19

cation can occur in class 27 with % > 0 for CLG(3). We also provide a numerical20

example to show that the Chenciner (generalized Neimark-Sacker) bifurcation can21

occur in class 27 with % > 0, which implies that two isolated invariant closed curves22

can coexist on the carrying simplex in class 27 with a repelling heteroclinic cycle.23

The Chenciner bifurcation is a two-parameter bifurcation phenomenon of a fixed24

point, which occurs when there is a pair of complex eigenvalues with modulus one25

and the first Lyapunov coefficient vanishes; see [56, 28] for more details.26

Example 5.1. Let U =

 1 5
4

1
2

1
2 1 3

2

3
2

3
4 1

 and r1 = 1, r2 > 0, r3 = 1. Consider27

the one-parameter family of maps T [r2] ∈ CLG(3) with the parameters U and ri.28

By Table 1 (27) we know that T [r2] belongs to class 27 for all r2 > 0. T [r2] has29

a unique positive fixed point p = ( 1
4 ,

1
2 ,

1
4 ). When r2 = r∗2 := − 113

194 + 4
√

295
97 ,30

DT [r2](p) has a pair of complex conjugate eigenvalues of modulus 1 which do not31

equal ±1,±i, (−1±
√

3i)/2, where i stands for the imaginary unit. By calculating we32

obtain the first Lyapunov coefficient l1 ≈ −1.162 × 10−2 < 0. Since the Lyapunov33

coefficient is a rather lengthy expression, the approximate value was computed as a34

rational by using MATLAB [28, 57, 49]. Therefore, a supercritical Neimark-Sacker35
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(a) The orbit with x0 = (1, 0.0667, 0.0667)
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(b) The orbit with x0 = (0.2151, 0.746, 0.0173)

Figure 5. The orbit emanating from x0 = (1, 0.0667, 0.0667) for
the map T ∈ CLG(3) with the parameter matrix U given in Ex-
ample 5.1 and r1 = 1, r2 = 0.2, r3 = 1 leads away from ∂Σ and
tends to an attracting invariant closed curve, and the orbit ema-
nating from x0 = (0.2151, 0.746, 0.0173) also tends to an attracting
invariant closed curve.

bifurcation occurs at r2 = r∗2 , i.e., a stable invariant closed curve bifurcates from1

the fixed point p. On the other hand, it follows from (41) that % ≈ 0.00078 > 0 for2

r2 = r∗2 , so the heteroclinic cycle ∂Σ of T [r2] is repelling, i.e. T [r2] is permanent,3

for any r2 in a small neighborhood of r∗2 . Thus, a stable invariant closed curve can4

occur in class 27 with % > 0 for CLG(3). See Fig. 5 for the orbit simulation.5

Now let r1 > 0, r2 > 0, r3 = 1, and consider the two-parameter family of maps6

T [r1,r2] ∈ CLG(3) with the parameters U and ri. The map T [r1,r2] belongs to class7

27 for all r1, r2 > 0 with a unique positive fixed point p = (1
4 ,

1
2 ,

1
4 ). By numerical8

calculation [28, 29], we find that T [r1,r2] admits a Chenciner bifurcation point at9

p when r1 ≈ 0.248332 and r2 ≈ 0.0633101, where the second Lyapunov coefficient10

l2 ≈ −3.574 × 10−2 < 0. Therefore, a stable fixed point and an attracting (large)11

invariant closed curve, separated by an unstable invariant closed curve can coexist12

in class 27 for CLG(3) when the parameters r1 and r2 are properly disturbed near13

0.248332 and 0.0633101 respectively; see [56, Section 9.4] or [34, pp. 633–636] for14

details. Furthermore, it follows from (41) that % ≈ 0.00011 > 0 for r1 = 0.24833215

and r2 = 0.0633101, i.e. Chenciner bifurcation can also occur in class 27 with % > 0.16

5.2. Atkinson-Allen model. Consider the generalized Atkinson-Allen model T17

defined on R3
+ with18

Ti(x) =
(1 + ri)(1− ci)xi
1 +

∑3
j=1 aijxj

+ cixi, 0 < ci < 1, aij , ri > 0, i, j = 1, 2, 3. (44)

