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In a vacuum first-order phase transition, gravitational waves are generated from collision of bub-
bles of the true vacuum. The spectrum from such collisions takes the form of a broken power law.
We consider a toy model for such a phase transition, where the dynamics of the scalar field depends
on a single parameter λ, which controls how thin the bubble wall is at nucleation and how close to
degenerate the vacua are relative to the barrier. We extend on our previous work by performing a
series of simulations with a range of λ. The peak of the gravitational-wave power spectrum varies
by up to a factor of 1.3, which is probably an unobservable effect. We find that the ultraviolet (UV)
power law in the gravitational-wave spectrum becomes steeper as λ→ 0, varying between k−1.4 and
k−2.2 for the λ considered. This provides some evidence that the form of the underlying effective
potential of a vacuum first-order phase transition could be determined from the gravitational-wave
spectrum it produces.

I. INTRODUCTION

Upcoming space-based gravitational-wave detectors
like the Laser Interferometer Space Antenna [1] (LISA)
are anticipated to dramatically increase our capability
to probe early universe cosmology through gravitational
waves [2]. In particular, LISA will be sensitive to first-
order cosmological phase transitions at the electroweak
scale [3, 4].

In the Standard Model, the electroweak transition is a
crossover [5, 6], and as such there are no first-order phase
transitions at the electroweak scale. However, there is a
multitude of well-motivated extensions to the Standard
Model that produce first-order phase transitions, ranging
from singlet extensions [7–11], two-Higgs doublet mod-
els [12–14], models in which a conformal symmetry is
spontaneously broken [15–21], to models with a phase
transition in a hidden sector [22–30]. The gravitational
wave signal generated by phase transitions in these Be-
yond the Standard Model extensions will enable LISA to
detect or constrain their existence.

In a first-order cosmological phase transition, some ef-
fective scalar field is trapped in a metastable state (sym-
metric phase), separated by a potential barrier from the
true vacuum state (broken phase) [31–33]. When the
transition proceeds, bubbles of the true vacuum nucle-
ate, expand and eventually collide, sourcing transverse-
traceless modes of shear stress, which in turn source grav-
itational waves [34, 35]. The dynamics of the resulting
phase transition can be split qualitatively according to
whether the bubble wall reaches a terminal velocity be-
fore colliding, or whether the bubble wall continues to
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accelerate until collision. We denote these different tran-
sition types respectively as ‘thermal’ and ‘vacuum-like’.

In a thermal phase transition, bubbles nucleate in the
presence of a hot relativistic plasma made up of the early
universe particle content. The friction felt between the
plasma and the expanding bubble wall is sufficient to
eventually result in the wall approaching a terminal wall
velocity. Shells of hotter plasma develop around the ex-
panding bubbles, and after collision continue to propa-
gate as long-lasting sound waves. Eventually, the sound
waves are expected to decay, and the flow may become
turbulent [34, 36].

In a vacuum-like transition, the vacuum pressure driv-
ing the phase transition overcomes the resulting friction
from the plasma and the bubble wall continues to ac-
celerate before collision. An early study predicted that
in most electroweak scale phase transitions the bubble
wall would undergo ‘run away’ acceleration, provided
sufficient supercooling [37]. More recently, it has been
shown that if the scalar field couples to heavy gauge
bosons, next-to-leading-order effects cause the friction to
grow proportionally to the Lorentz factor γ of the bubble
wall [38]. In this case, the runaway condition in Ref. [37]
is no longer fulfilled.

Several scenarios have been proposed that can still re-
sult in ‘vacuum-like’ behaviour. The friction term pro-
portional to γ is generated by transition radiation of
gauge bosons acquiring a mass as they cross the bub-
ble wall. If the phase transition occurs in the absence
of gauge fields, such as during the spontaneous breaking
of an approximate global symmetry, then the dominant
transition radiation process may grow as ∼ log γ [4].

Alternatively, if there is an extreme level of supercool-
ing, then there could be a sufficient dilution of the early
universe plasma and resulting plasma friction to allow for
the bubble walls to accelerate until collision. The levels of
supercooling required for this to occur is large but can be
achieved in transitions with a classically scale-invariant
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potential [39]. In other models, sufficient supercooling is
difficult to achieve; at large supercooling the universe can
start to inflate, meaning that the bubbles cannot perco-
late and the transition does not complete [40].

Finally, in a dark sector that is decoupled at the time
of transition, runaway-type transitions are achieved more
easily than in the visible electroweak sector [26].

The first attempts to model the gravitational-wave
power spectrum from first-order phase transitions em-
ployed a seminumerical simulation method termed the
‘envelope approximation’. In this calculation, the stress-
energy is assumed to be located in an infinitesimally
thin shell at the bubble wall which disappears upon
collision [41]. This technique was first applied to vac-
uum transitions, and then to thermal transitions [42–44].
When the bubble wall velocity is ultra-relativistic the re-
sulting gravitational-wave spectrum was shown to be a
broken power law rising in the infrared (IR) and falling
in the ultraviolet (UV) as approximately k2.9 and k−0.9,
respectively. Analytic studies which build upon the en-
velope approximation have confirmed the broken power
laws found from numerical simulations [45].

Extensions to the envelope approximation in which the
shell of shear-stress continues to propagate after collision
have also been studied [44, 46]. We will follow Ref. [44]
in referring to this as the bulk flow model. Simulations of
the bulk flow model with ultra-relativistic wall velocities
have found power laws of approximately k0.9 and k−2.1.

Many developments have been made in the study of
thermal phase transitions. 3D hydrodynamical simula-
tions of weak and intermediate strength transitions [47–
50] demonstrated that sound waves form the dominant
contribution to the gravitational-wave signal and that
while the contribution from bubble collisions is subdom-
inant, for thermal phase transitions it is well represented
by the envelope approximation [51]. Modelling has shown
weak and intermediate strength transitions are well rep-
resented shortly after the transition by a linear superpo-
sition of propagating sound waves [52, 53].

Simulations of stronger first-order phase transitions
indicated that for walls moving slower than the speed
of sound, the formation of hot droplets of the symmet-
ric phase in the later stages of the collisions can signif-
icantly reduce the gravitational-wave signal [54]. The
gravitational wave production in extremely strong phase
transitions has also been studied using a combination of
1D simulations and modelling [55]. It has been shown
that for almost all observable transitions, the timescale
on which nonlinearities in the fluid are expected to play
a role (given by the ratio of the bubble radius to the
root-mean-square fluid velocity) is shorter than a Hub-
ble time [56]. On longer timescales, the flow may become
turbulent. The gravitational wave spectrum from freely
decaying turbulence has been modelled [42, 57–61], and
recently numerically simulated [62].

Full 3D lattice simulations have also been employed to
test the envelope approximation within vacuum transi-
tions [63, 64]. In Ref. [63], it was seen that after percola-

tion, the gravitational-wave signal in a vacuum transition
was amplified by more than an order of magnitude dur-
ing a what was termed a period of coalescence. A more
recent study by the present authors identified this growth
of gravitational waves with oscillations of the scalar field
around the true vacuum, producing gravitational waves
peaked at the broken-phase mass scale [64]. With a real-
istic separation of scales between the mass scale and the
mean bubble separation, the signal generated by these os-
cillations would be negligible in comparison to that from
bubble collisions, and peak at too high a frequency to be
observable. It also found that while the peak frequency
and amplitude of the spectrum were roughly predicted
by the envelope approximation, the UV power law was
slightly steeper at around k−1.5.

Early studies of two colliding bubbles in the thin wall
limit demonstrated that the scalar field in the overlap
region rebounds to the false vacuum, and can become
temporarily trapped [65–67]. Further simulations have
shown that far away from the thin wall limit, the trapping
is reduced [68].

The question of trapping has recently been revisited
in light of the recent interest in the dynamics of cos-
mological first-order phase transitions. In Ref. [69] the
collision of two ultra-relativistic planar bubble walls was
studied for a variety of potential shapes. Depending on
the shape of the potential, it was seen that the scalar field
could become trapped temporarily in the false vacuum in
the collision region. The authors proposed that if trap-
ping indeed occurred, then the gravitational-wave power
spectrum should be given by the envelope approximation,
but if it did not then the bulk flow model should ap-
ply. This has been investigated by colliding two vacuum
bubbles and measuring the resulting gravitational-wave
power spectrum [70], where small changes were observed
when varying the potential shape.

