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ABSTRACT
Finding images matching a user’s intention has been largely based
on matching a representation of the user’s information needs with
an existing collection of images. For example, using an example
image or a written query to express the information need and re-
trieving images that share similarities with the query or example
image. However, such an approach is limited to retrieving only
images that already exist in the underlying collection. Here, we
present a methodology for generating images matching the user
intention instead of retrieving them. The methodology utilizes a
relevance feedback loop between a user and generative adversarial
neural networks (GANs). GANs can generate novel photorealistic
images which are initially not present in the underlying collection,
but generated in response to user feedback. We report experiments
(N=29) where participants generate images using four different
domains and various search goals with textual and image targets.
The results show that the generated images match the tasks and
outperform images selected as baselines from a fixed image col-
lection. Our results demonstrate that generating new information
can be more useful for users than retrieving it from a collection of
existing information.
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1 INTRODUCTION
Image search has become a popular activity within web search
engines, now accounting for a large proportion of all search ac-
tivity on the web. Despite its popularity, designing image search
systems has turned out to be challenging because expressions of
information needs toward images can be difficult to construct [32].
Most of the existing web search engines allow users to formulate
queries as keywords or phrases. However, expressing image-related
information needs and intents as keywords can be difficult when
users can imagine what they want but are unable to express this in
precise words [4, 16, 25, 32]

This is partly because esthetic properties, compositional details,
and unmanifested needs toward the images arise while users in-
teractively search images, making the search process harder than
simply matching a query. Users may also have diverse information
needs and intentions even for the same exact queries [14, 29]. For
example, a user searching for a “red sports car” could conduct the
search in order to include a conventional car image in a presenta-
tion, while another user might run the exact same query with an
intent to include several unconventional images of red cars on a
mood board for inspiration within a design assignment. Therefore,
image search is prone to vaguely specified and even unexpressed
needs, leading to an extensive interactive process where adjust-
ments and refinements by the user are necessary to explore the
image space.

Despite these challenges, it has been recognized that users often
have in their mind an “ideal” target image, or at least an idea of
what the target image should look like. Searching that image via
an image search tool, however, turns out to be difficult and may
lead only to approximate results [18]. This problem roots both to
availability of the images and the gap between the expressions of
users’ needs and the computational representation of the images.
Even though there are billions of images indexed from the web,
these cover only a small portion of all images that a user could
imagine. On the other hand, even if an "ideal" image would exist in
the index, communicating the specifics of that image to the search
engine is often beyond the functionalities of current image search
systems.

Previous work has approached the problem by providing inter-
active relevance feedback techniques to assist users in searching
images more efficiently [20, 22, 34]. These vary from query support
and augmentation [20] to semantic understanding of the content
[6, 30], and interactive approaches, such as sketching-based search
[2].

While partly effective, these techniques are based on retrieving
existing images from a finite collection and thus cannot answer
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users’ information needs when an exact image matching the user’s
“ideal” image does not exist in the indexed collection.

With this motivation, we ask the following questions: What
if we were not constrained by the images that already exist in
our collection? What if information retrieval systems did not only
retrieve relevant images but would allow to interactively generate
completely new images that match a user’s information needs?

We present a methodology based on interactive relevance feed-
back and generative adversarial networks (GANs) [8, 12] that gener-
ate images matching a user’s intentions rather than just retrieving
best matches from a fixed collection. We demonstrate an interac-
tive system implementation of the methodology and report a user
experiment (N=29) with the system indicating the effectiveness
of our approach in practical image generation. Our results show
performance improvements over image retrieval in various image
subdomains and task types.

In summary1, our contributions are the following:
(1) We present the first of its kind interactive image genera-

tion technique combining GANs and relevance feedback for
realistic image generation tasks.

(2) We demonstrate the technique as part of an interactive im-
age generation tool and show that the technique is able to
generate images that match user needs (as opposed to re-
trieving them) in response to relevance feedback obtained
from the user.

(3) We empirically validate the approach in practical image gen-
eration and show performance improvements over conven-
tional image retrieval in various image subdomains and task
types yielding pragmatic performance.

2 RELATEDWORK
A classic approach for finding images is based mainly on an image
search paradigm: matching either the content of the images (search
by content) or meta-data associated with the images (search by
metadata) with an information need expressed by the user [28].

In this approach the corresponding image features or meta-data
features are matched to an expression of information need. From
the user’s point of view, image search suffers from two fundamental
challenges of matching the user’s intention and semantics of the
query to the images [14, 27]. That is, the expressions of information
needs are difficult to construct and they may often not match the
descriptors available for the images indexed in the system.

