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DeepACSON automated segmentation of white
matter in 3D electron microscopy
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Tracing the entirety of ultrastructures in large three-dimensional electron microscopy (3D-
EM) images of the brain tissue requires automated segmentation techniques. Current seg-
mentation techniques use deep convolutional neural networks (DCNNs) and rely on high-
contrast cellular membranes and high-resolution EM volumes. On the other hand, seg-
menting low-resolution, large EM volumes requires methods to account for severe membrane
discontinuities inescapable. Therefore, we developed DeepACSON, which performs DCNN-
based semantic segmentation and shape-decomposition-based instance segmentation.
DeepACSON instance segmentation uses the tubularity of myelinated axons and decom-
poses under-segmented myelinated axons into their constituent axons. We applied Dee-
pACSON to ten EM volumes of rats after sham-operation or traumatic brain injury,
segmenting hundreds of thousands of long-span myelinated axons, thousands of cell nuclei,
and millions of mitochondria with excellent evaluation scores. DeepACSON quantified the
morphology and spatial aspects of white matter ultrastructures, capturing nanoscopic mor-
phological alterations five months after the injury.
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microscopy (EM) techniques enable acquiring 3-

dimensional (3D) image datasets of brain ultrastructures,
from hundreds of micrometers of tissue with a voxel-size less
than ten nanometers!~3. Quantitative analysis of key morpholo-
gical parameters of ultrastructures or mapping neuronal con-
nections from the acquired EM datasets requires annotating
individual components. Manual annotation of ultrastructures in
even a small 3D-EM dataset is tedious, consuming thousands of
hours of experts’ time. Berning et al.# reported that manual
annotation of 215 neurites in 5 x 108 voxels required 1500 h, and
we estimated that the manual segmentation of 15 x 15 x 15 um?
of white matter ultrastructures requires 2400 h°. Semi-automated
segmentation methods based on machine learning approaches*¢
have improved the rate of segmentation, but still require a con-
siderable amount of manual interaction because of the manually
extracted skeletons of neuronal processes, proofreading, or cor-
rection of errors.

State-of-the-art automated segmentation techniques use deep
convolutional neural networks (DCNNs) to trace ultrastructures
in EM volumes’~!l. A DCNN-based segmentation technique
generally comprises two steps: semantic and instance segmenta-
tion. Semantic segmentation assigns each voxel a probability
value of belonging to a tissue type, and instance segmentation
turns the probability maps into individual object instances.
DCNNSs are typically used for semantic segmentation, whereas
other more traditional image analysis techniques are used for
instance segmentation. Moreover, the segmentation techniques
generally favor a bottom-up design, ie., over-segmentation and
subsequent merge. Examples are DeepEM3DS, applying 3D
watershed transform on DCNN probability maps of the neuronal
membrane, or U-Net MALA®, where an iterative region
agglomeration is applied on predicted affinities between voxels
from a 3D U-Net!2. More recently, Januszewski et al.!? suggested
flood-filling networks (FFNs), a single-object tracking technique,
and Meirovitch et al.!! introduced cross-classification clustering,
a multi-object tracking technique, merging the semantic- and
instance segmentation in recurrent neural networks. These
techniques have a bottom-up design, where recurrent networks
maintain the prediction for the object shape and learn to
reconstruct neuronal processes with more plausible shapes.

Although these automated EM segmentation techniques have
yielded accurate reconstructions of neuronal processes, they have
been applied to very high-resolution EM images, exploring
synaptic connectivity. Imaging large tissue volumes at synaptic
resolutions generates massive datasets. For example, imaging 1
mm? tissue volume at 4 x 4 x 40 nm? generates a dataset of 1500
tera-voxels in size, demanding fully automated image acquisition
techniques and microscopes, which run for several months
continuously®3. We can make acquiring large tissue volumes a
plausible task by reducing the image resolution: imaging 1 mm?3
tissue at 50 x 50 x 50 nm?> generates a dataset of eight tera-voxels
during few days. However, imaging at low-resolution can limit
the visualization of the cellular membranes, for example, at nodes
of Ranvier, where no distinctive image feature differentiates the
intra- and extra-axonal space of a myelinated axon. Distinctive
image features are required for a segmentation technique with a
bottom-up design that is subjected to greedy optimization,
making the locally optimal choice at each stage while searching
for a global optimum. Therefore, the mentioned automated
techniques’~!! cannot be used to segment low-resolution images.
For example, techniques such as DeepEM3D?® and its cloud-based
implementation’ essentially rely on a precise semantic segmen-
tation and apply no mechanism to correct potential topological
errors during instance segmentation. Therefore, semantic

Recent advances in automated serial-sectioning electron

segmentation errors propagate into instance segmentation as
either over- or under-segmentation. Techniques such as FEN!0
and its multi-object tracking counterpart!!, where networks learn
the shape of a neural process, would experience over-
segmentation errors. Merging FFN super-voxels does not neces-
sarily generate a correct segmentation of an axon as the seg-
mentation leaks to the extra-axonal space at nodes of Ranvier.

Our goal is to segment low-resolution images in a large field-of-
view using the information learned from the high-resolution images
acquired in a small field-of-view. To achieve this goal, we developed
a pipeline called DeepACSON, a Deep learning-based AutomatiC
Segmentation of axONs, to account for severe membrane dis-
continuities inescapable with low-resolution imaging of tens of
thousands of myelinated axons. The proposed pipeline utilizes an
innovative combination of the existing deep learning-based meth-
ods for semantic segmentation and a devised shape decomposition
technique for instance segmentation that uses the information
about the geometry of myelinated axons and cell nuclei. Applying
DeepACSON, we were able to segment low-resolution large field-
of-view datasets of white matter automatically. The instance seg-
mentation of DeepACSON approaches the segmentation problem
from a top-down perspective, ie., under-segmentation and sub-
sequent split, using the tubularity of the shape of myelinated axons
and the sphericality of the shape of cell nuclei. We applied Dee-
PACSON on low-resolution, large field-of-view 3D-EM datasets
acquired using serial block-face scanning EM!3 (SBEM). The SBEM
volumes were obtained from the corpus callosum and cingulum, in
the same dataset, of five rats after sham-operation (n=2) or
traumatic brain injury (TBI) (n=3). The images were acquired
ipsi- and contralaterally, thus for five rats, we had ten samples. Each
sample was simultaneously imaged at two resolutions in two fields-
of-view: high-resolution images, 15 x 15 x 50 nm3, were acquired in
a small field-of-view, 15 x 15 x 15 um3, and low-resolution images,
50 x 50 x 50 nm3, were acquired in a large field-of-view, 200 x
100 x 65 um>. The low-resolution images covered a field-of-view
400 times bigger than the high-resolution images. We segmented
the high-resolution datasets using our earlier automated ACSON
pipeline>. We down-sampled the high-resolution images to build a
training set for DCNNs for the semantic segmentation of the low-
resolution (large field-of-view) images, eliminating the need for
manually annotated training sets. Using the DeepACSON pipeline,
we segmented the low-resolution datasets, which sum up to 1.09 x
107 um3® of white matter tissue, into myelin, myelinated axons,
mitochondria, and cell nuclei. The segmentation resulted in about
288,000 myelinated axons spanning 9m, 2600 cell nuclei, and
millions of mitochondria with excellent evaluation scores. Our
segmentation of white matter enabled quantifying axonal mor-
phology, such as axonal diameter, eccentricity, and tortuosity and
the spatial organization of ultrastructures, such as the spatial dis-
tribution of mitochondria and the density of cells and myelinated
axons. Our analysis indicated that changes in the axonal diameter,
tortuosity, and the density of myelinated axons persisted five
months after the injury in TBI rats. Our findings can yield a better
understanding of TBI, hence its mechanisms. We have made our
SBEM datasets, their segmentation, and the DeepACSON software
freely available for download and immediate use by the scientific
community.

