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Abstract 25 

Study question: Is a low (<1.0µg/L) or moderately low (1.0−1.9µg/L) serum anti-Müllerian hormone 26 

(AMH) level a risk factor for early pregnancy loss in IVF/ICSI with a fresh or frozen-thawed embryo 27 

transfer (ET)? 28 

Summary answer: A low or moderately low serum AMH level does not associate with miscarriage, 29 

non-visualized pregnancy loss, or overall early pregnancy loss rate in the IVF/ICSI treatment.  30 

What is known already: Low AMH predicts poor ovarian response and small oocyte yield in the 31 

IVF/ICSI treatment, but its value in the evaluation of live birth rate (LBR) is modest. Little is known 32 

about the risk of early pregnancy loss in ART among women with low AMH.  33 

Study design, size, duration: A retrospective cohort study on 1383 women undergoing their first 34 

oocyte retrieval for IVF/ICSI in Helsinki University Hospital in Helsinki, Finland, between 2012 and 35 

2016, with all connected fresh (n=1315) and frozen-thawed (n=1418) ET cycles finished by August 36 

2018. AMH was measured within twelve months before the IVF/ICSI stimulation.  37 

Participants/materials, setting, methods: Of all women, 235 (17.0%) had low (<1.0µg/L), 278 38 

(20.1%) had moderately low (1.0–1.9µg/L) and 870 (62.9%) had normal (≥2.0µg/L) AMH. The 39 

primary outcomes were miscarriage, non-visualized pregnancy loss, and early pregnancy loss 40 

(miscarriage and non-visualized pregnancy loss combined) after fresh or frozen-thawed ET. The 41 

impact of AMH on these outcomes was calculated in three populations: among all women who 42 

became pregnant, among women with AMH ≤6.0µg/L and in a population weighted by the inverse 43 

probability of becoming pregnant (inverse probability weighting, IPW). The impact of AMH was 44 

also assessed on the secondary outcomes, cumulative pregnancy rate (cPR), and cumulative live birth 45 

rate (cLBR) across all ET cycles in the woman’s first IVF/ICSI. Potential confounders (the woman’s 46 

age, overweight, smoking, history of endometriosis, and underlying medical conditions) adjusted the 47 

final results.  48 

Main results and the role of chance: Of 1123 pregnancies, 285 (25.4%) ended in non-visualized 49 

pregnancy loss and 143 (12.7%) in miscarriage. The LBR was 24.6% per ET (673/2733). Low or 50 

moderately low AMH, compared with normal AMH, did not associate with miscarriage or non-51 

visualized pregnancy loss in analyses among all women who became pregnant (adjusted RR for 52 

miscarriage vs. live birth 0.70, 95% CI 0.42–1.17 in low AMH and 1.00, 95% CI 0.68−1.49 in 53 

moderately low AMH; adjusted RR for non-visualized pregnancy loss vs. live birth 0.90, 95% CI 54 

0.65−1.23 in low AMH and 1.09, 95% CI 0.85−1.41 in moderately low AMH), nor did low or 55 

moderately low AMH associate with the overall early pregnancy loss rate (adjusted RR for early 56 

pregnancy loss vs. live birth 0.86, 95% CI 0.68–1.10 in low AMH and 1.01, 95% CI 0.86–1.27 in 57 
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moderately low AMH). Results remained similar after restricting the analysis to women with AMH 58 

≤6.0 ug/L. The women with low or moderately low AMH had fewer pregnancies and live births than 59 

the women with normal AMH in their first IVF/ICSI (cPR/cLBR in the women with low AMH 60 

50.6/34.0%, moderately low AMH 59.0/36.3% and normal AMH 68.3/49.2%). When the lower 61 

probability for pregnancy was considered by using IPW, the women with low or moderately low 62 

AMH did not have a higher risk for miscarriage, non-visualized pregnancy loss, or overall early 63 

pregnancy loss compared to women with normal AMH. 64 

Limitations, reasons for caution: The number of miscarriages in women with low AMH was 65 

moderately small, limiting the power of the study. The real-world clinical setting of the study 66 

restricted the ability to control for all factors causing selection bias.  67 

Wider implications of the findings: The cLBR was higher among women with normal AMH than 68 

among women with low or moderately low AMH in their first IVF/ICSI treatment because these 69 

women had more oocytes and embryos. Women with low or moderately low AMH did not have an 70 

increased risk for early pregnancy loss. This information is reassuring for couples and useful in 71 

counseling. These results are also valuable when assessing the overall effectiveness of IVF/ICSI 72 

treatment.  73 

Study funding/competing interest(s): The research funds from Helsinki University Hospital (No. 74 

TYH2018232), Hyvinkää Hospital (No. M3080TUT18) and the Emil Aaltonen Foundation for P.P., 75 

the grants from the Paulo Foundation and the Finnish Medical Foundation for H.H.. The authors 76 

report no conflicts of interest. 77 

Trial registration number: HUS/138/2017 78 

 79 
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Today, for various reasons, many women delay childbearing. As women age, their fecundity 88 

decreases, and the risk for miscarriage increases (Menken et al., 1986; Magnus et al., 2019). Such an 89 

age-related increase in the miscarriage rate has been reported in assisted reproduction as well (Farr et 90 

al., 2007). About 20% of IVF pregnancies end in a pregnancy loss, and half of the losses are 91 

biochemical (Farr et al., 2007).  92 

 93 

Advanced age associates with a diminished number and quality of the remaining oocytes, described 94 

as ovarian reserve. There is, however, individual variation in the size of ovarian follicle pool at birth 95 

and rate of its decline thereafter (te Velde and Pearson, 2002). Genes largely explain this variability, 96 

but other factors, such as ovarian surgery, endometriosis, cancer treatments, smoking, and infections, 97 

may also have an impact. Whether the quantitative decrease in the oocytes, independent of the 98 

women’s age, associates with poor oocyte quality as well, has been widely discussed (Broekmans et 99 

al., 2006; Zamah and Stephenson, 2018).  100 

 101 

Anti-Müllerian hormone (AMH) predicts the ovarian response and the oocyte yield in ovarian 102 

stimulation (La Marca et al., 2010), but studies have shown a limited value of AMH to predict live 103 

birth rate (LBR) (Broer et al., 2013; Iliodromiti et al. 2014). These studies have rarely reported on 104 

early pregnancy loss rate, although it might reflect the oocyte quality better than the LBR does. Early 105 

pregnancy loss is often a result of fetal aneuploidy (Hassold and Hunt, 2001), but research on other 106 

etiologies is much needed. Low AMH level as an etiological factor has been suggested, but literature 107 

on this subject, especially regarding ART, is sparse.  The few previous works in this area have studied 108 

miscarriage only after IVF/ICSI fresh embryo transfer (ET) (Tarasconi et al., 2017), whereas taking 109 

the outcome of the whole IVF/ICSI treatment into consideration is what in real life matters to the 110 

couples as well as the clinicians taking care of them.  111 

 112 
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Therefore, our study aimed to clarify the impact of low AMH on the risk of early pregnancy loss and 113 

overall pregnancy outcome in the woman’s first IVF/ICSI treatment. As pregnancy loss is possible 114 

only after becoming pregnant, we considered the lower probability of pregnancy in women with low 115 