In this paper, we conduct a series of 3D lattice simu-
lations of colliding vacuum bubbles, with the intention
of exploring how modifying the shape of the effective
potential changes the gravitational-wave spectrum. We
consider a vacuum phase transition in a toy model with
a quartic effective potential with a cubic term. We show
that for this model, the effect of the potential on the
scalar field dynamics can be shown to depend on a sin-
gle parameter λ. As λ → 1 the potential approaches
thin-wall limit, whereas for λ → 0 the bubble wall be-
comes thick in comparison to the critical radius. We
see that as λ → 0, less trapping occurs in the collision
region. Our simulations span a range of λ and we anal-
yse the effect changing λ has on the gravitational-wave
power spectrum. The peak of the gravitational-wave
power spectrum varies by a factor of up to 1.3 between
the λ values we consider. We find that UV power law
in the gravitational-wave spectrum becomes steeper as
λ→ 0, varying between k−1.4 for λ = 0.84 and k−2.2 for
λ = 0.07.

We also find some evidence that the power law in the
IR continues to evolve after the bubbles finish colliding.
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While at early times it is proportional to k3 (as one would
expect from causality [60]), it becomes shallower after the
bubbles have finished colliding. By visualising our sim-
ulations, we can see that there are outward-propagating
shells of transverse-traceless shear-stress that continue to
propagate outward. This provides some evidence for the
bulk flow model which assumes the continued outward
propagation of shear-stress after bubbles have collided.

In Section II we discuss the dynamics of the scalar field,
and how it varies according to the potential shape in our
toy model. We illustrate how the variation of λ modifies
the critical bubble profile, the evolution of an isolated
bubble, and the dynamics of the scalar field in the overlap
region of two colliding bubbles. We detail the linearised
gravity approach we employ within our simulations in
Section III, and outline the current understanding of the
gravitational-wave power spectrum produced in a vac-
uum transition. We describe the numerical methods we
employ in our simulations in Section IV. The results we
obtain are split into two sections, in Section V we show
the behaviour of the scalar field and transverse traceless
shear-stress, whereas in Section. VI we analyse the re-
sulting gravitational-wave power spectrum and provide a
fit for the power spectrum over time for each λ. Finally,
in Section VII we list our conclusions.

II. SCALAR FIELD DYNAMICS

In a vacuum first-order phase transition, the universe
transitions from a metastable false vacuum state into a
true vacuum state. In a first-order phase transition, a
potential barrier will separate these two states. Local
patches of the universe will transition into the true vac-
uum state via quantum tunneling. These patches of the
true vacuum state will form bubbles, with the interface
between the true and false vacuum forming the bubble
wall. After nucleating, these bubbles will expand, even-
tually reaching cosmological sizes and ultra-relativistic
speeds before they collide.

We can describe the transition by using a scalar field
order parameter φ which corresponds to the vacuum ex-
pectation value of the field transitioning. The equation
of motion for this scalar field in our simulations is:

�φ− V ′(φ) = 0, (1)

where we choose the scalar field potential V (φ) to be
given by

V (φ) =
1

2
M2φ2 +

1

3
δφ3 +

1

4
λφ4. (2)

Note here that we are neglecting the expansion of the
universe in the dynamics of the scalar field. This is equiv-
alent to making the assumption that the duration of the
phase transition is much shorter than a Hubble time at
the time of the transition H−1

∗ .

This potential has a degenerate second ground state
when the mass M is equal to the critical mass value,

M2
c =

2δ2

9λ
. (3)

It is useful to introduce the parameter λ = M2/M2
c .

When λ < 1 this potential has two ground states, one
of which is metastable. The metastable state (or sym-
metric phase) is at φ = 0 and the true vacuum state (or
broken phase) is at

φb =
3Mc

2
√

2λ

[
1 +

√
1− 8λ/9

]
, (4)

The symmetric phase at φ = 0 is separated from the
broken phase at φb by a potential barrier, which peaks
at

φmax =
3Mc

2
√

2λ

[
1−

√
1− 8λ/9

]
. (5)

The broken phase mass is given by

Mb =
3Mc

2

√√√√
1− 8λ

9
+

√
1− 8λ

9
. (6)

Furthermore the potential difference between the two
minima is given by

ρvac =
1

12λ

(
M4

b −M4
)

, (7)

and the height of the potential barrier Vmax = V (φmax)−
V (0),

Vmax =
M6

(
M2 + 2M2

b

)
(M2 −M2

b) (M2 +M2
b)

3 . (8)

The total energy density in the scalar field ρφ can be
split into three components,

ρφ = ρK + ρV + ρD, (9)

with the kinetic energy density,

ρK =
1

2
φ̇2, (10)

the gradient energy density,

ρD =
1

2
(∇φ)2, (11)

and the potential energy density,

ρV = V (φ)− V (φb). (12)

We are free to rescale the potential by some constant
value, and likewise the field, i.e V → V ′ = cV or
φ → φ′ = kφ. After accounting for this there are only
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two interesting dimensionless quantities that describe our
potential which can affect the dynamics.

The first of these quantities is the ratio of Vmax and
ρvac,

Vmax

ρvac
=

(√
9− 8λ− 3

)2 (
4λ+

√
9− 8λ− 3

)
(√

9− 8λ+ 3
)2 (
−4λ+

√
9− 8λ+ 3

) . (13)

The second is the ratio of M2
b and M2. This is given

by

M2
b

M2
=

4λ

9− 8λ+ 3
√

9− 8λ
. (14)

Both of these ratios depend solely on λ rather than any
other combination of the potential parameters.

Furthermore, we can reparameterize the scalar field as
ψ = φ/φb and rewrite the coordinates x′µ = xµM in
order to obtain the following equation of motion,

0 = M2φb

�′ψ −
ψ − 3

(√
9− 8λ+ 3

)
4λ

ψ2 +
9− 4λ+ 3

√
9− 8λ

4λ
ψ3

 , (15)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
φ/φb
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−0.5
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0.5

1.0

V
(φ

)/
|∆
V
|

λ = 0.95

λ = 0.85

λ = 0.75

λ = 0.65

λ = 0.55

λ = 0.45

λ = 0.35

λ = 0.25

λ = 0.15

λ = 0.05

FIG. 1. The effect on the potential due to the variation of
λ.

where �′ =
∂

∂x′µ
∂

∂x′µ
. Clearly the dynamics here depend

only on the value of λ.

In the limit of λ → 1 the minima of the potential
become degenerate, and this corresponds to the thin wall
limit of our potential. In the limit λ → 0 the potential
barrier becomes infinitesimally small in comparison to
the potential energy difference. We call this the thick
wall limit. To see how varying λ affects the scalar field
potential, see Fig. 1.

By varying λ between one and zero we are able to fully
explore the physically meaningful parameter space of our
potential.

A. Nucleation

The probability of nucleating a bubble per unit volume
per unit time p(t) is given by [32]

p(t) = pn exp(−S4), (16)

where S4 is the Euclidean action,

S4(φ) =

∫
d4x

[
1

2

(
dφ

dt

)2

+
1

2
(∇φ)

2
+ V (φ)

]
. (17)

In the previous work Ref. [64], several nucleation sce-
narios were investigated. These were denoted exponential
nucleation, simultaneous nucleation, and constant nucle-
ation.

An exponential nucleation rate can occur if there is
a change in temperature or background field. Then the
Euclidean action decreases slowly in time resulting in the
following nucleation probability

p(t) = pf exp[β(t− tf )], (18)

where β = − d ln p(t)/dt|tf and tf is the time at which

the fraction of the universe in the symmetric phase is
h(tf ) = 1/e [71].

For an exponential nucleation rate, the number density
of bubble nucleation sites at the end of the transition can
be shown to be

nb =
1

8π

β3

v3
w

, (19)

where for a vacuum transition the wall velocity vw can
be approximated to unity.

Simultaneous nucleation can occur if there is a mini-
mum in S4(t) which is reached at time t0 before a tran-
sition completes. Then the probability of nucleating a
bubble per unit volume evolves as

p(t) = p0 exp[− 1
2β

2
2(t− t0)2], (20)
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where β2 =
√
S′′(t0). Nucleation is then concentrated

around time t0 [72]. In the limit of β2 →∞, the number
density of nucleation sites tends towards

nb =
√

2π
p0

β2
. (21)

A constant nucleation rate can occur if S4(t) tends to
a constant, see e.g Ref. [73]. The nucleation probability
in this scenario is then simply

p(t) = pc. (22)

with the nucleation site number density given by

nb =
1

4

(
3

π

)1/4

Γ

(
1

4

)(
pc

vw

)3/4

. (23)

An important parameter for the gravitational wave
power spectrum is the mean separation between bubble
centres at the end of the transition, R∗. This is simply
given by

R∗ =
1

n
1/3
b

. (24)

B. Critical profile

During a vacuum phase transition, the critical profile
corresponds to the most likely field configuration for a
nucleated bubble. The profile of a vacuum bubble is in-
variant under four-dimensional Euclidean rotations [31],
i.e it obeys an O(4) symmetry. We can therefore express
the field profile φ(ρ) as a function of a single variable

ρ =
√
τ2 + r2 with r the spatial radius from the bubble

centre and τ the Euclidean time.
In the thin wall limit the scalar field profile of the crit-

ical bubble is given by

φc(r) =
φb

2

[
1− tanh

(
r −Rtw

c

ltww

)]
, (25)

where ltww is thickness of the critical bubble wall in the
thin wall limit,

ltww =
2

Mb
, (26)

and Rtw
c is the radius of the critical bubble,

Rtw
c =

3σtw

ρvac
, (27)

=
12

M

(
M4

b

M4
− 1

) (28)

Here

σtw =
M3

3λ
, (29)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
ρM

0.0

0.2

0.4

0.6

0.8

1.0

φ
/φ

b

λ = 0.95

λ = 0.85

λ = 0.75

λ = 0.65

λ = 0.55

λ = 0.45

λ = 0.35

λ = 0.25

λ = 0.15

λ = 0.05

FIG. 2. The critical profile for a series of potentials with
different values of λ.

is interpreted as the surface tension of the bubble. Note
that both the combination ltww M and Rtw

c M are con-
structed from quantities that depend only on λ.

