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Abstract 

Dendritic cells (DCs) are the sentinels of the immune system and are specialized in initiating adaptive 

immune responses by presenting foreign antigens to T cells. Thus, dendritic cells are critical 

regulators of immune responses and accordingly have been a focus of cancer immunotherapy 

research. DC therapy is considered as a promising approach in cancer immunotherapy. However, DC-

based vaccines have shown limited efficacy in clinical trials. Oncolytic adenovirus replicates and 

lyses only cancer cells. Virus-mediated lysis of cancer cells also induces danger signals and exposes 

tumor epitopes that promote immune system activation against cancer. This study investigated the 

oncolytic adenovirus 3 coding for CD40 Ligand: Ad3-hTERT-CMV-CD40L (also known as TILT-

234) as an enhancer of DC therapy.

In the first study, human cancer patient data suggested that intravenous adenovirus administration is 

able to transduce distant tumors and virally-produced CD40L can activate DCs in situ. Ad3-hTERT-

CMV-CD40L was shown to efficiently kill tumor cells in vitro. Studies with immunodeficient mice 

bearing human xenografts suggested that the virus possesses potent antitumor activity. Syngeneic 

studies conducted in immunocompetent mice with replication-incompetent virus provided data on 

virally delivered transgene and DC therapy. Replication-incompetent virus in combination with DC 

therapy elicited potent antitumor activity and triggered antitumor immune responses.

In the second study, we evaluated the synergistic effects of Ad3-hTERT-CMV-CD40L and DCs in 

the presence of human peripheral blood mononuclear cells both in vitro and in vivo. This companion 

therapy showed 100% survival of humanized mice. Adenovirus-delivered CD40L induced DC 

activation, leading to the induction of Th1-type immune responses. This resulted in greater antitumor 

efficacy than either approach as monotherapy. 

The third study focused on the treatment of prostate cancer. In this study, the Ad3-hTERT-CMV-

CD40L and DC therapy companion effect was evaluated in a humanized mouse model bearing a 

human prostate xenograft and with in vitro prostate cancer histocultures. Treatment with companion 

therapy was shown to induce greater antitumor immune responses in vivo and to induce a robust 

increase in proinflammatory cytokines in addition to DC maturation in established histocultures.

In the fourth study, we focused on the interaction of a chimeric adenovirus Ad5/3 with human 

lymphocytes and erythrocytes. This study showed that the binding of Ad5/3 with human lymphocytes 

and erythrocytes occurs in a reversible manner, which enables the virus to transduce different tumors 

and to retain oncolytic potency both in vitro and in vivo, with or without neutralizing antibodies. 
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When bound to lymphocytes or erythrocytes, chimeric Ad5/3 adenovirus showed enhanced tumor 

transduction after systemic administration in immunodeficient mice bearing xenograft tumors (in the 

present study A549 and PC3-MM2 were studied).

In summary, the first three studies demonstrated the ability of Ad3-hTERT-CMV-CD40L to 

modulate the tumor microenvironment and that local delivery of CD40L is safe and efficient 

regarding DC therapy. In conclusion, Ad3-hTERT-CMV-CD40L was shown to be a potential enabler 

of DC therapy. The fourth study revealed the ability of a chimeric Ad5/3 adenovirus to transduce 

non-injected tumors through blood, even in the presence of neutralizing antibodies. Mechanistically, 

this happens through reversible binding to human lymphocytes and erythrocytes.
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Introduction 

Cancer is one of the leading causes of death worldwide. Cancer arises due to several genetic and 

epigenetic changes that causes cells to grow or divide uncontrollably. Hallmarks of cancer include 

sustained proliferative signaling, evasion of growth inhibitors, replicative immortality, invasive and 

metastatic ability, induction of angiogenesis, and resistance to cell death (Figure 1) (Gutschner and 

Diederichs 2012). Together with the immunosuppressive tumor microenvironment (TME), these 

properties collectively make tumors relatively difficult to eliminate.

Figure 1: Hallmarks of cancer. Six hallmarks of cancer. Figure adapted from Gutschner and 

Diederichs 2012.

Despite improvements in the prevention and diagnosis of cancer, mortality due to cancer is still 

increasing. Global statistics from 2018 revealed 18.1 million new cancer cases and 9.5 million cancer-

related deaths (Bray et al. 2018). First-line treatments for most cancers are still conventional cancer 

treatments such as chemotherapy, surgery, or radiation. Most cases of local cancer can be cured with 

surgery and adjuvant therapies. However, these therapies have shown limited durable responses for 

most patients with metastatic cancer (Hemminki et al. 2018). Immunotherapy is an emerging field 

and may have therapeutic effects along with conventional treatments (Qiao, Liu and Fu 2016). The 
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concept of immunotherapy dates back to when surgical oncologist William Coley treated cancer 

patients with a mixture of killed bacteria (Coley’s toxin) (Coley 1893). The tuberculosis vaccine, 

Bacillus Calmette-Guerin (BCG), consists of attenuated Mycobacterium and is still used successfully 

to treat patients with superficial bladder cancer (Lamm et al. 1991). These treatments support the idea 

that antitumor immune responses play an important role in the treatment of cancer (Lizée et al. 2013).

Immunotherapy includes a variety of approaches, ranging from adoptive cell therapies to cytokines, 

antibodies, and viruses (Farkona, Diamandis and Blasutig 2016). Immunotherapies (such as 

sipuleucel-T, a therapy that trains autologous dendritic cells for treatment of prostate cancer) 

(Topalian, Weiner and Pardoll 2011) and antibodies against checkpoint inhibitors (such as 

programmed cell death protein 1 [PD-1] and cytotoxic T lymphocyte-associated protein 4 [CTLA-4] 

(Sharma and Allison 2015) have been approved for clinical use. In 2005, the first oncolytic 

adenovirus, H101, was approved in China for the treatment of nasopharyngeal cancer. Talimogene 

laherparepvec (T-VEC), an oncolytic herpes simplex virus encoding for GM-CSF, was approved for 

treatment of cancer by the Food and Drug Administration (FDA) in 2015 followed by the European 

Medicines Agency (EMA) (Andtbacka et al. 2019).  

Immunological research has improved understanding of the molecular mechanisms of the immune 

system, and immunotherapy has been implemented broadly in the treatment of cancers (Riley et al. 

2019). Solid tumors are highly immunosuppressive and heterogeneous and therefore one treatment 

approach is usually not sufficient (Chen and Mellman 2013, Riley et al. 2019). Immunotherapies can 

counteract the immunosuppression of the TME. Effective antitumor immune responses occur through 

a series of steps, starting from the immunogenic cell death that leads to release of tumor antigens. 

Antigen-presenting cells (APCs) then capture these antigens and present them to T cells. Activated T 

cells traffic to and infiltrate the tumors and recognize and kill their target cancer cells (Motz and 

Coukos 2013). However, in cancer patients, each of these steps are hampered. 

This study examined the use of cytokine-armed oncolytic adenovirus to treat solid tumors by creating 

safe and strong antitumor immune responses. In studies I, II, and III, CD40 ligand (CD40L)-armed 

oncolytic adenovirus enabled DC therapy and induced antitumor immune responses in different 

murine models in vivo and in cancer patient samples in vitro. Study IV addressed the mechanism of 

adenovirus tumor transduction through blood in an immunodeficient mouse model.
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1 Review of literature
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1.1 Cancer

 

The first idea of using the immune system of the host to treat cancer dates back decades and relies on 

the premise that the immune system can eliminate malignant cells during initial transformation in a 

process termed immune surveillance (Sharma et al. 2011). Over time, more data supporting this 

hypothesis accumulated and it was acknowledged that the interaction between a tumor and the 

immune system could also promote tumor development by enabling the tumor to evade immune 

surveillance (Dunn et al. 2002). The ability of tumors to evade destruction by the immune system is 

considered one of the hallmarks of cancer. Immune evasion and immunoediting are the main 

mechanisms by which cancers escape immune surveillance (Hanahan et al. 2011).

1.1.1 Immune evasion 

Cancer cells in a TME secrete soluble factors that induce immunosuppressive cell phenotypes and 

inhibit the activation of immune cells (Kim et al. 2007).

Examples of these soluble factors include IL-10, Vascular Endothelial Growth Factor (VEGF), 

Prostaglandin E2 (PGE2), Transforming Growth Factor (TGF-β), FasL, and CCL21 (Shields et al. 

2010, Kim 2007). These factors are known to suppress cytotoxic CD8+ T cells, downregulate NK 

cells, induce regulatory T cells (Tregs), and promote myeloid-derived suppressor cells (MDSC) and 

M2 macrophages in the tumor microenvironment (Shields et al. 2010, Motz et al. 2014).

The presence of these suppressive immune cells subsequently prevents immune responses against the 

tumor. Tregs suppress effector T cells, dendritic cells, and natural killer (NK) cells either by 

producing immunosuppressive cytokines (such as IL-10 and TGF-β) or through direct cell-to-cell 

interactions (Wang and DuBois 2015). In tumors, an increase in the number of Tregs correlates with 

an increase in the number of MDSCs, which in turn are known to promote Treg activation and 

differentiation of macrophages towards the M2 phenotype (Gabitass et al. 2011, Gabrilovich, 

Ostrand-Rosenberg and Bronte 2012b). M2-like macrophages also express TGF-β and IL-10. They 

also express PD-L1, which binds to its receptor PD-1 on T cells and renders T cells inactive, thus 

promoting tumor progression (Gabrilovich et al. 2012b, Kuang et al. 2009). Moreover, APCs and 

cancer cells can inhibit T cells via PD-1 by expressing its ligands PD-L1 or PD-L-2. Another immune 

checkpoint molecule, CTLA-4, is expressed on T cells as a co-inhibitory molecule and regulates the 

extent of T-cell activation. CTLA-4 binds to its ligands B7-1 and B7-2 on APCs and inhibits T-cell 

activity (Webb et al. 2018).  Collectively, these factors contribute to tumor progression. Cancer 
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immunotherapies, such as adoptive cell transfer, cytokine treatments, and oncolytic viruses all 

modulate the immunosuppressive TME.  