AMH in our analyses. Finally, we aimed to deepen the understanding of AMH as a potential 116 

biomarker of the oocyte quality. 117 

 118 

 119 

Materials and Methods 120 

 121 

Study population and design 122 

The study population comprised of women who underwent their first oocyte retrieval for IVF or ICSI 123 

treatment in the Reproductive Medicine Unit of Helsinki University Hospital (Helsinki, Finland) 124 

between January 1st, 2012 and December 31st, 2016. Figure 1 shows the flowchart of participant 125 

selection and an overview of the treatment. We included women who had their serum AMH measured 126 

within the preceding twelve months of their ovarian stimulation and who had had at least one 127 

subsequent ET cycle (fresh or frozen-thawed). The exclusion criteria included treatment with 128 

preimplantation genetic testing or for fertility preservation. Couples’ own gametes were used in all 129 

treatment cycles. We compared the early pregnancy loss rates, including the miscarriage rates and 130 

the non-visualized pregnancy loss rates, between the women with low (<1.0µg/L), moderately low 131 

(1.0−1.9µg/L) and normal (≥2.0µg/L) AMH and calculated the cumulative pregnancy rates (cPRs) 132 

and the cumulative live birth rates (cLBRs). 133 

 134 

The data were collected from medical databases. The baseline characteristics were the woman’s age 135 

at the oocyte retrieval, AMH, BMI, smoking history, the woman’s underlying medical conditions, 136 

previous pregnancies, previous ovarian surgeries, and the diagnosis, the duration and the type 137 
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(primary vs. secondary) of the infertility. The treatment characteristics included the stimulation 138 

protocol (GnRH agonist or antagonist), the total gonadotropin dose, the number of retrieved, mature 139 

and fertilized oocytes, the treatment type (IVF or ICSI) and the number of frozen embryos. The data 140 

on each separate ET cycle included the number of transferred embryos, the cycle type (fresh or frozen-141 

thawed ET), the pregnancy test result, and the pregnancy outcome. The analysis included the 142 

subsequent frozen-thawed embryo transfers (FETs) before August 31st, 2018. 143 

 144 

AMH measurement 145 

The laboratory quantified AMH with an ELISA assay (AMH Gen II ELISA, Beckman Coulter, Brea, 146 

CA, USA). The limit of detection (LoD) was 0.08µg/L, and the limit of quantitation (LoQ) 0.16 µg/L. 147 

The intra-assay and inter-assay coefficient of the variation (CV%) was <6% in the range of 148 

3.8−16.5µg/L. The total CV% was <8%. The statistical analyses used AMH value of 0.1µg/L for 149 

those women who had their AMH level below the limit of quantification (n=28). 150 

 151 

Treatment protocol 152 

The women underwent ovarian stimulation by either the long agonist (midluteal GnRH agonist 153 

suppression) or the short antagonist protocol (antagonist administration starting on stimulation day 154 

five or six). The initial dose of recombinant FSH or human menopausal gonadotropin was 100−375 155 

IU/day depending on the woman’s age, BMI, AMH, and antral follicle count. When the diameter of 156 

three or more follicles reached ≥17mm, the women received a 250µg recombinant hCG or 5000IU 157 

hCG injection subcutaneously, and the oocyte retrieval was scheduled for 36−40 hours later. One 158 

embryo was transferred 2−5 days after the oocyte retrieval. Vaginal micronized progesterone initiated 159 

on the third day after the oocyte retrieval, and it continued on for 12 days. In the cases of possible 160 

severe ovarian hyperstimulation syndrome, all embryos were frozen. The frozen-thawed embryos 161 
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were transferred as single ETs either in a natural cycle with luteal support or in a hormonal 162 

substitution cycle (oral estradiol valerate 4–8mg/day and vaginal progesterone 600mg/day).  163 

 164 

Pregnancy assessment 165 

Pregnancy was detected either by a serum hCG concentration >5.3IU/L 10–12 days after the ET 166 

(n=2655) or by a positive urine hCG test 14 days after the ET (n=78). An intrauterine gestational sac 167 

on the ultrasound examination five weeks after the ET confirmed the clinical pregnancy. The 168 

pregnancy losses were classified according to the European Society of Human Reproduction and 169 

Embryology’s (ESHRE) early pregnancy special interest group’s consensus statement (Kolte et al., 170 

2015). The definition of a miscarriage is the spontaneous demise of an ultrasonically confirmed 171 

intrauterine pregnancy before viability. Non-visualized pregnancy loss, which comprises of 172 

biochemical pregnancies and pregnancies of unknown location (PULs), is defined as decreasing 173 

serum or urinary hCG without the ultrasonic confirmation of the pregnancy. Here, the definition of 174 

early pregnancy loss includes the miscarriages and the non-visualized pregnancy losses; we excluded 175 

the ectopic pregnancies from the pregnancy loss analyses because of their different etiology.  176 

 177 

We diagnosed miscarriages ultrasonically as an intrauterine gestational sac and absent fetal 178 

heartbeats. When a woman had a low serum hCG concentration (<20.0IU/L) 10 – 12 days after ET, 179 

or symptoms of pregnancy loss, serum hCG was measured once a week.  When the pregnancy was 180 

diagnosed only by serum or urine hCG, and the serial measurements of hCG decreased to negative, 181 

a biochemical pregnancy was diagnosed. When the ultrasound examination, histology, or surgery 182 

failed to confirm the location of the pregnancy, a diagnosis of PUL was set.  HCG measurements 183 

continued once a week until hCG was ≤5.3IU/L. Histologic examination was used for differential 184 

diagnosis on demand (e.g., suspected molar or ectopic pregnancy). Live birth was defined as an infant 185 

born alive after 22 gestational weeks.  186 
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 187 

Statistical analyses 188 

The differences in the categorial explanatory variables between the women with low (<1.0µg/L), 189 

moderately low (1.0−1.9µg/L) and normal (≥2.0µg/L) AMH were analyzed by the Chi-square test for 190 

independence. The differences in the continuous variables were analyzed by the Kruskal-Wallis test 191 

with a post hoc test of Mann-Whitney U with Bonferroni’s adjustment. The differences in the PRs 192 

per ET and the pregnancy outcomes after a positive pregnancy test between the women with various 193 