Taking inspiration from the thin wall approximation,
we can define the “wall” of the bubble to correspond to
the section of the field profile between rin(t) and rout(t)
where φ(t, rin) = φ0(1− tanh (−1/2))/2 and φ(t, rout) =
φ0(1 − tanh (1/2))/2. Here φ0 is the value of the scalar
field at the centre of the critical bubble, φ0 = φ(0). We
then say that the radius of the bubble rmid(t) is defined
by φ(t, rmid) = φ0/2.

For potentials with λ close to 1, we find that the profile
of the critical bubble is close to a hyperbolic tangent,
as expected from Eq. 25. At the centre of the critical
bubble the field sits very close to φb. As λ is reduced,
we see a deviation of the critical bubble radius, Rc and
initial wall width, lw, from those predicted in the thin
wall limit. The lower the value of λ, the smaller the
critical radius of the bubble becomes in comparison to
the thickness of the wall. For small values of λ, the field
profile can be approximated by a Gaussian, and the value
of φ0 decreases such that as λ→ 0, we find that φ0/φb →
0. We plot the critical bubble profile for a series of λ
in Fig. 2. Note that with λ fixed, the profile φ/φb as a
function of ρM is invariant under changes of the potential
parameters.

C. Expansion

The energetically favourable state inside the bubble
exerts an outward pressure on the bubble wall. Bubbles
with the critical profile will begin to expand due to the
pressure difference between the false and true vacuum
states.

As bubbles with high λ expand, the field profile inside
the bubble remains close to φb. In the frame in which
the center of the bubble is at rest, the bubble wall will
become thinner due to Lorentz contraction. Thick wall



6

bubbles have substantially different dynamics. For these
the field at the centre of the bubble will move towards φb

from its initial value of φ0 as the bubble starts to expand.
It will then proceed to oscillate around φb, resulting in
outgoing waves of the scalar field following the bubble
wall. We depict this behaviour for a thin wall bubble
and a thick wall bubble in Fig. 3.

For times t > 0 and for r ≥ t, the profile of the bub-
ble should be given by φ(t, r) = φ(

√
r2 − t2). Therefore

rout(t) =
√
ρ2

out + t2 and rin(t) =
√
ρ2

in + t2. We define
the Lorentz factor of the bubble wall by measuring how
much the wall contracts, γ(t) = lw(0)/lw(t). This can be
expressed as

γ(t) =
ρout − ρin√

ρ2
out + t2 −

√
ρ2

in + t2
. (30)

We show how γ increases for a series of λ at early times
in Fig. 4. It can be clearly seen that as λ→ 0, where ρin

and ρout take smaller values, γ grows more rapidly.

D. Collision

When two true vacuum bubbles collide, the scalar field
begins to oscillate in the region where the bubbles over-
lap. During this oscillation the scalar field will rebound
towards the false vacuum [65, 68]. For thin wall poten-
tials with λ closer to 1, the scalar field in the overlap
region can rebound over the potential barrier and return
to the false vacuum. This corresponds to the trapping
discussed in Ref. [69]. On the other hand, for thick wall
potentials with smaller λ, the scalar field in the over-
lap region will instead oscillate around the true vacuum
state. According to Ref. [69], this is where we would
expect the bulk flow model to apply. The value of λ
separating these behaviours has been demonstrated to
depend on γ, see Fig. 13 of Ref. [69] for more details. We
show both these behaviours in Fig. 5. In both cases, the
oscillations produce scalar field radiation that is emitted
at close to the speed of light. Neither of these effects is ac-
counted for in the envelope approximation which instead
assumes that all shear-stress disappears in the overlap
region.

For all values of λ, the scalar field will continue to
oscillate around the true vacuum after the true vacuum
bubbles have finished colliding. It is known that the ther-
malisation of scalar fields is a long-lasting process in the
absence of other interactions [74–76].

III. GRAVITATIONAL WAVES FROM A
VACUUM TRANSITION

To calculate the gravitational-wave power spectrum,
we need to find the transverse traceless (TT) metric per-
turbations hTTij where

�hTTij = −16πGTTTij , (31)

and TTTij is the transverse traceless projection of the
energy-momentum tensor,

Tµν = ∂µφ∂νφ− ηµν
(

1

2
(∂φ)2 + V (φ)

)
, (32)

where ηµν is the Minkowski metric. The energy density
in the gravitational waves can be defined as

ρgw(x, t) =
1

64πG

(
ḣTTij ḣ

TT
ij + (∇hTTij )(∇hTTij )

)
, (33)

Note that an average over many wavelengths and periods
may be needed in order to reduce fluctuations in this
quantity. In general, while gravitational waves are being
sourced 〈(ḣTTij )2〉 6= 〈(∇hTTij )2〉.

We introduce an auxiliary tensor uij which satisfies
[77]

�uij = −16πG(∂iφ)(∂jφ). (34)

To obtain hTTij we use the projector Λij,lm on uij in mo-
mentum space,

hTTij (k, t) = Λij,lm(k)ulm(k, t), (35)

where

Λij,lm(k) = Pim(k)Pjl(k)− 1

2
Pij(k)Plm(k), (36)

and

Pij(k) = δij − k̂ik̂j . (37)

We then define the spectral density of the metric pertur-
bations as

〈hTTij (k, t)hTTij (k′, t)〉 = Ph(k, t)(2π)3δ(k + k′). (38)

Therefore, the power spectrum of gravitational wave en-
ergy density is

dρgw

dln(k)
=

1

64πG

k3

2π2

(
Pḣ(k, t) + k2Ph(k, t)

)
, (39)

and by dividing through by the critical energy density ρc
we obtain

dΩgw

dln(k)
=

1

64πGρc

k3

2π2

(
Pḣ(k, t) + k2Ph(k, t)

)
, (40)

which we refer to as the gravitational-wave power spec-
trum.

A. Collision phase

Upon collision, the spherical symmetry of isolated bub-
bles is broken, and gravitational waves become sourced
by the shear-stress located at the bubble walls. During
the collision phase, gravitational waves are generated at
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FIG. 3. Field profiles of bubbles when the bubble walls have accelerated up to various γ factors. Note that γ = 1 corresponds
to the critical bubble profile.
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FIG. 4. Evolution of γ as defined in Eq. 30 for a series of
values of λ.

large wavelengths associated with the scale of the bubble
sizes at collision time.

This period has been studied both using lattice field
theory simulations [63, 64] and using simplifying assump-
tions such as the envelope approximation [41, 43, 44] and
bulk flow model [44, 46].

The envelope approximation [41] is based on two key
assumptions. The first is that the shear-stress in the
scalar field is entirely located in an infinitesimally thin
shell located at the bubble wall. The second approx-
imation is that when bubbles collide, the shear-stress
is removed in the overlap region. Hence, to compute
the transverse traceless shear-stress sourcing the gravi-
tational waves, it is sufficient to consider the envelope
from expanding bubbles. The gravitational-wave spec-
trum has been calculated for exponential nucleation rates
using numerical simulations in Refs. [41, 43, 44].

The gravitational-wave power spectrum is well approx-

imated by a broken power law

dΩenv
gw

dln(k)
= Ωenv

p

(a+ b)k̃bka

bk̃(a+b) + ak(a+b)
, (41)

with power law exponents a and b, peak amplitude Ωenv
p

and peak wavenumber k̃.
For a vacuum phase transition where the wall velocity

approaches the speed of light, the power law exponents
were found to be a = 2.9 and b = 0.9 [44]. The peak
amplitude was given by

Ωenv
p ' 4.7× 10−2

(
H∗
β

)2

Ω2
vac, (42)

where Ωvac = ρvac/ρc is the vacuum energy density pa-
rameter. The peak wavenumber was estimated to be

k̃/β ' 1.07. (43)

Note that the value of R∗ that is expected for a vacuum
transition with exponential nucleation rate is

R∗ =
(8π)1/3

β
. (44)

Analytical investigations using the envelope approx-
imation [45], have shown that the two-point correla-
tor of the energy-momentum tensor can be expressed
as a 1-dimensional integral. This then results in the
gravitational-wave power spectrum being given by a bro-
ken power law with exponents a = 3 and b = 1.