1.1.2 Immunoediting 

Cancer immunoediting refers to the ability of the immune system (both the innate and adaptive) to 

prevent the formation of tumors and to shape the immunogenicity of the developing tumors (Vesely 

et al. 2011). This process can be divided into three phases, namely elimination, equilibrium, and 

escape (Figure 2). In the elimination phase, cells of the innate immune system, such as NK cells, NK 

T cells, and γδ T cells actively identify newly transformed cells and start producing interferon (IFN)-

γ (Dunn et al. 2002, Girardi et al. 2001, Smyth, Godfrey and Trapani 2001, Matzinger 1994). IFN-γ

then further enhances the recruitment of antigen-presenting cells, such as DC and macrophages, as 

well as more NK cells (Dunn et al. 2002, Yokoyama 2000, Cerwenka et al. 2000). Moreover, IFN-γ

also contributes to the apoptosis of tumor cells (Kumar et al. 1997). DCs take up tumor antigens and 

present them in lymph nodes to CD4+ T cells and CD8+ T cells, which are then activated and traffic 

to the tumors where cytotoxic T cells kill sensitive tumor cells. According to Darwinian selection, 

due to mutations, cells develop resistance to immune attack during the equilibrium phase. These 

resistant tumor variants begin to expand in an uncontrolled way. This consequently leads to tumor 

progression (escape phase).
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Figure 2:  Cancer immunoediting. The three Es of cancer immunoediting include elimination, 

equilibrium, and escape. During the elimination phase, innate and adaptive immune cells recognize 

transformed cells and destroy them, thus resulting in a return to normal physiological tissue. However, 

if antitumor immunity is unable to completely destroy transformed cells, surviving tumor variants 

may enter into the equilibrium phase. During the equilibrium phase, cells of adaptive immunity 

prevent tumor outgrowth. These tumor variants may acquire further mutations that lead to evasion of 

tumor cell recognition and killing by immune cells. In the escape phase, transformed cells begin to 

grow in an immunologically unrestricted manner and emerge as clinically detectable malignancies.

1.2 Adoptive DC therapy

1.2.1 Dendritic cells

DCs are antigen-presenting cells with a unique ability to induce adaptive immune responses 

(Mastelic-Gavillet et al. 2019). They are characterized by their stellate morphology and their ability 

to migrate from peripheral tissues to lymphoid organs and to prime naïve T cells through antigen 

presentation, thus inducing immune responses (Palucka and Banchereau 2012). DCs act as a bridge 

between innate and adaptive immunity (Figure 3) and are considered as sentinels of the immune 

system (Aarntzen et al. 2008, Banchereau et al. 2000)
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Figure 3: Dendritic cells as a bridge between the innate and adaptive immune systems. Immature 

DCs recognize tumor pathogen-associated molecular patterns (PAMPs) through their pattern 

recognition receptors. Immature DCs activate cells of the innate immune system through the release 

of IFN-alpha, which leads to the antitumor activity that results in release of apoptotic cell fragments. 

Immature DCs capture these apoptotic cell fragments, mature, and present the tumor antigens to T 

lymphocytes. Activated cytotoxic CD8+ T cells kill tumors directly and CD4+ T cells further activate 

other immune cells to induce tumor killing. Figure adapted from Jacques Banchereau et al. 2000

1.2.1.1 Maturation of Dendritic cells

Maturation of DCs is a complex process. Immature DCs (imDCs), which have high phagocytic 

capacity, patrol through tissues and collect antigens via pinocytosis. Upon exposure to PAMPs, 

imDCs undergo numerous phenotypic changes, including upregulation of costimulatory surface 

markers, such as CD86 (B7.2) and CD80 (B7.1), and secretion of pro-inflammatory cytokines. imDCs 

then migrate to lymphoid organs and mature to become mature DCs (mDCs). In lymphoid organs, 

mDCs initiate immune responses through antigen presentation to T lymphocytes. Upon interaction of 
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naïve CD4+ T cells and CD8+ T cells with DCs, they differentiate into antigen-specific effector T 

cells. Naïve CD8+ T cells can differentiate into cytotoxic T cells and CD4+ T cells can differentiate 

to T helper 1 (Th1), Th2 cells, Th17 cells, regulatory T cells (Treg), or T follicular helper cells (Tfh). 

These activated T lymphocytes expand, differentiate, and migrate to the target site (Garg et al. 2017).

Therefore, DC maturation is an important prerequisite for the immunogenicity of DCs in humans. 

imDCs that have not matured can induce tolerance in T cells (Dhodapkar et al. 2001).

1.2.2 Dysfunction of tumor-infiltrating DCs

For the induction of protective antitumor immunity, optimal function of DCs is very important. 

However, since the TME is highly immunosuppressive, it can impair DC differentiation, maturation, 

and function (Bandola-Simon and Roche 2019, Pinzon-Charry, Maxwell and López 2005, 

Gabrilovich, Ostrand-Rosenberg and Bronte 2012a). The improper differentiation of DCs leads to 

inadequate antigen-presenting functionality, which then contributes to T-cell anergy or exhaustion 

(Gabrilovich et al. 2012a, Gabrilovich 2004). DCs derived from patients with advanced cancer exhibit 

a weak ability to stimulate T cells (Almand et al. 2000), and high levels of intratumoral DCs correlate 

with poor clinical outcome (Conrad et al. 2012). Tumor-infiltrating DCs undergo phenotype 

switching from an immunostimulatory to a regulatory phenotype (Scarlett et al. 2012). This correlates 

with enhanced upregulation of costimulatory molecules such as PD-L1 (Krempski et al. 2011) and 

TIM-3 (Chiba et al. 2012), along with increased L-arginase production (Norian et al. 2009). DCs with 

immunosuppressive properties are associated with impaired T cell activity (Karyampudi et al. 2016).

Therefore, immunosuppressive DCs in the TME contribute to tumor progression and probably limit 

the clinic efficacy of DC therapy.

1.2.3 DC-based vaccines 

Different clinical trials using DC-based vaccines have been conducted. These trials have included 

patients with more than two dozen tumor types. Most trials have studied patients with malignant 

melanoma, prostate cancer, colorectal carcinoma, or multiple myeloma using autologous DCs pulsed 

with synthetic antigens. DC vaccines can also be prepared by pulsing DCs with tumor lysates or RNA, 

or by transfection with tumor DNA. Various approaches to vaccination have been tested, for example 

frozen preservation of vaccines, a maturation step for DCs, and different cell numbers, length of 

vaccination program, or site of vaccination. The process of DC vaccine generation is shown in 

Figure 4. Adverse effects associated with DC vaccination are uncommon; most have been mild and 

self-limiting and none have been serious. Clinical responses have been observed in approximately 
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half of trials. DC vaccination may therefore provide a safe approach to cancer immunotherapy that 

can overcome the limited reach and immunogenicity of peptide vaccines (Ridgway 2003). Different 

dendritic cell therapies are listed in Table 1.

DC-based vaccines were initially prepared from DCs directly isolated from peripheral blood in vitro.

However, this method yields low numbers of DCs (Hsu et al. 1996b). DC vaccines currently use 

exogenously matured and/or expanded monocyte-derived DCs (moDCs), or conventional DC (cDC) 

precursors. Most trials use moDCs, due to the relative ease in obtaining sufficient cell numbers from 

the blood (Granot et al. 2017).

.

Figure 4: Process of DC vaccine generation. Monocytes are isolated from the patient’s peripheral 

blood. Culturing monocytes in the presence of GM-CSF and IL-4 differentiates monocytes into 

immature DCs. Immature DCs are then cultured with cytokine cocktails and pulsed with tumor lysate, 

specific tumor antigens, or neo-antigens. Mature tumor-specific DCs are injected back into the 

patient. 
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1.2.3.1 DC-based vaccines using tumor-associated antigens

One of the most important components of DC vaccines is tumor-associated antigens (TAA), i.e. 

antigens that can be presented to and be recognized by tumor-specific T cells. TAAs are expressed 

on tumor cells but can also be present on normal cells. TAAs vary in their immunogenicity and may 

undergo immune editing to escape immune recognition (Escors, 2014). These antigens can be 

categorized into two groups depending upon their expression in healthy tissues. The first group 

consists of antigens overexpressed in tumors, i.e. the expression levels of TAAs are higher in tumor 

cells compared to normal cells. The second group consists of differentiation antigens, i.e. antigens 

specific for a cell lineage. For example, most melanoma tumors express melanocyte differentiation 

antigens (Kawakami et al. 1994). Most cancer vaccines use either a defined antigen or a mixture of 

defined antigens (98-103). One of the potential drawbacks of this approach is that tumors may escape 

through the loss of expression of these defined (or selected) antigens (Beatty and Gladney 2015, 

Mohme, Riethdorf and Pantel 2017). To overcome this challenge, the use of multiple antigens, either 

defined or undefined, may be important to achieve clinical efficacy.

1.2.3.2 DC-based vaccines using neoantigens

Tumor cells with high mutational rates express neoantigens, i.e. modified self-antigens. Neoantigens 

are generated by mutations in the tumor cell genome. They possess strong immunogenicity and are 

not expressed in normal tissues. Therefore, they can be considered as viable therapeutic targets for 

cancer immunotherapy (Lu and Robbins 2016). A neoantigen-targeted approach in cancer vaccines 

has shown some potential (Carreno et al. 2015, Ott et al. 2017). In phase I clinical trials, somatic 

mutations in tumors from three melanoma patients were identified and short peptides containing 

seven neoantigen epitopes were used to pulse DCs from these patients. Pulsed autologous DCs, in 

turn, can activate neoantigen-specific T cells (Carreno et al. 2015). However, the cost and time for 

the neoantigen epitope identification process (from tumor resection to vaccine administration)

represent major challenges for this approach.

1.2.3.3 DC-based vaccines using whole tumor lysates

Autologous tumor lysates are a source of patient-specific TAAs (Palmer et al. 2009). Different tumor 

lysate preparation methods have been used, for example freeze-thawing, UV irradiation, oxidation of 
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resected tumors (e.g. use of hypochlorous acid [HOCI]), or combinations thereof (Chiang, Coukos 

and Kandalaft 2015, Courrèges et al. 2006, Benencia, Courrèges and Coukos 2008, Chiang et al. 

2013). These preparation methods also increase the immunogenicity of the tumor lysate. DCs pulsed 

with tumor lysate are safe and well-tolerated in patients (Alfaro et al. 2011, Nestle et al. 1998).  The 

main benefit of using whole tumor lysate as a source of TAAs is the reduced cost and development 

time when compared with neoantigen prediction strategies.

Table 1: Different dendritic cell -based vaccines

Advantages Disadvantages

Tumor-
associated 
antigens

Prevalence in multiple patients is high,

Economical

Variable tumor specificity 

Low to variable immunogenicity

Neoantigens
Tumor specificity is high 

High efficacy 

Expensive

Technology- and labor-intensive

Whole tumor
lysate

Contains complete patient-specific 
tumor-associated antigens

Identification and selection of 
neoantigens is not required

Economical

Resected tumor tissue is needed as a 
source of autologous tumor cell lysate

Variable cancer specificity
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1.3 Clinical efficacy of DC therapy

The ability of DCs to reduce tumor growth was shown in a murine model over two decades ago 

(Zitvogel et al. 1996). In 1996, the first DC application was reported in humans (Hsu et al. 1996a).