Results

Figure 1 illustrates DeepACSON, where DCNNs perform
semantic segmentation, and 3D shape-analysis techniques per-
form instance segmentation. DeepACSON segmented and ana-
lyzed ten low-resolution, large field-of-view SBEM datasets of
white matter.
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Fig. 1 DeepACSON pipeline. Step 1: We used the ACSON segmentation of the high-resolution (small field-of-view) SBEM images down-sampled to the
resolution of the low-resolution (large field-of-view) images to train DeepACSON. We trained two DCNNs denoted as DCNN-mAx and DCNN-cN. Step 2:
DCNN-mAXx returned the probability maps of myelin, myelinated axons, and mitochondria. DCNN-cN returned the probability maps of cell nuclei and the
membrane of cell nuclei. Step 3: The segmentation of myelin was finalized by thresholding the myelin probability map. We performed the initial
segmentation of myelinated axons by the binarization and connected component analysis. The geometry of the segmented components was subsequently
rectified using our newly developed cylindrical shape decomposition (CSD) technique'®. We performed the segmentation of cell nuclei in a geometric
deformable model (GDM) framework by applying elastic deformations to the initial segmentation of cell nuclei. Step 4: The segmentation of myelinated
axons and cell nuclei was finalized by eliminating non-axonal and non-nucleus structures using support vector machines (SVMs).

Datasets. The samples from rats’ white matter were prepared for
SBEM imaging by a single person following an exact procedure.
We simultaneously acquired SBEM images of the white matter at
the low- and high-resolution (Fig. 2a). The low-resolution datasets
were acquired from big tissue volumes of 200 x 100 x 65 pm3 with
a voxel size of 50 x 50 x 50 nm>. Two-thirds of the low-resolution
images correspond to the corpus callosum and one-third to the
cingulum (Supplementary Table S1). The high-resolution datasets
were acquired from small tissue volumes of 15 x 15 x 15 um? and
imaged with a voxel size of 15x 15x50 nm? from the corpus
callosum. All the images were acquired from the ipsi- and con-
tralateral hemispheres of sham-operated and TBI animals. Fig-
ure 2a, b shows the contralateral corpus callosum and cingulum of
a sham-operated rat in the low- and high-resolution. Ultra-
structural components such as myelin, myelinated axons, mito-
chondria, and cell nuclei were resolved in both settings, however,
unmyelinated axons (Fig. 2b fuchsia panel, asterisks) and axonal
membrane (Fig. 2b cyan panel, arrowheads), were only resolved in
the high-resolution images. Figure 2b (purple panel) shows a cell
nucleus from a low-resolution image volume, whose membrane is
partially resolved.

Semantic segmentation of white matter ultrastructures. To
provide a human-annotation-free training set for DCNNs, we
segmented the high-resolution SBEM datasets using ACSON>. We
down-sampled the high-resolution datasets and their correspond-
ing segmentation to the resolution of low-resolution datasets

(Fig. 1, step 1). Figure 2c shows a 3D rendering of myelinated
axons of a high-resolution SBEM dataset segmented by ACSON.
We trained two DCNNs denoted as DCNN-mAx and DCNN-cN:
DCNN-mAx for semantic segmentation of myelin, myelinated
axons, and mitochondria and DCNN-cN for semantic segmenta-
tion of cell nuclei and the membranes of cell nuclei (Fig. 1, step 2).
Figure 3a, b present the semantic segmentation of myelinated
axons, mitochondria, and myelin returned from DCNN-mAx.
Figure 4a, b shows the semantic segmentation of cell nuclei and the
membranes of cell nuclei returned from DCNN-cN.

Instance segmentation of myelin, myelinated axons, and
mitochondria. We segmented myelin by binarizing its semantic
segmentation returned from DCNN-mAx (Fig. 1 step 3 and
Fig. 3b). We applied connected component analysis on semantic
segmentation of myelinated axons (mitochondria were included),
achieving an initial segmentation. Because the axonal membrane
was not fully resolved, e.g., at nodes of Ranvier (Fig. 3c), this
initial segmentation was prone to under-segmentation, requiring
a further shape analysis step (Fig. 1, step 3). For that, we devised
cylindrical shape decomposition!* (CSD) algorithm (Supple-
mentary Fig. S1) to decomposes under-segmented myelinated
axons (Fig. 3¢, ¢; and Supplementary Fig. S2). To finalize the
segmentation of myelinated axons, we excluded non-axonal
instances from the segmentation using a support vector machine
(SVM) with a quadratic kernel (Fig. 1, step 4). We segmented
mitochondria, applying the connected component analysis on
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Fig. 2 Low- and high-resolution SBEM imaging of the contralateral corpus callosum and cingulum of a sham rat. a We acquired SBEM images of the
white matter, corpus callosum (cc) and cingulum (cg), simultaneously at the high- and low-resolution. The field-of-view of the low-resolution dataset is
204.80 x 102.20 x 65.30 pm3 equivalent to 4096 x 2044 x 1306 voxels in x, y, and z directions, respectively, which is approximately 400 times larger than
the field-of-view of the high-resolution datasets. b Images of the low- and high-resolution datasets acquired from the same location (the orange-rendered
volume in a). The visualization of the high- and low-resolution images shows that myelin, myelinated axons, mitochondria, and cell nuclei were resolved in
both settings. In contrast, the axonal membrane at nodes of Ranvier (cyan panel, arrowheads) and unmyelinated axons (fuchsia panel, asterisks) was only
resolved in the high-resolution images. The purple panel shows a cell nucleus from the low-resolution dataset (a), where the membrane was resolved, but
not continuously. € A 3D rendering of myelinated axons in the high-resolution SBEM dataset (contralateral sham #25) segmented by the automated

ACSON pipeline.

their semantic segmentation and excluded mitochondria that
were not within myelinated axons. Figure 3d shows the 3D ren-
dering of myelinated axons in the contralateral corpus callosum
and cingulum of a sham-operated rat. Figure 3e shows the 3D
rendering of myelinated axons randomly sampled at two loca-
tions from the corpus callosum and one location from the
cingulum.

Instance segmentation of cell nuclei. The membranes of cell
nuclei were severely discontinuous at 50 x 50 x 50 nm?3 voxel size;
hence their semantic segmentation was discontinuous. We seg-
mented cell nuclei in a geometric deformable model (GDM)
framework, where the initial segmentation of a cell nucleus was
rectified for its topological errors (see Fig. 1, step 3 and Fig. 4c, d).
Non-nucleus instances were excluded from the segmentation
using an SVM with a quadratic kernel (Fig. 1, step 4). Figure 4e
shows a 3D rendering of cell nuclei of a sham-operated rat
dataset.

White matter morphology analysis. We quantified several
morphological and volumetric aspects of the segmented ultra-
structures to demonstrate the applications of the white matter
segmentation (Fig. 5, Supplementary Data 1-3). For every mye-
linated axon, we automatically extracted cross-sections along its

axonal skeleton with a plane perpendicular to the skeleton. The
cross-sections were quantified by the equivalent diameter and
the eccentricity of the fitted ellipse (Fig. 5a, b). We measured the

tortuosity of myelinated axons as 7 = ;i—:, where I, is the geodesic

distance, and Ig; is the Euclidean distance between the two
endpoints of the axonal skeleton. To quantify the spatial dis-
tribution of mitochondria, we measured the inter-mitochondrial
distances along each myelinated axon. We applied two definitions
to quantify the inter-mitochondrial distances: we projected the
centroids of mitochondria on the axonal skeleton and measured
the geodesic distance between the consecutive projected cen-
troids, and we projected the entirety of mitochondria on the
axonal skeleton and measured the shortest geodesic distance
between two consecutive mitochondria as shown in Supplemen-
tary Fig. S3.

The analysis indicated that the diameter of myelinated axons
varies substantially along the axonal skeleton. Moreover, the
distribution of diameters was bimodal, which can partially be
related to the location of mitochondrial® (Fig. 5a, b, d). The cross-
sections of myelinated axons were elliptic rather than circular
(Fig. 5d). Myelinated axons were almost straight as the mean of 7
in the corpus callosum was 1.068 and in the cingulum was 1.072,
but there was a big variation in the tortuosity as the standard
deviation of 7 was 0.731 and 0.396 in the corpus callosum and
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Fig. 3 DeepACSON segmentation of myelin, myelinated axons, and mitochondria. a, b The probability maps of myelinated axons, mitochondria, and
myelin returned from DCNN-mAX, overlaid on their corresponding BM4D filtered images. ¢ The CSD algorithm decomposed myelinated axons with
erroneous merges. d 3D rendering of DeepACSON final segmentation of myelinated axons (at one-third of the original resolution) in the contralateral
corpus callosum and cingulum of sham #25 low-resolution dataset. e 3D rendering of myelinated axons sampled at the corpus callosum and cingulum
illustrates the variance of the axonal diameter among myelinated axons and the orientation dispersion in these bundles.

cingulum, respectively (see Fig. 5a, d). The distribution of the
inter-mitochondrial distance along a myelinated axon was
bimodal because mitochondria were either accumulated or
appeared distant from each other (Fig. 5a, ¢, d).