A well-explored technique for closing these gaps in interactive
image search is relevance feedback [22]. In relevance feedback,
the system solicits user feedback on the relevance of intermediate
results to maximize relevant search outcomes over the course of
an entire search session [23, 24]. At each step, the user selects
images that partially match their needs, and the system returns
images that better correspond to the images selected as partially
relevant by the user in previous steps. In this way, the system can
adjust the representation of the information needs to better match
the internal representation of the image space. However, for the
relevance feedback to be effective, the internal representation of
the images must correspond to features that the user considers
relevant. As conventional representation learning may not capture
1Short video available at https://youtu.be/ZBYDKZRm-dE

semantic features of the images, relevance feedback that relies on
inconsistent feature representation may perform suboptimally.

Recent advances in deep feature extractors have allowed learning
representations that have been shown to perform remarkably well
in image classification [15]. They can also be used to derive textual
descriptions of images by attending to features that humans use to
detect objects and other image features [30]. These representations
have also been shown to have high performance when applied in
image retrieval applications [1].

However, even when equipped with a perfect representation of
images, image search suffers from what we call retrieval limitation.
Retrieval limitation means that the system is only able to provide
the user with images that have been initially indexed in the sys-
tem. Any information need that does not match what is already
available in the indexed collection cannot be fulfilled. To tackle the
retrieval limitation problem, researchers have shown an increasing
interest toward generative models that are able to generate novel
images that are not initially present in the indexed data. Particular
success in generative models has been achieved with variational
autoencoders [21] and GANs [8].

Recent works have shown impressive results in synthetic image
generation [12]. However, many of the models have suffered from
suboptimal control over the latent representation of the generated
images, especially in what comes to matching the latent features
with visual features. For example, it is nontrivial to learn a latent
representation of human faces that would account separately for
different visual characteristics of faces, such as eye color, hairstyle,
or pose. StyleGAN architecture, which we also utilize, attempts to
tackle this challenge by incorporating and building on progressive
training to allow direct control of the strength of image features at
different scales [13]. Such a model aims to ensure that the latent
features representing the images would match stylistic features of
the images and thus be closer to the semantic representation that
humans might have about the images.

Research has combined generative models with interactive con-
trols. Sketch-based image retrieval has been proposed, in which the
user provides a hand-drawn sketch of the intended image output,
and the generative model completes the image by using the shapes
and other features present in the sketch [9, 17, 26]. Recent work
has shown functional approaches to synthesizing photorealistic
images from text [30, 33]. These take a textual description as input
and generate an image with the features matching the textual input.
However, these approaches have so far been successful only in
rather limited domains, such as demonstrating the capability to
generate plausible images of birds and flowers from textual descrip-
tions. Generative models have also been used to translate features
from one image to another [3, 7] and across text and images [10].
While very impressive, all previous approaches have a limited direct
utility for information retrieval. This is because of two reasons. First,
it is difficult for a user to control what the network produces, and
any user control is implemented for a specific model in advance. Al-
ternatively, the user has more control, such as in the text-to-image
approach, but the models can only capture limited features in a
single domain, such as photographs of human faces or flowers.
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3 INTERACTIVE GANs
In this section, we first give a formal treatment of the problem, then
briefly describe technical aspects of GANs, and finally conclude by
describing how to combine GANs and relevance feedback.

3.1 Theoretical formalization
A basic objective of an IR system is to retrieve documents that
satisfy a user’s information needs. Next, we formalize this process
and use this formalization to contrast our approach with existing
image retrieval systems.

Suppose there exists some latent high-dimensional space𝑍 ⊆ R𝑛
of all possible intents that a user might have. For a given search task,
there exists at least one 𝑧 ∈ 𝑍 that represents the specific intent of
the task. Next, assume we have a finite collection X = {𝑥1, . . . , 𝑥𝑁 }
of images. By viewing the images in X and interacting with an
IR system, a user can provide feedback about the extent to which
an 𝑥 ∈ X matches the intent 𝑧. We formalize this feedback as the
function 𝑑 , defined so that 𝑑 (𝑥, 𝑧) = 0 when 𝑥 is by all standards a
perfect match to 𝑧. For images 𝑥 that are a less-suitable response to
the intent 𝑧, the function𝑑 (𝑥, 𝑧) takes a positive value that increases
the more 𝑥 deviates from 𝑧.

The objective of an IR system is thus to find the 𝑥∗ ∈ X that is
the best match to 𝑧. More formally, we can say that an IR system
aims to solve the following optimization problem:

𝑥∗ = argmin
𝑥 ∈X

𝑑 (𝑥, 𝑧) . (1)

Because X is a finite set of images, this process can only find an
𝑥∗ that is the best alternative in X. But even 𝑥∗ is unlikely to be
a perfect match to 𝑧, i.e., we almost always have 𝑑 (𝑥∗, 𝑧) > 0. In
other words, there are no perfectly matching images in X.