The first practical protocol for the generation of DCs was also reported in 1996 (Bender et al. 1996).

This led to more opportunities for DC applications in the clinic. By 2001, the number of studies on 

DC-based vaccines reported at annual meetings and in different peer-reviewed international 

publications exceeded one thousand (Ridgway 2003).

The results of many of the phase I and II trials on DC therapy are variable; some have shown 

disappearance of some metastases, appearance of new metastases, or disease stabilization in a subset 

of patients. However, objective responses have been observed less consistently. According to a 

review of multiple clinical trials, DC therapy has led to tumor regression on average in only 7.1% of 

patients (Rosenberg, Yang and Restifo 2004, Timmerman and Levy 2004). In clinical trials with 

stage-IV melanoma patients, DCs pulsed with autologous tumor cells have shown an approximate 

20% response rate (O'Rourke et al. 2007, O'Rourke et al. 2003). A summary of 98 published trials 

with DC treatment revealed that at least one or more subjects in 16 of the clinical trials had 

experienced complete responses and at least one subject in 48 trials demonstrated clinical responses 

(Ridgway 2003). Another study revealed 9% objective responses (complete response 3%, partial 

response 6%) for DC therapy in the treatment of melanoma (Engell-Noerregaard et al. 2008).

In 2010, the FDA approved an autologous moDC vaccine Sipuleucel-T (Provenge; Dendreon) for the 

treatment of castration-resistant prostate cancer. In this vaccine, DCs are pulsed with the tumor 

antigen prostatic acid phosphatase (PA2024) fused with cytokine granulocyte-macrophage colony-

stimulating factor (GM-CSF). Sipuleucel-T resulted in improved overall survival (Kantoff et al. 

2010). However, its performance in the clinic as a monotherapy was ultimately disappointing (Saxena 

et al. 2018). More recently, Sipuleucel-T in combination with ipilimumab (anti-CTLA-4 antibody) 

has shown some clinical benefit (Scholz et al. 2017). Additional combination studies of Sipuleucel 

with other therapies are underway (Handy and Antonarakis 2018).

A phase I clinical trial investigated monocyte-derived DCs pulsed with HOCl-oxidized autologous 

tumor cell lysate to treat ovarian cancer patients who had previously undergone platinum treatment 

(Tanyi et al. 2018). Patients received either DC-based vaccine alone, in combination with 

bevacizumab (anti-VEGF antibody), or with bevacizumab and low-dose cyclophosphamide until 

disease progression. Treatment was shown to induce antitumor immune responses and to prolong 

overall survival. The combination of DC vaccine with bevacizumab and cyclophosphamide had the 
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best results. This study demonstrated that the clinical outcome of DC vaccines can be greatly 

enhanced via combination with other immunotherapies (Tanyi et al. 2018).

A phase III clinical trial investigated the use of monocyte-derived DCs pulsed with autologous tumor 

cell lysate for the treatment of patients with glioblastoma multiforme. Addition of a DC vaccine to 

the standard therapy for glioblastoma (i.e. surgery, radiotherapy, temozolimide) enhanced overall 

survival (Liau et al. 2018). Different ongoing clinical trials with DC vaccines are summarized in 

Table 2.

In summary, in clinical trials, DC vaccines have shown limited efficacy, possibly due to the highly 

immunosuppressive TME (especially at the advanced tumor stage), limited ability of DCs to migrate 

from site of administration to the draining lymph nodes, DC source, and frequency of DC 

administration. DC vaccines could be improved not only through the use of optimized DC subset 

selection and administration route but also through combining DC-based vaccination with other 

therapies.  



28 
 

Table 2 : List of different ongoing clinical trials with dendritic cell vaccines. The following trials 
were mentioned on the Clinicaltrials.gov website with active status. Search was conducted in
November 2020.

Indication Official Title of the trial Intervention Phase Enrollment 
status

Clinical trial 
ID

Metastatic 
melanoma

Multi-center Phase I/IIa 
Trial of an Autologous 
Tumor Lysate (TL) + Yeast 
Cell Wall Particles (YCWP) 
+ Dendritic Cells (DC) 
Vaccine in Addition to 
Standard of Care 
Checkpoint Inhibitor of 
Choice in Metastatic 
Melanoma Patients With 
Measurable Disease.
(

Autologous tumor 
lysate, particle-loaded, 
dendritic cell 
(TLPLDC) vaccine in
addition to standard of 
care checkpoint 
inhibitor of choice

Phase
1|Phase 2

45 NCT02678741

Newly 
diagnosed 
glioblastoma

Pilot Clinical Trial of 
Allogeneic Tumor Lysate-
Pulsed Autologous 
Dendritic Cell Vaccination 
in Newly Diagnosed 
Glioblastoma

Malignant glioma 
tumor lysate-pulsed 
autologous dendritic 
cell vaccine + 
temozolomide

Early 
phase 1 

21 NCT01957956

Malignant 
glioma|Gliobla
stoma

Dendritic Cell Vaccine For 
Malignant Glioma and 
Glioblastoma Multiforme in 
Adult and Pediatric Subjects

Dendritic cell 
vaccine|Tumor lysate|   
Imiquimod|Leukapher
esis

Phase 1 20 NCT01808820

Sarcoma

Soft Tissue 
Sarcoma

Bone Sarcoma

A Phase I Trial of Dendritic 
Cell Vaccination for 
Children and Adults With 
Sarcoma

Dendritic Cells 
VaccineILysate of 
TumorIGemcitabineII
miquimod

Phase 1 56 NCT01803152

Malignant 
melanoma

A Prospective, Randomized, 
Blinded, Placebo-controlled, 
Phase IIb Trial of an 
Autologous Tumor Lysate 
(TL) + Yeast Cell Wall 
Particles (YCWP) + 

Autologous Tumor 
Lysate (TL) + Yeast 
Cell Wall Particles 
(YCWP) +
Autologous tumor 
lysate, particle-loaded, 

Phase 2 120 NCT02301611
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Dendritic Cells (DC) 
Vaccine vs Unloaded 
YCWP + DC and 
Embedded Phase I/IIa Trial 
With Tumor Lysate Particle 
Only (TLPO) Vaccine in 
Stage III and Stage IV 
(Resected) Melanoma to 
Prevent Recurrence

dendritic cell
(TLPLDC) |Placebo

Multiple 
Myeloma

A Phase I Trial of 
Vaccination With CT7, 
MAGE-A3, and WT1 
mRNA-electroporated 
Autologous Langerhans-
type Dendritic cells as 
Consolidation for Multiple 
Myeloma Patients 
Undergoing Autologous 
Stem Cell Transplantation

CT7, MAGE-A3, and 
WT1 mRNA-
electroporated 
Langerhans cells ( 
LCs)
plus standard of care.

Phase 1 28 NCT01995708

Newly-
diagnosed 
Glioblastoma

Phase II Trial of 
Autologous Dendritic cells 
Loaded With Autologous 
Tumor Associated Antigens 
(AV-GBM-1) as an 
Adjunctive Therapy 
Following Primary Surgery 
Plus Concurrent 
Chemoradiation in Patients 
With Newly Diagnosed 
Glioblastoma

Autologous dendritic 
cells loaded with 
tumor-associated 
antigens from a short-
term cell culture of 
autologous tumor 
cells. AV-GBM-1 is 
admixed with 
granulocyte-
macrophage colony 
stimulating factor 
(GM-CSF) as an 
adjuvant, prior to 
injection 

Phase 2 55 NCT03400917

Glioblastoma Personalized Cellular 
Vaccine Therapy in 
Treating Patients With 
Newly Diagnosed 
Glioblastoma (PerCellVac)

Tumor antigen pulsed 
DC-based 
cellular vaccine. 
Subjects will undergo 
surgical resection and 
standard 6-week 
chemo/radiotherapy 
and cycles of TMZ 
treatment

Phase 1 20 NCT02709616

metastatic 
kidney cancer.

A Phase I, Open Label, 
Dose Escalation and Cohort 
Expansion Study to 
Evaluate the Safety and 
Immune Response to 
Autologous Dendritic 

Dendritic cells 
transduced with 
AdGMCA9 
expressing GM-CSF-
carbonic anhydrase IX 
fusion protein

Phase 1 18 NCT01826877
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cells Transduced With Ad-
GMCAIX in Patients With 
Metastatic Renal 
cell Carcinoma

Glioblastoma,
Malignant 
Glioma, 
Medulloblasto
ma Recurrent,
Pediatric 
Glioblastoma 
Multiforme,Pe
diatric Brain 
Tumor, 
RecurrentPedia
tric Brain 
Tumor

A Phase 1 Trial of CMV 
RNA-Pulsed Dendritic 
cells With Tetanus-
Diphtheria Toxoid Vaccine 
in Pediatric Patients and 
Young Adults With WHO 
Grade IV Glioma, Recurrent 
Malignant Glioma, or 
Recurrent Medulloblastoma

CMV RNA-
pulsed dendritic cells 
(DCs), also known as 
CMV-DCs, with 
Granulocyte 
Macrophage-Colony 
Stimulating Factor 
(GM-CSF)Itetanus 
toxoid (Td)

Phase 1 10 NCT03615404

Glioblastoma, 
Astrocytoma, 
Grade IV, 
Giant 
cell Glioblasto
ma, 
Glioblastoma 
Multiforme

Evaluation of Overcoming 
Limited Migration and 
Enhancing 
Cytomegalovirus-specific 
Dendritic cell Vaccines 
With Adjuvant Tetanus Pre-
conditioning in Patients 
With Newly-diagnosed 
Glioblastoma

Unpulsed 
DCs|Td|Human CMV 
pp65-LAMP mRNA-
pulsed autologous 
DCs|111In-labeled 
DCs|Temozolomide|S
aline|Basiliximab

Phase 2 100 NCT02366728
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1.4 Adenoviruses 

Rowe and colleagues were the first to isolate adenovirus from adenoidal tissues (Rowe et al. 1953).

Oncolytic adenoviruses are among the most stable and versatile group of oncolytic virus platforms to 

be used for cancer therapy (Kaufman et al. 2015, Cerullo et al. 2012). Human adenoviruses belong to 

the genus mastadenovirus, which contains seven human adenovirus species named A to G (Hoeben 

and Uil 2013). There are more than 50 serotypes (Rojas et al. 2016a). In gene-therapy studies, the 

most commonly used adenovirus vector is serotype 5 adenovirus (group C), as its structure and 

function has been studied extensively (Appaiahgari & Vrati 2015). However, the Ad5 receptor is 

known to be downregulated in advanced tumors. The use of adenovirus based on serotype 3 is an 

attractive alternative, as the receptor for serotype 3 is highly expressed on cancer cells (Hemminki et 

al. 2011). 