For the statistical hypothesis testing between the sham-
operated and TBI animals, myelinated axons were represented
by the median of equivalent diameters, the median of the
eccentricities, tortuosity, and the mean of inter-mitochondrial
distances (Fig. 5d). We subjected the measurements to the nested
(hierarchical) 1-way analysis of variance (ANOVA) separately for
each hemisphere!® and set the alpha-threshold defining the
statistical significance as 0.05 for all analyses. The equivalent
diameter was significantly smaller in the ipsi- (F = 16.27, p =
0.027) and contralateral cingulum (F = 29.28, p = 0.011) and in
the ipsilateral corpus callosum (F = 15.75, p = 0.047) of TBI rats
as compared to sham-operated rats. Also, the tortuosity in the
ipsilateral cingulum of TBI rats was significantly greater than

sham-operated rats (F = 25.23, p = 0.018). The equivalent
diameter of the contralateral corpus callosum of TBI rats was
slightly smaller than sham-operated rats, but not significantly
(F = 5.78, p = 0.095). In the ipsilateral cingulum, the inter-
mitochondrial distance was slightly smaller in TBI rats, but not
significantly (F = 6.27, p = 0.086). We did not observe a
difference in the tortuosity of the contralateral cingulum (F =
3.20, p = 0.134), ipsilateral corpus callosum (F = 1.30, p = 0.292),
and ipsilateral corpus callosum (F = 0.03, p = 0.878) when
comparing sham-operated and TBI rats. We did not observe a
difference between sham-operated and TBI rats in the eccentricity
(contralateral cingulum: F = 1.57, p = 0.299; ipsilateral cingulum:
3.33, p = 0.165; contralateral corpus callosum: F = 0.67, p =
0.471; ipsilateral corpus callosum: F = 0.10, p = 0.780). We did
not find a difference between sham-operated and TBI rats
regarding the inter-mitochondrial distances (distance between
centroids) of the contralateral cingulum (F = 0.33, p = 0.603),
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Fig. 4 DeepACSON segmentation of cell nuclei. a, b The probability maps of cell nuclei and their membrane were returned from DCNN-cN and overlaid on
their corresponding BM4D filtered images. € The initial segmentation of cell nuclei contained topological errors as the membrane of cell nuclei exhibited
discontinuity. d We rectified the segmentation of cell nuclei in a GDM framework and excluded non-nucleus instances by an SVM with a quadratic kernel.
e 3D rendering of cell nuclei in the contralateral corpus callosum and cingulum of sham #25 dataset.

contralateral corpus callosum (F = 0.07, p = 0.812), ipsilateral
cingulum (F = 6.26, p = 0.086), and ipsilateral corpus callosum
(F = 1.04, p = 0.414) (Fig. 5d), nor for the inter-mitochondrial
distances when measuring the shortest distance between
consecutive mitochondria in the contralateral cingulum (F =
0.28, p = 0.630), contralateral corpus callosum (F = 0.05, p =
0.830), ipsilateral cingulum (F = 7.10, p = 0.073), and ipsilateral
corpus callosum (F = 0.43, p = 0.577) (Supplementary Fig. S3).
Defining the inter-mitochondrial distance as the distance between
centroids of mitochondria was highly correlated with defining the
inter-mitochondrial distance as the shortest distance between
consecutive mitochondria; the Pearson correlation coefficient was
0.99. We also quantified the volumetric aspects of the
ultrastructures (Supplementary Table S2). We could not directly
compare the volume of the myelin and myelinated axons among
datasets because the volume of the extra-axonal space varies
among datasets. Therefore, we calculated the density of
myelinated axons as the ratio of the volume of myelinated axons
to the myelin volume plus the volume of myelinated axons
(Fig. 5e). We observed that the density of myelinated axons was
significantly smaller in the ipsilateral cingulum (F = 13.03, p =
0.037) of TBI compared to sham-operated rats (Fig. 5e). We did
not observe a significant difference in the density of myelinated
axons in the contralateral cingulum (F = 4.29, p = 0.130), ipsi-
(F = 342, p = 0.162) and contralateral corpus callosum (F =
2.13, p = 0.282) of TBI rats (Fig. 5e). We also calculated the
density of cells defined as the number of cell nuclei over the
volume of the corresponding dataset. We did not observe a
significant difference in the density of cells comparing TBI and
sham-operated rats (Fig. 5f): (contralateral cingulum: F = 0.16,
p = 0.717; ipsilateral cingulum: F = 1.79, p = 0.273; contralateral
corpus callosum: F = 0.48, p = 0.540; ipsilateral corpus callosum:
F =1.02, p = 0.419). Figure 5g contains examples of 3D-rendered

myelinated axons in the cingulum, demonstrating the high
variability of axonal diameters. Figure 5h shows the sparsity of
myelinated axons due to the injury in the cingulum and corpus
callosum of TBI rats.

Evaluations. We used two test sets to evaluate the DeepACON
pipeline: 1) a test set that comprised six high-resolution SBEM
volumes down-sampled to the resolution of low-resolution ima-
ges. We applied this test set to compare DeepACSON against
state-of-the-art automated segmentation methods and perform an
ablation study on DeepACSON. Labels for this test set was pro-
vided automatically using ACSON® and proofread by A.S. In this
test set, each SBEM volume included approximately 300 axons,
thus, we evaluated DeepACSON on approximately 6 x 300 = 1800
myelinated axons; 2) a test set, which comprised 50 patches of size
300 x 300 voxels only for the expert evaluations. We randomly
sampled every low-resolution dataset for five non-overlapping
windows of size 300 x 300 voxels (10 datasets, 50 samples). Each
patch, on average, included approximately 130 axonal cross-
sections and 30 mitochondria. Therefore, the expert has evaluated
approximately 6500 axonal cross-sections and 1500 mitochondria
in total. The expert had no access to the dataset ID nor the
sampling location. The expert evaluated the sampled images of the
final segmentation by counting the number of true-positives (TP),
false-positives (FP), and false-negatives (FN).

We compared DeepACSON with DeepEM2D® and Dee-
pEM3D?, which rely on a precise semantic segmentation, and
FEN19, which accounts for the shape of neural processes during
instance segmentation. We trained DeepEM2D/3D® using the
same training set as DeepACSON to segment myelinated axons.
To train FFN!0, we used the same training set as DeepACSON
but preserving the label of each myelinated axon. We first trained
FFN to segment myelin, myelinated axons, and mitochondria, but
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Fig. 5 White matter morphology analysis. a A bundle of myelinated axons was sampled from the cingulum of the sham #25 dataset. Myelinated axons are
represented by their curve skeletons. The centroids of mitochondria were projected on the axonal skeletons, shown as filled-circles. b A small section of a
myelinated axon from a represents how the axonal diameter can vary substantially along its length. The increased axonal diameter can be related to the
accumulation of mitochondria. The plot shows the axonal diameter along the magnified section of the myelinated axon. ¢ A small section of a myelinated
axon from a shows the measure of inter-mitochondrial distance. Five mitochondria are accumulated with distances less than 1 um, and one mitochondrion
is distant from others with over 5 pm distance. d DeepACSON quantified the axonal diameter, eccentricity, and tortuosity of about 288 000 myelinated
axons and the inter-mitochondrial distance of about 1800 000 mitochondria. On each bean plot, the central mark indicates the median, and the left and
right edges of the box indicate the 25t and 75t percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers.
The colors correspond with the animal ID. e The comparison of the density of myelinated axons, as the ratio of the volume of myelinated axons to the
myelin volume plus the volume of myelinated axons. The color of the indicators corresponds with the animal ID. f The comparison of the density of cells, as
the number of cell nuclei over the dataset volume. The color of the indicators corresponds with the animal ID. DeepACSON segmented about 2 600 cell
nuclei in the ten large field-of-view datasets. g 3D rendering of myelinated axons from the cingulum visualizes the normative and outliers of the axonal
diameter distribution. Each myelinated axon is given an arrowhead to mark its measurements in panel d. h Representative images of the cingulum and

corpus callosum in sham-operated and TBI rats visualize the smaller density of myelinated axons caused by the injury.