In the bulk flow model, the envelope approximation is
modified [44, 46]. The shear-stress during the transition
is still considered to be located in an infinitesimally thin
shell located at the bubble wall. However, in the bulk
flow model, the shear-stress in the bubble wall is not as-
sumed to disappear upon collision. Instead, the bubble
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FIG. 5. The collision of two bubbles of the true vacuum plotted for a thin wall (a) and thick wall (b) potential. The x axis
corresponds to the line joining the two bubble centres, with D being the separation between bubbles. On the y axis we plot
the time t since the bubbles were nucleated. For both these simulations, the bubbles collide when the Lorentz factors of the
bubble walls are γ = 4.0.

wall continues to propagate but is no longer driven by the
latent heat of the transition. The bubble wall energy den-
sity per surface element then decays as e−(t−tcoll)/τ/R2,
where R refers to the bubble radius and tcoll the time of
collision. The value of τ indicates the typical damping
timescale of the wall and should be determined from the
particle physics model. The value of τ = 0 corresponds to
the envelope approximation, whereas τ =∞ corresponds
to free propagation of the wall after collision. Analytical
treatments for ultra-relativistic bubbles have shown that
as τ → ∞, the IR power law in the gravitational-wave
power spectrum becomes shallower than k3, tending to-
wards k1 [46].

The gravitational-wave power spectrum in the bulk
flow model with τ = ∞ and an exponential nucle-
ation rate has also been studied with numerical simu-
lations [44]. The resulting fit for ultra-relativistic wall
velocities was given in the same form as Eq. 41 with
power law exponents a = 0.9 and b = 2.1. The peak
amplitude was given as

Ωbf
p ' 6.4× 10−2

(
H∗
β

)2

Ω2
vac, (45)

and peak wave number

k̃/β ' 0.809. (46)

In Ref. [64], full lattice field theory simulations of col-
liding vacuum bubbles were conducted. The authors sim-
ulated the gravitational-wave power spectrum produced
by colliding thin-wall bubbles, with λ ≥ 0.84. The bub-
bles were separated on average by a distance R∗, which
is then the typical diameter of bubbles when they col-
lide. The value of R∗ in each simulation was chosen so
that the Lorentz factor of a bubble with diameter R∗ was
γ∗ = 4. A number of different nucleation scenarios were
investigated, which did not have a significant effect on
the resulting spectrum.

In the aforementioned work, a fit for the spectrum re-
sulting from bubble collisions was provided in the form

dΩfit
gw

dlnk
= Ωfit

p

(a+ b)ck̃bka

(bk̃(a+b)/c + ak(a+b)/c)c
, (47)

where the value of a was fixed to a = 3. From the simu-
lations conducted it was found that

Ωfit
p = (3.22± 0.04)× 10−3 (H∗R∗Ωvac)2, (48)

k̃R∗ = 3.20± 0.04, (49)

b = 1.51± 0.04, c = 2.18± 0.15, (50)

with H∗ the Hubble parameter at the time of the
transition. This corresponds to a slightly reduced to-
tal gravitational-wave power compared to the envelope
approximation, and furthermore a slightly steeper UV
power law. It was suggested that the deviation from the
envelope approximation was due to the behaviour of the
scalar field in the overlap regions. While the envelope ap-
proximation assumes that the shear-stress in the bubble
wall disappears upon collision, lattice field theory simula-
tions indicate that the scalar field oscillates in the overlap
region during bubble collisions.

The fits provided for the gravitational-wave power
spectrum arising from the bulk flow model and the en-
velope approximation are both taken from simulations
using an exponential nucleation rate. Caution should
be used when comparing them to the simulations in
this paper which correspond to simultaneous nucleation
scenario. While the gravitational-wave power spectrum
from lattice simulations did not show a strong depen-
dence on the nucleation scenario in Ref. [64], it has been
shown that the envelope approximation peak frequency
can be shifted by up to a factor of ∼ 1.5 and the peak am-
plitude by a factor of ∼ 3 when changing between expo-
nential and simultaneous nucleation [51]. It has also been
demonstrated that varying the nucleation rate in the en-
velope approximation can affect the shape of the power
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spectrum around the peak, with simultaneous nucleation
creating a sharper peak than exponential nucleation [72].

In this work we intend to extend the results in Ref. [64]
to potentials with much smaller λ. The behaviour of the
scalar field in the overlap region during bubble collisions
varies depending on the value of λ, as described in Sec-
tion II D. If it is true that the deviation from the envelope
approximation corresponds to the structure in overlap re-
gions, the form of the power spectrum may depend on the
value of λ. We will pay particular attention to whether
there is a change in the total gravitational-wave power or
the UV broken power law exponent due to a variation in
λ.

B. Oscillation phase

Once the bubbles have finished colliding in a vacuum
first-order phase transition, the scalar field is left in an
excited state. In this state, φ oscillates around the true
vacuum value, φb, and as such we refer to this period
as the oscillation phase. Eventually, these oscillations
are expected to subside as the scalar field thermalises
and Hubble friction damps away gradients in the field.
In previous lattice field theory simulations, it has been
shown that gravitational waves continue to be sourced
during this period [63, 64].

In Ref. [63], this phase was referred to as a coalescence
phase. It was posited that the gravitational waves pro-
duced during this period would dominate over those pro-
duced from bubble collisions, and will furthermore shift
the peak of the power spectrum towards the UV. How-
ever, in Ref. [64] it was shown that the peak frequency of
the gravitational-wave power spectrum generated during
this phase was associated with the microphysics of the
system, namely lw, rather than the cosmological scales
that correspond to R∗. When the separation of these two
scales was extrapolated from the simulations up to real-
istic values, the gravitational-wave power of the collision
phase is expected to dominate. Furthermore, the peak
frequency corresponding to the oscillation phase would be
firmly out of range of any upcoming gravitational-wave
detectors for any realistic early universe phase transition.

In this study we aim to resolve whether the result found
in Ref. [64] extends to a wider range of λ, or whether the
gravitational-wave power or peak frequency changes for
thick wall bubbles.

IV. METHODS

To conduct our simulations in this paper, we employ
an updated version of the code used in Ref. [64]. This
is a 3D classical lattice field theory code built using the
LATfield2 library in C++ [78].

For each simulation, the fields are evolved on a lattice
of L3 points using a Crank-Nicholson leapfrog algorithm.

We impose periodic boundary conditions, which corre-
sponds to the approximation that the universe is isotropic
and homogeneous at the scale of the simulation box. We
use a 7 point stencil for the Laplacian operator. We pick
an appropriate lattice spacing ∆x and fix the timestep
∆t = ∆x/5. The final simulation time is tfin.

To understand how the gravitational-wave power spec-
trum changes between thin and thick wall bubbles, we
perform simulations with four different values of λ.
These, along with various corresponding parameters de-
rived from the potential, are given in Table I.

When choosing a lattice spacing, we perform a series
of convergence tests for each set of simulations, which
we detail in App. A. For the largest simulation for each
choice of λ we perform a low, medium and high resolution
run with a factor of two smaller lattice spacing for each
increase in resolution. The lattice spacing for the high
resolution run is then used in the rest of the paper. For
the gravitational wave power spectrum we take the un-
certainty for each bin to be given by the difference of the
power found in the high and medium resolution run. For
the number of bubbles used in the largest simulations, the
uncertainty in each bin arising from performing multiple
realisations is very small for all but the most infrared
modes, and can be neglected compared to the lattice un-
certainty. For more information on the convergence rate,
see App. A.

To compare our choice of potential parameters with
the quartic potential in Ref. [69], we use the conversion
between λ and ε given below,

ε =

(√
9− 8λ− 3

)2 (
4λ+

√
9− 8λ− 3

)
8(9− 8λ)3/2

. (51)

We list the corresponding values of ε for each λ in Table I.
In Fig. 13 of Ref. [69] it can be seen that trapping is
exhibited for ε & 0.6 when γ ' 4. From this we infer
that λ = 0.84 and λ = 0.50 exhibit trapping behaviour
for γ = 4.0, whereas λ = 0.18 and λ = 0.07 do not.

In Ref. [64] a range of different nucleation rates were
used. The nucleation rate did not appear to have a de-
tectable effect on the gravitational-wave power spectrum.
To limit the computational cost, we choose to study only
simultaneous nucleation, where we nucleate all bubbles
at the start of the simulation on the zeroth timestep.
Bubbles are nucleated randomly in the symmetric phase,
providing that for all n < N , the distance between the
Nth and nth bubble centres rn obeys the following rela-
tion

rsep
n > Rc +

√
R2

c + (t− tn)2, (52)

where tn is the time since nucleation of the nth bubble.
For simultaneous nucleation tn = 0 for all n. We nucleate
a total of Nb bubbles in each simulation.