1.4.1 Adenovirus structure and life cycle

Adenoviruses are non-enveloped viruses and have an icosahedral capsid 70 to 90 nm in diameter. The 

capsid contains the 36-kb genome consisting of double-stranded DNA (Davison, Benko and Harrach 

2003, Nemerow et al. 2009). The capsid consists of 240 hexons with pentons at each vertex. The 

penton base is a pentameric molecule that associates with the fiber protein protruding from the middle 

(Nemerow et al. 2009). The fiber protein consists of shaft and knob parts that interact with the host 

cell for attachment (Law & Davidson 2005). For entry of adenovirus into the host cell, the fiber knob 

interacts with cellular receptors as the major attachment site. For serotype 5 adenovirus (group C), 

coxsackievirus and adenovirus receptor (CAR) is the high-affinity entry receptor (Bergelson et al. 

1997); desmoglein-2, CD46, or CD86 are used as receptors for serotype 3 and 35 adenoviruses (group 

B and D) (Wang et al. 2011, Wu et al. 2004, Gaggar et al. 2003). The penton base is involved in 

secondary interactions that are required for virus entry into the cell. Interaction of penton with integrin 

αvβ3 or αvβ5 facilitates adenovirus internalization into the host cell via clathrin-coated vesicles 

(Wickham et al. 1993). 

Upon entry into the host cell, the endosome acidifies, which causes destabilization of the capsid (Flint 

et al. 2020). These modifications result in the disruption of the endosome and the released virus is 

then transported through cellular microtubules to the nuclear pore complex. The virus is disassembled 

and viral DNA enters the nucleus through nuclear pores and interacts with host-cell histones (Meier 

and Greber 2004, Giberson, Davidson and Parks 2012).  
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The process of DNA replication consists of early and late phases. The adenovirus genome consists of 

early-phase gene regions (E1, E2, E3, E4) and late-phase gene regions (L1, L2, L3, L4, L5). The 

early-phase genes are mainly responsible for expressing non-structural, regulatory proteins that 

prepare the cell for viral DNA replication. The late-phase genes are responsible for expressing 

structural proteins to pack the produced DNA. For adenovirus assembly, hexons and pentons with 

non-structural proteins form empty capsids followed by interaction of the adenovirus genome with 

packaging proteins and then entry into the capsid. Lastly, the viral protease cleaves immature 

precursor proteins for virus maturation. Typically, the adenovirus replication cycle takes 24 to 36 

hours and can produce viruses that continue to infect other cells when the infected cell is lysed (Figure 

5) (Ahi and Mittal 2016, Jogler et al. 2006, Giberson et al. 2012).

1.4.2 Adenovirus modifications for cancer therapy

Modifications to adenoviruses that restrict infection and lysis to cancer cells are important. E1A is 

the most crucial protein for adenovirus replication, as it is firstly expressed protein and start the 

replication cycle (Radko et al. 2015). To restrict adenovirus replication to cancer cells, cancer-specific 

promoters are added before the E1A gene. For example, human telomerase reverse transcriptase

(hTERT) has been used as a promoter as it is overexpressed in various cancer types. The conditionally 

replicating oncolytic adenovirus 5 armed with human GM-CSF (KH901) uses hTERT as a promoter 

for E1A regulation (Chang et al. 2009). Adenovirus CV706 uses a prostate specific antigen promoter 

and has been used in a phase I clinical trial that has shown efficacy in patients with prostate cancer

(DeWeese et al. 2001).

Immediate early E1A protein drives cells into the S phase and enables adenovirus replication by 

interfering with the retinoblastoma (Rb) signaling pathway (Radko et al. 2015). In cancer cells, the 

Rb pathway is commonly disabled, which results in excess expression of E2F (family of DNA binding 

transcription factors). Thus, this allows the virus to replicate in cancer cells even in the absence of 

E1A and Rb binding (Heise et al. 2000).

Another modification that limits adenovirus replication to cancer cells and prevents replication in 

non-dividing normal cells is the 24 base-pair deletion of E1A (Heise et al. 2000). To further improve 

selectivity, the E2F promoter can be incorporated before E1A (Rojas et al. 2009). In addition to the 

Rb pathway, one of the most common mutations in cancer cells relates to the apoptosis-inducing 

protein p53. The adenovirus protein E1B inhibits apoptosis of host cells through binding and 

inactivating p53. A deletion in this gene makes infected normal cells susceptible to apoptosis. 
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Whereas, cancer cells are more prone to virus replication and infection, the first published ONYX-

015 and the approved H101 are conditionally replicating oncolytic adenoviruses and have a deletion 

in E1B 55K as a selection mechanism (Cheng et al. 2015, Heise et al. 1997).

.

Figure 5: Mechanism of action of oncolytic adenoviruses. Oncolytic adenoviruses replicate and 

lyse only tumor cells. In normal cells, the virus does not replicate and the cell remains unharmed. In 

tumor cells, virus-mediated cell lysis releases virus in the TME and the virus can then infect other 

tumor cells.

1.5 Improving cancer immunotherapy by arming oncolytic viruses with CD40L 

CD40L is a type II, 39-kDa membrane glycoprotein that belongs to the tumor necrosis factor 

superfamily. CD40L is primarily expressed on activated T cells and platelets. Its expression on the 

surface of activated T cells reaches a peak after 6 hours of activation and declines over the next 24 

hours (Casamayor-Palleja, Khan and MacLennan 1995). CD40L binds to its receptor CD40, which 

was initially identified as a marker on B cells and bladder carcinoma cells (Paulie et al. 1989). Later 

it was found that CD40 is mainly expressed on APCs, such as monocytes, DCs, and B cells (van 

Kooten and Banchereau 1997) and also on activated CD8+ T cells (O'Sullivan and Thomas 2003). In 
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addition to immune cells, CD40L is also expressed on endothelial cells, fibroblasts, and on certain 

hematopoietic and epithelial tumor cells (Elgueta et al. 2009). In B cells, interaction of CD40 and 

CD40L is essential for the generation and survival of plasma cells and memory B cells. In T cells, the 

interaction of CD40 and CD40L is a pair of co-stimulatory molecules and is important for induction 

of adaptive immune responses (Ahmed et al. 2012).

The interaction of CD40 and CD40L induces intracellular signaling through the recruitment of TNFR-

associated factors (TRAFs) in the inner membrane of cells. This then leads to the activation of 

mitogen-activated protein kinases (MAPK), phosphatidylinositol-3 kinase (PI3K), the phospholipase 

Cγ pathway, and the nuclear factor kappa B (NFκB) signaling pathway (Elgueta et al. 2009). DCs 

play an important role in priming T-cell responses through their T-cell receptors by presenting 

antigenic peptides through MHC-I and MHC-II, thus playing an essential role in the initiation of 

antitumor immune responses (Banchereau and Steinman 1998). The CD40L and CD40 interaction 

leads to DC activation and programs them to secrete IL-12 (a pro-inflammatory cytokine), supports 

CD4+ T-helper cell responses, and primes cytotoxic CD8+ T cells (Caux et al. 1994, Cella et al. 1996, 

Schoenberger et al. 1998).  

Two models have been proposed for the role of CD40 signaling in generating cytotoxic T lymphocyte 

(CTL) responses (Ahmed et al. 2012). The first model proposes that the interaction of CD40L 

(expressed by CD4+ T helper cells) with CD40 (expressed by DCs) is important for DC maturation, 

which in turn is essential for triggering CTL responses (Ahmed et al. 2012). The second model 

proposes that interaction of CD40L (expressed by CD4+ T helper cells) with CD40 (expressed by 

CD8+ T cells) can also directly activate CD8+ T cells (Bourgeois, Rocha and Tanchot 2002). Thus, 

CD40L-CD40 signaling is important for inducing effective CTL responses. 

In various studies, DC activation in vivo through CD40 agonist antibody binding along with 

chemotherapy induced T-cell-mediated antitumor immunity (Byrne and Vonderheide 2016). In a 

phase I study, patients with non-Hodgkin’s lymphoma or advanced solid tumors were treated with 

recombinant CD40L and some experienced partial responses (2/32 patients) and at least 4 months 

without disease progression (4/32 patients) (Vonderheide et al. 2001). Many studies have investigated 

CD40 agonist antibodies. However, the first clinical trial with intravenous administration of a CD40 

agonist antibody (CP-870,893) showed only a partial response (13.8% of patients) (Vonderheide et 

al. 2007). In another study, the same CD40 agonist antibody was used in combination with an immune 

checkpoint inhibitor (anti-CTLA-4)  (Bajor et al. 2018). Adverse events with the use of CD40 agonist 

antibody (CP-870,893) included cytokine-release syndrome (CRS) (grade 1 or 2) and 

thromboembolic events (Vonderheide et al. 2007). In another clinical study for the treatment of solid 
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malignancies with a CD40 agonist antibody (ADC-1013), intravenous administration led to 

treatment-induced adverse events (Irenaeus et al. 2019). Adverse events included CRS, lower B cell 

count, and increased liver enzyme. However, intratumoral administration of CD40 agonist antibodies 

was well tolerated (Irenaeus et al. 2019).

1.6 Clinical trials with oncolytic viruses

Oncolytic viruses induce antitumor immunity through different mechanisms. For example, oncolytic 

viruses replicate in and lyse tumor cells, thereby releasing TAAs. APCs capture and process these 

antigens, eventually generating tumor-specific T-cell responses. Oncolytic virus-mediated cell lysis 

releases danger-associated molecular patterns (DAMPs) and PAMPs (Bartlett et al. 2013, Guo, Liu 

and Bartlett 2014). Virus replication in tumors helps to repolarize the immunosuppressive TME 

through induction of inflammatory responses and localized production of cytokines (De Graaf et al. 

2018).

The China Food and Drug Administration licensed a recombinant unarmed oncolytic adenovirus 

(H101; Oncorine, Shanghai Sunway Biotech) in 2005 (Eissa et al. 2018). H101 is used in combination 

with chemotherapy for the treatment of refractory head and neck carcinoma. The combination 

resulted in a 79% response rate, compared with 40% for chemotherapy alone (Garber et al. 2006). In 

2015, the FDA and EMA approved the oncolytic virus-based therapy talimogene laherparevec (T-

VEC, Imlygic) (Greig et al. 2016). T-VEC is a herpes simplex virus (HSV) armed with human GM-

CSF. A phase I clinical trial with T-VEC enrolled 30 patients and was conducted against different 

types of cancers. In this trial, no complete or partial responses were seen. However, two patients 

achieved stable disease (Hu et al. 2006). In a phase II trial, therapy was well tolerated with objective 

response observed in 26% of the patients (n=50) with stage III or IV melanoma (Senzer et al. 2009).

In a phase III trial of T-VEC, 436 patients with stage III or IV melanoma were included and the trial 

showed improvement in the objective response rate and progression-free survival (Andtbacka et al. 