the FEN network generated very poor results. Therefore, we
excluded myelin from segmentation and included mitochondria
in the intra-axonal space of myelinated axons. We trained
DeepACSON and DeepEM2D/3D for one day and FEN for one
week on a single NVIDIA Tesla V100-32 GB graphics processing
unit (GPU). As shown in Fig. 6a-c, we quantitatively evaluated
the segmentation on a test set comprising six SBEM volumes
(Supplementary Data 4). We compared these techniques on the
segmentation of myelinated axons using three metrics: the
variation of information (VOI, split and merge contribution,
lower value is better), Wallace indices (split and merge
contribution, higher value is better), and adapted Rand error
(ARE, lower value is better), as defined in Materials and Methods.
DeepACSON outperformed DeepEM2D/3D and FEN as it
generated the smallest VOI and ARE and the biggest Wallace
measures.

We evaluated the DeepACSON pipeline to understand the
behavior of its main components better (Supplementary Data 4).
We replaced the original fully convolutional network!” (FCN)
with a U-Net!® and omitted the block-matching and 4D

filtering!® (BM4D) and resolution adjustment steps from the
pipeline. We considered this high-level ablation study more
informative than the traditional ablation study of the details of
the standard FCN architecture. In Fig. 6 d-f, we denoted the
standard DeepACSON design as DeepACSON-A, which used a
light-weight FCN'7 for semantic segmentation. The standard
DeepACSON was trained using down-sampled and BM4D
filtered volumes. We replaced the FCN design of the standard
DeepACSON with a U-Net!8 with residual modules, denoted as
DeepACSON-B in Fig. 6 d-f. In this figure, we also show the
effect of omitting BM4D denoising as a pre-processing step
(DeepACSON-C) and down-sampling the high-resolution images
to generate the training set (DeepACSON-D). In addition, we
demonstrated the choice of thresholds at which the probability
maps were binarized. Evaluations were run over the six SBEM
volumes segmented automatically using ACSON®. The compar-
isons showed that the standard DeepACSON performed better
than a deeper network, which was prone to over-fitting.
Denoising the train/test datasets as a pre-processing step
improved our results as did adjusting the resolution between
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Fig. 6 DeepACSON quantitative evaluations. Comparison of DeepACSON

against state-of-the-art segmentation methods, DeepEM2D, DeepEM3D, and

FEN, using a variation of information (VOI, split and merge contribution, lower value is better), b Wallace indices (split and merge contribution, higher
value is better), and ¢ adapted Rand error (ARE, lower value is better) and the sum of VOI split and VOI merge (VOI sum, lower value is better).

DeepACSON outperformed other techniques as it produced the smallest VOI split, VOI merge, VOI sum, and ARE, and the biggest Wallace split and merge
values. Comparison of the design parameters of DeepACSON: standard DeepACSON (DeepACSON-A), a U-Net with residual modules (DeepACSON-B),
the effect of BM4D denoising (DeepACSON-C), and adjusting the resolution between the training and test sets (DeepACSON-D) over d VOI (split and

merge contribution) e Wallace indices (split and merge contribution), and

f ARE and VOI sum. The filled-circles and error bars show the mean and

standard deviation of the evaluations, respectively. The dash-dotted lines show the choice of binarization threshold. The comparisons were run over the
best threshold, i.e., smallest VOI merge and VOI split. g Comparison of the computation time of DeepACSON against DeepEM2D/3D and FFN (mean £
standard deviation). All comparisons were run over six test SBEM datasets of size 290 x 290 x 285 voxel3, automatically segmented using the ACSON

pipeline®.

the training and test sets. We binarized the probability maps at
thresholds that generated the smallest VOI split/merge values.

In addition, we evaluated the semantic segmentation of the
standard DeepACSON on an ultrastructural level, i.e., myelin and
myelinated axons (including mitochondria), on the six SBEM
volumes. For this evaluation, we reported precision (positive
predictive value), recall (sensitivity), and F1 scores (harmonic
mean of precision and recall) in Supplementary Fig. S4. The
average F1 score was 0.886 + 0.049 for myelin and 0.861 +0.037
for myelinated axons.

We evaluated the performance of the two SVMs by the leave-
one-group-out (LOGO) cross-validation approach: the classifier
was trained excluding the data from one group of animals (sham-
operated or TBI) and evaluated against the excluded data
(Supplementary Fig. S4). F1 scores were 0.988 (sham datasets)
and 0.955 (TBI) for eliminating non-axonal structures. For
eliminating non-nucleus structures, F1 scores were 0.969 (sham
datasets) and 0.981 (TBI). The LOGO cross-validation showed
that the performance of the SVMs was equally robust in all
datasets, regardless of the condition (sham-operated or TBI).

Finally, an expert (A.S.) evaluated the DeepACSON segmenta-
tion of myelinated axons and mitochondria at an object-level
using GUI-based visualization software, called gACSON?0
(Supplementary Fig. S5). We developed gACSON to facilitate

8

the visualization and validation procedures for the expert.
gACSON enables the expert to manually click on the segmented
image overlaid on the original EM image and express if a
segmentation component was a TP, FP, or FN, as shown in
Supplementary Fig. S5. The expert’s evaluation is an added
qualitative measure over the entire pipeline, which resulted in the
following scores: myelinated axons (precision: 0.965 +0.027,
recall: 0.877 +0.061, and F1 score: 0.918 +0.038) and mitochon-
dria (precision: 0.856 + 0.100, recall: 0.804 +0.091, and F1 score:
0.823 £0.067).

Computation time. DeepACSON required approximately five
days to segment a low-resolution SBEM dataset of 4000 x 2000 x
1200 voxels into its final segmentation (Supplementary Table S3).
Approximately 40% of the DeepACSON computation time was
spent on BM4D denoising. We run BM4D filtering on non-
overlapping patches of the SBEM volumes to enable parallel
processing. BM4D is computationally expensive for denoising
large EM volumes; however, as shown in Fig. 6d-f, the applica-
tion of BM4D improved the segmentation results. The number of
floating point operations required by BM4D is O(N) with large
constants, where N is the number of voxels2!. Approximately 30%
of the DeepACSON computation time was spent on the CSD
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algorithm. In more detail, the time complexity of the sub-voxel
precise skeletonization is O(n Nlog N, ), where n is the number
of skeleton branches, and N, is the number of voxels of a discrete
object. The NylogN,, factor is from the fast marching algo-
rithm?2. The time complexity to determine a critical point is O
(N,), where N, is the number of inquiry points to check for the
cross-sectional changes in a decomposition interval. Therefore,
the overall time complexity of the CSD algorithm is
O(n NglogNg) + O(N,). The inference time of the FCN corre-

sponded to approximately 10 % of the DeepACSON computation
time. For the general analysis of the time complexity of FCNs, we
refer to?3.

We also compared the computation time of DeepACSON,
DeepEM2D, DeepEM3D, and FEN techniques (see Fig. 6g and
Supplementary Data 4 for results). The techniques were
compared over the six test datasets on a computer with an
NVIDIA Tesla V100-32 GB GPU, 2 x Intel Xeon E5 2630 CPU
2.4 GHz, and 512 GB RAM. DeepEM2D and DeepEM3D had the
shortest computation time (about 1 minute) as the segmentation
essentially relies on an Inception-ResNet-v2 network?4 and
watershed segmentation. DeepACSON required about 4 minutes
(using 15 CPU cores) to segment the test datasets. FFN required
the longest computation time for an end-to-end segmentation
(about 28 minutes).