AMH levels were analyzed with the Chi-square test. 194 

 195 

The primary outcomes were a miscarriage, non-visualized pregnancy loss, and these variables 196 

combined as early pregnancy loss after a fresh or frozen-thawed ET cycle. To assess the impact of 197 

AMH level on these outcomes, we estimated the relative risk (RR) using the log-binomial regression 198 

among women, who became pregnant (excluding ectopic and terminations of pregnancies). We 199 

calculated RRs in three populations. First, we analyzed all women who became pregnant;  second, 200 

we analyzed women with AMH ≤6.0µg/L to exclude PCOS patients, and third, we used inverse 201 

probability weighting (IPW) to better estimate the pregnancy loss risk among women with low 202 

probability for pregnancy. To account for the repeated ET cycles by individual patients, we performed 203 

modeling with the generalized estimating equation (GEE) analysis  (Missmer et al., 2011; Yland et 204 

al., 2019).  AMH was tested both as a categorical and as a continuous variable. The selection of the 205 

potential confounders was based on a directed acyclic graph (DAG), which describes the relationship 206 

between the exposure (AMH) and the outcome (early pregnancy loss) (Greenland et al., 1999) 207 

(Supplementary Figure S1).  Based on the DAG, the results were adjusted by the woman’s age on the 208 

oocyte retrieval day in the age groups <35, 35−37 and ≥38, smoking during IVF/ICSI (yes/no), 209 

overweight (BMI >25kg/m2) and a diagnosis of endometriosis (yes/no). We adjusted the results also 210 

by those underlying medical conditions, which may influence both AMH and the risk of early 211 
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pregnancy loss, such as diabetes, rheumatic disease, celiac or inflammatory bowel disease, multiple 212 

sclerosis, or a previous cancer treatment (medical condition, yes/no). We were not able to adjust the 213 

results by woman’s ethnic origin, a potential confounder, because no information on it exists in the 214 

medical databases. Since women with PCOS  may be more likely to experience pregnancy loss, we 215 

conducted sub-analyses among women with AMH ≤6.0µg/L. Currently, no consensus exists of an 216 

AMH cutoff value, which discriminates PCOS patients from non-PCOS patients (Teede et al., 2018). 217 

Based on a recent publication in Finnish population (Sova H et al., 2019), we chose the AMH limit 218 

of  >6.0µg/L to exclude PCOS patients. 219 

 220 

Because pregnancy loss is possible only after becoming pregnant, women with low probability for 221 

pregnancy in IVF/ICSI may be underrepresented in the pregnancy loss study population. It is possible 222 

to address this selection bias through weighting the data by inverse probability of pregnancy. IPW is 223 

a method, which is widely used in epidemiological studies (Crowson et al.,2013) and which has been 224 

used in IVF studies as well (Modest et al., 2018). Here, we used IPW to better estimate pregnancy 225 

loss risk among women with low probability for pregnancy, such as women with low or moderately 226 

low AMH. IPW created a pseudopopulation with heavier weight on women, who became pregnant 227 

despite of their low pre-treatment probability for pregnancy and lighter weight on women who had a 228 

high probability of becoming pregnant. 229 

 230 

We used a binary logistic regression to create women’s predictive probability for becoming pregnant 231 

(p) and not becoming pregnant (1-p). As the dependent variable, we used cumulative pregnancy 232 

(whether a woman became pregnant at least once after any ET cycle in the woman’s first IVF/ICSI). 233 

As the independent variables, we used ten baseline covariates: woman’s age at oocyte retrieval, 234 

AMH, primary/secondary infertility, being healthy (yes/no), smoking during IVF, BMI, the total 235 

gonadotropin dose, treatment type (IVF/ICSI), the number of mature oocytes produced by IVF/ICSI 236 



 10 

and the embryo/mature oocyte ratio. We then created stabilized weights for women with cumulative 237 

pregnancy (P/p) and women without cumulative pregnancy [(1-P)/(1-p)], where P was the overall 238 

probability for cumulative pregnancy in the study population. The mean of the stabilized weights was 239 

1,00. We truncated the final weights at 99th percentiles. Stabilized weights were then used in the log-240 

binomial regression analysis with GEE to estimate RRs for miscarriage and non-visualized pregnancy 241 

loss vs. live birth. We restricted this sub-analysis to women with AMH ≤6.0µg/L. The model had 242 

fairly good discrimination between those who became pregnant and those who did not (c-statistics 243 

0.71). As a limitation of the IPW analysis,  the GEE model allowed only a single weight for each 244 

woman. Thus, we were not able to use cycle-specific variables in creating the weights.  245 

 246 

The secondary outcomes were cumulative pregnancy  (at least one positive pregnancy test result in 247 

the woman’s first IVF/ICSI, including all consecutive ETs) and cumulative live birth (at least one 248 

live birth in the woman’s first IVF/ICSI). We calculated the cPR (and the cLBR) in a “conservative” 249 

manner, which assumes that women who did not return to the next ET had a zero probability of live 250 

birth (Maheshwari et al., 2015). We used the number of women with their first pregnancy (first live 251 

birth) after consecutive ETs as a numerator and the number of all women as a denominator. The 252 

impact of AMH on the cumulative pregnancy (vs. no pregnancy) and on the cumulative live birth (vs. 253 

no live birth) in the couple’s first IVF/ICSI were analyzed by using the log-binomial generalized 254 

linear model in all women and in women with AMH ≤6.0µg/L. The results were then adjusted for 255 

age, smoking, overweight, endometriosis, and underlying medical conditions — the selection of 256 

adjusting variables was based on a DAG (Supplementary figure S2). Finally, we stratified the results 257 

by the number of mature oocytes (1-4, 5-9, and ≥10).  258 

 259 

The data were analyzed by using Microsoft’s Statistical Package for Social Sciences (SPSS), version 260 

25.0. A P-value of less than 0.05 was considered statistically significant.  261 
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 262 

Missing data 263 

Data on BMI was missing for five (0.4%,) and smoking for nine (0.6%,) of the 1383 women. The 264 

outcome of one pregnancy remained unknown. Since the number of missing data was few, they were 265 

omitted from the corresponding analyses.  266 

 267 

Ethical approval 268 

This study received research permissions from Helsinki University Hospital and Hyvinkää Hospital; 269 

these hospitals do not require ethical approval for register-based studies.  270 

 271 

 272 

Results 273 

 274 

The study population comprised of 1383 women having their first IVF/ICSI treatment with at least 275 

one ET (fresh or frozen-thawed). The women’s median age was 33.8 years and ranged from 21 to 40 276 

years. AMH ranged from <0.2µg/L to 43.6µg/L. Of all women, 235 (17.0%) had low (<1.0µg/L), 277 