2016).

There are two clinical trials evaluating Maraba virus (MG1) expressing human melanoma-associated 

antigen A3 (MAGE-A3) used in combination with adenovirus-expressing MAGE-A3 in patients with 

MAGE-A3-positive tumors (NCT02285816) and in non-small-cell lung cancer patients 

(NCT02879760) (Pol et al. 2019).
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Patients with progressive advanced solid tumors have been treated with oncolytic adenovirus armed 

with CD40L (CGTG-401). Treatment revealed pronounced antitumor effects and 83% of patients 

exhibited disease control (Pesonen et al. 2012). Other clinical studies with oncolytic adenovirus 

encoding CD40L have also shown induction of tumor control and Th1-type immune responses 

(Loskog et al. 2016, Schiza et al. 2017, Malmström et al. 2010). A phase I/II clinical trial using 

oncolytic adenovirus armed with CD40L and 4-1BB ligand (LOAd703) is currently ongoing in 

patients with pancreatic cancer (NCT02705196) and in patients with ovarian, pancreatic, and 

colorectal cancers (NCT03225989).

A phase I trial evaluated oncolytic adenovirus DNX-2401 (Delta-24-RGD) in patients with malignant 

glioma. The trial was conducted in two groups (A and B). A single dose of virus (1 x 10e7 to 3 x 

10e10 viral particles [VP]) in group A showed prolonged survival of more than 3 years in 20% of 

patients. In group B, patients received the virus two times at multiple sites. Tumor resection before 

the second injection of virus showed infiltration of CD8+ T cells (Lang et al. 2018, Lang et al. 2014).

These results suggest that DNX-2401 can induce tumor-cell lysis and enhance immune responses. 

Preclinical studies with an oncolytic adenovirus armed with OX40-ligand (Delta-24-RGDOX) have 

demonstrated activation and proliferation of tumor-specific lymphocytes in glioma models and within 

subcutaneous and intracranial melanomas (Jiang et al. 2017, Jiang et al. 2019). Based on preclinical 

studies, a phase I trial is ongoing in patients with glioblastoma (NCT03714334). Phase I studies with 

oncolytic HSV for the treatment of malignant glioma patients have also been performed to evaluate 

dose-escalation and safety (Patel et al. 2016).

A phase I trial with Newcastle disease virus in patients with breast cancer revealed that the virus is 

well tolerated and led to 6-month prolonged stable disease in one of two patients studied (Laurie et 

al. 2006). A clinical trial with vaccinia virus that enrolled four breast cancer patients showed that the 

virus was well tolerated. One of the patients experienced adverse events, such as hemorrhage (Zeh et 

al. 2015). Many oncolytic viruses have demonstrated safety in clinical trials. However, as a 

monotherapy, the outcomes in clinical trials appear insufficient.

Many oncolytic viruses have been investigated preclinically for the treatment of pancreatic cancer 

either as monotherapy or together with chemotherapeutic drugs, such as gemcitabine. Some of these 

are in phase I and II clinical trials. Oncolytic adenoviruses, such as ONYX-105, are well-tolerated in 

patients, with the exception of one patient who experienced transient pancreatitis. However, no 

objective response was seen in this phase I trial (Mulvihill et al. 2001). The lack of virus replication 

observed within the tumor samples was due to the presence of few viable cells in the samples or due 
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to physical barriers of tumors that limit viral replication. ONYX-105 was used in a phase II trial in 

combination with gemicitabine in patients with pancreatic cancer. Two patients exhibited a minor 

response, two exhibited partial regression, and six had stable disease with no adverse events observed. 

The results of this trial showed that combination treatment appeared to have some efficacy (Hecht et 

al. 2003). Currently, oncolytic adenoviruses LOAD703 and VCN-01 either alone or with 

gemcitabine/nab-paclitaxel are in phase I clinical trials with pancreatic cancer patients

(NCT02045602, NCT02045589, NCT02705196). A phase I clinical trial using HF10 as monotherapy 

revealed enhanced tumor infiltration of immune cells, such as T cells and macrophages, activation of 

NK cells, and progression-free survival of 6 months (Nakao et al. 2011, Kasuya et al. 2014).

Currently, a HF10 phase I trial (NCT03252808) in combination with nab-paclitaxel, gemcitabine, and 

S-1 (gimeracil, oteracil, tegafur, TS-1) is ongoing to evaluate the safety and efficacy of these 

combinations.

In summary, oncolytic viruses induce immunologic responses by selectively replicating and lysing 

cancer cells. Arming the viruses with co-stimulatory transgenes ensures local expression of the 

transgene in the TME. Thus, this approach also reduces the risk of adverse events related to the 

systemic administration of transgenes. Oncolytic viruses are well-tolerated and have a favorable 

safety profile in humans. However, additional therapeutic benefits can be obtained by combining 

viruses with chemotherapeutic or immunotherapeutic drugs.

1.7 Combination immunotherapies: preclinical and clinical data

Immunotherapeutics, such as checkpoint inhibitors anti-PD-1/PD-L1 and anti-CTLA-4, have shown 

promising efficacy albeit with major adverse events (Postow, Callahan and Wolchok 2015).  

Moreover, some tumors are resistant to these immunotherapies (Kelderman, Schumacher and Haanen 

2014). Combining oncolytic virus therapy with immunotherapeutics can potentially overcome the 

problems observed when these approaches are used as monotherapy.

Blocking CTLA-4 prevents inhibition of T-cell activation and reduces intratumoral Tregs (Khalil et 

al. 2016). Preclinical studies using oncolytic viruses, such as vaccinia virus (Rojas et al. 2015, Foy et 

al. 2016), poxvirus (Foy et al. 2016), and vesicular stomatitis virus (Gao et al. 2009) along with anti-

CTLA-4 have shown long-term survival in different tumor models, such as lung (Foy et al. 2016),

renal, (Rojas et al. 2015) and mammary (Gao et al. 2009). These combinations induced systemic 

protection upon rechallenge (Rojas et al. 2015, Foy et al. 2016) and cured mice (Gao et al. 2009).
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Treatment of a murine melanoma model with Newcastle disease virus along with ipilimumab had an 

enhanced antitumor effect (Zamarin et al. 2014). Arming the adenovirus with anti-CTLA-4 increased 

the expression of anti-CTLA-4 within tumors with no adverse events in murine models (Dias et al. 

2012).

In contrast to CTLA-4, PD-1 inhibits T-cell activation in tumors and tissues at later stages of the 

immune responses (Postow et al. 2015). Anti-PD-1 has been used in combination with different 

oncolytic viruses, such as adenoviruses (Cervera-Carrascon et al. 2018), vesicular stomatitis virus 

(Shen et al. 2016), measles virus (Hardcastle et al. 2017), and reovirus (Rajani et al. 2016, Ilett et al. 

2017) for the treatment of acute myeloid leukemia (Shen et al. 2016), glioblastoma (Hardcastle et al. 

2017), and melanoma (Rajani et al. 2016, Ilett et al. 2017). These combination therapies enhanced 

antitumor responses and led to prolonged survival in mice. Studies in murine models demonstrated 

that the use of unarmed vaccinia virus with systemic administration of anti-PD-1/anti-PD-L1 or use 

of anti-PD-1/anti-PD-L1-armed measles virus and vaccinia virus had the same level of antitumor 

efficacy (Engeland et al. 2014, Kleinpeter et al. 2016).

Use of either armed or unarmed oncolytic viruses together with various checkpoint inhibitors have 

shown synergy in murine models. In a phase I study, treatment of melanoma patients with T-VEC 

and ipilimumab demonstrated enhanced tumor control along with a 50% objective response rate; 44% 

of patients had durable responses of ≥6 months (Puzanov et al. 2016). Overall, the treatment was well 

tolerated. However, in this study, some observed adverse events were related to systemically 

administered ipilimumab (Puzanov et al. 2016, Postow et al. 2015). A phase II study of combination 

therapy has further confirmed these results; 39% of patients had an objective response with T-VEC 

and ipilimumab as compared to a 18% objective response with ipilimumab alone (Chesney et al. 

2018).

A phase Ib clinical trial with T-VEC and anti-PD-1 (pembrolizumab) revealed an overall response 

rate of 62% and a complete response rate in 33% of patients with advanced melanoma (Ribas et al. 

2018). Treatment of 10 unresectable melanoma patients with a combination of T-VEC and 

pembrolizumab, nivolumab (anti-PD-1), or ipilimumab plus nivolumab revealed a 60% complete 

response rate and a 90% overall response rate for the injected lesions. This study also showed 

induction of a systemic immune response against the tumors, as indicated by the resolution of 

uninjected lesions (Sun et al. 2018). Currently, T-VEC along with pembrolizumab, nivolumab, 

atezolizumab (anti-PD-L1), ipilimumab or nivolumab is under evaluation in different clinical trials 

of patients with breast cancer, lung cancer, colorectal cancer, melanoma, sarcoma, malignant pleural 

effusion, carcinoma of the head and neck, and hepatocellular carcinoma (www.clinicaltrials.gov).
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Oncolytic viruses also improve chimeric antigen receptor (CAR) (Nishio et al. 2014, Moon et al. 

2018) and adoptive T cell therapies in murine models (Siurala et al. 2016, Santos et al. 2018). An 

oncolytic adenovirus armed with IL-2 and TNF-α (TILT-123) has been used together with in vitro

expanded tumor-infiltrating leucocytes (TILs) in hamsters to treat pancreatic cancer. This treatment 

cured all hamsters and induced a memory response, as treated hamsters rejected reintroduced tumors 

(Havunen et al. 2017). Currently, TILT-123 is in a clinical trial with cancer patients receiving TIL 

therapy (NCT04217473).

Oncolytic viruses have also been used in combination with DC therapy. Preclinical studies have 

demonstrated the synergistic effect of oncolytic viruses and DC therapy. This combination may 

modulate the immunosuppressive TME and control tumor growth along with the induction of  tumor-

specific T cells (Komorowski et al. 2018, Koske et al. 2019). Oncolytic viruses, such as vaccinia virus 

armed with a CXCR4 antagonist (OVV-CXCR4-A.Fc) and an adenovirus armed with CD40L (TILT-

234) enhanced the efficacy of DC therapy (Komorowski et al. 2018, Zafar et al. 2018, Zafar et al. 

2017). The use of oncolytic viruses as enablers of DC therapy is entering early clinical trials. T-VEC 

and autologous myeloid DCs are being evaluated in metastatic melanoma patients (NCT03747744). 