What if we were able to produce a perfect image 𝑥 for which
𝑑 (𝑥, 𝑧) = 0? Let 𝑋 ⊂ R𝑚 denote the space of all possible bitmap
images (of some fixed size). Now we could think of solving the
optimization problem in Eq. 1 over the set 𝑋 instead of the finite
collection X. But this is a difficult problem because the space 𝑋 is
very sparse, as well as non-smooth. That is, only very few images
in 𝑋 correspond to visually meaningful stimuli. The vast majority
of images in 𝑋 show just “random” noise. Also, images that have
similar content (e.g., two images of red sports cars) can be extremely
far apart in 𝑋 with mostly noise images in the space in between.

Instead, the space 𝑍 of all possible intents might have a structure
that is better suited for optimization. First, there might not be any
“noise” in 𝑍 (i.e., every 𝑧 ∈ 𝑍 corresponds to some meaningful
intent). Also, 𝑍 might be smooth in the sense that whenever two
intents 𝑧 and 𝑧′ are reasonably close to each other in 𝑍 (in the
Euclidean sense), they also have similar meanings. As 𝑍 is for now
only an abstract concept, we can assume that these properties hold
by definition.

Denote a mapping from the latent space 𝑍 of to all possible
bitmap images by 𝐺 : 𝑍 → 𝑋 . That is, given any intent 𝑧 ∈ 𝑍 ,
the mapping 𝐺 returns the image 𝐺 (𝑧) ∈ 𝑋 . Also, suppose that
𝐺 is consistent in the following sense: For every 𝑧 ∈ 𝑍 , we have
𝑑 (𝐺 (𝑧), 𝑧) = 0. This means that for every possible intent 𝑧, the
mapping 𝐺 returns the image 𝑥 ∈ 𝑋 , which is a perfect match to 𝑧
in terms of the function 𝑑 .

Next, we define the subset of𝑋 with images that each correspond
to an intent in 𝑍 : We let G𝑍 = {𝐺 (𝑧) | ∀𝑧 ∈ 𝑍 } ⊂ 𝑋 . Given this we
can define an optimization problem that is a variant of Eq. 1:

𝑥 = argmin
𝑥 ∈G𝑍

𝑑 (𝑥, 𝑧) . (2)

Because 𝐺 (by our assumption) satisfies the consistency property
defined above, it must be the case that 𝑥 = 𝐺 (𝑧) (i.e., 𝑥 is a perfect
match to the user’s intent 𝑧). The fundamental difference between
the search problems in Eq. 1 and Eq. 2 is the set of images on which
the IR system operates. In Eq. 1 this is the finite collection X, while
in Eq. 2 this is the (in theory) infinite set of images that correspond
to the intents 𝑧 ∈ 𝑍 .

Problem definition: The basic problem that we address in this
paper is how to efficiently find the solution 𝑥 in Eq. 2. Efficiently
means that we want to find 𝑥 without having to, for example, enu-
merate all images in the set G𝑍 .

As a first step in our solution, we must find a practical way to
implement the intent space 𝑍 as well as the mapping𝐺 from intents
to images. These are discussed next.

3.2 Generative adversarial networks
We propose to implement the intent space 𝑍 and the mapping 𝐺
with GANs [8]. A GAN is a machine learning technique for training
models that can generate new objects from some target domain,
most notably various kinds of images, as demonstrated already in
[8] and subsequently by numerous authors, but also music [31],
sounds [5], and even drug molecules [11]. Our focus is on synthetic
photographs of faces, objects, or scenes. The training data of a GAN
consists simply of a collection of examples from the desired target
domain. Given a collection of portraits of people, for example, we
can train a GAN to generate photorealistic portraits of people who
do not exist [12, 13]. To an observer, such synthetic photographs
can be indistinguishable from actual photographs.

Technical background: A GAN contains two components: a
generator 𝐺 and a discriminator 𝐷 . Formally, 𝐺 is a function that
maps high-dimensional vectors from a latent space 𝑍 ⊂ R𝑛 to an
output space 𝑋 . In our case points in 𝑋 are bitmap images. The
discriminator 𝐷 , on the other hand, is essentially a binary classifier
for points in 𝑋 . It aims to identify if a given image 𝑥 ∈ 𝑋 belongs
to the training data or if it has been generated by 𝐺 .

Both 𝐺 and 𝐷 are trained simultaneously given a set of training
documents. The training is set up as a kind of competition, where
𝐺 and 𝐷 aim to outsmart each other. The generator 𝐺 is given a
set of 𝑠 random points 𝑧1, . . . , 𝑧𝑠 from the latent space 𝑍 . (Usually
these are sampled from a standard multivariate normal distribution
centered at the origin.) The outputs𝐺 (𝑧𝑖 ) are then fed to𝐷 together
with the real images from training data, and𝐷 is trained to separate
these two classes from each other. In practice both 𝐺 and 𝐷 are
implemented as deep neural networks. This allows formulation of
the learning problem in terms of a single differentiable loss function
that can be minimized using efficient gradient-based techniques on
graphics processing units (GPUs).