The model induced by the map (44) is a discretized system of the competitive19

Lotka-Volterra equations, and see [34] for a mechanistic derivation of this model. A20

related two-dimensional discrete-time model for competition between populations21

of cyst-nematodes, due to Jones and Perry [52], was analyzed by Smith [76]. When22

ri = 1 and ci = c, the map (44) reduces to the standard Atkinson-Allen map23

T : R3
+ 7→ R3

+, Ti(x) =
2(1− c)xi

1 +
∑3
j=1 aijxj

+cxi, 0 < c < 1, aij > 0, i, j = 1, 2, 3, (45)
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which is a modified model derived from annual plants competition [3, 1, 73], and1

has been analyzed by Jiang and Niu in [48].2

Since map (45) is a special case of the generalized Atkinson-Allen map (44),
we apply the previous results to the map (44). Denote the set of all generalized
Atkinson-Allen maps (44) by CGAA(3). In symbols:

CGAA(3) := {T ∈ T (R3
+) : Ti(x) =

(1 + ri)(1− ci)xi
1 +

∑3
j=1 aijxj

+cixi, 0 < ci < 1, aij , ri > 0}.

Set fi(z, r) = (1+r)(1−ci)
1+z + ci, 0 < ci < 1, i = 1, 2, 3. Then the map T = (T1, T2, T3)

with

Ti(x) = xifi((Ax
τ )i, ri) =

(1 + ri)(1− ci)xi
1 + (RUxτ )i

+ cixi, i = 1, 2, 3

is the generalized Atkinson-Allen model, i.e. CGAA(3) is also a special case of3

DCS(3, f).4

Gyllenberg et al. [33] have listed the 33 stable equivalence classes in CGAA(3);5

see also Table 1. For CGAA(3), Proposition 4.30 is written in the following manner:6

Proposition 5.2. The generalized Atkinson-Allen model T ∈ CGAA(3) is perma-7

nent if it is in classes 29, 31, 33 and class 27 with % > 0 (defined by (41)), while T8

is impermanent if it is in classes 1− 26, 28, 30, 32 and class 27 with % < 0.9

It was shown in [33] that for CGAA(3), classes 26−29 and 31 can admit supercrit-10

ical Neimark-Sacker bifurcations, and class 30 can admit subcritical Neimark-Sacker11

bifurcations. The authors also numerically show that Chenciner bifurcations can12

occur in classes 26− 29. Here, we give two examples to show that the supercritical13

Neimark-Sacker bifurcation can occur in class 27 with % > 0 and can also occur in14

class 27 with % < 0, respectively.15
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(a) The orbit with x0 = (1, 0.0667, 0.0667)
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(b) The orbit with x0 = (0.7, 0.1642, 0.1685)

Figure 6. The orbit emanating from x0 = (1, 0.0667, 0.0667) for
the map T ∈ CGAA(3) with the parameter matrix U given in
Example 5.1 and r1 = r2 = r3 = 1, c1 = 1

10 , c2 = 1
5 , c3 = 1

5 leads
away from ∂Σ and tends to an attracting invariant closed curve,
and the orbit emanating from x0 = (0.7, 0.1642, 0.1685) also tends
to an attracting invariant closed curve.

Example 5.2. Let r1 = r2 = r3 = 1, and c1 = 1
10 , c2 = 1

5 , 0 < c3 < 1. Consider the16

one-parameter family of maps T [c3] ∈ CGAA(3) with the parameter matrix U given17
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in Example 5.1 and the above ri, ci, i = 1, 2, 3. By Table 1 (27) we know that T [c3]
1

belongs to class 27 for all 0 < c3 < 1, whose unique positive fixed point p = ( 1
4 ,

1
2 ,

1
4 ).2

When c3 = c∗3 := 432709
80801 −

80
√

24656689
80801 , DT [c3](p) has a pair of complex conjugate3

eigenvalues of modulus 1 which do not equal ±1,±i, (−1 ±
√

3i)/2. By numerical4

calculation [28, 57, 34], we get the first Lyapunov coefficient l1 ≈ −1.814×10−2 < 0.5