Discussion

We developed DeepACSON, using an innovative combination of
DCNN-based semantic segmentation and shape-decomposition-
based instance segmentation. We applied DeepACSON on low-
resolution, large field-of-view SBEM volumes of white matter to
trace long myelinated axons. DeepACSON segmented hundreds
of thousands of myelinated axons, thousands of cell nuclei, and
millions of mitochondria in ten SBEM datasets. We provided
DeepACSON with human-annotation-free training sets, using the
segmentation of high-resolution SBEM volumes by our earlier
automated pipeline, ACSON>. DeepACSON evaluations
demonstrated excellent scores in the segmentation of white
matter ultrastructures, outperforming state-of-the-art methods.
DeepACSON quantified the morphology of myelinated axons, the
spatial distribution of mitochondria, and the density of myeli-
nated axons and cells in the white matter of sham-operated and
TBI rats. Our findings indicated that changes in the axonal dia-
meter, tortuosity, and the density of myelinated axons due to TBI
were persistent even five months after the injury.

The top-down design of DeepACSON instance segmentation
allows for including the tubularity of the shape of myelinated
axons and the sphericality of the shape of cell nuclei that make it
different from the bottom-up design of the current automated
neurite segmentation techniques®-11:2>-27. A related study is
MaskExtend?8 that proposed a 3D watershed transform, sub-
sequent merge, and the detection of X-shape objects to find
under-segmentation errors. MaskExtend makes a restrictive
assumption about the geometry of under-segmented objects to be
X-shape. Unlike MaskExtend, we allow for more general shape
for under-segmented objects as X-shape objects are a special case
in our CSD algorithm. Also, CSD reconstructs an under-
segmented object on its own by using generalized cylinders as
opposed to MaskExtend that requires accessing the watershed
segments and merging them at a high merge-threshold?$. Falk
et al.2? also addressed under-segmentation errors in cells by
inserting an artificial one-pixel wide background ridge between
touching instances in the training set. This approach is similar to
our technique for segmenting cell nuclei, where we inserted an
artificial membranes around cell nuclei using morphological
operations and assigned high-weights while training.

We compared our cylindrical shape decomposition approach
to other state-of-the-art techniques0-32, showing that CSD out-
performs these methods in decomposition of voxel-based
objects'®. CSD evaluates the preliminary segmentation of myeli-
nated axons in-parallel on high-performance computing (HPC)
servers, and if required, decomposes and reconstructs an under-
segmented myelinated axon. The parallelizability of CSD makes
DeepACSON highly scalable. For example, we analyzed hundreds
of thousands of myelinated axons traversing large field-of-view
datasets on different CPU cores of different HPC servers, redu-
cing the computation time of the segmentation. We also remark
that the CSD algorithm evaluates the cylindricity of an object
using the object skeleton. In cases where the surface protrusion of
the object is very irregular, the skeletonization may over-estimate
the number of skeleton branches. Therefore, CSD may over-
segment the surface protrusion, yielding false-positives. We
eliminated false-positives after the CSD algorithm using support
vector machines.

We trained the FCN of DeepACSON with four SBEM volumes
to segment myelinated axons and six volumes to segment cell
nuclei. These volumes included about 300 axons, one or two cell
nuclei, and approximately 300 x 300 x 300 voxels that is sufficient
to train a semantic segmentation network according to our
experiments. Training a network for semantic segmentation does
not necessarily need many annotated training images2°. To avoid
overfitting, DeepACSON utilized a ten-layers FCN!7 in its ori-
ginal design. We compared this design to a deeper network (U-
net with ResNet encoder), demonstrating that the deeper network
can experience overfitting and produce worse VOI, ARE, and
Wallace indices than the original design.

The validation of DeepACSON demonstrated an equally robust
segmentation performance in datasets of both sham-operated and
TBI rats. We remark that abnormalities in the shape of myeli-
nated axons, such as myelin delamination, are more frequent in
TBI datasets’. Furthermore, the expert evaluation showed that the
recall of DeepACSON was lower than its precision: we had a
bigger number of false-negatives, i.e., myelinated axons that were
not segmented, than false-positives. We speculate that many
false-negatives were caused by over-segmentation of very thin
myelinated axons into small components and the subsequent
removal of small components before the shape decomposition
step. For example, an axon with a diameter smaller than 0.2 um
was resolved with less than 13 cross-sectional voxels at 50 x 50 x
50 nm3 resolution, making it prone to over-segmentation. The
segmentation of myelinated axons at low-resolutions can be dif-
ficult for an expert as well: Mikula et al.33 reported that an expert
made an error in every 80 nodes of Ranvier in white matter, when
the axonal diameter was greater than 0.5 um, and the resolution
was 40 x 40 x 40 nm?>.

The simultaneous high- and low-resolution imaging enables
the use of high-resolution images as the training data to segment
low-resolution datasets. The high-resolution images can be seg-
mented using automated methods, hence providing a human-
annotation-free training set; we used ACSON to segment the
high-resolution SBEM datasets®>. ACSON is fully automated,
requires no training data, and segments one of our high-
resolution datasets (containing about 300 myelinated axons) in
approximately 24 hours. Also, high-resolution imaging resolves
the membrane of tissue ultrastructures in several voxels wide
resulting in a more accurate segmentation of ultrastructures.
Accurate segmentation of ultrastructures yields an accurate
training set, reducing the label-noise, i.e., less mismatch between
labels and the underlying ultrastructures in the training set.

Acquiring large field-of-view image datasets at high-resolutions
for several animals and experimental conditions is time-
consuming and costly. Despite the improvement in the image
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acquisition rate?334, microscopes should continuously run for
several months to acquire a cubic millimeter at a resolution of 4 x
4x40 nm33. As a comparison, imaging at 50 x 50 x 50 nm3
resolution leads to approximately 200-fold reduction of the
imaging time and image size. Low-resolution imaging allows for
axonal tracking®3, morphometry of myelinated axons and spatial
distribution analyses of myelinated axons, cell nuclei and mito-
chondria. Also, low-resolution imaging and the corresponding
segmentation provide a base for neuronal tissue modeling and
histological validations of magnetic resonance imaging (MRI).

Large field-of-view imaging enables quantifying parameters
whose measurement in a small field-of-view is not reliable
because the measurement in the small field-of-view may reflect a
very local characteristic of the underlying ultrastructure. Parti-
cular examples of such parameters are the tortuosity of myeli-
nated axons, inter-mitochondrial distance, and cell density. For
those parameters that we could measure in both low-resolution
(large field-of-view) and high-resolution (small field-of-view)
datasets, notably the axonal diameter and eccentricity, we com-
pared DeepACSON measurements in the low-resolution datasets
with ACSON measurements in the high-resolution datasets®. This
comparison indicated that the quantification in the low-
resolution datasets was consistent with the high-resolution data-
sets®. For example, we measured an average equivalent diameter
for myelinated axons in the contralateral corpus callosum of
sham #25 (sham #49) equal to 0.41 pum (0.44 um) and 0.44 um
(0.50 um) in the low- and high-resolution imaging, respectively.
Additionally, we measured an average eccentricity for myelinated
axons in the contralateral corpus callosum of sham #25 (sham
#49) equal to 0.71 (0.69) and 0.72 (0.71) in the low- and high-
resolution imaging, respectively. This consistency in the mor-
phology analysis of low- and high-resolution datasets suggests
that we can capture the morphology of myelinated axons, even
with the coarser resolution of the large field-of-view datasets.

We quantified morphological changes in myelinated axons in
white matter five months after a severe TBIL. The white matter
pathology after TBI is extremely complex. The initial response of
an axon to a brain injury can be either degeneration or
regeneration3>3%, Moreover, morphological alterations in axons
can persist for years after injury in humans®”-*% and up to one
year in rats3°. We found that TBI significantly reduced the axonal
diameter of myelinated axons in the ipsilateral corpus callosum,
ipsilateral cingulum, and contralateral cingulum. We further
measured that TBI significantly reduced the density of myelinated
axons, reflecting the degeneration of axons after injury3$. We also
found that TBI increased the tortuosity of myelinated axons in
the ipsilateral cingulum. We speculate that prolonged damage in
microtubules might underlie the increase in axonal tortuosity*’.