After 𝐺 has been trained, we can simply draw a random point 𝑧
from 𝑍 and compute𝐺 (𝑧) to obtain a random image. We emphasize
that 𝐺 (𝑧) is not simply an image from the training corpus, it is
a completely novel image. However, in practice, 𝐺 (𝑧) will be an



image from the same “family” of images that the generator was
trained on. That is, if the training data consisted of cat images, the
generator could produce novel cat images, but not, for example,
pictures of cars. Also, the generator cannot produce images that
are wildly different from any of the training images even if they
have some similar characteristics. For instance, a GAN trained on
cat images could not generate an image of a cat playing a violin,
unless such images had been part of the training corpus.

Using𝐺 and 𝑍 : Returning to the optimization problem of Eq. 2,
we propose to use the latent space of a GAN as the intent space 𝑍
and the generator as the mapping 𝐺 . Why would this be a good
choice? In the discussion of Section 3.1 the intent space 𝑍 is an
abstract concept that is useful to define the problem we want to
solve. However, for practical purposes, the mapping 𝐺 , the GAN
generator, is more relevant.

First, suppose that we use the latent space of a GAN as the intent
space 𝑍 and that there exists some vector 𝑧 ∈ 𝑍 so that the image
𝐺 (𝑧) happens to be a perfect match to the user’s intent 𝑧. Then we
can simply define that 𝑧 = 𝑧. Second, we argued that the intent space
should exhibit some notions of non-sparsity as well as smoothness.
These are, in the end, properties of 𝐺 . If 𝐺 maps every point in
𝑍 to some meaningful image, this implies that 𝑍 is non-sparse.
Likewise, if𝐺 maps two neighboring points in 𝑍 to images having
mostly similar content, then 𝑍 can be thought of as being smooth.
The GANs used in our experiment have been trained with special
techniques that aim to improve this aspect of their generators [13].

With the generator component of a GAN, we can thus create
a concrete instance of the abstract problem of Eq. 2. Next, we dis-
cuss how this optimization problem can be solved using a simple
relevance feedback approach.

3.3 Relevance feedback on GANs
Relevance feedback and the generator component 𝐺 of a GAN are
easily combined to provide a practical solution to Eq. 2. In short, the
idea is to let the user navigate in the latent space 𝑍 of the generator
𝐺 until they reach the point 𝑧 so that the image𝐺 (𝑧) matches their
intent.

Basic setup: As an example, suppose that the generator 𝐺 has
been trained to generate photographs of different types of cars in
different orientations and contexts. We assume that our user needs
a photograph of a modern red compact car that sits in a parking lot
so that the image shows both the front and driver’s side of the car and
that this intent is captured by the vector 𝑧 ∈ 𝑍 , as explained above.
In what follows we call 𝐺 (𝑧) the target image.

How do we find the latent 𝑧? The dimensions of the latent space
𝑍 of a GAN cannot, in general, be associated with any real-world
features of the resulting photographs, such as color, shape, or ori-
entation of the car. Nor are there any other means for us to directly
pinpoint where in 𝑍 there are vectors that the generator 𝐺 would
map to images having some particular characteristics, let alone the
specific intent of our user. We solve this problem with an interac-
tive navigation system, where navigation is controlled by a simple
relevance feedback mechanism.

Relevance feedback steps: The user starts from the location
𝑞1 ∈ 𝑍 , where 𝑞1 can be chosen either randomly or by letting
the user select an image from a collection generated by 𝐺 from

random points in 𝑍 . Let 𝑞𝑖 denote the position of the user in 𝑍

at the start of the 𝑖:th feedback step. On every step 𝑖 , the system
first presents the user with 𝑘 images 𝐺 (𝑧1), . . . ,𝐺 (𝑧𝑘 ). These are
generated from points 𝑧1, . . . 𝑧𝑘 in 𝑍 that are chosen randomly from
the vicinity of 𝑞𝑖 (details below). From these, the user selects as
feedback those that have some matching features with the target
image. The feedback images are then used to update the position
𝑞𝑖 with the well-known Rocchio algorithm (see e.g. [19] for details).
That is, we calculate the average of the vectors of the feedback
images, denote the resulting vector by 𝑧avg, and update the vector
𝑞𝑖 by letting 𝑞𝑖+1 = (1 − 𝛼)𝑞𝑖 + 𝛼𝑧avg. The location 𝑞𝑖 should now
move step-by-step in 𝑍 and eventually approach the point 𝑧, which
yields the desired target image 𝐺 (𝑧). Here, 𝛼 controls the rate at
which the vector 𝑞 moves. Smaller values mean shorter steps.