Therefore, a supercritical Neimark-Sacker bifurcation occurs at c3 = c∗3, i.e., a stable6

invariant closed curve bifurcates from the fixed point p. On the other hand, it follows7

from (41) that % ≈ 0.0026 > 0 for c3 = c∗3, so the heteroclinic cycle ∂Σ of T [c3] is8

repelling, i.e. T [c3] is permanent, for any c3 in a small neighborhood of c∗3. Thus,9

a stable invariant closed curve can occur in class 27 with % > 0 for CGAA(3). See10

Fig. 6 for the orbit simulation.11
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(a) The orbit with x0 = (0.04, 0.12, 0.36)
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(b) The orbit with x0 = (0.0002, 0.023, 0.486)

Figure 7. The orbit emanating from x0 = (0.04, 0.12, 0.36) for the
map T ∈ CGAA(3) with the parameter matrix U given in Example
5.3 and r1 = r2 = r3 = 1, c1 = 0.1, c2 = 0.79, c3 = 0.1 tends to an
attracting invariant closed curve, while the orbit emanating from
x0 = (0.0002, 0.023, 0.486) approaches the heteroclinic cycle ∂Σ.

Example 5.3. Let U =

 3 3 1
3
2

3
2 4

4 1 2

, and r1 = r2 = r3 = 1, c1 = c3 = 1
10 , 0 <12

c2 < 1. Consider the one-parameter family of maps T [c2] ∈ CGAA(3) with the13

parameters U and ri, ci, i = 1, 2, 3. By Table 1 (27) we know that T [c2] belongs14

to class 27 for all 0 < c2 < 1, whose unique positive fixed point p = ( 1
7 ,

1
7 ,

1
7 ).15

When c2 = c∗2 := 1822387
382723 −

840
√

3257017
382723 , DT [c2](p) has a pair of complex conjugate16

eigenvalues of modulus 1 which do not equal ±1,±i, (−1 ±
√

3i)/2. By numeri-17

cal calculation, we obtain the first Lyapunov coefficient l1 ≈ −5.039 × 10−2 < 0.18

Therefore, a supercritical Neimark-Sacker bifurcation occurs at c2 = c∗2, and hence19

a stable invariant closed curve bifurcates from the fixed point p. On the other hand,20

it follows from (41) that % ≈ −0.00058 < 0 for c2 = c∗2, so the heteroclinic cycle ∂Σ21

of T [c2] is attracting, i.e. T [c2] is impermanent, for any c2 in a small neighborhood22

of c∗2. Thus, the supercritical Neimark-Sacker can occur in class 27 with % < 0 for23

CGAA(3). See Fig. 7 for the orbit simulation.24
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5.3. Mixing growth functions. Consider the following model T = (T1, T2, T3)1

on R3
+, in which the three competing species are assumed to have different types of2

growth functions:3 

T1(x) =
(1 + r1)x1

1 + a11x1 + a12x2 + a13x3
,

T2(x) =
(1 + r2)(1− c)x2

1 + a21x1 + a22x2 + a23x3
+ cx2,

T3(x) =
(1 + ln(1 + r3))x3

1 + ln(1 + a31x1 + a32x2 + a33x3)
.

(46)

Set f1(z, r) = 1+r
1+z , f2(z, r) = (1+r)(1−c)

1+z + c, 0 < c < 1, f3(z, r) = 1+ln(1+r)
1+ln(1+z) . Then

the map T can be written as

Ti(x) = xifi((RUx
τ )i, ri), i = 1, 2, 3.

Note that each fi ∈ F , so T admits a carrying simplex Σ. Denote the set of all
maps (46) by

MGF(3) := {T ∈ T (R3
+) : Ti(x) = xifi((RUx

τ )i, ri), µij , ri > 0}.

Therefore, MGF(3) is a special case of DCS(3, f) with the generating function4

f = (f1, f2, f3). It follows from Theorem 4.20 that there are 33 stable equivalence5

classes in MGF(3), and furthermore, Proposition 4.30 is written in the following6

manner:7

Proposition 5.3. The model T ∈ MGF(3) is permanent if it is in classes 29, 31,8

33 and class 27 with % > 0 (defined by (41)), while T is impermanent if it is in9

classes 1− 26, 28, 30, 32 and class 27 with % < 0.10

We now provide two examples to show that Neimark-Sacker bifurcations can11

occur in the permanent classes 29 and 31 for MGF(3), respectively.
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Figure 8. The orbit emanating from x0 = (0.427, 0.8574, 0.014)
for the map T ∈ MFC(3) with the parameter matrix U given in Ex-
ample 5.4, c = 4

5 and r1 = r3 = 1, r2 = 0.03 tends to an attracting
invariant closed curve.