Moreover, chimeric adenovirus 3/5 encoding GM-CSF (ONCOS-102) and DCs are being evaluated 

in patients with castration-resistant prostate cancer (NCT03514836). 
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2 Aims of the study 

The aims of this study were 

1. to examine the antitumor effects of adenovirus serotype 3 armed with CD40L (Ad3-hTERT-

CMV-hCD40L)

2. to evaluate the antitumor effects of Ad3-hTERT-CMV-hCD40L in combination with DC 

therapy

3. to characterize Ad3-hTERT-CMV-hCD40L as an enhancer of DC therapy in prostate cancer

4. to investigate the mechanism of adenovirus-mediated tumor transduction through blood
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3 MATERIALS AND METHODS 
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3.1 CELL LINES (I-IV) 

Cell lines used during the study were obtained from American Type Culture Collection (ATCC),

unless stated otherwise. All the cell lines were maintained either in Dulbecco’s modified Eagle’s 

medium (DMEM) or Roswell Park Memorial institute medium (RPMI) at +37°C and 5% CO2 (Table 

3). Culture media for all the cell lines were supplemented with 10% FBS, 1% L-glutamine, 1% 

Pen/Strep solution, except that for B16.OVA which also contained 5 mg/mL G418 (Roche, Basel, 

Switzerland).
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Table 3: List of cell lines used in the study

Cell line Origin Growth media Source Study

Human cell lines

A549 Lung carcinoma DMEM American Type Culture Collection 

(ATCC)

I, II, IV

LNCaP Prostate carcinoma RPMI ATCC I, II

SKOV3 Ovarian 

adenocarcinoma 

DMEM ATCC II

EJ Bladder carcinoma DMEM A.G. Eliopoulos (University of 

Crete Medical School and 

Laboratory of Cancer Biology, 

Heraklion,  Crete,Greece).

I, II

293 Embryonic Kidney DMEM ATCC I

PC-3 Prostate 

adenocarcinoma, 

castration resistance

RPMI ATCC III

PC-3MM2 Prostate 

adenocarcinoma,  

castration resistance

RPMI Isiah J. Fidler, M.D. Anderson 

Cancer Center

III, IV

Ramos Blue B- lymphocyte cell 

line stably expressing 

NFkB/AP-1-

inducible SEAP 

(secreted embryonic 

alkaline phosphatase)

reporter gene.

IMDM I

Mouse cell lines

B16.F10 Skin melanoma DMEM ATCC I

B16.OVA Chicken ovalbumin 

expressing melanoma

DMEM

5 mg/ml G418 

(Roche, Basel, 

Switzerland)

Prof. Richard Vile (Mayo Clinic, 

Rochester, MN, USA)

I
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3.2 Adenoviruses used in the study 

Adenoviruses used in studies I, II and III are type 3 adenovirus Ad3-hTERT-E1A and Ad3-hTERT-

CMV-hCD40L. For tumor selectivity, TATA box was replaced with an hTERT promoter. To 

construct adenovirus 3 coding human CD40L, CD40L transgene was inserted in the E3 region under 

CMV promoter. In study IV, chimeric replication-competent adenoviruses Ad5/3-E2F-d24 and 

Ad5/3-E2F-d24-hTNF-α-IRES-hIL2 were used. The viruses composed of adenovirus 5 backbone and 

fiber knob from adenovirus 3. E2F promoter was inserted in front of the adenoviral E1A gene that 

contains d24 deletion. Study IV also included experiments with the replication-incompetent 

adenovirus Ad5/3-Luc1 featuring adenovirus 5 backbone with a knob domain from serotype 3 and 

containing firefly luciferase (Luc1) in a deleted E1 region. The adenoviruses used in the study are 

summarized in Table 4.

Table 4: List of viruses used.

Adenoviruses Modifications Trnasgene Study References

Replication competent 

Ad3-hTERT-E1A Human telomerase reverse 

transcriptase promoter

- I, II, III Hemminki O. et al., 

2011

Ad3-hTERT-CMV-

hCD40L

Human telomerase reverse 

transcriptase promoter, 

cytomegalovirus promoter 

Human CD40L I,II,III Zafar S. et al., 2016

Ad5/3-E2F-D24-

hTNF-α-IRES-hIL2

Ad3 fiber knob, E2F 

promoter, 24 bp deletion in 

E1A, deleted E1B 19K 

human TNF-α

and human IL-2

IV Havunen R. et al., 

2017

Replication-incompetent viruses

Ad5/3-Luc1 Deleted E1 Firefly 

luciferase

IV Krasnykh V.N. et 

al. 1996

Ad5/3-CMV-mCD40L Cytomegalovirus promoter Murine CD40L I Diaconu I et al. 

2012
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3.3 In vitro studies

3.3.1 Isolation of peripheral blood mononuclear cells (Study I-IV)

Buffy coat fractions from healthy blood donors were obtained from the Red Cross Blood Service 

(Helsinki, Finland). Peripheral blood mononuclear cells (PBMCs) and erythrocytes were isolated 

from blood through density gradient centrifugation using Lymphoprep (StemCell Technologies),

according to the manufacturer’s instructions. This density gradient centrifugation results in the 

formation of four layers. The second layer, below the uppermost (plasma) layer, which is 

characteristically white and cloudy, contains PBMCs.  PBMCs were isolated and washed with PBS 

twice. To remove erythrocytes, isolated PBMCs were treated with Ammonium-Chloride-Potassium

(ACK) red blood cell lysis buffer (Sigma, St Louis, MO). PBMCs were then washed again with PBS, 

counted and were either frozen or used fresh.

To isolate CD14+ monocytes and lymphocytes (CD14 – cells) from PBMCs, CD14+ magnetic beads 

(Miltenyi Biotec) were used according to the manufacturer’s instructions. CD14+ cells were washed 

and used for the generation of dendritic cells (DCs) in studies I, II and III while lymphocytes were 

used in study IV.

In study IV, erythrocytes were collected from the bottom as they sediment through the gradient 

medium after density gradient centrifugation. Erythrocytes were treated with 10 % citrate-phosphate-

dextrose (CPD, Sigma-Aldrich, USA) and stored at +4°C. 

3.3.2 Generation of dendritic cells 

3.3.2.1 Monocyte-derived DCs

4.5 x 10e6 CD14+ monocytes isolated from human PBMCs were cultured for 5–7 days in 10 ml of 

DC culture media. This media consist of 10% RPMI supplemented with 20ng/ml interleukin 4 (IL4, 

Peprotech) and 1000U/ml granulocyte-macrophage colony-stimulating factor (GM-CSF, Peprotech). 

The immature human dendritic cells generated were used in study I. For studies II,III immature DCs 

were pulsed with tumor cell lysate (50 μg/ml) for 24h, followed by 17-24h stimulation with 

lipopolysaccharide (LPS, 100ng) (Sigma). DC maturation markers (CD83, CD80, CD86) were then 

analysed with flow cytometry. These matured DCs were used in studies II and III.
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3.3.2.2 Bone marrow-derived murine DCs

Mice were euthanized and tibia and femur were harvested. Bone marrow was collected by cutting the 

ends of the bones and flushing the bones with media under sterile conditions. Suspension of bone 

marrow cells was filtered and treated with the ACK red blood cell lysis buffer (Sigma, St Louis, MO)

to remove red blood cells. Cells were washed and resuspended in 10% RPMI supplemented with 40 

ng/mL murine GM-CSF (Peprotech). 2.5 x 10e5 cells per ml were seeded in 24-well plates for 5 days. 

Cells were then incubated with tumor cell lysate (50 μg/ml) for 24h, followed by 17-24h stimulation 

with lipopolysaccharide (LPS, 100ng) (Sigma). DC maturation was confirmed with flow cytometry. 

Matured murine DCs were used in study I.

3.3.3 CD40L functionality assays

In study I, to determine the functionality of virally - expressed CD40L, Ramos-Blue cells were used. 

Ramos-Blue is a B-lymphocyte cell line which stably expresses the NFkB/AP-1-inducible SEAP 

(secreted embryonic alkaline phosphatase) reporter gene. In order to have virally expressed CD40L 

only, A549 were infected with either Ad3-hTERT-E1A or Ad3-hTERT-CMV-hCD40L, or were left 

uninfected. After 48h, supernatant was collected and filtered (0.02 μm, Whatman). CD40L 

concentration in the filtered supernatant was determined with BD Cytometric Bead Array (CBA) flex 

set.  Filtered supernatants were then used to stimulate Ramos-Blue cells. Upon CD40L stimulation, 

Ramos-Blue cells produce SEAP in the supernatant. SEAP is detectable through the reagent 

QUANTI-Blue (InvivoGen), which in the presence of SEAP turns purple/blue. Levels of activation 

were determined at the wavelength of 450 nm with a microplate reader. Recombinant hCD40L protein

(Abcam) at a concentration of 2 ng/ml served as a positive control.

In study II, the ability of Ad3-hTERT-CMV-hCD40L to induce dendritic cell maturation was studied. 

A549 cells were infected with either Ad3-hTERT-E1A or Ad3-hTERT-CMV-hCD40L. Uninfected 

cells were used as a negative control. After 18 h, media was removed and cells were washed with 

PBS and then monocyte-derived immature DCs in fresh media were added.  DC maturation marker 

status was studied through flow cytometry after 48h. In addition to this, to evaluate the functional 

consequence of DC stimulation, human T cells were isolated from PBMCs with the Pan T cell 

Isolation kit (Miltenyi Biotec), and were added to the DC and virus-infected tumor cell mixture. 

Following this addition, T cell activation status was determined after 24h by flow cytometry.
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To evaluate the ability of Ad3-hTERT-CMV-hCD40L expressed CD40L to induce DC maturation, a

similar experiment was performed but instead of viruses, supernatant from virus-infected A549 cells 

was used. Supernatants were collected, filtered and added to fresh A549 cells along with monocyte-

derived immature DCs. After 48h, DC maturation status was assayed, followed by addition of T cells 

into the co-culture to evaluate the functional consequence of DC stimulation. Activation of T cells 

was determined after 24h by flow cytometry.

Both of the assays were done in triplicates, and as positive controls, LPS (100 ng) (Sigma) and 

recombinant hCD40L (500 ng) (Abcam) were used.

3.3.4 MTS cell cytotoxicity assay 

This assay was used to determine viable cells. Cultured cells were incubated with MTS solution [3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium for 2h.

and absorbance was measured at 490 nm with a spectrophotometer. Viable cells reduce the MTS 

solution and generate formazan, which is soluble and coloured product. The amount of formazan and 

cell viability is directly proportional.

10,000 A549 and EJ cells (study I), and PC-3 and PC-3MM2 cells (study III) were seeded into 96-

well plates. The next day (i.e. 24h later) cells were infected with Ad3, Ad3-hTERT-E1A or Ad3-

hTERT-CMV-hCD40L at 1–1,000 VP/cell. Uninfected tumor cells served as controls. The number 

of living cells was determined on day 6 (study I) and on day 3, 5, 6 (study III) with the MTS solution 

(Cell Titer 96 AQueous One Solution Cell Proliferation Assay, Promega, Madison, WI).