To see a real example of this process from the system we imple-
mented, Figure 2 shows a sequence of candidate images together
with the selected feedback images (indicated by the green bars)
from a randomly picked task in our experiment. We can see how
the candidate images progressively become more similar to the
desired target image of the task in question (the red car shown in
the top part of Fig. 1).

Generating candidate images: In practice, we sample 𝑧1, . . . , 𝑧𝑘
from a multivariate normal distribution centered at 𝑞, with a diag-
onal covariance matrix Σ = 𝐼 (here 𝐼 denotes the identity matrix).
The dispersion parameter 𝑠 determines how far from 𝑞 the candi-
date images are. If set to a value too large, the candidate images will
become too diverse, and likewise, if 𝑠 is too small, the candidate
images will all be very similar to each other. For the experiment,
we found a value for 𝑠 that produced good candidates by manual
exploration.

4 EXPERIMENT
To test the methodology described in Section 3, we conducted a user
experiment in which participants generated images in response to
pre-defined tasks. The experiment followed a within-subject design.
All participants were exposed to 16 image generation tasks that
were presented in randomized order.

4.1 Participants
We recruited 34 volunteers to take part in the study by posting
recruitment advertisements online. Complete data were obtained
for 29 participants, of which 19 were male and 10 were female.
Their ages ranged from 21 to 53 years with a mean age of 30.9 years.
The participants’ educational background was 7% doctoral degrees,
45% master’s degrees, 38% bachelor’s degrees and 10% other. The
participants were provided with an informed consent, ensuring
that before continuing to the actual experiment the participants
understood how the data were to be used and were aware of their
rights as participants. The participants received information that
the experiment was designed in accordance with the Declaration of
Helsinki and that the participants had the right to withdraw at any
time without negative consequences. The participants were not
trained in person to use the system, but they were provided with
text instructions accompanied with an example video explaining
the functionality of the system.



Model Target description
bed Black bed with two pillows and red sheets with

stripes, no window, light comes from a lamp
cat White cat with stripes and blue eyes lying down
car Large old green car on asphalt on a sunny day
face Asian man, age 60, frowning while looking left,

wears eyeglasses
Table 1: Textual targets used with the different models.

4.2 Models, task types, and task definitions
The tasks used in the experiment were parametrized by the model
(cat, car, bed, face), type of target definition (image and text) and
type of task (near and far). This resulted in 4 × 2 × 2 = 16 different
tasks in total, and every participant completed each of these. The
basic objective for all tasks was the same: use relevance feedback to
generate an image that matches the given target description as closely
as possible.

Models: We used four different pre-trained image generators
made publicly available2 by the authors of [13]. These four mod-
els capture four different classes of photographs: people, animals,
objects, and scenes. In the following we refer to the models by the
names cat, car, bed, and face, and they generate synthetic images of
cats, cars, bedrooms, and human faces, respectively. The GANs had
been trained with the following data: Flickr-Faces-HQ dataset at
1024×1024, LSUN Bedroom dataset at 256x256, LSUN Car dataset
at 512×384, and LSUN Cat dataset at 256x256. All models used a
512-dimensional latent space from which vectors were mapped to
bitmap images. The generated images had the same size as images
in the training data for the respective model.

Task definition: We considered two types of task definitions:
target images and textual descriptions. In case of target images, the
participants were simply shown an image generated by the model
in question. The full set of target images used in the experiment
is shown in the left columns of Figure 5 (see caption for details).
Textual descriptions were constructed as an alternative way of spec-
ifying a target. These are shown in Table 1. The description specified
a number of target image features that users were instructed to
ensure are in the resulting image. Note that the textual and visual
target descriptions are different from each other.

Task type: To investigate if participants can use the system
both to refine a reasonably good image and generate the desired
image from a starting point that shares no common features with
the target, we considered two task types: near and far. A near task
was a task in which the initial image already matched the task, and
the participants were instructed to further improve the image. In
this case the starting image was chosen by the participants from a
grid of 100 candidate images generated by the respective models,
of which a few were pre-selected to be fairly good matches to the
intent of the task. In contrast, in a far task the initial image shared
almost no or little visual similarity with the target. These starting
images had been manually selected by the authors. See Section 4.4
for more details on how baselines were chosen for both task types.

2https://github.com/NVlabs/stylegan

Figure 1: The complete experiment flow illustrated with ex-
amples. The black lines on the left indicate phases. The
nested phases are repeated within the experiment.

4.3 Procedure
The basic protocol for each experiment scenario was the following.
After signing up for the experiment, the participants were sent an
email with instructions on how to participate in the experiment. The
instructions contained an overall explanation on the purpose of the
experiment and links to the online experiment and an instructional
video.