Ultrastructural tissue modeling is an active research field
aiming to bridge the gap between macroscopic measurements and
cellular- and sub-cellular tissue levels. Currently, tissue models
are based on simplistic representations and assumptions of the
ultrastructural features, which typically assume axons to be per-
fect cylinders, or neglect the variation of the axonal diameter
along axons*!:42, The segmentation of brain tissue ultrastructures
in 3D-EM datasets can substitute simplistic biophysical models by
more realistic models. Such realistic 3D tissue models open the
possibility to investigate underlying reasons for the diffusion MRI
contrast and its macroscopic changes in brain diseases*3-4¢ or
investigate conduction velocity in myelinated and unmyelinated
axons in electrophysiology47-43.

Methods

Animal model, tissue preparation and SBEM imaging. We used five adult male
Sprague-Dawley rats (10-weeks old, weight 320 and 380 g, Harlan Netherlands B.
V., Horst, Netherlands). The animals were singly housed in a room (22 + 1 °C, 50%

— 60% humidity) with 12 h light/dark cycle and free access to food and water. All
animal procedures were approved by the Animal Care and Use Committee of the
Provincial Government of Southern Finland and performed according to the
guidelines set by the European Community Council Directive 86/609/EEC.

TBI was induced by lateral fluid percussion injury#’ in three rats (TBI #2, #24,
#28). Rats were anesthetized with a single intraperitoneal injection. A craniectomy
(5mm in diameter) was performed between bregma and lambda on the left
convexity (anterior edge 2.0 mm posterior to bregma; lateral edge adjacent to the
left lateral ridge). Lateral fluid percussion injury was induced by a transient fluid
pulse impact (21-23 ms) against the exposed intact dura using a fluid-percussion
device. The impact pressure was adjusted to 3.2-3.4 atmosphere to induce a severe
injury. The sham-operation of two rats (sham #25, #49) included all the surgical
procedures except the impact. Five months after TBI or sham operation, the rats
were transcardially perfused using 0.9% NaCl, followed by 4% paraformaldehyde.
The brains were removed from the skull and post-fixed in 4% paraformaldehyde
1% glutaraldehyde overnight.

The brains were sectioned into 1-mm thick coronal sections using a vibrating
blade microtome. Sections from -3.80 mm from bregma from each brain were
selected and further dissected into smaller samples containing the areas of interest.
We collected two samples from each brain: the ipsi- and contralateral of the
cingulum and corpus callosum. The samples were osmium stained using an
enhanced staining protocol®?. After selecting the area within the samples, the
blocks were further trimmed into a pyramidal shape with a 1 x 1 mm? base and an
approximately 600 x 600 um?2 top (face), which assured the stability of the block
while being cut in the microscope. Silver paint was used to electrically ground the
exposed block edges to the aluminum pins, except for the block face or the edges of
the embedded tissue. The entire surface of the specimen was then sputtered with a
thin layer of platinum coating to improve conductivity and reduce charging during
the sectioning process. The details of the animal model and tissue preparation are
described in the ACSON study®.

The blocks were imaged in a scanning electron microscope (Quanta 250 Field
Emission Gun; FEI Co., Hillsboro, OR, USA), equipped with the 3View system
(Gatan Inc., Pleasanton, CA, USA) using a backscattered electron detector (Gatan
Inc.). The face of the blocks was in the x-y plane, and the cutting was in z direction.
All blocks were imaged using a beam voltage of 2.5 kV and a pressure of 0.15 Torr.
We acquired the high- and low-resolution datasets consistently at one specific
location in the white matter in both sham-operated and TBI animals and in both
hemispheres. The images were collected with an unsigned 16-bits per voxel.
Supplementary Table S1 shows the volume size of the low-resolution datasets.

DeepACSON segmentation pipeline. We devised DeepACSON: a DCNN-based
segmentation pipeline to automatically annotate white matter ultrastructures in
low-resolution 3D-EM datasets (Fig. 1). The DeepACSON pipeline annotated
white matter such that myelin and every myelinated axon, mitochondrion, and cell
nucleus carries a separate label. Figure 1 shows the four steps of the DeepACSON
pipeline. Step 1: Generating a training set for semantic segmentation. DeepACSON
requires labeled EM datasets as the training material to learn to perform semantic
segmentation tasks. To automatically provide a training set for DeepACSON, we
utilized our previously developed ACSON segmentation pipeline®. Step 2: Semantic
segmentation of white matter ultrastructures. The volume of white matter ultra-
structures was highly imbalanced, i.e., numbers of voxels representing different
ultrastructures were not equal. Thus, we trained two separate DCNNs: DCNN-
mAX to generate the probability maps of myelin, myelinated axons, and mito-
chondria and DCNN-cN to generate the probability maps of cell nuclei and the
membrane of cell nuclei. Step 3: Instance segmentation of myelin, myelinated
axons, mitochondria, and cell nuclei. Myelin was segmented by thresholding the
myelin probability map. The segmentation of myelinated axons and cell nuclei
required further, automatic geometrical and topological corrections after the
binarization and connected component analysis. The CSD algorithm was applied to
decompose an under-segmented myelinated axon into its axonal components. In a
GDM framework, elastic deformations of the initial segmentation of cell nuclei
segmented this ultrastructure. Step 4: Automatic elimination of false-positive
instances. We eliminated non-axonal and non-nucleus instances, i.e., false-posi-
tives, from the segmentation of myelinated axons and cell nuclei by training two
separate SVMs.

Pre-processing: data alignment and denoising. We used Microscopy Image Brow-
ser’! (MIB; http://mib.helsinki.fi) to pre-process the collected images from the
electron microscope. We found the bounding box to the collected images and run
the voxel-size calibration. We aligned the images by measuring the translation
between the consecutive SBEM images using the cross-correlation cost function
(MIB, Drift Correction). We acquired a series of shift values in x direction and a
series of shift values in y direction. From each series, the running average of the
shift values (window size was 25 values) was subtracted to preserve the orientation
of myelinated axons. We applied contrast normalization such that the mean and
standard deviation of the histogram of each image matches to the mean and
standard deviation of the whole image stack. The images were converted to the
unsigned 8-bits format. The size of low-resolution SBEM datasets ranged from 10-
15 GB, summing up to 85 GB (8-bits per voxel). To denoise SBEM datasets, we
used BM4D!?, a non-local filtering algorithm. The algorithm was run in its low-
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complexity mode to reduce the computation time. We processed the low-resolution
SBEM datasets in non-overlapping patches with an approximate size of 1000 x
1000 x 300 to account for RAM requirements and enabling parallel BM4D
denoising on CPU clusters (see Supplementary Fig. S6).

Step 1: training sets for DCNNs. We used high-resolution SBEM datasets of the
corpus callosum segmented by the automated ACSON pipeline to generate a
training set for DeepACSON. The automated ACSON pipeline was designed for
segmenting high-resolution small field-of-view SBEM datasets into myelin, mye-
linated and unmyelinated axons, mitochondria, and cells. The ACSON pipeline
segments white matter based on a bounded volume growing algorithm in which
seeds are defined automatically using regional maxima of the distance transform of
myelin maps®. We generated two training sets: one for training DCNN-mAx and
one for training DCNN-cN. The segmented high-resolution datasets were modified
before using them for training as follows: the labels of unmyelinated axons and cells
were set equal to the background label to generate the DCNN-mAXx training set.
The labels of all ultrastructures except for the cell nuclei were set equal to the
background label to generate the DCNN-cN training set. We created an additional
label for the membrane of cell nuclei by a morphological gradient with a flat 11 x
11 square structuring element applied to the segmented cell nuclei. The membrane
of cell nuclei was 22 voxels or 0.33 pm wide. We over-emphasized the membrane of
cell nuclei because the number of voxels representing it was very small compared to
the nucleus and background labels. After modifying labels, we uniformly down-
sampled the high-resolution datasets in both training sets by a window size of 3 x 3
in x — y plane to conform to the resolution of the low-resolution datasets. The
DCNN-mAx training set included datasets of the ipsi- and contralateral of sham-
operated and TBI rats. It is important to include both intact and injured axons to
enrich the training set. The DCNN-cN training set included only ten cell nuclei.