A549, EJ, SKOV3 or LNCaP cells were infected with Ad3-hTERT-E1A or Ad3-hTERT-CMV-

hCD40L at 1–1000 VP/cell (as mentioned above), or left uninfected. In this experiment, DCs and 

human PBMCs were introduced into the assay, 48h after viral infection. DCs, PBMCs and tumorcells 

alone served as controls. Viability of cells was determined 24h to 96h after adding DCs and PBMCs. 

In study IV, A549 cells (10,000 cells per well) were used. Ad5/3-E2F-D24-hTNF-α -IRES-hIL2 was 

incubated for 30 minutes either with erythrocytes (0.036 VP/cell) or with lymphocytes (10 VP/cell) 

at 37°C. Samples were centrifuged for 10 min at 2000 g and re-suspended in 1ml of assay medium. 

Then, dilutions of cell-adenovirus mixture (at ratios of 1:1.7, 1:2.7 and 1:6.7) were added to A549 

cells, which were seeded 24h before starting the experiment. In one condition, cell-adenovirus 
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mixture was washed with PBS three times and centrifuged, as mentioned above. The pellet was 

resuspended in 1 ml of assay medium and then from there a 1:2.7 dilution was used. Viruses at 0.1-

100 VP/cell concentrations were used as positive controls. Erythrocytes and lymphocytes with virus 

but without A549 cells, and erythrocytes and lymphocytes without virus but with A549 cells served 

as negative controls.  Viability of the cells was determined on day 3 with the MTS solution (Cell Titer 

96 AQueous One Solution Cell Proliferation Assay, Promega, Madison, WI).

NOTE: In all the studies, cell viability was normalized against the viability of controls

3.3.5 Luciferase assay

In study IV, luciferase assay was performed using Ad5/3-Luc1 virus, which expresses firefly 

luciferase, with the same experimental settings as mentioned above. It is a highly sensitive and rapid 

method for the luciferase quantitation. In this experiment, 48h after the infection, media was removed 

and lysis buffer (Promega, USA) was used to lyse cells followed by freeze-thawing once and 

centrifugation. Luciferase activity of the supernatant was measured through the Luciferase assay 

reagent (Promega, USA) with a luminometer (Hidex).

3.3.6 Electron microscopy

For electron microscopy in study IV, freshly isolated human lymphocytes and erythrocytes were 

incubated with Ad5/3-E2F-D24-hTNF-α-IRES-hIL2 in 1 ml of PBS for 30 minutes at 37°C.

Following incubation, cells were centrifuged and the cellular fraction was fixed in 5% (for 

erythrocytes) and 2.5 % (for lymphocytes) glutaraldehyde, according to the instructions from 

University of Helsinki Electron Microscopy Unit. Sample preparation for both Scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) was conducted in the Electron 

Microscopy Unit at the University of Helsinki. Analysis of samples was carried out using SEM in 

Electron Microscopy Unit, and TEM in Advance Microscopy Unit (AMU) at the University of 

Helsinki, Finland.
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3.3.7 Microarray from human tumor biopsies treated with CD40L and GM-CSF

Advance Therapy Access Program (ATAP) was a personalized therapy program during 2007-2012. 

All patients participating in this program had given written informed consent. All the participants 

were refractory to standard treatments and had solid tumors and were treated with oncolytic 

adenoviruses. The Helsinki University Central Hospital Operative Ethics Committee (HUS 

62/13/03/02/2013) has approved the analysis of the data reported in study I.   

mRNA expression levels from tumor biopsies collected from patients treated with oncolytic 

adenovirus encoding either human CD40L (n = 3) or another immunostimulatory molecule, 

granulocyte macrophage colony-stimulation factor (GM-CSF) (n = 11) were analyzed as reported 

previously (Taipale et al. 2016). Briefly, to evaluate gene-expression levels, tumor biopsies were 

collected and stored in RNALater (Life Technologies, Carlsbad, CA). RNA was extracted from the 

samples using TRIZOL Reagent (Life Technologies). 

Genome-wide gene expression profiling of RNA samples was done by hybridizing the RNA to the 

Illumina HumanHT-12 v4 Expression Bead Chips arrays (Illumina, San Diego, CA). Total Prep RNA 

Labelling Kit (Illumina) according to manufacturer´s instructions was used for the labelling and 

hybridization. Bead Chips were washed, blocked and stained with streptavidin-Cy3 and scanned with 

Illumina iScan (Illumina) by using manufacturer provided protocols. To control the quality of the 

data Genome Studio software (Illumina) was used.

3.3.8 Quantitative polymerase chain reaction qPCR (IV)

In study I, a breast cancer patient was participating in ATAP. The patient was treated intravenously 

with 4 x 10e12 VP Ad3-hTERT-E1A (also known as CGTG-201).  After 6 days, tumor biopsies were 

collected to detect the presence of virus through qPCR.

In study IV, adenoviruses were incubated either with erythrocytes (0.036 VP/cell) (Rojas et al. 2016b)

or with lymphocytes (10 VP/cell) in 1 ml of PBS for 30 minutes at 37°C. Following incubation, cells 

were centrifuged at 2000g for 10 minutes and the supernatant and cellular fractions were collected. 

Cellular fractions were washed with PBS five times. During each wash a portion of the supernatant 

and pellet were collected. DNA was extracted from the samples using the QIAamp kit (Qiagen). For

animal experiments in study IV, tumors were collected from treated and untreated mice, cut into small 

pieces and 25mg of these was used for DNA extraction through the QIAamp kit (Qiagen). The 
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presence of virus was then evaluated by detecting viral E4 copy numbers in samples from in vitro

experiments (from supernatants and pellets (cellular fraction)) and in vivo experiments (tumors). 

Probes and primers used in qPCR are summarized in Table 5. The E4 copy number was normalized 

against human beta-actin.

Table 5: Probes and primers used in qPCR

3.3.9 Neutralizing antibody titers

In study IV, Neutralizing antibodies (Nabs) were measured from serum samples of adenovirus-treated 

mice. To separate serum from red blood cells, the blood from adenovirus-treated mice was incubated 

for an hour at room temperature and centrifuged at high-speed. Serum samples were incubated at 

+56ºC for 90 min to inactivate the complement system. This was followed by serial dilutions, which 

were then mixed with Ad5/3-Luc (100 VP/cell) at room temperature. After 30 minutes, the serum-

virus mix was added on A549 cells (after removing the media), which were seeded into 96-well plates

(1×10e4 cells/well) 24 h before the experiments. After an hour, fresh media was added and the cells 

Gene region Sequence (5’-3’) Reference

Adenoviral E4 Probe TGGCATGACACTACGACCAACACGATCT Kanerva et al. 

2002Forward 

primer

GGAGTGCGCCGAGACAAC

Reverse 

primer

ACTACGTCCGGCGTTCCAT

Human beta-

actin 

Probe ATG CCC TCC CCC ATG CCA TCC TGC GT

Forward 

primer

TCA CCC ACA CTG TGC CCA TCT

Reverse 

primer

GTG AGG ATC TTC ATG AGG TAG TCA 

GTC
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were then incubated overnight (at +37°C). Finally, the media was removed and lysis buffer (Promega, 

USA) was used to lyse cells followed by freeze-thawing once and centrifugation. Luciferase activity 

of the supernatant was measured through the Luciferase assay reagent (Promega, USA) with a 

luminometer (Hidex).

3.4 In vivo studies 

The Experimental Animal Committee of the University of Helsinki and the Provincial Government 

of Southern Finland reviewed and approved all the animal protocols. The National Animal 

Experiment Board (Eläinkoelautakunta ELLA) of the Regional State Administrative Agency of 

Southern Finland has also approved all the experiments (ESAVI/7759/04.10.07/2013, 

ESAVI/7755/04.10.07/2016, and ESAVI/28404/2019).

4-5 week old mice were ordered from Taconic and quarantined in a BSL-2 level facility for at least 

one week before beginning the experiments. All the intratumoral injections and tumor measurements 

were performed when the animals were anesthetised with isoflurane.  For intravenous injections, 

animals were anesthetised with the mixture of Domitor (1x) and Ketalar (2x) in sodium chloride 

solution (7x). The health status of the animals was examined daily.  Animals were euthanized if there 

was any visible sign of distress, tumor ulceration, or when the tumor diameter reached the maximum 

limit i.e. 18 mm (for mice).

3.4.1 Immunocompetent Mouse Models

In study I, immunocompetent female C57BL/6 mice were administered subcutaneously with 2.5 x

10e5 mouse melanoma B16 tumors expressing chicken ovalbumin (B16.OVA cells). Mice were 

divided into groups (n=8 mice/group) according to the tumor size. The groups are summarized in

Table 6. When tumors became injectable, mice were treated intratumorally with 1 x 10e9 VP/tumor 

of Ad5/3-luc alone or Ad5/3-CMV-mCD40L alone, or only PBS (50 ul) on days 1, 3, and 7, or with

1.5 x 10e6 CD8-enriched OT-1 T-cells (described later) on day 1, intraperitoneally.
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Table 6: Treatment groups for the mouse experiment to study the effect of virally                   -

expressed CD40L on OT-1 T cells

Groups VP per tumor OT-1 T cells per animal

Mock - -

Mock + OT-1 - 1.5X10e6

Ad5/3-luc 1X10e9 -

Ad5/3-luc + OT-1 1X10e9 1.5X10e6

Ad5/3-CMV-mCD40L 1X10e9 -

Ad5/3-CMV-mCD40L + OT-1 1X10e9 1.5X10e6

              

Also in study I, 2.5 x 10e5 murine B16.F10 cells were implanted subcutaneously into both flanks of 

immunocompetent female C57BL/6 mice. Mice were treated with either Ad5/3-CMV-mCD40L virus 

alone (at 2 x 10e8 VP/tumor), DCs (1 x 10e6 cells) alone, or with both i.e. virus and DCs on alternative 

days. The groups are summarized in Table 7. Tumor growth was measured with a digital caliper

every other day. At the end of the experiment, tumors and lymph nodes were collected for flow 

cytometry.

Table 7: Treatment groups for the mouse experiment to study the effect of virally expressed 

CD40L on DCs.

Groups VP per tumor DCs per tumor

Mock - -

Mock + DCs - 1 x 10e6

Ad5/3-CMV-mCD40L 2 x 10e8 -

Ad5/3-CMV-mCD40L + DCs 2 x10e8 1 x 10e6

In study IV, to generate neutralizing antibodies (Nabs), immunocompetent mice were immunized 

with chimeric adenovirus Ad5/3 three times i.e. on day 0, 3 and 6. On day 23, mice were euthanized

and blood was collected to separate serum. Nab titer was confirmed with a Nab assay (Särkioja et al. 