The instructional video illustrated an example task along with
the instructions on how to use the system, provide feedback, and
assess information returned by the system. The video lasted less
than 5 minutes and demonstrated an example task that was not
part of the experiment.

Then, the participants entered the actual experiment, which con-
sisted of completing 16 image generation tasks that were presented
in randomized order. The overall flow of the experiment is shown
in Figure 1. Each near task started with a description of the target
accompanied by an image search result grid that was the same
for all participants. The participants were asked to select the best
matching image from the grid. This part of the protocol was de-
signed to mimic a basic image retrieval system. For far tasks, this
step was skipped, as there was only a single starting point.

Next, the participants were provided with an interactive rele-
vance feedback control, shown in more detail in panel A of Figure
2. The participants were able to select one or several images as



Figure 2: An example of a relevance feedback sequence for
a randomly picked car task. The first two, a middle, and the
last two steps are shown. At every step, the user selects the
closest matching images underlined with a green bar. The
picture of the red car selected as the answer is underlined
with a green panel in the bottom row. The task instruction is
the same as the target image in Figure 1. Note that all shown
images are generated by a GAN.

relevance feedback. The target image or text was always shown
at the top of the user interface. The set of candidates shown on
every step was computed from the relevance feedback given in the
previous step, as described in Section 3.3. For example, the list of
candidates shown in the second row of Fig. 2 was generated by our
system based on the images selected in the first row (marked by a
green bar).

This process was repeated until the participant was satisfied
with the results and indicated it by pressing a designated button or
terminated if the participant used more than 40 feedback iterations.
During the experiment, the participants had full freedom to use
the provided system as they wished, and they were not forced to
provide feedback or continue using the system longer than they
wanted.

Third, after completing all tasks, the participants entered an eval-
uation phase (see again the bottom part of Figure 1). In this phase,
the participants were presented with the image they started from
and the generated image they chose after the relevance feedback
interaction. The participants were then asked to rate on a scale of 1
(worst) to 5 (best) the quality of the images based on how satisfied
they were with the image given the task description. These ratings
are used to evaluate the results in Section 5.

Finally, each participant filled in a post-task questionnaire to
collect background information and ensure that the experiment
worked technically and that the participant understood the tasks.
The participants received amovie voucher worth approximately $15
as a compensation for their time. The completion of the experiment
took on average 38 minutes.

4.4 Baseline images
Baselines for near tasks: In the experiment one of the goals was
to compare the results of our approach to a baseline image search
approach. For this purpose, each model was used to generate a
set of 100 images corresponding to a typical image search output.
Distorted and unrealistic images were filtered out and replaced
with new generated images until all of the images looked realistic
enough to be results from an image search engine. Images were then
ensured to be partially relevant to the tasks. That is, for both task
definitions (image and text) this set of baseline images contained a
number of partial matches.

For example, for the cat model, the textual task definition was
“white cat with stripes and blue eyes laying down”, and it was en-
sured that the set of baseline images contained images that satisfied
some of the desired features. In particular, at least one baseline
image matched the given intent so that all but one feature was
present. However, none of the baseline images matched all possible
features to ensure that the participants were not satisfied with the
initial image and could not exit the task without using the relevance
feedback to improve the image.

Baselines for far tasks: For the far tasks, there was only a
single baseline image from which the users started their navigation.
These were chosen to have as few (or no) similarities as possible
with the task intent. For example, for the textual task definition
“white cat with stripes and blue eyes lying down”, the preselected
starting image showed a black cat without stripes, with yellow eyes,
and standing up.

4.5 Apparatus
The experiment was run on a virtual machine instance in the Google
Cloud Platform. The instance was powered by a single Nvidia Tesla
P100 GPU and an Intel Xeon 2.3GHz CPU. It was powerful enough
to generate five candidate images in at most one second for each
feedback step, making interactions with the system smooth. The
participants were instructed to connect to the instance through its
public IP address using their own laptop or desktop device.

5 RESULTS
The results are shown in Figures 3 and 4, illustrated with a full
example for a random participant in Figure 5. Detailed results with
statistical analysis are shown in Table 2, where the baseline (BL) and
GAN columns show the average rating for the baseline and GAN-
generated images, respectively. The Δ = 𝐺𝐴𝑁 − 𝐵𝐿 column shows
absolute improvement in quality, while 𝑝 shows the Bonferroni-
corrected p-value of a two-sample t-test between all BL and GAN
scores. We find that in all cases, the difference Δ is positive, and
with the exceptions of bedroom images (both task definitions, near
task) and face images (text definition, near task), this difference is
significant at a level of 0.001.



Figure 3: Main results. The left panel shows the average rating (as evaluated by the participants) aggregated over all task types
for baseline and generated images. The middle and right panels show the same for the near and far task types, respectively.