278 (20.1%) had moderately low (1.0−1.9µg/L) and 870 (62.9%) had normal AMH (≥2.0µg/L). The 278 

women with low and moderately low AMH were older than the women with normal AMH, as 279 

presumed (Table I). This led to differences in the IVF/ICSI protocols and outcomes as the women 280 

with low AMH had the highest gonadotropin dose, the smallest number of retrieved, mature and 281 

fertilized oocytes, and frozen embryos (Table II). The mean number of retrieved oocytes were 6.9, 282 

9.5 and 13.4, and the mean number of frozen embryos were 1.4, 1.9 and 3.2 in women with low, 283 

moderately low and normal AMH, respectively. 284 

 285 
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The women underwent 2733 ET cycles (median 2, range 1−11 per woman), of which 1315 were fresh 286 

and 1418 frozen-thawed ETs. A single embryo was transferred in 2719 (99.5%) of all ET cycles. The 287 

PR per ET cycle in the whole study population was 41.1% (40.8% per transferred embryo) and the 288 

clinical PR 30.2% (30.0% per embryo). Of all 1123 pregnancies, 285 (25.4%) ended in a non-289 

visualized pregnancy loss (of which 272 were biochemical pregnancies and 13 PULs), 143 (12.7%) 290 

ended in a miscarriage, 7 (0.6%) in a termination of the pregnancy and 14 (1.2%) were ectopic 291 

pregnancies. The LBR was 24.6% per ET cycle (673/2733) and 23.5% per transferred embryo 292 

(673/2861). The outcome of one pregnancy remained unknow. There were no stillbirths. 293 

 294 

The PRs per ET varied between the women with different AMH levels, but the women with low or 295 

moderately low AMH were not more likely to undergo early pregnancy loss than those with normal 296 

AMH (Figure 2). 297 

 298 

Low or moderately low AMH, compared with normal AMH, did not associate with miscarriage or 299 

non-visualized pregnancy loss, not even after adjusting for age and the other confounders (Table III). 300 

Results remained similar after restricting the analysis to women with AMH  ≤6.0µg/L and considering 301 

the lower probability of pregnancy in women with low AMH by IPW analysis. The women with very 302 

low AMH (<0.5µg/L vs. ≥2.0µg/L) showed no increase in the miscarriage or non-visualized 303 

pregnancy loss risk either (unadjusted RR for miscarriage vs. live birth 0.89, 95% CI 0.40 – 1,94 and 304 

for non-visualized pregnancy loss vs. live birth 1.11, 95% CI 0.68 – 1.70). When AMH was tested as 305 

a continuous variable, the unadjusted RR for miscarriage was 0.99, 95% CI 0.90 – 1.09, and for non-306 

visualized pregnancy loss 0.95, 95% CI 0.88 – 1.02, women with AMH >6.0µg/L omitted. Compared 307 

to women who were  <35 years of age, women aged ≥38 had higher miscarriage risk, and women 308 

aged ≥35 had higher non-visualized pregnancy loss risk. Smoking, overweight, history of 309 
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endometriosis or medical conditions were not associated with miscarriage or non-visualized 310 

pregnancy loss. 311 

 312 

Compared with live birth, neither low nor moderately low AMH increased the risk for early 313 

pregnancy loss (RR 0.86, 95% CI 0.68–1.10 for low and RR 1.01, 95% CI 0.86–1.27 for moderately 314 

low AMH after adjustment for age, smoking, overweight, endometriosis and medical conditions). 315 

The results were similar even though women with AMH >6.0µg/L were omitted from analyses. 316 

 317 

Figure 3 shows the cPRs and the cLBRs across all ETs connected with the first IVF/ICSI in women 318 

with the different AMH levels. The univariable log-binomial regression analysis showed lower RRs 319 

for cumulative pregnancy and cumulative live birth for the women with low or moderately low AMH 320 

when compared with the women with normal AMH (Table IV). Adjustment for age and the other 321 

confounders and the omission of women with AMH >6.0 did not have an impact on the results. 322 

Compared to women <35 years of age, women ≥38 years showed lower cPR and cLBR, whereas 323 

smoking, overweight, endometriosis, or underlying medical conditions showed no effect. After 324 

stratifying the results by the number of mature oocytes, and adjusting by women’s age, the differences 325 

in cPR or cLBR between AMH groups were no more evident, although women with moderately low 326 

AMH and mature oocyte number of ≥10 had lower cPR and cLBRs than women with normal AMH  327 

having the same amount of oocytes (table V). Also, women with 1-4 oocytes and low or moderately 328 

low AMH had a tendency to a lower cLBR compared with women with normal AMH. The proportion 329 

of women who went through their first IVF treatment without becoming pregnant during the follow-330 

up period (drop-out) was 49.4% in low AMH, 41.0% in moderately low and 31.7% in normal AMH.  331 

 332 

 333 

Discussion 334 
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 335 

This study showed that the women with low (<1.0µg/L) or moderately low (1.0−1.9µg/L) serum 336 

AMH levels had fewer pregnancies than the women with normal AMH (≥2.0µg/L) in their first 337 

IVF/ICSI treatment. When the pregnancy began, however, the women with low or moderately low 338 

AMH did not have an increased early pregnancy loss rate. 339 

 340 

In the light of previous studies, the lack of an association between low AMH and pregnancy loss was 341 

somewhat unexpected. A very similar study design as ours showed an association between low AMH 342 

and an increased miscarriage rate in a population of 1060 IVF-ET cycles, although the difference in 343 

the women younger than 34 years was non-significant (Tarasconi et al., 2017). They included mostly 344 

double ETs and fewer possible confounding variables than we did. They studied miscarriage after 345 

fresh ETs only whereas we also included the subsequent FETs in our analyses. This is what matters 346 

in the clinical practice context and to the infertile couples. Their study population might differ from 347 

ours in the women’s ethnicity, a known factor to influence both AMH (Seifer et al., 2009) and the 348 

miscarriage rate after IVF (Seifer et al., 2008). Additionally, we calculated the risk for early 349 

pregnancy loss in three different populations, with consistent results, which strengthens our findings 350 

of no association between AMH and early pregnancy loss.  351 

 352 

Studies on the AMH level and miscarriage after a natural conception have shown confounding results. 353 