12
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Example 5.4. Let U =

 1 1
2 9

1
2 1 1

2

1
6

7
6 1

 and c = 4
5 , r1 = r3 = 1, r2 > 0. Consider1

the one-parameter family of maps T [r2] ∈ MGF(3) with the parameters U , c and2

ri, i = 1, 2, 3. By Table 1 (29) we known that T [r2] belongs to class 29 with a3

unique positive fixed point p = ( 8
19 ,

74
95 ,

2
95 ) for all r2 > 0. When r2 ≈ 0.032889,4

DT [r2](p) has a pair of complex conjugate eigenvalues with modulus 1 which do not5

equal ±1,±i, (−1 ±
√

3i)/2. The first Lyapunov coefficient l1 ≈ −2.430 × 10−5 <6

0. Therefore, there is a supercritical Neimark-Sacker bifurcation in class 29 for7

MGF(3), i.e. a stable invariant closed curve bifurcates from the fixed point p. See8

Fig. 8 for the orbit simulation.9
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Figure 9. The orbit emanating from x0 = (0.5962, 0.4857, 0.193)
for the map T ∈ MFC(3) with the parameter matrix U given in Ex-
ample 5.5, c = 4

5 and r1 = r3 = 1, r2 = 0.02 tends to an attracting
invariant closed curve.

Example 5.5. Let U =

 1 1
4

3
2

5
8 1 5

8

7
10

3
4 1

 and c = 4
5 , r1 = r3 = 1, r2 > 0. Consider10

the one-parameter family of maps T [r2] ∈ MGF(3) with the parameters U , c and11

ri, i = 1, 2, 3. By Table 1 (31) we known that T [r2] belongs to class 31 with a12

unique positive fixed point p = ( 5
11 ,

6
11 ,

3
11 ) for all r2 > 0. When r2 ≈ 0.038917,13

DT [r2](p) has a pair of complex conjugate eigenvalues with modulus 1 which do not14

equal ±1,±i, (−1 ±
√

3i)/2. The first Lyapunov coefficient l1 ≈ −3.968 × 10−3 <15

0. Therefore, there is a supercritical Neimark-Sacker bifurcation in class 31 for16

MGF(3), i.e. a stable invariant closed curve bifurcates from the fixed point p. See17

Fig. 9 for the orbit simulation.18

5.4. Ricker model. Consider the Ricker map [71]19

T : R3
+ 7→ R3

+, Ti(x) = xi exp(ri −
3∑
j=1

aijxj), ri, aij > 0, i, j = 1, 2, 3. (47)

The one-dimensional map has been studied in detail by May and Oster [64], where20

they showed that every orbit converges to the positive fixed point for r ≤ 2, and it21
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will exhibit a scenario of chaotic behavior for large r. The two-dimensional map was1

analyzed in detail by Smith [76], who showed that it has trivial dynamics provided2

ν1, ν2 < 1. Roeger [72] studied the local dynamics of the positive fixed point and3

Neimark-Sacker bifurcations for the map (47) with r1 = r2 = r3. Hofbauer et4

al. [42] provided the criteria on permanence for map (47) and also the higher5

dimensional cases.6

Set fi(z, r) = exp(r− z), i = 1, 2, 3. Then the Ricker map (47) can be written as7

Ti(x) = xifi((Ax
τ )i, ri) = xi exp(ri(1−

3∑
j=1

µijxj)), i = 1, 2, 3. (48)

Note that (3) (ii) does not hold for fi, that is fi /∈ F , and unlike the maps in8

DCS(3, f) (such as the Leslie-Gower map or the Atkinson-Allen map discussed9

above), the Ricker map T has a carrying simplex only under certain additional10

conditions (see [33]). Assume that the parameters satisfy11

ri < 1/(

3∑
j=1

µij
µjj

), or ri < µii/

3∑
j=1

µij , i = 1, 2, 3. (49)

Then one can easily check that the Ricker map (47) satisfies the condition Υ3) in12

Lemma 3.3 and hence it admits a carrying simplex by Lemma 3.3.13

Denote by

CRC(3) := {T ∈ T (R3
+) : Ti(x) = xi exp(ri(1−

3∑
j=1

µijxj)), ri, µij > 0, (49) holds}.