Figure 4: Results bymodel (left column), task definition (middle column), and progressively by steps (right column). In the left
and middle column, the upper row shows the results for the near task and the lower row for the far task. In the right column,
the upper row shows the results split by task type (far or near), and the lower row shows the results split by model.

Below, we discuss first the main findings and then results sep-
arately for different models (cat, car, bed, face), task definitions
(image, text), and temporal effects with respect to relevance feed-
back iterations.

5.1 Main findings
Our main findings are shown in Figure 3. When considering the
average of all task types (leftmost panel in Fig. 3), we find that there
is a significant difference in the image ratings when comparing
baseline images with those generated by the interactive GAN ap-
proach. This difference is more pronounced for the far task type
(rightmost panel in Fig. 3) than for the near type (middle panel in
Fig. 3). Finally, no substantial differences were found on the ratings
of GAN-generated images between the near and far tasks.

There are two important observations to be made here. First,
in the near tasks, despite the starting point being already a good
match with the target description, the participants were able to still
improve the images by a significant margin. Second, in the far tasks,
even if the starting image bore very little or no resemblance to the
target description, the participants were able to generate images
that were as good as those they found in the near task.

5.2 Model effects
We first analyzed whether the feedback performed consistently
with the different models. Model effects are shown in Figure 4 (left
column). The upper figure shows the results for the near task type
and the lower for the far task type. Significant differences were
found for image and text targets for all models except for the bed-
room model. For the other models, the results were consistent, with



Figure 5: Example results from a randomly sampled user for all tasks. The near condition results are shown in panel A and the
far condition search tasks are shown in panel B. Both panels A and B contain four tasks. For each task, the left column shows
the task description–either the image or textual target. The middle column shows the starting image, and the right column
shows the resulting image after the GAN relevance feedback.

the best performance obtained for the face model. The other models
significantly improved over the baseline in all task types and both
task definition conditions. The results suggest that the model did
not significantly affect the performance, except for the bedroom
model, and the image generation process seems to generalize over
different models. However, non-significant differences in perfor-
mance for the bedroom model suggests that StyleGAN, which was
used in the experiments, may suffer from problems for specific
types of input (scenes).

5.3 Task definition effects
We further analyzed whether the way the task was presented to
the participants had an effect on the results. Task definition effects
are shown in Figure 4 (middle column). The results were consistent
in both task definition conditions and in line with the main results.
The far task showed significantly better performance than the near
task, and no difference was found between the task definition types.
The results suggest that the performance was independent from
the way the task was presented to the participants, and image
generation output was significantly better than the baseline images
in both types of task definitions.

5.4 Temporal effects
The previous results establish that the participants were able to find
images that they consider to be a good match with the given target
description independently from the model or the way the task was
presented to the user. However, these results do not indicate how
long it takes on average to find a good image. We analyzed the
temporal effects separately for the different models and task types.
Figure 4 (right column) shows the average rating as a function of
the number of feedback steps and separately for the far and near
task types and different models. For the near tasks, most of the
improvement occurs in the first 10 steps, while for far tasks, up to
25 steps of feedback are required to reach the target image. This
suggests that while participants successfully generate high-quality

images in both task types, there is a significant increase in user
effort when the tasks are more difficult to complete.

5.5 An illustrative example
A full example for a random participant for all tasks is shown in
Figure 5. The results for the near task are shown in panel A, and the
results for the far task are shown in panel B. All resulting images
match the task descriptions, and the improvements are visually
apparent in both tasks and most salient in the case of the far task.
The quality of the images in the case of the bedroommodel is clearly
weakest as also indicated in the quantitative data.

6 DISCUSSION
Next, we discuss both our empirical findings and their implications.

Empirical findings: Our findings strongly suggest that explicit
relevance feedback on GANs is a viable method for generating
images that satisfy a particular information need. Participants of our
experiment were able to both further improve an already matching
image and generate the desired image from an unrelated starting
point. They were able to do this with both visual and textual targets,
and without any prior training. Moreover, the results were not
substantially affected by the types of images.

Results for the bedroom tasks were clearly the weakest. This may
have been caused by the bedroom model being less well trained
than the others. As discussed in sections 3.1 and 3.2, the latent space
should ideally satisfy a “smoothness” property so that there are no
abrupt transitions in the visual features of images generated from
two neighboring vectors 𝑧 and 𝑧′. Perhaps the latent space induced
by the bedroom model was not as smooth as the others. Conversely,
our results suggest that the latent spaces induced by the car, face,
and cat models were relatively smooth, as otherwise the relevance
feedback method would have not allowed successful navigation.

It is possible that, despite our best efforts, the dispersion param-
eter of the distribution from which candidate images were sampled
was poorly set for the bedroom model. This is partly supported by



Table 2: The overall results for all models, task types, and task definitions. The results are shown for the baseline with stan-
dard deviation, GAN with standard deviation, improvement in image quality between the baseline and GAN, and Bonferroni
corrected p-value and the respective F-statistic.