The largest prospective cohort study on 533 women (aged 30 to 44 years, who conceived naturally) 354 

reported that those with very low AMH (≤0.4ng/mL) had an over two-fold increased risk for 355 

miscarriage when compared to the women with AMH ≥1.0ng/mL (Lyttle Schumacher et al., 2018),  356 

while we did not find an increased risk among women with very low AMH (<0,5µg/L). Lyttle 357 

Schumacher’s study population differs markedly from ours since women with infertility, PCOS or 358 

endometriosis were excluded from their study. PCOS and endometriosis are both common reasons 359 
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for infertility and seem to alter ovarian reserve and the odds of a pregnancy loss. Moreover, they 360 

define pregnancy loss differently than we and apply different AMH cut-off levels.  361 

 362 

Some previous studies have suggested recurrent miscarriage to be associated with low AMH. 363 

Atasever et al. (2016) found lower AMH in the women with recurrent miscarriages when compared 364 

with the age-matched general population (2.9ng/mL vs. 3.6ng/mL) and another cohort of 144 women 365 

reported lower AMH in the women with idiopathic recurrent miscarriage when compared with the 366 

women with explained recurrent miscarriage (1.2ng/mL vs. 2.0ng/mL) (Pils et al., 2016). On the other 367 

hand, AMH was not associated with pregnancy loss in the women with one or two previous pregnancy 368 

losses (Zarek et al., 2016), nor did it predict the outcome of further pregnancies in the women with 369 

recurrent miscarriage (Pils et al., 2019). In Zarek’s study, women conceived without ART and 370 

received 400µg folic acid with either placebo or 81mg aspirin with the primary outcome of live birth, 371 

and in Pils’es study, women received combination therapy (aspirin, dydrogesterone, prednisone, and 372 

folic acid)  for the prevention of miscarriage. Study populations in the recurrent pregnancy loss 373 

studies differ from ours, as the women were fertile and younger. In our study, the number of women 374 

with recurrent pregnancy loss was too small for sub-analyses. Hence, our study does not add 375 

knowledge of the role of AMH on recurrent miscarriage. In general, recurrent miscarriage has 376 

multiple etiologies, and the role of AMH remains controversial.   377 

 378 

The strengths of our study are a homogenous population of women undergoing the their first 379 

IVF/ICSI treatment in one university hospital unit with very uniform treatment practices. Well-380 

documented data allowed us to control the results with several confounding factors. The lack of 381 

association between AMH level and early pregnancy loss was shown even after exclusion of women 382 

with high AMH and considering the lower pregnancy rate connected with low or moderately low 383 

AMH by IPW. These sub-analyses are key strengths of our study. The vast majority of the ETs were 384 
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single ETs, which enabled us to identify each embryo’s individual risk for loss, not confounded by 385 

other transferred embryos. We observed not only the fresh ET, but also the entire IVF/ICSI treatment, 386 

including all subsequent FETs, which increased the power of the study, and allowed the calculation 387 

of the cPR and the cLBR. The cumulative live birth rate was higher among women with normal AMH 388 

compared to women with low or moderately low AMH. About half of the women with normal AMH 389 

had at least one child during their first IVF/ICSI treatment, while only one-third of women with low 390 

AMH did. This  finding is useful in everyday practice when clinicians counsel couples before their 391 

first IVF/ICSI treatment. This information is also useful when assessing the overall effectiveness of 392 

the services of an IVF clinic.   393 

 394 

Only a few previous studies have reported associations between AMH and non-visualized pregnancy 395 

loss. An elevated AMH level associated with a biochemical loss in Lyttle Schumacher’s study (2018), 396 

but the number of biochemical losses (n=9) was too small for conclusions. An earlier study reported 397 

a biochemical PR of 13.8% after IVF-ET, which was comparable with the biochemical PR of the 398 

fertile population with natural conceptions (Zeanda et al., 2015). The non-visualized pregnancy loss 399 

rate in our study, including the biochemical pregnancies and the PULs, was high; 25.4% of all 400 

pregnancies. Such a high rate may have two explanations. First, hCG was measured mostly from 401 

serum, a sensitive method to detect even minor elevations. Second, ESHRE’s definition for non-402 

visualized pregnancy loss is broad, including all pregnancies not confirmed by ultrasound, histology, 403 

or surgery, irrespective of the gestational age. Thus, a proportion of the pregnancies, which are in 404 

everyday clinical practice classified as miscarriages, were classified as non-visualized pregnancy 405 

losses in our study.  406 

 407 

The lack of association between low AMH and early pregnancy loss does not support the idea of 408 

AMH as a biomarker for the oocyte quality. Poor oocyte quality is thought to associate with the 409 
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aneuploidy of the oocytes. Although some evidence exists that low AMH might relate to a higher rate 410 

of aneuploid embryos detected by preimplantation genetic testing (Katz-Jaffe et al., 2013), a more 411 

recent report did not find such an association (Morin et al. 2018). We showed lower cPRs and cLBRs 412 

for the women with low or moderately low AMH when compared to those with normal AMH. The 413 

smaller oocyte yield and higher age largely explained these differences, however. Also Li et al. (2013) 414 

found that after adjusting for age and the number of available embryos, AMH was not a significant 415 

predictor for the cLBR in the woman’s first IVF. The results of our study and this previous study 416 

indicate that  women with low or moderately low AMH have a smaller number of retrieved oocytes, 417 

less embryos to select from for the ET, and less ETs, leading to lower cPR and cLBR, but these 418 

women do not have a higher pregnancy loss rate. As a conclusion, AMH seems to be a biomarker of 419 

oocyte quantity rather than oocyte quality. 420 

 421 

Pregnancy loss is conditional upon becoming pregnant, and AMH has an impact on pregnancy rate. 422 

In our study, women with low or moderately low AMH went through their first IVF/ICSI treatment 423 

without having a pregnancy (dropped out) more often than women with normal AMH, which may 424 

cause selection bias because these women were underrepresented in the pregnancy loss study 425 

population. In order to assess the possible selection bias, we used the IPW method and found no 426 

differences in early pregnancy loss risk between AMH levels. Unfortunately, we were not able to 427 

assess the individual reasons (the depletion of the frozen embryos, spontaneous pregnancy, other 428 

personal reasons, or the end of the follow-up period) for stopping the treatment. Our observational 429 

study reflects a real-world setting, where the couple’s preferences as well as the IVF doctor’s clinical 430 

view affect the decision of starting or continuing the IVF/ICSI treatment. Taken together, our results 431 

indicate that if embryo transfer was carried out, the risk of early pregnancy loss was not increased in 432 

women with low or moderately low AMH. 433 

 434 
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Finally, as limitations of our study, we did not have information on women’s ethnicity, which is one 435 

potential confounder affecting both AMH and the miscarriage rate. Since nearly all women were 436 