Step 2: semantic segmentation of white matter ultrastructures; architecture and
implementation of DCNNs. We implemented the DCNNs and data augmentation
using the ElektroNN2 library® based on the Python Theano framework®2. Elek-
troNN was optimized for short model training times and fast inference on large
datasets by eliminating the redundant computations of sliding window approa-
ches®3. The training set was augmented using randomized histogram distortions to
become invariant against varying contrast and brightness gradients. In addition,
half of the training set underwent image warping consisting of affine and random
perspective transformations. We determined the optimal architectural parameters
and hyperparameters of the DCNN’s experimentally using the training set. We used
an FCN architecture with the same architectural parameters for DCNN-mAx and
DCNN-cN, as shown in Supplementary Fig. S7. We set the patch size equal to (185,
185, 23) voxels in (x, y, z) directions. The receptive field was (45, 45, 15) voxels,
with approximately 3 million trainable parameters. The DCNNs were trained on
the cross-entropy loss with Softmax activation. We set the batch size equal to 1
because there was a sufficient number of prediction neurons for updating the
gradient. For the optimization, we used Adam optimizer>* and set its initial
learning rate & = 5 x 107, the exponential decay rate for the first moment 3; = 0.9,
the exponential decay rate for the second-moment f, = 0.999, and the weight
decay = 5x 107 (we use the same notation as in®*). After every 1000 training
steps, the learning rate « was decayed by a factor of 0.995. For DCNN-mAx, we set
the class weights to 0.2, 0.5, 1, and 1 for the background, myelin, myelinated axons,
and mitochondria, respectively. The class weights for DCNN-cN were set to 0.1, 1,
and 4 for the background, cell nuclei, and the membrane of cell nuclei, respectively.
For the semantic segmentation of myelinated axons, we also tested a U-Net!8
with a ResNet>® in the encoding path (ResNet-34 with 21 million parameters®>,
pre-trained on the ImageNet dataset®® as implemented in PyTorch>’). We selected
the U-Net architecture because it is widely used for the semantic segmentation of
biomedical image volumes, resulting in precise segmentation and not requiring
many annotated training images?®. Also, ResNet, which we used in the encoding
path of U-Net, is the most widely used network for image feature extraction. The
residual blocks of ResNet are easy to optimize and can gain accuracy from
increased network depth®®. Supplementary Fig. S8 shows this network architecture.
In the encoding path of the U-Net, the height and width of the feature maps were
halved, and the depth of the feature maps was doubled. In the decoding path of the
U-Net, the height and width of the feature maps were doubled, and the depth of the
feature maps was halved. The basic residual blocks of ResNet-34 were constructed
on convolutional layers, including rectified linear unit (ReLU) as the activation
function, and batch normalization®8. The basic decoding blocks applied nearest-
neighbor interpolation for up-sampling the feature maps to recover the spatial
resolution of input images. Feature maps generated in the encoding path were
concatenated to the corresponding feature maps in the decoding path by the skip
connections. The model was trained using cross-entropy loss with Softmax
normalization. We set the batch size equal to eight. We normalized the input
images to have the same mean and standard deviation as the pre-trained network
used for normalizing its input images. Also, half of the training set was augmented
by geometrical transformations, such as horizontal and vertical flips, scaling,
shifting, and rotation. For the optimization, we used Adam optimizer>* and set its
initial learning rate o =1 x 1074, the exponential decay rate for the first moment
B1=10.9, the exponential decay rate for the second-moment 8, = 0.999, and the
weight decay = 1 x 107> (we use the same notation as in>%). We set the class

weights to 0.3, 0.3, 0.3, and 1 for the background, myelin, myelinated axons, and
mitochondria, respectively. We trained this U-Net architecture with the same
datasets as FCN network in three scenarios: 1) the training set was BM4D denoised
and down-sampled, 2) the training set was not BM4D denoised but down-sampled,
3) the training set was BM4D denoised but not down-sampled. In the first case, we
evaluated the effect of using a deeper network than our FCN design, and in the
second and third cases, we evaluated the effect of BM4D denoising and down-
sampling the high-resolution datasets of the training set.

Step 3: instance segmentation of white matter ultrastructures.

Step 3.1: myelin, myelinated axons, and mitochondria segmentation. DCNN-mAx
generated probability maps of myelin, myelinated axons, and mitochondria. We
binarized the probability maps of myelin, myelinated axons, and mitochondria
with a threshold of 8,c1in = 0.5, O1naxon = 0.8, and Opsisochondria = 0.8; the thresholds
were assigned based on the VOI split/merge error values. The binarized volume of
myelin required no further processing, and it was considered to be the final myelin
segmentation. The binarized volume of mitochondria was dilated with a flat 3 x
3 x 3 structuring element, and unified with the binarized volume of myelinated
axons to form the intra-axonal space of myelinated axons which we denote by I;4s.
The initial segmentation of individual myelinated axons was obtained using con-
nected component analysis on Ij4s. The segmented volumes underwent a mor-
phological volume closing with a flat 3 x 3 x 3 cubic structuring to close the holes.
We excluded volumes whose size was smaller than 4 700 voxels (the volume of a
circular cylinder with a base radius of 0.25 um and height of 3 um, resolved with an
isotropic 50 x 50 x 50 nm? voxel size).

In the low-resolution datasets, the axonal membrane was not resolved, e.g., at
nodes of Ranvier. Thus, the initial segmentation of myelinated axons might exhibit
under-segmentation errors (Supplementary Fig. S2). We developed a specific shape
analysis algorithm, CSD, to decompose an object into its semantic-components. As
shown in Supplementary Fig. Sla, b, we defined the object as the union of several
tubular components, similar to an axon with under-segmentation errors. The
decomposition of such an object requires first identifying its semantic components,
and second, correcting the ambiguity at intersections of branches, i.e., decomposing
the shape at intersecting branches. The mathematical details of the algorithm and
its validation are described in a different manuscript!4, but we summarize the
algorithm here:

Step 3.1.1: skeleton partitioning and critical points. We propose to decompose
an object into its semantic-components using its curve skeleton and cross-sectional
analysis. We determined the curve skeleton of the object Q by applying the method
from Hassouna & Farag®®. This method also returns the collection of skeleton
branches I' = {y;, ..., y,,} (see Supplementary Fig. S1c). Based on I', CSD partitioned
the curve skeleton of the object into m < » maximal-length sub-skeletons denoted
as Y, i=1,..., m (Supplementary Fig. S1d) via minimizing an orientation cost-
function. Each sub-skeleton corresponds to a semantic-component. In other words,
in this step, skeleton branches were merged if they were thought to belong to the
same semantic component. To identify intersections of the semantic components,
we analyzed the object cross-sections along intervals of y, called decomposition
intervals. A decomposition interval occurs in the proximity of junction-points
where skeleton branches connect, denoted as j € y. The boundaries of a
decomposition interval at j were defined using the radius of the maximal inscribed
ball at j, and two factors a; =10 and «, = 1.5. At each decomposition interval, we
search for a critical point. It is such a point that the object cross-section changes
substantially; the normalized Hausdorff distance H,'4 between a cross-sectional
contour and the mean of visited cross-sectional contours exceeds 6 = 0.85
(Supplementary Fig. Sle). We cut the object at critical points to obtain object-parts.
We assigned the same label to the object-parts along the same sub-skeleton to
acquire a semantic-component (Supplementary Fig. S1f).

Step 3.1.2: object reconstruction. To reconstruct a semantic component at an
intersection, we used generalized cylinders. We constructed a generalized cylinder
® : R? — R? as a linear homotopy between two simple closed curves C, and C,
elongated on a simple curve { C R>. To define C, and C_, let x.,x, € y be two
critical points in the proximity of the joint j on a sub-skeleton y. We cut the surface
of the object 0 at these two critical points. The cross-sectional curves of 9Q at x,,
and x. are C, and C . We defined {to be the spline interpolation of y between x,
and x, . The acquired generalized cylinder was used to reconstruct the object at the
intersection, which interior includes j (Supplementary Fig. S1f).