Bubbles are nucleated into the simulation with the cor-
responding critical profile. The critical profile is found by
using a shooting algorithm to determine the bounce so-
lution for a given potential.
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λ RcM lwM Rtw
c M ltww M φ0/φb φmax/φb Vmax/ρvac M

2
b/M

2 ε
0.84 7.15 1.71 4.04 1.42 0.981 0.334 1.87×10−1 1.99 1.6×10−1

0.50 2.07 1.24 0.36 0.83 0.570 0.146 8.18×10−3 5.84 8.1×10−3

0.18 1.16 0.89 0.026 0.43 0.183 0.045 1.90×10−4 21.46 1.9×10−4

0.07 0.996 0.80 0.0031 0.25 0.066 0.016 8.21×10−6 61.96 8.2×10−6

TABLE I. The values of λ used in our simulations. For each
of these we give the critical radii, Rc, and wall thicknesses,
lw, that are used in our simulations, as well as their estimates
in the thin wall approximation. We also supply the value of
the scalar field at the centre of the bubble, φ0, and the value
of scalar field at the peak of the potential barrier, φmax, both
in terms of the broken phase value, φb. We also give the ratio
of the height of the potential barrier, Vmax, compared to the
potential energy difference, ρvac, and the mass of the field
in the broken phase, Mb, compared to the symmetric phase
mass, M . Finally we give the corresponding value of ε for
comparison with the quartic potential in Ref. [69].

The average separation between bubbles is R∗ =

(V/Nb)
1/3

, where V = (L∆x)
3

is the volume of the simu-
lation. When bubbles collide, they will on average have a
diameter of R∗, and so this quantity sets the length scale
of the peak of the gravitational-wave power spectrum. In
our simulations, we choose R∗ such that the value of the
Lorentz factor for a bubble of diameter R∗ is γ∗ = 4.

Once γ∗ and λ are fixed, the combination R∗Mb is also
determined uniquely. This is important as R∗Mb effec-
tively dictates the separation between the length scales
of the physics from bubble collisions and the microscopic
physics from oscillations about the true vacuum. In a
true vacuum phase transition, these scales would be sep-
arated by many orders of magnitude as γ∗ → ∞, but
achieving this separation of scales numerically is not pos-
sible.

To supplement our 3D simulations, we also perform a
series of spherically symmetric 1D simulations of isolated
bubbles. This enables us to study the effect of the lattice
on the evolution of rin, rout, rmid and γ. This analysis is
provided in Appendix A. We evaluate γ∗ for an isolated
bubble in both the 1D code and 3D code and list these
values in Tables II and III.

We also perform a series of simulations in order to un-
derstand the gravitational waves sourced by the oscil-
lation phase of the scalar field. To do this we perform
long-lasting simulations where the evolution of the metric
perturbations is only turned on after the phase transition
has completed, around t/R∗ = 2.0. We list the simula-
tions that we conduct to understand the gravitational
waves sourced by the collision phase in Table II, and for
the oscillation phase in Table III.

The simulations studying the collision phase all finish
at t/R∗ = 8.0, with the exception of the largest simu-
lation with λ = 0.84 and Nb = 512 which terminates
at t/R∗ = 7.0 due to time limits imposed by the com-
puting facilities utilised. The smaller but longer lasting
simulations studying the oscillation phase terminate at
t/R∗ = 40.

λ Nb R∗Mb tfin/R∗ L ∆xM γ∗ γ∗,1D γ∗,3D

0.84 8 80.66 8.0 1200 0.0952 4.000 3.958 3.984
0.84 64 80.66 8.0 2400 0.0952 4.000 3.958 3.984
0.84 512 80.66 7.0 4800 0.0952 4.000 3.958 3.984
0.50 8 40.53 8.0 800 0.0419 4.000 3.972 3.988
0.50 64 40.53 8.0 1600 0.0419 4.000 3.972 3.988
0.50 512 40.53 8.0 3200 0.0419 4.000 3.972 3.988
0.18 8 44.69 8.0 400 0.0482 4.000 3.927 3.966
0.18 64 44.69 8.0 800 0.0482 4.000 3.927 3.966
0.18 512 44.69 8.0 1600 0.0482 4.000 3.927 3.966
0.18 4096 44.69 8.0 3200 0.0482 4.000 3.927 3.966
0.07 8 65.54 8.0 800 0.0482 4.000 4.021 4.004
0.07 64 65.54 8.0 1600 0.0482 4.000 4.021 4.004
0.07 512 65.54 8.0 3200 0.0482 4.000 4.021 4.004

TABLE II. Parameters of the simultaneous nucleation simu-
lations used within this paper. Listed here for each run are
the values of λ, number of bubbles Nb, average bubble sepa-
ration R∗, final simulation time tfin, number of lattice points
L3, lattice spacing ∆x, typical Lorentz factor at collision γ∗,
the effective γ∗ as found on the lattice in a 1D simulation
γ∗,1D and in a 3D simulation γ∗,3D. For details of the poten-
tial parameters for each λ, see Table I. Not given here are
simulation runs where the metric perturbations are turned on
after the bubbles have finished colliding, see Table III.

λ Nb R∗Mb tfin/R∗ L ∆xM γ∗ γ∗,1D γ∗,3D

0.84 8 80.66 40.0 1200 0.0952 4.000 3.958 3.984
0.50 8 40.53 40.0 800 0.0419 4.000 3.972 3.988
0.18 8 44.69 40.0 400 0.0482 4.000 3.927 3.966
0.07 8 65.54 40.0 800 0.0482 4.000 4.021 4.004

TABLE III. Parameters of the simultaneous nucleation runs
where we turn the evolution of metric perturbations on well
after the bubbles have finished colliding at t/R∗ = 2.5. This
allows us to study the gravitational-wave signal produced
from the oscillation phase.

V. RESULTS: SCALAR FIELD

During a vacuum first-order phase transition, the
scalar field undergoes several phases of evolution. First
occurs the nucleation and expansion of bubbles. Next,
the bubbles begin to collide and the field oscillates in
the overlap regions. Finally, the bubbles finish collid-
ing, and the scalar field oscillates around φb as the field
thermalises.

It is useful to investigate the evolution of the total,
kinetic, gradient and potential energy densities of the
scalar field. We show this for several simulations with a
range of λ and Nb = 64 in Fig. 6. There appears to be
little variation in the mean energy densities for different
λ, nor any consistent trend as it changes. By tracking
the evolution of ρV we can see that in all cases the bub-
bles finish colliding shortly after t/R∗ = 1. Around this
time the kinetic, gradient and potential energy densities
settle to constant values. As ρV does not tend to zero at
the end of the simulation, we know that the scalar field
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FIG. 6. The evolution of mean energy densities correspond-
ing to the scalar field for simulations with varying λ.

continues in the oscillation phase after the bubbles finish
colliding. The scalar field does not thermalise during the
duration of our simulations. We can also see that the to-
tal energy density in the scalar field ρφ is well conserved,
with minimal energy being lost to the lattice.

Further insight into the behaviour of the scalar field
can be deduced from examining slices through the sim-
ulation box. In Appendix B we show slices of the scalar
field for two simulations with λ = 0.07 and λ = 0.84 and
Nb = 64. We plot these slices at three different times,
t/R∗ ∈ {0.5, 1.0, 4.0}. These correspond to early on in
the bubble collision phase, towards the end of this phase
where most bubbles have finished colliding, and much
later during the oscillation phase. These simulation slices
confirm the behaviour outlined in Section II D. When λ is
small, the expanding scalar field profile oscillates around
φb and the rebound in the overlap region towards the
symmetric phase is minimal. For larger λ, the rebound
can be quite dramatic.

In Fig. 7 we show the power spectrum of the scalar
field, Pφ for two simulations with λ = 0.84 and λ = 0.07.
We see that at early times while the bubble is expanding,
the power spectrum is peaked around the scale of R∗. At
later times, as the scalar field begins to oscillate, the peak
wavenumber for the power spectrum increases, moving
further towards the length scale associated with Mb. It
is interesting to note that the decay of power in the IR is
not as rapid as one might initially expect. Although the
bubbles have finished colliding around t = R∗, the power
in the scalar field in the IR decays slower, reaching a
minimum only after several t/R∗.