Then each Ricker map (48) in CRC(3) admits a carrying simplex. The classification14

program via the dynamics on ∂Σ and statements for the 3-dimensional maps (2) are15

also applicable for CRC(3). Specifically, Gyllenberg et al. showed in [33] that there16

are a total of 33 stable equivalence classes in CRC(3) as shown in Table 1, where17

the parameters should satisfy the condition (49) in addition to those listed in Table18

1 for each class. On the other hand, note that all the criteria on the permanence in19

Section 3.2 do not depend on the condition (3) (ii) and is applicable to any map T20

given by (22) which has a carrying simplex. Moreover, by the proof of Proposition21

4.30, one can see that the existence of the carrying simplex and conditions (i) and22

(ii) in Table 1 (29) imply the permanence of the class 29, and similarly for classes23

31 and 33, etc. Therefore, for the Ricker map (48), Proposition 4.30 is written in24

the following manner:25

Proposition 5.4. The Ricker model T ∈ CRC(3) is permanent if it is in classes26

29, 31, 33 and class 27 with % > 0 (defined by (41)), while T is impermanent if it27

is in classes 1− 26, 28, 30, 32 and class 27 with % < 0.28

It was shown in [33] that for CRC(3), classes 26 and 31 can admit supercritical29

Neimark-Sacker bifurcations, while classes 27 − 30 can admit subcritical Neimark-30

Sacker bifurcations. The authors also provided a numerical example to show that31

the Chenciner bifurcation can occur in class 29. Here, we give an example to show32

that the supercritical Neimark-Sacker bifurcation can also occur in class 29, and a33

numerical example to show that the Chenciner bifurcation can also occur in class34

26.35

Example 5.6. Let r1 = 1
11 , 0 < r2 <

1
2 , r3 = 2

7 . Consider the one-parameter fam-36

ily of maps T [r2] given by (48) with the parameter matrix U given in Example 5.437
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Figure 10. The orbit emanating from x0 =
(0.3128, 0.8347, 0.0199) for the map T ∈ CRC(3) with the param-
eter matrix U given in Example 5.4 and r1 = 1

11 , r2 = 0.01, r3 = 2
7

tends to an attracting invariant closed curve.

and the above ri, i = 1, 2, 3. It is easy to check that such µij , ri satisfy (49), i.e.1

T [r2] ∈ CRC(3) for all 0 < r2 <
1
2 . It follows from Table 1 (29) that T [r2] belongs2

to class 29. T [r2] possesses a unique positive fixed point p = ( 8
19 ,

74
95 ,

2
95 ). When3

r2 = − 15
2128 + 3

√
231729

78736 , DT [r2](p) has a pair of complex conjugate eigenvalues with4

modulus 1 which do not equal ±1,±i, (−1±
√

3i)/2. The first Lyapunov coefficient5

l1 = −1.433× 10−2 < 0. Therefore, there is a supercritical Neimark-Sacker bifurca-6

tion in class 29 for CRC(3), i.e. a stable invariant closed curve bifurcates from the7

fixed point p. See Fig. 10 for the orbit simulation.8

Example 5.7. Let U =

 1 4 3
4

1
8 1 5

4

3
4

5
4 1

 and 0 < r1 < 1
6 , r2 = 1

5 , 0 < r3 < 1
4 .9

Consider the two-parameter family of maps T [r1,r3] given by (48) with the pa-10

rameters U and ri, i = 1, 2, 3. It is easy to check that such µij , ri satisfy (49),11

i.e. T [r1,r3] ∈ CRC(3) for all 0 < r1 < 1
6 , 0 < r3 < 1

4 . It follows from Ta-12

ble 1 (26) that T [r1,r3] belongs to class 26. T [r1,r3] has a unique positive fixed13

point p = ( 80
287 ,

12
287 ,

212
287 ). By numerical calculation, we find that T [r1,r3] admits a14

Chenciner bifurcation point at p when r1 ≈ 0.026288 and r3 ≈ 0.004706, where15

the second Lyapunov coefficient l2 = −0.1342 < 0. Therefore, a stable fixed point16