Finnish, ethnicity should not be a source of residual confounding. AMH was measured within 12 437 

months before the IVF stimulation since AMH is considered rather stable over this time period 438 

(decline of 5,6% per year) (Bentzen J et al., 2013). Furthermore, the same time frame for AMH 439 

assessment was used in a previous study with similar aims (Tarasconi et al., 2017). AMH has less 440 

inter- and intracycle variability than FSH or antral follicle count, and therefore, is the most appropriate 441 

measurement for ovarian reserve. Although the number of miscarriages was limited, especially in the 442 

women with low AMH, our data included many non-visualized pregnancy losses and the combination 443 

of these outcomes increased the power to detect possible associations. Thus, this study is, to the best 444 

of our knowledge, the largest one testing the association between AMH and early pregnancy loss. 445 

However, even after combining miscarriage and non-visualized pregnancy loss, the confidence 446 

intervals for the RRs were quite wide and one might argue that a larger study population is required. 447 

Therefore, research with an even larger number of pregnancy losses would give more information on 448 

the role of AMH in early pregnancy loss.  449 

 450 

 451 

Conclusions 452 

The women with low (<1.0µg/L) or moderately low (1.0−1.9µg/L) AMH had fewer pregnancies in 453 

the their first IVF/ICSI treatment than the women with normal AMH (≥2.0µg/L), but a higher age 454 

and smaller number of oocytes mainly explained the differences. When the pregnancy began, the 455 

women with low or moderately low AMH had as a good chance for a live birth as the women with 456 

normal AMH since the pregnancy loss rates were similar. These results suggest that AMH is a 457 

biomarker for the oocyte quantity, not for the oocyte quality. Our results have clinical value on 458 

counseling and ultimately give comfort and hope to the patients with low AMH. 459 
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Table I The basic characteristics of the women with low, moderately low and normal AMH. 

Characteristics AMH  P-value 
Low  
(<1.0 µg/L) 

Moderately low 
(1.0−1.9 µg/L) 

Normal  
(≥2.0 µg/L) 

Number of patients  235 278 870  
Age (years) 36.3 (23.8–40.7)a,b 34.6 (22.4–40.7)a,c 33.1 (21.4–40.8)b,c <0.0001 
BMI (kg/m2) 23.0 (16.6–36.1) 23.1 (16.9–36.6) 22.7 (16.3–37.4) 0.38 
Smoking in general 54/233 (23.2%) 78/278 (28.1%) 188/867 (21.7%) 0.09 
Smoking during IVF/ICSI  11/233 (4.7%) 11/275 (4.0%) 44/866 (5.1%) 0.76 
Healthy  161 (68.5%) 204 (73.4%) 635 (73.0%) 0.36 
One or several previous 
miscarriage(s) 

28 (11.9%) 36 (12.9%) 117 (13.4%) 0.82 

Duration of infertility (years) 3.0 (0.3–15.0) 3.2 (0.9–18.0) 3.3 (0.7–17.0) 0.06 
Primary infertility 154 (65.5%) 174 (62.6%) 586 (67.4%) 0.34 
Main diagnosis 
  Ovulation disorder 
  Tubal factor 
  Male factor 
  Endometriosis 
  Unexplained 

 
8 (3.4%) 
13 (5.5%) 
37 (15.7%) 
57 (24.3%) 
120 (51.1%) 

 
10 (3.6%) 
33 (11.9%) 
46 (16.5%) 
43 (15.5%) 
146 (52.5%) 

 
104 (12.0%) 
82 (9.4%) 
209 (24.0%) 
97 (11.1%) 
378 (43.4%) 

<0.0001 

Prior ovarian surgery 40 (17.0%) 36 (12.9%) 62 (7.1%) <0.0001 
The continuous variables are presented as medians (range) and analyzed by using the Kruskal-Wallis test. 
The same superscripts show significant differences between the women with different AMH levels in the Mann-Whitney U-test with Bonferroni’s 
adjustment, Pa-c < 0.0001. 
The categorial variables are presented as numbers (percentages within each AMH level) and analyzed by using the χ2  test.  
AMH, anti-Müllerian hormone 
 
 



Table II The characteristics of the ovarian stimulation and the embryo transfer cycles in the women with low, moderately low and normal AMH. 
Characteristics AMH  P-value 

Low  
(<1.0µg/L) 

Moderately low  
(1.0–1.9µg/L) 

Normal  
(≥2.0µg/L) 

Number of stimulation cycles 235 278 870  
Stimulation protocol 
  Long agonist  
  Antagonist  

 
221(94.0%) 
14 (6.0%) 

 
262 (94.2%) 
16 (5.8%) 

 
641 (73.7%) 
229 (26.3%) 

<0.0001 

Fertilization 
  IVF 
  ICSI 
  IVF and ICSI 

 
177 (75.3%) 
57 (24.3%) 
1 (0.4%) 

 
203 (73.0%) 
67 (24.1%) 
8 (2.9%) 

 
568 (65.3%) 
275 (31.6%) 
27 (3.1%) 

0.004 

Total dose of gonadotropin (IU) 3000 (1250–6600)a,b 2000 (800–5100)a,c 1375 (440–3875)b,c <0.0001 
Number of oocytes retrieved 6 (1–24)a,b 9 (1–32)a,c 12 (1−51)b,c <0.0001 
Number of mature oocytes 5 (1–24)a,b 8 (1–24)a,c 10 (1–45)b,c <0.0001 
Number of fertilized oocytes 3 (1–21)a,b 5 (1–17)a,c 6 (1–30)b,c <0.0001 
Number of frozen embryos 1 (0–15)d,b 1 (0–16)d,b 2 (0–25 )b,c <0.0001 
Women with ≥1 frozen embryos 128 (54.5%) 186 (66.9%) 665 (76.4%) <0.0001 
Total number of embryo transfer cycles  
  Fresh embryo transfer cycles 
  FET, spontaneous cycles with luteal support 
  FET, hormonal substitution cycles 

373 
232 (62.2%) 
79 (21.3%) 
62 (16.6%) 

505 
277 (54.9%) 
169 (33.5%) 
59 (11.7%) 

1855 
806 (43.5%) 
614 (33.1%) 
435 (23.5%) 

 

The categorial variables are presented as numbers (percentages within each AMH level) and analyzed by using the χ2  test.  
The continuous variables are presented as medians (range) and analyzed by using the Kruskal-Wallis test. 
The same superscripts show significant differences between the women with different AMH levels in the Mann-Whitney U-test with Bonferroni’s 
adjustment, Pa,b,c <0.0001, Pd=0.006 
AMH, anti-Müllerian hormone; FET, frozen-thawed embryo transfer. 
 