When trying to understand how the gradients in the
scalar field source gravitational waves, it is useful to fol-
low the evolution of TTTij . The transverse traceless shear-
stress tells us about the instantaneous source of gravita-
tional waves at any given point in the simulation. By
examining slices of the modulus of the transverse trace-

less shear-stress,
√
TTTij TTTij , we are able to determine

also the location where gravitational waves are being
sourced. We show this alongside the scalar field slices

in Appendix B.
From the slices, we can see that, contrary to the pre-

diction of the envelope approximation, there is substan-
tial shear-stress in the overlap region of collided bubbles.
This appears to be particularly true for potentials with
smaller λ. Furthermore, even after the final bubbles have
finished colliding, waves of shear-stress previously asso-
ciated with the bubble collisions propagate outward with
length scales of R∗ or larger. This shows some similar-
ity to that which is predicted in the bulk flow model.
At later times the shear stress appears to have power on
much smaller length scales.

It is useful to study the power spectrum of the trans-
verse traceless shear-stress, PT . We plot the evolution of
PT for two simulations with λ = 0.07 and λ = 0.84 in
Fig. 8. From PT , we can see that as the transition pro-
gresses, the shear-stress starts to grow as bubbles start to
collide. Initially, there is substantial power in the IR, cor-
responding to typical length scales of the bubbles when
they collide. At later times the power shifts more to-
wards the UV, with a peak developing close to the scale
associated with Mb. This occurs as the scalar field has
entered the oscillation phase of the transition.

Interestingly, we see that the power in the IR does not
disappear immediately after the bubbles finish colliding,
around t/R∗ = 1. Instead the power slowly decreases
for several t/R∗. This appears to agree with what we

saw in the slices of
√
TTTij TTTij in which the shear-stress

associated with the bubble wall and collision regions con-
tinued to propagate for some time after the bubbles fin-
ished colliding, giving further support to the bulk flow
model. Unfortunately, we cannot resolve a sufficient dis-
tance into the IR to see any fall off of the shear-stress
corresponding to the causal interval.

From our smaller, but much longer simulations out-
lined in Table III we can show how PT behaves at very
late times. We plot the evolution of PT up to t/R∗ = 40
for two simulations with Nb = 8 and for λ = 0.84 and
λ = 0.07 in Fig. 9. It can clearly be seen that at very
late times, the power spectrum settles into a shape with
a characteristic power law of k3 rising from the IR. In our
simulations, we do not allow for the decay of the scalar
field into other particles, and we also do not account for
the damping of oscillations of the scalar field due to ex-
pansion. Both of these would reduce the power in TTTij .
It is still interesting to note however that the non-linear
behaviour in the scalar field continues to source gravita-
tional waves long after the collisions phase terminates.

VI. RESULTS: GRAVITATIONAL WAVES

We measure the gravitational-wave power spectrum
produced during each simulation. We compare the result-
ing power spectra with the fit predicted from the previ-
ous work in Ref. [64], as well as the envelope approxima-
tion and bulk flow model fits using an exponential nucle-
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FIG. 7. The power spectrum of the scalar field Pφ. In each plot darker shades indicate later times. The vertical black dotted
line shows the location of k = 2π/R∗, whereas the vertical dashed coloured line shows the location of k = Mb.
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indicate later times. The vertical black dotted line shows the location of k = 2π/R∗, whereas the vertical dashed coloured line
shows the location of k = Mb. The solid black line shows a power law of k3.
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ation rate, as detailed in Section III A. In Fig. 10 we plot
four snapshots showing the evolution of the gravitational-
wave power spectrum (Eq. 40) for the largest simulations
performed for each λ. These simulations are listed in Ta-
ble II. The uncertainty for each power spectrum bin is
given by the difference between its value in our high and
medium resolution runs.

We see that early on in the collision phase at t/R∗ =
0.6, the power spectrum is growing with a peak at
k ≈ 2π/R∗. At early times, for all λ there is a character-
istic infrared power law in k with exponent ∼ 3. Later
in the collision phase at t/R∗ = 1.6, most of the bubbles
have finished colliding, and we see that for all λ the peak
has shifted towards lower values of k, aligning with the
peak locations predicted in Ref. [64] and earlier studies
of the envelope approximation. The peak gravitational-
wave power at this point seems very close to that pre-
dicted for an exponential nucleation rate in the envelope
approximation for all λ. With our limited resolution of
the IR power law we see that it appears to still be roughly
consistent with an exponent of ∼ 3. The UV power laws
vary between different λ, with thicker potentials having
steeper exponents. At later times in the collision phase,
we see a rise in the first few bins for our gravitational-
wave power spectra, consistent with the slow decay of the
IR power in PT shown in Fig. 8. The limited range we
have in the IR makes it difficult to be conclusive about
this. The peak location appears to remain fixed. We
also see for each simulation the steady growth of a bump
in the power spectrum towards the UV, associated with
the length scale of k ∼ Mb, consistent with that seen in
Ref. [64].

We first turn our attention to understanding the evo-
lution of the UV bump in the power spectrum. This is
made up of gravitational waves sourced during the oscil-
lation phase, where the scalar field is oscillating around
the scale of Mb. To see the shape of the power spectra
produced from these oscillations, we conduct a series of
long-lasting simulations where we only turn on the evolu-
tion of the metric perturbations at t/R∗ = 2.5, long after
the last bubbles have collided. These simulation runs are
listed in Table III.

We plot the resulting power spectra for λ = 0.84 and
λ = 0.07 in Fig. 11. We see that for both λ the power
spectra are characterised by a plateau in the IR, pre-
sumably turning over at wavelengths larger than we can
access within our simulations, and a growing bump at a
length scale associated with Mb.

We can also use these simulations to calculate the
growth rate of Ωgw during the oscillation phase. We plot
Ωgw for our late time simulations in Fig. 12. From this
plot, we can see that the growth rate is fairly similar for
all λ. The rate appears to be slower than linear. Note
that the growth of gravitational waves shown in our sim-
ulations is in effect an upper bound, as in reality other
effects will come into play such as the decay of the scalar
field into other particles and damping of the scalar field
gradients due to the effects of expansion.

We find that the calculation of the growth of Ωgw dur-

ing the oscillation phase is similar for all λ to that found
in Ref. [64]. Therefore, upon extrapolation to a realistic
separation of scales, the gravitational wave energy den-
sity will be dominated by the production in the collision
phase providing Mb � mPl, with mPl the Plank mass.

A. Fitting

To attempt to distinguish between the resulting power
spectra for different λ we calculate fits for the spectrum.
We do this for the largest simulation performed for each
λ. We choose to fit according to the following function,

dΩgw

dln(k)
= Ω̃GW

(a+ b)k̃bka

bk̃(a+b) + ak(a+b)
, (53)

where a, b, k̃ and Ω̃GW are the fitting parameters. The
fit is calculated using the difference in power between
the high resolution and medium resolution runs as the
one sigma uncertainty for each bin.

We are able to see from Fig. 10 that there appears to be
some indication of time dependence in the power spectra,
even after the bubbles have finished colliding. This is
also indicated due to the evolution of PT shown in Fig.8.
We, therefore, choose to perform our fit throughout the
simulation and track how the fitting parameters evolve.
We fit for values of k up to k = Mb/2 in order to avoid
the UV power law being affected by the growing bump
associated with oscillations in the scalar field about the
mass scale.

In Fig. 13, we plot how all four fitting parameters a, b,
k̃ and Ω̃GW evolve for the largest simulation for each λ
in Table II. We include lines to illustrate the predictions
for each parameter by the envelope approximation and
by the bulk flow model.

Note that the envelope and bulk flow predictions are
taken from simulations with an exponential nucleation
rate, whereas our simulations use simultaneous nucle-
ation. This could result in a discrepancy between the
peak frequency and amplitude [51], though the power
law exponents are not typically affected by the nucle-
ation scenario. In previous lattice simulations conducted
in Ref. [64], no strong dependence on the nucleation rate
was seen in the peak amplitude or frequency.

At early times the peak frequency is slightly more than
k̃ ∼ 2π/R∗, but as the bubbles finish colliding this shifts

to smaller values, closer to k̃ ∼ π/R∗. This behaviour
is consistent across all λ. In all cases, the final value
of k̃ is larger than predicted for an exponential rate in
the bulk flow model and slightly larger than the envelope
approximation prediction.