and an attracting (large) invariant closed curve, separated by an unstable invariant17

closed curve can coexist in class 26 for CRC(3).18

6. Discussion. This paper presents permanence and impermanence criteria for19

discrete-time dissipative Kolmogorov systems (8) (Theorem 3.2) and those admit-20

ting a carrying simplex Σ (Theorem 3.4), respectively. For three-dimensional maps21

admitting a carrying simplex, such criteria are finitely computable conditions which22

only depend on the nontrivial boundary fixed points (Corollary 3.5).23

The competitive systems induced by the maps (22) with linearly determined24

fixed points, i.e. all maps in the set DCS(n, f), always admit a carrying simplex.25
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Particularly, we define an equivalence relation relative to local dynamics of nontriv-1

ial boundary fixed points for the set DCS(3, f) according to this linear structure.2

We say that two mappings in DCS(3, f) are equivalent if all their boundary fixed3

points have the same local dynamics on the carrying simplices after a permutation4

of the indices {1, 2, 3}. Via the index formula (37), which states that the sum of the5

indices of the fixed points on the carrying simplex is one, we list the stable equiv-6

alence classes for DCS(3, f) which are independent of generating functions f ∈ F3,7

and present the phase portraits on Σ. Specifically,8

• there are always a total of 33 stable equivalence classes, no matter what gener-9

ating functions are, which are described in terms of inequalities on the parameters,10

and given in Table 1;11

• every nontrivial orbit converges to a fixed point on the boundary of Σ in classes12

1− 18;13

• each map in classes 19 − 25 admits a unique positive fixed point p which is14

a saddle, such that every nontrivial orbit converges to some fixed point on the15

boundary of the carrying simplex, except those on the stable manifold of p which16

is a union of simple curves (see Remark 4.8);17

• each map in classes 26 − 33 has a unique positive fixed point p with index 1;18

p is always a hyperbolic repeller in class 32; and p is globally asymptotically stable19

in class 33; within classes 26− 31, Neimark-Sacker bifurcations might occur;20

• there is a heteroclinic cycle in class 27.21

Applying our permanence and impermanence criteria to each class in DCS(3, f),22

we obtain that the systems in classes 29, 31, 33 and class 27 with a repelling23

heteroclinic cycle are permanent, while those in classes 1− 26, 28, 30, 32 and class24

27 with an attracting heteroclinic cycle are impermanent; for systems in class 33,25

the permanence can guarantee the global stability of the unique positive fixed point.26

However, permanence does not always imply the global asymptotic stability of27

the unique positive fixed point p, and the local stability of p depends on the gener-28

ating function f ∈ F3 by (28). Indeed, Neimark-Sacker bifurcations can happen in29

permanent classes 29 and 31 for the Leslie-Gower model, the generalized Atkinson-30

Allen model, the model with different types of growth functions, and the Ricker31

model. Neimark-Sacker bifurcations can also occur in class 27 with repelling hete-32

roclinic cycles for the Leslie-Gower model and the generalized Atkinson-Allen model.33

So invariant cycles can occur in these classes, on which all orbits are periodic, or34

any orbit is dense. Numerical experiments show that Chenciner bifurcations can35

also happen in class 29 for the generalized Atkinson-Allen model and the Ricker36

model, and in class 27 with repelling heteroclinic cycles for the Leslie-Gower model,37

which means that two isolated invariant cycles can coexist on the carrying simplex38

for such systems. In the impermanent classes, such as classes 26, 28, 30 and class39

27 with attracting heteroclinic cycles, Neimark-Sacker bifurcations can also occur;40

see Section 5 and [48, 49, 34, 33] for more details. By the way, the dynamics in the41

same class which has a unique positive fixed point might be different for different42

kinds of generating functions f ∈ F3. For example, Neimark-Sacker bifurcations do43

not happen in classes 28 and 30 for the standard Atkinson-Allen model [48], while44

they can happen in these two classes for the Leslie-Gower model [49].45

Furthermore, the results imply that when all the boundary fixed points are un-46

stable, the system may not be permanent, because impermanence can occur in class47