 



 
 
Table III The risk of miscarriage and non-visualized pregnancy loss according to woman’s AMH level in three study populations among women 
who became pregnant in their first IVF/ICSI treatment, including all fresh and frozen-thawed embryo transfers. The log-binomial regression 
analysis with the GEE.  

 
 Miscarriage vs. live birth Non-visualized pregnancy loss vs. live birth 

Unadjusted RR 
(95% CI) 

P-value Adjusteda RR 
(95% CI) 

P-value Unadjusted RR 
(95% CI) 

P-value Adjusteda RR 
(95% CI) 

P-value 

All women 
AMH 
   Normal (≥ 2.0µg/L) Reference Reference Reference Reference 
   Moderately low (1.0−1.9µg/L) 1.08 (0.73 – 1.61) 0.69 1.00 (0.68 – 1.49) 0.99 1.18 (0.91 – 1.52) 0.21 1.09 (0.85 – 1.41) 0.51 
   Low (< 1.0µg/L) 0.88 (0.54 – 1.42) 0.60 0.70 (0.42 – 1.17) 0.17 1.02 (0.74 – 1.40) 0.90 0.90 (0.65 – 1.23) 0.49 
Women with AMH ≤ 6.0µg/L 
AMH 
   Normal (2.0–6.0µg/L) Reference Reference Reference Reference 
   Moderately low (1.0−1.9µg/L) 1.04 (0.69 – 1.55) 0.87 0.99 (0.67 – 1.48) 0.97 1.17 (0.90 – 1.52) 0.25 1.10 (0.85 – 1.43) 0.48 
   Low (< 1.0µg/L) 0.85 (0.52 – 1.38) 0.51 0.69 (0.41 – 1.16) 0.16 1.01 (0.73 – 1.40) 0.94 0.90 (0.65 – 1.24) 0.51 
IPWb, women with AMH ≤ 6.0µg/L 
AMH 
   Normal (2.0–6.0µg/L) Reference Reference Reference Reference 
   Moderately low (1.0−1.9µg/L) 1.18 (0.82 – 1.71) 0.37 1.13 (0.78 – 1.64) 0.51 1.16 (0.90 – 1.50) 0.21 1.09 (0.85 – 1.40) 0.43 
   Low (< 1.0µg/L) 0.88 (0.55 – 1.38) 0.57 0.70 (0.43 – 1.15) 0.16 1.05 (0.79 – 1.41) 0.72 0.89 (0.66 – 1.19) 0.43 

 
AMH, anti-Müllerian hormone; GEE, generalized estimating equation; RR relative risk 
aRRs adjusted for age, smoking, overweight, history of endometriosis and medical conditions (diabetes, rheumatic or celiac disease, inflammatory 
bowel disease, multiple sclerosis, and previous cancer) 
bData weighted by the inverse of the probability of becoming pregnant (IPW), based on the characteristics of the woman and the IVF/ICSI 
treatment. 
 



Table IV The RRs for having at least one pregnancy (cumulative pregnancy) vs. no pregnancy or at least one live birth (cumulative live birth) vs. no live birth in 
the woman’s first IVF/ICSI, including all embryo transfer cycles among all women and women with AMH ≤6.0µg/L according to AMH level. The log-binomial 
regression analysis. 
 

 Cumulative pregnancy Cumulative live birth 
Unadjusted RR 
(95% CI) 

P-value Adjusteda RR 
(95% CI) 

P-value Unadjusted RR 
(95% CI) 

P-value Adjusteda RR 
(95% CI) 

P-value 

All women N=1383 N=1382 
AMH 
   Normal (≥ 2.0µg/L) Reference Reference Reference Reference 
   Moderately low (1.0−1.9µg/L) 0.86 (0.78 – 0.96) 0.008 0.87 (0.78 – 0.97) 0.012 0.74 (0.63 – 0.88) 0.001 0.76 (0.64 – 0.90) 0.002 
   Low (< 1.0µg/L) 0.74 (0.65 – 0.85) <0.001 0.78 (0.68 – 0.89) <0.001 0.70 (0.58 – 0.84) <0.001 0.79 (0.65 – 0.96) 0.02 
Women with AMH ≤6.0µg/L N=1193 N=1192 
AMH 
   Normal (2.0–6.0µg/L) Reference    
   Moderately low (1.0−1.9µg/L) 0.89 (0.80 – 0.99) 0.048  0.90 (0.80 – 1.01) 0.06 0.77 (0.65 – 0.92) 0.003 0.79 (0.66 – 0.94) 0.007 
   Low (< 1.0µg/L) 0.77 (0.67– 0.88) <0.001 0.80 (0.69 – 0.92) 0.002 0.72 (0.59 – 0.88) 0.001 0.81 (0.66 – 0.99) 0.04 

 
AMH, anti-Müllerian hormone; RR, relative risk 
aRRs adjusted for age, smoking, overweight, history of endometriosis and medical conditions (diabetes, rheumatic or celiac disease, inflammatory 
bowel disease, multiple sclerosis, and previous cancer) 

 
 
 



Table IV The RRs for having at least one pregnancy (cumulative pregnancy) vs. no pregnancy or at least one live birth (cumulative live birth) vs. no live birth in 
the woman’s first IVF/ICSI, including all embryo transfer cycles among all women and women with AMH ≤6.0µg/L according to AMH level. The log-binomial 
regression analysis. 
 

 Cumulative pregnancy Cumulative live birth 
Unadjusted RR 
(95% CI) 

P-value Adjusteda RR 
(95% CI) 

P-value Unadjusted RR 
(95% CI) 

P-value Adjusteda RR 
(95% CI) 

P-value 

All women N=1383 N=1382 
AMH 
   Normal (≥ 2.0µg/L) Reference Reference Reference Reference 
   Moderately low (1.0−1.9µg/L) 0.86 (0.78 – 0.96) 0.008 0.87 (0.78 – 0.97) 0.012 0.74 (0.63 – 0.88) 0.001 0.76 (0.64 – 0.90) 0.002 
   Low (< 1.0µg/L) 0.74 (0.65 – 0.85) <0.001 0.78 (0.68 – 0.89) <0.001 0.70 (0.58 – 0.84) <0.001 0.79 (0.65 – 0.96) 0.02 
Women with AMH ≤6.0µg/L N=1193 N=1192 
AMH 
   Normal (2.0–6.0µg/L) Reference    
   Moderately low (1.0−1.9µg/L) 0.89 (0.80 – 0.99) 0.048  0.90 (0.80 – 1.01) 0.06 0.77 (0.65 – 0.92) 0.003 0.79 (0.66 – 0.94) 0.007 
   Low (< 1.0µg/L) 0.77 (0.67– 0.88) <0.001 0.80 (0.69 – 0.92) 0.002 0.72 (0.59 – 0.88) 0.001 0.81 (0.66 – 0.99) 0.04 

 
AMH, anti-Müllerian hormone; RR, relative risk 
aRRs adjusted for age, smoking, overweight, history of endometriosis and medical conditions (diabetes, rheumatic or celiac disease, inflammatory 
bowel disease, multiple sclerosis, and previous cancer) 

 
 
 



Table V The RRs for having at least one pregnancy (cumulative pregnancy) vs. no pregnancy or at least one live birth (cumulative live birth) vs. no live birth in 
the woman’s first IVF/ICSI in women with normal, moderately low and low AMH stratified by the number of mature oocytes. A log-binomial regression analysis, 
women with AMH >6.0µg/L excluded.  