Image definition Text definition
Near Near

BL 𝜎𝐵𝐿 GAN 𝜎𝑅 Δ p-value F BL 𝜎𝐵𝐿 GAN 𝜎𝑅 Δ p-value F
nmCats 2.90 0.98 4.00 0.60 1.10 p < 0.001 26.9 2.97 1.12 3.79 0.94 0.83 p < 0.001 9.3
nmBeds 3.45 0.99 3.83 0.76 0.38 p = 1.0 2.7 3.52 0.95 4.00 0.80 0.48 p = 0.65 4.4
nmCars 2.83 1.07 4.38 0.90 1.55 p < 0.001 35.6 3.55 1.35 4.66 0.48 1.10 p < 0.001 17.1
nmFaces 2.86 0.88 3.79 0.86 0.93 p < 0.001 16.7 3.38 1.05 3.93 0.80 0.55 p = 0.44 5.1

Mean 3.01 0.98 4.00 0.78 0.99 p = 0.027 20.5 3.35 1.12 4.09 0.76 0.74 p = 0.018 9.0

Image definition Text definition
Far Far

BL 𝜎𝐵𝐿 GAN 𝜎𝑅 Δ p-value F BL 𝜎𝐵𝐿 GAN 𝜎𝑅 Δ p-value F
nmCats 1.34 0.55 3.79 0.73 2.45 p < 0.001 209 1.17 0.38 4.17 0.66 3.00 p < 0.001 449
nmBeds 1.79 0.68 3.72 0.59 1.93 p < 0.001 134 1.21 0.41 3.10 1.05 1.90 p < 0.001 82
nmCars 1.17 0.38 3.79 1.05 2.62 p < 0.001 160 1.28 0.53 4.21 0.90 2.93 p < 0.001 228
nmFaces 1.07 0.26 3.79 0.86 2.72 p < 0.001 266 1.00 0.00 3.97 0.87 2.97 p < 0.001 341

Mean 1.34 0.47 3.78 0.81 2.43 p < 0.001 192 1.16 0.33 3.86 0.87 2.70 p < 0.001 275

the lower right panel of Figure 4, which shows that the bedroom
images improve at a slower rate than the other models. This is an
indicator of the relevance feedback algorithm struggling to make
progress through the latent space. Finally, giving useful relevance
feedback for the interior scenes may also simply have been more
difficult for the participants than with portraits or photos of animals
or objects.

The issues discussed above in the case of the bedroom model
could, of course, be encountered when applying the same approach
with new models. A useful area for future investigations would
thus be to train GANs in a manner that would make their latent
spaces even more easy to navigate.

Implications: To our knowledge, this is the first study that
investigates the use of relevance feedback for controlling a GAN
to interactively generate instead of retrieving relevant images. Our
approach enables generation of images that can meet user needs
even in caseswhen the underlying image collection does not contain
a sufficient matching image.

The models we experimented with are, to some extent, “toy
examples”. To serve as a practically useful tool to augment (or
even replace) image search on the web, the GAN would have to be
trained with hugely diverse and large training data. Such a model is
probably beyond state-of-the-art adversarial learning for the near
future. However, assuming that such a GAN could eventually be
trained, the approach we propose would enable users to generate
arbitrary images. While current image editing software already
allow manipulation of images in complex ways, these approaches
require specific tools and expertise and are not direct alternatives
to our approach.

Despite the advantages, technology for generating synthetic
images of human faces, objects, or scenes may also have potentially
harmful applications. Generating images provokes problems of

fake or unreal content to be generated and exploited in precarious
ways. One defending aspect of GANs and other generative models
has been that it is not easy to have control over their output, and
generating images that are intentionally harmful has been difficult
or required significant investment of human labor.

However, our work demonstrates that it is surprisingly straight-
forward to combine GANs with relevance feedback and utilize such
models in an interactive loop between the user and the generative
model. This approach turns out to be effective in the generation
of images that match user intentions by allowing relatively pre-
cise control over what the generator produces. While this opens
ingenious opportunities for supporting creative human processes,
it may also permit unethical use of the technology.

7 CONCLUSIONS
We set out to study if it is feasible to generate images rather than
search them from a fixed collection. We did this with a methodology
similar to existing image search systems that use explicit relevance
feedback. In practice, we combined a relevance feedback algorithm
with image generators based on GANs. We chose a very simple
relevance feedback algorithm to keep the design of the system as
straightforward as possible. Our experiment shows that a) users
were able to successfully generate relevant images with our system,
and b) the resulting synthetic images can be more relevant to the
user’s information needs than a baseline image chosen from a fixed
collection.
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