Step 3.2: cell nuclei segmentation. DCNN-cN classifier was trained to generate a
semantic segmentation of cell nuclei and the membrane of cell nuclei from the low-
resolution datasets. SBEM imaging with 50 x 50 x 50 nm?> voxel size, however,
might not fully resolve the membrane of cell nuclei. Thus, the binarization followed
by the connected component analysis of DCNN-cN probability maps at sites where
several cell nuclei appear adjacently would come with an under-segmentation
error. Therefore, for the instance segmentation of cell nuclei, we devised an
approach in a GDM framework based on active surface implemented with level
sets22:00,

Let the probability map of cell nuclei be denoted as PR, (x) : X C Z* — [0, 1],
and the probability map of the membrane of cell nuclei as
PR,,(x) : X C Z* — [0, 1], where x is a 3D coordinate belonging to the 3D image
domain X. The position of the initial surface dU was determined by binarizing the
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curvilinear enhanced version of PR,,. We used Frangi filter®! to enhance the
curvilinear structures of PR,,, i.e., the membrane of cell nuclei, and suppress the
background based on Hessian of PR,, (see Supplementary Fig. S9). The Frangi
filtered PR,, is denoted as PR,,. We subtracted PR,, from PR, and thresholded the
result at 0,,,¢e,s = 0.5. This resulted in a binary image In(x): X — {0, 1}, where x €
X was a foreground voxel and I(x) = 1 if PR, (x) — PR, (x) > 0,100 The initial
positions of deformable surfaces were determined using connected component
analysis: Iy was segmented to n' individual cell nuclei denoted as U,, where
i=1,...,n". At locations where several cell nuclei appear adjacently, the initial
segmentation may include under-segmented cell nuclei. For that, the initial
segmentation of cell nuclei required a further topological alteration. Therefore, the
surface of each initially segmented cell nuclei underwent a primary deformation,
where the surface was propagated for —0.3 um using a 3D Euclidean distance
transform. The inward propagation of the surfaces split the merged cell nuclei.
Relabeling the split cell nuclei resulted in U, where i =1, ...,n and n>n’. We used
the volumes in which the number of voxels was greater than 1000 as initial
surfaces for a secondary deformation. The evolution of a surface started at U and
stopped at the desired nucleus membrane because we defined the speed function
equal to PR,,. Each initial surface 0U was deformed for 300 iterations, where the
smoothing term of GDMs preserved the surface sphericality.

Step 4: eliminating false positives. The final step of the DeepACSON pipeline was to
eliminate non-axonal and non-nucleus instances, i.e., false positives. We eliminated
false positives from the segmentation of myelinated axons using an SVM with a
quadratic kernel (as implemented in MATLAB, Statistics and Machine Learning
Toolbox, fitcsvm function). For each component segmented as a myelinated axon,
we computed several features (at one-third of the original size): volume, surface
area, equivalent diameter, extent (the ratio of voxels in the component to voxels in
the smallest bounding box of the component), solidity (the volume of the com-
ponent divided by the volume of the convex hull of the component), and principal
axis length (the length of the major axis of the ellipsoid that has the same nor-
malized second central moment as the component). Features were standardized to
the mean of zero and the standard deviation of one. To generate a training set, we
randomly picked five datasets out of ten segmented large field-of-view datasets.
From the selected datasets, we manually selected representative myelinated axons
and non-axonal instances from both the cingulum and corpus callosum (1 097
myelinated axons and 189 non-axonal instances; less than 0.2% of the total number
of components segmented as myelinated axons in all ten datasets). To determine
the optimal SVM hyperparameters, the regularization parameter C and kernel
parameter o, we selected the pair that minimized 5-fold cross-validation error on
the training set using Bayesian optimization algorithm®>63. C and o were con-
strained in the range [107, 106]. The optimal parameters were C=1.12 and 0=
8.48. The trained SVM was applied to eliminate non-axonal structures from all the
datasets. We applied the same approach to eliminate false-positives from cell
nuclei. For each component segmented as a cell nucleus, we calculated the same
features (as described for myelinated axons) before and after the geometric
deformation. To generate a training set, out of ten segmented large field-of-view
datasets, we picked four random datasets. From the selected datasets, we manually
selected representative cell nuclei and non-nucleus instances (263 cell nuclei and
113 non-nucleus instances; 7.3 % of the total number of components segmented as
cell nuclei in all ten datasets) to train an SVM with a quadratic kernel. The optimal
hyperparameters were found as described above, where C was equal to 6.51, and ¢
was equal to 4.17.

Segmentation evaluation metrics. We used precision P, recall R, and F1 score to
compare an automated semantic segmentation to the ground truth, in such a way
that there is a one-to-one match between voxels in the automated segmentation

and ground truth. To define these measures, let A and B be the sets of voxels of a

particular ultrastructure (myelin, myelinated axon, mitochondrion) in an auto-
__|AnB|

mated segmentation and ground-truth, respectively. We defined P A and

_ |AnB| PxR
R= B] PFR"

F1 score is equal to one when the test segmentation perfectly matches the ground-
truth.

Precision, recall, and F1 do not describe topological differences and are sensitive
to small changes in the region boundary. Therefore, we evaluated automated
segmentation with additional metrics that are less sensitive to small variations in
boundary, but sensitive to topological differences. For that, we measured variance
of information® (VOI, split and merge contributions) and Wallace indices®>. We
also computed adapted Rand error (ARE) as defined by the SNEMI3D contest
(http://brainiac2.mit.edu/SNEMI3D/evaluation). We computed these metrics using
the Gala library described by Nunez-Iglesias et al.%. The VOI metric is defined as
the sum of the conditional entropies between two segmentations VOI(A, B) = H
(A|B) + H(B|A). The VOI metric is decomposed into VOI split H(A|B) and VOI
merge H(B|A)®. A lower VOI value indicates a better segmentation; for a perfect
match between an automated segmentation and ground truth, we have VOI split =
VOI merge = 0. The Wallace splitting index is defined as ;¢ and the Wallace
merging index is defined as ;¢, where a is the number of pairs of voxels in the
input image that have the same label in A and the same label in B, b is the number

, and F1 score as F1 = 2x

The maximum of the precision, recall, and

of pairs of voxels in the input image that have the same label in A but a different
label in B, c is the number of pairs of voxels in the input image that have a different
label in A but the same label in B, and d is the number of pairs of voxels in the
input image that have different labels in A and different labels in B. The Wallace
indices take values between zero and one, where a higher value indicates a better
segmentation. The Rand index is defined as %, where a, b, ¢, and d are as in
Wallace indices, and adapted Rand error is defined as one minus the maximal F-
score of the Rand index®’ (excluding the zero component of the original labels).
The adapted Rand error takes values between zero and one, where a lower value
indicates a better segmentation. As Nunez-Iglesias et al.%¢ argued, the VOI metric
has several advantages over the Rand index and is a better metric for comparing
EM segmentation results. For example, errors in the VOI scale linearly with the
error size, whereas the Rand index scales quadratically, making VOI more directly
comparable between volumes than the Rand index. Also, the Rand index has a
limited useful range near one, and that range is different for each image. In
contrast, VOI ranges between zero and log(K), where K is the number of objects in
the image.

Statistics and reproducibility. For the statistical hypothesis testing between the
sham-operated and TBI animals, we subjected the measurements to the nested
(hierarchical) 1-way ANOVA separately for each hemisphere!®. The nested
ANOVA tests whether there exists a significant variation in means among groups,
or among subgroups within groups. The myelinated axons were nested under the
rats’ ID, and the rats’ ID was nested under the groups (sham-operated and TBI).
The rats’ IDs were treated as random effects, and the group was treated as a fixed
effect. We set the alpha-threshold defining the statistical significance as 0.05 for all
analyses. All sample sizes are specified within the manuscript or in figure legends.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The datasets generated during and/or analyzed®® in the current study are publicly
available at https://etsin.fairdata.fi/dataset/f8ccc23a-1fla-4c98-86b7-b63652a809c3. The
source data files underlying the graphs of the main figures are available through
Supplementary Data 1-4: Fig. 5d: Supplementary Data 1-2; Fig. 5e-f: Supplementary
Data 3; and Fig. 6: Supplementary Data 4. All other data that support the findings of the
present study are available from the corresponding author upon request.

Code availability
The source code of DeepACSON software®® is publicly available at https://github.com/
aAbdz/DeepACSON.
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