27 with attracting heteroclinic cycles, whose boundary fixed points are all unstable.48
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When the system admits no heteroclinic cycle, i.e. it is not in class 27, all the1

boundary fixed points being unstable implies the permanence for T ∈ DCS(3, f).2

Biologically, the system is impermanent if one of the following conditions holds:3

• there exists some species which cannot be invaded by any of the other two4

species (classes 1− 3, 7, 8, 13− 23, 26, 28, 30 and 32);5

• there exists a two-species steady state which cannot be invaded by the third6

species (classes 4− 6, 9− 12, 24 and 25).7

The system is permanent if the following conditions hold simultaneously (classes8

29, 31 and 33):9

• each species can be invaded by at least one of the other two species;10

• there exists one species which can be invaded by both of the other two species;11

• any coexistence of two species can be invaded by the third species.12

Such classification also presents a detailed classification for permanence and im-13

permanence. Based on this, one can investigate the further long term dynamical14

properties within each of classes 26− 32. Finally, we propose some interesting open15

problems as follows.16

• Give sufficient conditions to guarantee the global asymptotic stability of the17

positive fixed point for permanent systems in classes 29, 31 and class 27 with re-18

pelling heteroclinic cycles.19

• Investigate the nontrivial interesting dynamics, such as multiplicity of invariant20

cycles, in both permanent and impermanent systems.21
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Appendix A. Stable equivalence classes in DCS(3, f).25

Table 1: The 33 equivalence classes in DCS(3, f), where γij =

µii − µji, βij =
µjj−µij

µiiµjj−µijµji
(βij is well defined; see Remark 4.6),

i, j = 1, 2, 3 and i 6= j, and each Σ is given by a representative
map of that class. A fixed point is represented by a closed dot •
if it attracts on Σ, by an open dot ◦ if it repels on Σ, and by the
intersection of its stable and unstable manifolds if it is a saddle on
Σ. For classes 1 − 25 and 33, every orbit converges to some fixed
point; for classes 26−31, Neimark-Sacker bifurcations might occur;
for class 27, ∂Σ is a heteroclinic cycle; for class 32, the unique
positive fixed point is a repeller and Neimark-Sacker bifurcation
cannot occur in this class.

Class Parameter conditions Phase Portrait on Σ

1
γ12 < 0, γ13 < 0, γ21 > 0,
γ23 > 0, γ31 > 0, γ32 < 0
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Table 1: (continued)

Class Parameter conditions Phase Portrait on Σ

2
(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 > 0, γ31 > 0, γ32 < 0
(ii) µ31β12 + µ32β21 < 1

3
(i) γ12 < 0, γ13 < 0, γ21 > 0,

γ23 < 0, γ31 > 0, γ32 < 0
(ii) µ12β23 + µ13β32 < 1

4

(i) γ12 > 0, γ13 < 0, γ21 > 0,
γ23 < 0, γ31 > 0, γ32 < 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ31β12 + µ32β21 > 1

5
(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 < 0, γ31 < 0, γ32 > 0
(ii) µ31β12 + µ32β21 > 1

6
(i) γ12 > 0, γ13 > 0, γ21 < 0,

γ23 > 0, γ31 < 0, γ32 > 0
(ii) µ12β23 + µ13β32 > 1

7
(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 < 0, γ32 < 0
(ii) µ31β12 + µ32β21 < 1

8

(i) γ12 > 0, γ13 > 0, γ21 > 0,
γ23 < 0, γ31 < 0, γ32 < 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ31β12 + µ32β21 < 1

9

(i) γ12 > 0, γ13 > 0, γ21 > 0,
γ23 > 0, γ31 < 0, γ32 > 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ31β12 + µ32β21 < 1

10

(i) γ12 > 0, γ13 > 0, γ21 > 0,
γ23 > 0, γ31 < 0, γ32 > 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ31β12 + µ32β21 > 1
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Table 1: (continued)

Class Parameter conditions Phase Portrait on Σ

11

(i) γ12 > 0, γ13 > 0, γ21 > 0,
γ23 < 0, γ31 > 0, γ32 < 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ21β13 + µ23β31 < 1
(iv) µ31β12 + µ32β21 > 1

12

(i) γ12 > 0, γ13 > 0, γ21 > 0,
γ23 > 0, γ31 > 0, γ32 > 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ21β13 + µ23β31 < 1
(iv) µ31β12 + µ32β21 > 1