 
Mature  
oocytes 
(number of 
women)  

AMH Cumulative pregnancy Cumulative live birth  
Unadjusted RR 
(95% CI) 

P-
value 

Adjusteda RR 
(95% CI) 

P-
value 

Unadjusted RR 
(95% CI) 

P-
value 

Adjusteda RR 
(95%CI) 

P-
value 

1-4  
(245) 

Normal  (2.0–6.0µg/L) Reference  Reference Reference  Reference 
Moderately low (1.0–1.9µg/L) 1.05 (0.74 – 1.50) 0.77 1.04 (0.73 – 1.50) 0.81 0.70 (0.39 – 1.25) 0.28 0.67 (0.38 – 1.17) 0.16 
Low  (<1.0µg/L) 0.91 (0.65 – 1.27) 0.59 0.92 (0.65 – 1.31) 0.63 0.77 (0.48 – 1.25) 0.16 0.78 (0.48 – 1.26) 0.31 

5-9 
(484) 

Normal  Reference  Reference Reference  Reference 
Moderately low  1.08 (0.91 – 1.28) 0.40 1.09 (0.92 – 1.29) 0.34 1.00 (0.77 – 1.30) 0.99 1.02 (0.79 – 1.32) 0.89 
Low  0.93 (0.75 – 1.14) 0.47 0.94 (0.76 – 1.16) 0.54 0.95 (0.71 – 1.28) 0.75 1.01 (0.75 – 1.35) 0.96 

>10 
(463) 

Normal  Reference  Reference Reference  Reference 
Moderately low  0.81 (0.68 – 0.97) 0.02 0.81 (0.68 – 0.96) 0.02 0.75 (0.57 – 0.97) 0.03 0.79 (0.61 – 1.03) 0.08 
Low  0.92 (0.73 – 1.16) 0.40 0.92 (0.73 – 1.16) 0.49 0.97 (0.69 – 1.35) 0.71 1.09 (0.79 – 1.51) 0.57 

AMH, anti-Müllerian hormone; RR, relative risk; CI, confidence interval. 
aRRs adjusted for age, smoking, overweight, history of endometriosis and medical conditions (diabetes, rheumatic or celiac disease, inflammatory bowel 
disease, multiple sclerosis, and previous cancer) 
 

 
 



Table V The RRs for having at least one pregnancy (cumulative pregnancy) vs. no pregnancy or at least one live birth (cumulative live birth) vs. no live birth in 
the woman’s first IVF/ICSI in women with normal, moderately low and low AMH stratified by the number of mature oocytes. A log-binomial regression analysis, 
women with AMH >6.0µg/L excluded.  
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Low  (<1.0µg/L) 0.91 (0.65 – 1.27) 0.59 0.92 (0.65 – 1.31) 0.63 0.77 (0.48 – 1.25) 0.16 0.78 (0.48 – 1.26) 0.31 
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Low  0.93 (0.75 – 1.14) 0.47 0.94 (0.76 – 1.16) 0.54 0.95 (0.71 – 1.28) 0.75 1.01 (0.75 – 1.35) 0.96 
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(463) 

Normal  Reference  Reference Reference  Reference 
Moderately low  0.81 (0.68 – 0.97) 0.02 0.81 (0.68 – 0.96) 0.02 0.75 (0.57 – 0.97) 0.03 0.79 (0.61 – 1.03) 0.08 
Low  0.92 (0.73 – 1.16) 0.40 0.92 (0.73 – 1.16) 0.49 0.97 (0.69 – 1.35) 0.71 1.09 (0.79 – 1.51) 0.57 

AMH, anti-Müllerian hormone; RR, relative risk; CI, confidence interval. 
aRRs adjusted for age, smoking, overweight, history of endometriosis and medical conditions (diabetes, rheumatic or celiac disease, inflammatory bowel 
disease, multiple sclerosis, and previous cancer) 
 

 
 



 
Figure 1. A flowchart of the patient selection and an overview of the IVF/ICSI treatments with all 
connected fresh and frozen-thawed embryo transfer (ET) cycles with the reproductive outcomes in 
women with low (<1.0μg/L), moderately low (1.0 – 1.9μg/L) and normal (≥2.0μg/L) anti-Müllerian 
hormone (AMH) level. 
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Figure 2 (A) The unadjusted pregnancy rates (positive pregnancy test per ET cycle) among the women 
with low (<1.0μg/L), moderately low (1.0–1.9μg/L), and normal (≥2.0μg/L) AMH level. (B) The 
unadjusted frequencies of non-visualized pregnancy losses, miscarriages, and live births after a 
positive pregnancy test according to the AMH levels. A Chi-square test showed a relationship between 
the AMH level and the positive pregnancy test rate (P<0.001), but not between AMH and the pregnancy 
outcome (P=0.63). 

 
 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Low AMH Moderately low AMH Normal AMH

Po
sit

iv
e 

pr
eg

na
nc

y 
te

st
 p

er
 E

T

0%

10%
20%

30%

40%
50%

60%

70%

Non-visualized pregnancy
loss

Miscarriage Live birth

Pr
eg

na
nc

y 
ou

tc
om

e 
pe

r 
po

sit
iv

e 
pr

eg
na

nc
y 

te
st

Low AMH Moderately low AMH Normal AMH



A 	
	

B 	
	

Figure 3 The unadjusted cumulative pregnancy rates (A) and the unadjusted cumulative live birth rates 
(B) in the women with low (<1.0μg/L), moderately low (1.0 – 1.9μg/L), and normal (≥2.0μg/L) AMH after 
consecutive ET cycles connected with couple’s first IVF/ICSI stimulation.  

AMH, anti-Müllerian hormone; ET, embryo transfer; FET, frozen embryo transfer 
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