The peak gravitational-wave amplitude is obtained
around the time of t/R∗ = 1.5. At later times, the peak
amplitude drops as the power spectrum becomes more
broad. We observe that there is some deviation between
λ with the peak gravitational-wave power larger for the
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FIG. 10. Evolution of the gravitational-wave power spectrum for the largest simulations performed for each λ. Each simulation
uses a simultaneous nucleation scenario, and the Lorentz factor of the wall of a bubble with diameter R∗ is γ∗ = 4.0. We plot
the power spectra at four different times, early collision phase (a), late collision phase (b), early oscillation phase (c), and later
in the oscillation phase (d). The black dashed line gives the result from the envelope approximation [44], the black dash-dot
line gives the prediction from the bulk flow model [44], and the solid black line indicates the previous fit provided in Ref. [64].
The envelope approximation and bulk flow model fits are for an exponential nucleation rate. The vertical dotted line gives
the location of k = 2π/R∗, whereas the coloured dashed lines indicate where k = Mb. For each simulation we shade a region
corresponding to ± the difference in power between our high and medium resolution runs. At high wavenumbers the signal
is overwhelmed by noise arising from single-precision floating point numerical errors. This noise is identified by comparing a
smaller single-precision and double-precision run. We therefore apply a cut off in the UV at k = π/2∆x.
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line represents a linear fit to the data with slope
dΩgw

dt
∼

0.28(H∗Ωvac/Mb)2/R∗.

two thin wall potentials, and smaller for the two thick
wall potentials. This effect is overall quite small, and
Ω̃gw is the fitting parameter most sensitive to lattice ef-
fects, see App. A. The peak amplitude is smaller than
that predicted for an exponential nucleation rate in the
envelope approximation, which in turn is smaller than
the amplitude predicted in the bulk flow model.

We see that at early times, for all λ, the IR power law
is close to a white noise spectrum of k3. After the bub-
bles finish colliding, the IR power law decreases. This
indicates that gravitational waves are being sourced on
scales larger than R∗. This agrees with what we have
seen in both PT and Fig. 10. There is some indication
of the IR power law exponent a growing towards the end
of the simulations. Our limited resolution in the IR and
the small number of modes in the bins with smallest k
values mean that we cannot evaluate accurately the value
of a, particularly at late times where the peak frequency
is smallest. However, the data that we do have do show a
strong indication of an IR power law that becomes shal-
lower than k3 at late times after the bubbles have finished
colliding. This is particularly true in the case of λ = 0.18
which has the largest number of bubbles, Nb = 4096.
For all λ, the final value of the IR power law is close to
a = 1 as predicted by the bulk flow model. We do see
some indication that, as λ increases, the final IR power
law becomes steeper.

At early times, the UV power law exponent b grows
for all λ. At late times we see that there is also a con-
sistent trend in b according to λ, with the UV power law
becoming steeper as λ decreases. The final value of b for
λ = 0.07 is close to that of the bulk flow model prediction.
As λ → 1, the value of b decreases, moving towards the
value predicted in the envelope approximation, though it
does not reach it for the values of λ we study.

There is some indication that there is a slow decrease
in b at late times. This is in part because a and b are

λ Ω̃GW/(H∗R∗Ωvac)2 k̃R∗ a b
0.84 (3.81±0.30)×10−3 3.42± 0.21 1.20± 0.25 1.44± 0.08
0.50 (4.18±0.15)×10−3 3.77± 0.14 1.23± 0.13 1.64± 0.09
0.18 (3.56±0.26)×10−3 3.60± 0.24 1.06± 0.16 1.90± 0.14
0.07 (3.10±0.26)×10−3 3.68± 0.25 0.742±0.241 2.16± 0.13

TABLE IV. Final values of fitting parameter values in Eq. 53
which gives gravitational-wave power spectrum arising from
bubble collisions. These are calculated for the largest sim-
ulation for all λ given in Table II. The values supplied here
are taken at the end of the simulations, which corresponds to
t/R∗ = 7.0 for λ = 0.84 and t/R∗ = 8.0 for the other values
of λ. Uncertainties on the fitting parameters are calculated
taking the one sigma uncertainty on each power spectrum bin
to be given by the difference between its value in our medium
and high resolution runs.

anti-correlated around the peak of the spectrum, and as
a grows b decreases. The limited separation of scales
we obtain between R∗ and 1/Mb increases the influence
of a on b. This effect is strongest for λ = 0.50 where
the peak in the spectrum from bubble collisions and that
from oscillations in the scalar field are closest together.
Forcing a to be fixed leads to a more stable value of b
at the end of the simulation, though a worse fit overall.
To obtain a more accurate fit for b, we need to improve
our resolution in the IR to obtain a better estimate on a.
Alternatively, we could increase the separation between
R∗ and 1/Mb by increasing γ∗. Both of these options
require larger simulations and a dynamic range currently
unavailable to us.

In Table IV we provide the late time values of the fit-
ting parameters for each λ. These are taken at the end of
the simulation, corresponding to t/R∗ = 7.0 for λ = 0.84
and t/R∗ = 8.0 for the other λ. Caution should be taken
when using these values, as from Fig. 13 it can be seen
that the exponents a and b have not completely settled
by the end of our simulations.

VII. CONCLUSIONS

In this work, we have investigated whether the under-
lying potential for a vacuum phase transition can affect
the resulting gravitational-wave signal. We note that, for
a quartic effective potential with a cubic term, the effect
of the potential on the dynamics of the scalar field is de-
termined through a single parameter, λ. When λ→ 1, we
are in the thin wall limit, and the critical profile can be
approximated by a tanh function. The thick wall limit
is approached for λ → 0, and in this case, the critical
profile is approximated well by a Gaussian.

The dynamics of the scalar field in the overlap region
between colliding bubbles depends on the value of λ.
When λ is close to one, after bubbles collide, the scalar
field rebounds in the overlap region towards the symmet-
ric phase. The rebound is reduced as λ→ 0 for fixed γ∗.

We have explored a range of λ in a series of simula-
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FIG. 13. Plot of the values of all the fitting parameters in Eq. 53 for a simultaneous nucleation rate. These have been found
using the largest simulation for each λ in Table II. We plot how these values vary with time during the simulations. In (a) we

show the IR power law a, in (b) we show the UV power law b, in (c) we plot the peak amplitude Ω̃GW and in (d) we plot the

peak frequency k̃. The coloured bands show the region corresponding to one standard deviation on the fitting parameters. In
each plot we highlight the prediction for each parameter for an exponential nucleation rate in the envelope approximation by
a horizontal dashed black line, and in the bulk flow model by a dash-dot black line.

tions with up to 48003 lattice sites in which as many as
4096 bubbles are nucleated simultaneously. From these,
we evaluate the transverse traceless shear-stress TTTij and
compute the power spectrum PT . We find evidence that
even after the bubbles have finished colliding, gravita-
tional waves continue to be sourced at scales larger than
R∗. This could be as a result of energy density in the bub-
ble walls continuing to propagate after collision. Contin-
ued propagation of shells of energy density after collision
is a violation of one of the assumptions of the envelope
approximation and matches closer to the bulk flow model.

After the bubbles have finished colliding, we enter an
oscillation phase during which the scalar field is oscil-
lating around φb. This produces a peak in PT around
k ∼ Mb, and at very late times this develops a white
noise IR power law of k3. While this feature is very long-
lasting within our simulations, we would expect that in

reality, the amplitude would decay as the scalar field gra-
dients decrease due to quantum processes and Hubble
friction.

During the oscillation phase, gravitational waves are
sourced by a feature in PTTT with a peak around k ∼
Mb. This behaviour was already noted in Refs. [63, 64].
This feature produces a bump in the gravitational-wave
power spectrum around k ∼ Mb for all λ. The growth
rate of the Ωgw during the oscillation phase is slightly
slower than linear. As our simulations do not account
for damping from Hubble friction or allow for the scalar
field to decay via quantum processes, this should be taken
as an upper bound on the growth rate for Ωgw. Our
results on the growth rate are consistent with those in
Ref. [64], where it was shown that the total gravitational-
wave power from the oscillation phase will be suppressed
compared to that arising from bubble collisions providing
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that Mb � mP.
We also compute the gravitational wave energy density

parameter power spectrum dΩgw/dln(k). We perform a
fit for the spectrum arising from bubble collisions using
Eq. 53. We calculate how the fitting parameters vary
during our simulations.

There are some indications that λ can affect the re-
sulting gravitational-wave power spectrum. The peak
power of the gravitational-wave power spectrum varies
according to λ, though the variation is probably not
significant enough to be observable. The values of
Ω̃GW found at the end of our simulations are larger for
λ > 0.5, and decreases for smaller λ. The peak ampli-
tude Ω̃GW/(H∗R∗Ωvac)2 varies between 4.2 × 10−3 for
λ = 0.50, and 3.1× 10−3 for λ = 0.07.

More hopeful is the possibility that we could distin-
guish vacuum transitions with different potentials due to
the UV power law. The UV power laws we find at the
end of the simulations become steeper as λ decreases.
The gravitational-wave power spectrum falls as k−1.4 for
λ = 0.84 and k−2.2 for λ = 0.07.

The IR power law is close to k3 when bubbles start to
collide, with a peak in the spectrum around k ∼ 2π/R∗.
At later times the peak shifts slightly towards the IR.
The section of the IR power law that we can resolve ap-
pears to become shallower with an exponent < 3. Our
limited resolution in the IR means that we can only in-
fer the power law from the first few bins in our power
spectrum. We find that at the end of our simulations the
IR power law is shallower for smaller λ, varying between
k1.2 for λ = 0.84 and k0.7 for λ = 0.07. Presumably, at
larger scales than we can resolve within our simulations,
the power law turns over to a white noise spectrum as
causality dictates.