13
(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 < 0, γ31 > 0, γ32 > 0
(ii) µ31β12 + µ32β21 > 1

14

(i) γ12 < 0, γ13 < 0, γ21 < 0,
γ23 > 0, γ31 > 0, γ32 > 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ31β12 + µ32β21 > 1

15

(i) γ12 < 0, γ13 < 0, γ21 < 0,
γ23 < 0, γ31 > 0, γ32 < 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ31β12 + µ32β21 > 1

16

(i) γ12 < 0, γ13 < 0, γ21 < 0,
γ23 < 0, γ31 > 0, γ32 < 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ31β12 + µ32β21 < 1

17

(i) γ12 < 0, γ13 < 0, γ21 < 0,
γ23 > 0, γ31 < 0, γ32 > 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ21β13 + µ23β31 > 1
(iv) µ31β12 + µ32β21 < 1

18

(i) γ12 < 0, γ13 < 0, γ21 < 0,
γ23 < 0, γ31 < 0, γ32 < 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ21β13 + µ23β31 > 1
(iv) µ31β12 + µ32β21 < 1



PERMANENCE AND CLASSIFICATION FOR DISCRETE-TIME SYSTEMS 39

Table 1: (continued)

Class Parameter conditions Phase Portrait on Σ

19
(i) γ12 > 0, γ13 > 0, γ21 < 0,

γ23 < 0, γ31 < 0, γ32 < 0
(ii) µ12β23 + µ13β32 < 1

20

(i) γ12 < 0, γ13 < 0, γ21 < 0,
γ23 < 0, γ31 > 0, γ32 < 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ31β12 + µ32β21 < 1

21

(i) γ12 < 0, γ13 < 0, γ21 < 0,
γ23 > 0, γ31 < 0, γ32 > 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ21β13 + µ23β31 < 1
(iv) µ31β12 + µ32β21 < 1

22

(i) γ12 > 0, γ13 > 0, γ21 < 0,
γ23 < 0, γ31 > 0, γ32 < 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ21β13 + µ23β31 > 1

23
(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 > 0, γ31 < 0, γ32 < 0
(ii) µ31β12 + µ32β21 > 1

24

(i) γ12 > 0, γ13 > 0, γ21 > 0,
γ23 > 0, γ31 < 0, γ32 > 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ31β12 + µ32β21 > 1

25

(i) γ12 > 0, γ13 > 0, γ21 > 0,
γ23 < 0, γ31 > 0, γ32 < 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ21β13 + µ23β31 > 1
(iv) µ31β12 + µ32β21 > 1

26

(i) γ12 > 0, γ13 > 0, γ21 < 0,
γ23 < 0, γ31 > 0, γ32 < 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ21β13 + µ23β31 < 1
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Table 1: (continued)

Class Parameter conditions Phase Portrait on Σ

27
γ12 > 0, γ13 < 0, γ21 < 0,
γ23 > 0, γ31 > 0, γ32 < 0

28
(i) γ12 < 0, γ13 < 0, γ21 < 0,

γ23 > 0, γ31 > 0, γ32 < 0
(ii) µ31β12 + µ32β21 > 1

29
(i) γ12 > 0, γ13 > 0, γ21 > 0,

γ23 < 0, γ31 < 0, γ32 > 0
(ii) µ31β12 + µ32β21 < 1

30

(i) γ12 < 0, γ13 < 0, γ21 < 0,
γ23 < 0, γ31 > 0, γ32 < 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ31β12 + µ32β21 > 1

31

(i) γ12 > 0, γ13 > 0, γ21 > 0,
γ23 > 0, γ31 < 0, γ32 > 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ31β12 + µ32β21 < 1

32

(i) γ12 < 0, γ13 < 0, γ21 < 0,
γ23 < 0, γ31 < 0, γ32 < 0

(ii) µ12β23 + µ13β32 > 1
(iii) µ21β13 + µ23β31 > 1
(iv) µ31β12 + µ32β21 > 1

33

(i) γ12 > 0, γ13 > 0, γ21 > 0,
γ23 > 0, γ31 > 0, γ32 > 0

(ii) µ12β23 + µ13β32 < 1
(iii) µ21β13 + µ23β31 < 1
(iv) µ31β12 + µ32β21 < 1

1
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