We find that neither the envelope approximation or the
bulk flow model correctly predict the final gravitational-
wave power spectrum. For all λ, the peak power is
slightly smaller than predicted by the envelope approxi-
mation which is itself smaller than the bulk flow model
predicts. The peak location is closer to that predicted
by the envelope approximation. The UV power law is
similar to the bulk flow model for small λ, and moves
towards the envelope approximation prediction as λ in-
creases. The value of the IR power law also seems to be

closer to the bulk flow model, though as λ increases, it
does become steeper, shifting towards the envelope ap-
proximation value. This roughly follows the picture pro-
posed in Ref. [69]. It remains to be determined if simu-
lations with larger λ become even closer to the envelope
approximation, and whether at larger γ∗ the proposal of
Ref. [69] becomes more exact.

Overall, we have shown that for vacuum phase tran-
sitions, the underlying effective potential can affect the
resulting gravitational wave power spectrum. In partic-
ular, we have seen that, for the quartic potential that
we investigated, the UV power law appears sensitive to
λ. The IR power law is challenging to resolve with our
simulations, but we see some indication that it may be
shallower than a k3 spectrum, and it appears to be evolv-
ing long after the bubbles have finished colliding. Further
explorations into the IR power law and behaviour of the
gravitational-wave power spectrum as we extrapolate to
larger γ∗ will require new techniques as we have reached
the limit of the computing resources available to us.
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Appendix A: Convergence tests

1. Gravitational waves

Our convergence tests for the gravitational-wave power
spectrum consist of performing a series of simulations in
which the bubbles are nucleated in the same position,
but the lattice spacing ∆x is varied while keeping the
timestep ∆t = ∆x/5. We refer to the value of ∆x used
in the main paper as ∆xref . Tables II and III contain the
values of this and other important simulation parameters.
The captions to these tables are also useful as reminders
of the symbols used in the following discussion.

In Fig. 14 we plot the gravitational-wave power spec-
trum at t/R∗ = 8.0 for λ = 0.18 with Nb = 4096. We do
this for ∆x/∆xref equal to 1, 2, and 4. From this plot,
we can see that the gravitational-wave power generated
by oscillations around the mass scale is well behaved at
these lattice spacings. The spectrum due to bubble col-
lisions varies more substantially. The peak location re-
mains fairly fixed, and the IR and UV power laws seem
consistent across lattice spacings. The amplitude of the
spectrum increases as ∆x is decreased. From this, we can
clearly see that it is the total gravitational-wave power
rather than the peak location or power law exponents
that is most sensitive to the lattice spacing.
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FIG. 14. Variation of the gravitational-wave power spec-
trum with lattice spacing at t/R∗ = 8.0 for λ = 0.18 with
Nb = 4096. The black dashed line gives the result from the
envelope approximation [44], the black dash-dot line gives
the prediction from the bulk flow model [44], and the solid
black line indicates the previous fit provided in Ref. [64].
The vertical dotted line gives the location of k = 2π/R∗,
whereas the red dashed line indicates where k = Mb. At
high wavenumbers the signal is overwhelmed by noise arising
from single-precision floating point numerical errors. This
noise is identified by comparing a smaller single-precision and
double-precision run. We therefore apply a cut off in the UV
at k = π/2∆x.

From our convergence tests, we can estimate the lat-
tice errors on the fitting parameters reported in Table IV.
To do this, we must vary the lattice spacing of the sim-
ulations with the most bubbles. This corresponds to
Nb = 4096 for λ = 0.18, and Nb = 512 for all other λ.
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We perform additional simulations with ∆x/∆xref = 2
and 4. We find the fitting parameters in Eq. 53 at the
end of each simulation. We then plot how the fitting pa-
rameters vary with ∆x in Fig. 15. Differences between
the parameter values at ∆xref and the values quoted in
Table IV arise as we use a uniform uncertainty across all
bins1. This differs to the results listed in the main body
of the paper where the difference in power at each bin
between high and mid resolutions runs was used as the
uncertainty.

We see that the change in a, b and k̃ between
∆x/∆xref = 2 and ∆x/∆xref = 1 is at the ∼ 1% level,

whereas it is at the ∼ 10% level for Ω̃gw. Extrapolating

a linear fit on Ω̃gw as a function of ∆x to the continuum

shows us that the error on Ω̃gw at ∆xref is on the order

of 10%. Even in the continuum limit Ω̃gw is smaller than
the envelope prediction.

To check the behaviour of the gravitational-wave power
spectrum for ∆x/∆xref < 1, we must reduce the size of
the simulations and number of bubbles. We perform a
series of simulations with Nb = 8 for each λ. In this case
we can no longer fit the power spectrum according to
Eq. 53, as the peak of the spectrum is not resolved. In-
stead we fit the UV power law according to the following
equation,

dΩgw

dln(k)
= A

(
R∗
2π
k

)−b
, (A1)

where b is the UV power law exponent and A corresponds
to the amplitude of the spectrum at k = 2π/R∗. We
provide the resulting evaluation of A and b at t/R∗ = 8.0
in Fig. 16. We do not see any indication of a change in

behaviour at smaller lattice spacing than ∆xref .

2. Scalar field

To study the effect of the lattice spacing on the scalar
field, we perform a series of simulations of isolated bub-
bles. We do this both in a simplified 1D code with spheri-
cal symmetry and compare the results to an isolated bub-
ble expanding in our 3D code. From this, we are able to
measure the deviation of the scalar field profile from its
expected behaviour outlined in Section II C. The devi-
ation then provides some measure of the lattice effects.
We show the deviation of bubble radius parameters rin,
rout and rmid for a series of lattice spacings and two λ
in Fig. 17. The resulting effect on γ estimated from the
wall thickness is shown in Fig. 18.

We see that even a small deviation in rin, rout and rmid

can result in a large change in the measured value of γsim.
The finer the lattice spacing the larger γ can grow with
γsim remaining close to the theoretical value. We also
see that for the same lattice spacing, the 3D runs show
smaller lattice effects during expansion. For large λ, as
γ increases γsim/γ will decrease, whereas for small λ we
see that first, the lattice effects cause the ratio γsim/γ to
grow before eventually it also decreases below unity.

Appendix B: Slices

In Fig. 19 and Fig. 20 we show slices through simu-
lations with λ = 0.07 and λ = 0.84 respectively. Both
simulations have Nb = 64, and γ∗ = 4. The slices show

φ, ρgw and
√
TTTij TTTij at t/R∗ equal to 0.5, 1.0 and 4.0.

1 We use the SciPy library function optimize.curve fit with ar-
guments sigma=None and absolute sigma=False. This weights

each bin power spectrum bin used in the fit equally with a uni-
form uncertainty.
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FIG. 15. Convergence of the fitting parameters in Eq. 53 calculated at the end of each simulation. We plot how the fitting
parameters vary with ∆x/∆xref , where ∆xref corresponds to the value of ∆x used in Table II. In (a) we show the IR power law

a, in (b) we show the UV power law b, in (c) we plot the peak amplitude Ω̃gw, and in (d) we plot the peak frequency k̃. For the
peak amplitude we also plot a linear fit to the continuum value. In each plot, we highlight the prediction for each parameter
by the envelope approximation by a horizontal dashed black line, and for the bulk flow model by a dash-dot black line.
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the power spectrum at k = 2π/R∗, A and in (b) we show the UV power law b.
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FIG. 17. In the top plots we show the evolution of the bubble radius parameters rmid, rin and rout (defined in subsection II B)
for an isolated bubble. These are given for 1D simulations with various lattice spacings as well as the theoretical behaviour.
The bottom panels give the fractional deviation from the theoretical value for each lattice spacing. We also include the result
of an isolated bubble left to expand in a 3D simulation.
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FIG. 18. Deviation of the bubble wall Lorentz factor γ from its theoretical value in 1D simulations of isolated bubbles for a
variety of lattice spacings. We also include the result of an isolated bubble left to expand in a 3D simulation.
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FIG. 19. Slices (0, y, z) for a simulation with λ = 0.07 and Nb = 64. In the top row we plot the scalar field normalised by the
broken phase value. The middle row shows the energy density in gravitational waves ρgw. The bottom row shows the modulus
of the transverse traceless shear-stress.
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FIG. 20. Slices (0, y, z) for a simulation with λ = 0.84 and Nb = 64. In the top row we plot the scalar field normalised by the
broken phase value. The middle row shows the energy density in gravitational waves ρgw. The bottom row shows the modulus
of the transverse traceless shear-stress.
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