2008). Neutralizing titer that blocks more than 50% of the virus was used in the experiments.
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3.4.1.1 Extraction of OVA-specific OT-1 T cells (study I)

In study I, spleen from C57BL/6-Tg (TcraTcrb) 1100Mjb/J (OT-1) mice were collected and mashed 

through a 70 μm filter. To remove red blood cells, splenocytes were treated with ACK red blood cell 

lysis buffer (Sigma, St Louis). Cells were washed with 10% RPMI-1640 growth media twice. The 

immune cells were then rested for 48 h in RPMI-1640 media supplemented with 10% FBS, 2 mM L-

glutamine, 100 μg/ml streptomycin, 100 U/ml penicillin, 15 mM HEPES (Sigma-Aldrich), 50 μM 2-

mercaptoethanol (Sigma-Aldrich), and 1 mM Na-pyruvate (Sigma-Aldrich). 

CD8a+ T Cell Isolation Kit II (Miltenyi Biotec, Germany) was used according to the manufacturer’s 

instructions to enrich CD8+ T cells. The cells were then expanded for a week in growth media 

supplemented with 300 ng/ml soluble anti-mouse CD3e antibody clone 145-2C11 (Abcam, 

Cambridge, UK) and 160 ng/ml recombinant murine IL-2 (R&D Systems). 

3.4.2 Immunodeficient mouse models

In study I, immunodeficient nude Naval Medical Research Institute (NMRI) mice were used.  1 x

10e6 human A549 or EJ cells were subcutaneously implanted in the flank. When tumors reached 

approximately 5 mm, mice were divided into three groups (n=7 mice /group) according to the tumor 

size. To study the anti-tumor efficacy of Ad3-hTERT-CMV-hCD40L and Ad3-hTERTE1A upon 

intravenous administration, mice were treated with either 1 x 10e10 VP/100μl of Ad3-hTERT-CMV-

hCD40L, Ad3-hTERTE1A, or PBS (100μl) intravenously (i.e. through tail vein injection). Tumor 

growth was measured with digital caliper every other day and the tumor volume was calculated using 

the formula: 0.52 x (max dimension) x (min dimension)2.

In studies I and II, 5 x 10e6 human A549 cells and in study III, 2 x 10e6 PC-3MM2 cells were 

subcutaneously implanted in the severe combined immunodeficiency (SCID) mice. In study I, to 

assess the maturation of DCs in vivo, mice were treated intratumorally with either 1 x 10e8 VP/50μl 

Ad3-hTERTCMV-hCD40L, Ad3-hTERT-E1A or PBS (50μl) on days 0, 2, 4. And 1 x 10e6 immature 

DCs per tumor (prepared as described above) were administered intratumorally on days 1, 3, 5. Mice 

were euthanized two days after the last treatment. Tumors were collected for flow cytometry. In study 

II and III, to evaluate the ability of the adenovirus to enhance DC therapy, mice were divided into 
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eight groups (n=10 mice/group) according to the tumor size, when tumors reached approximately 5 

mm in diameter. On day 0, mice received 10 x 10e6 HLA-matched PBMCs intravenously (through 

tail vein injection). Mice received intratumorally either 1 x 10e8 VP/50μl of Ad3-hTERT-CMV-

hCD40L alone, Ad3-hTERT-E1A alone, or only PBS (50μl ) on days 1, 3 and 5 or 1 x 10e6 DCs 

alone on days 2, 4, and 6, or combination of both i.e. virus and DCs on alternative days. Tumor growth 

was followed until day 25 (study III) and day 44 (study II) with digital caliper and the survival was 

followed until day 93 (study III) and day 112 (study II). Mice with tumor ulceration were excluded 

from the experiment and are shown as reversed triangles. Tumors were collected for flow cytometry 

and cytokine analysis.

In study IV, immunodeficient NMRI mice received subcutaneous injections of either 5 x 10e6 A549 

cells or  2 x 10e6 PC-3MM2 cells. Mice were divided into 8 groups (n=5-7 mice/group) when tumors

became injectable. Mice bearing PC-3MM2 tumors were treated intravenously with either 500 virus 

particles (VP) /cell of TILT-123 previously incubated with human lymphocytes or erythrocytes. 

Intravenous injections of 1.5 x 10e10 VP/100μl of TILT-123 and PBS (100μl) served as positive and 

negative controls, respectively. Mice bearing A549 tumors were treated similarly but with an 

increased virus dose, i.e. 2 x 10e9 VP/100μl as the experimental dose. In this experiment, mice were 

treated intravenously with 667 VP/cell (2 x 10e9 VP in total) of TILT-123 previously incubated with 

human lymphocytes or erythrocytes. 2 x 10e10 VP/100μl of TILT-123 was used as a positive control. 

In addition to this, immunodeficient mice bearing PC-3MM2 and A549 tumors received the same 

treatments but in the presence of heat-inactivated antiserum, i.e. TILT-123 or TILT-123-cell complex 

(TILT-123 previously incubated with human lymphocytes or erythrocytes) was incubated for at least 

30 minutes with heat-inactivated antiserum at room temperature before treating mice intravenously.

Mice were euthanized after 3 days and the tumors were collected to detect the presence of virus 

genome and for cytokine (TNF-α and IL-2) analyses.

3.4.3 Patient tumor histocultures 

Prostate cancer samples (n=5) were collected from patients undergoing surgical resection. All patients 

signed an informed consent. A Pathologist at Helsinki University Hospital has confirmed all tumor 

histologies. The local ethics committee has evaluated and approved the project.

To established tumor histocultures, prostate cancer tumors were first cut into small pieces. These 

small pieces were then enzymatically digested overnight at +37°C in media (RPMI 1640, Sigma) 

supplemented with 1% L-glutamine, 1% Pen/strep, DNase I (25 mg/ml), elastase (25 mg/ml) 
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collagenase type I (170 mg/l) and collagenase type IV (170 mg/l) (Worthington Biochemical). To 

remove undigested fragments, cells were then filtered (100μm filter). The filtrate was treated with 

ACK lysis buffer (Sigma, St Louis) to remove red blood cells.  Single cell suspensions were washed 

with PBS. 0.35x10e6 cells/well were seeded into 96-well plate and treated with 100 VP/cell of Ad3-

hTERT-E1A and Ad3-hTERT-CMV-CD40L or medium (mock). 

3.5 Cytokine analyses

 

For cytokine analyses in studies I, II, IV, small parts of tumor tissue were snap-frozen. In study III, 

supernatants from treated prostate cancer histocultures were collected and stored at -80C. In studies

I, II and IV, with the help of tissue homogenizer (Tissue master 125 rotor), tumor tissues were 

homogenized in the presences of PBS (supplemented with a protease inhibitor cocktail (Sigma-

Aldrich) and 0.1 % BSA). Cytokines were then analysed with CBA flex set cytokine beads (BD),

according to the manufacturer’s instructions. Samples were run with BD Accuri C6 and analyzed 

with the FCAP array software. Cytokine concentrations were normalised against the total protein 

concentration of the sample.

3.6 Flow cytometry

In studies I and II, tumors and lymph nodes were collected, minced and to create single cell 

suspensions passed through a 70μm strainer. Cells were then incubated at +37°C for 24 h. After 

incubation, cells were frozen in freezing media (growth medium containing 20% FBS and 10% 

DMSO) at -80 C. 

For analysis of samples from animal experiments, cells were thawed and washed with staining buffer 

(FACS). For in vitro experiments, fresh cells were used and washed before staining. For staining, 1-

2 x 10e6 cells/well were allocated in a 96 well plate (round bottom).  For staining with pentamers 

detecting T cell receptors specific for residues TRP-2 (180-188) and gp100 (25-33) (Proimmune, 

Oxford, UK), cells were incubated for 20 minutes at room temperature in the dark. Cells were washed 

and incubated in staining buffer containing fluorochrome conjugated antibodies at +4°C. After 30 
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minutes, cells were washed with the staining buffer twice. Samples were analysed with flow 

cytometry (BD Accuri C6), acquiring 50,000-100,000 events. 

In study III, treated prostate cancer histocultures were stained with fluorochrome-labelled antibodies 

according to the manufacturer’s instructions and acquired with the LSR Fortessa flow cytometer 

(BD). software v10 was used to analyze the data. 

3.7 Statistical analyses

In studies I and II, two-tailed Student’s t-test, two-way ANOVA (Tukey’s multiple comparisons test), 

and log-rank were performed with Graphpad Prism (Graphpad Software Inc. La Jolla, CA). For tumor 

growth analysis, SPSS version 21 was used. In studies III and IV, a non-parametric Kruskal-Wallis-

test was used to compare groups. If the Kruskal-Wallis statistic was statistically significant, post hoc 

analyses were performed. P-values of post hoc (p-h) analyses were adjusted using the Holm multiple 

testing correction method. Statistical analyses and figures were made using Graphpad Prism 6 and R 

statistical software (R Core Team (2019)). In all studies, p values <0.05 were considered statistically 

significant.
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4 Results and Discussion

 

4.1 Adenovirus serotype 3 transduces human tumor metastases upon 
intravenous administration (I) 

Tumor biopsies from a breast cancer patient who was treated intravenously with Ad3-hTERT-E1A 

(CGTG-201) showed the presence of virus genome on day 6 after administration (Figure 1A, study 

I). This demonstrates the ability of adenovirus 3 to transduce tumors after intravenous administration.

4.2 Treatment with CD40L encoding oncolytic adenovirus activates DCs in 
patients (I)

Cancer patients participating in ATAP were treated with oncolytic adenovirus armed with either GM-

CSF (n=11) or CD40L (n=3). Tumor biopsies from these patients showed upregulation of genes 

associated with DC maturation following treatment CD40L-encoding adenovirus (Figure 1B, study 

I). 

 

4.3 Functionality of constructed viruses in vitro   (I, II, III)

The virus analyzed in studies I, II, and III is a type 3 adenovirus (Ad3-hTERT-CMV-hCD40L). To 

construct the adenovirus 3 coding human CD40L, the CD40L transgene was inserted in the E3 region 

under the control of CMV promoter. For tumor selectivity, the TATA box was replaced with an 

hTERT promoter (Figure 2a, study I). In study IV, a chimeric adenovirus Ad5/3 with the backbone 

of adenovirus 5 and fiber knob is of adenovirus 3 was used. 

The oncolytic adenovirus Ad3-hTERT-CMV-hCD40L was able to replicate and lyse in vitro the 

human cancer cell lines A549 (CD40-) and EJ (CD40+) cells (Figure 2C-D, study I) and PC-3 and 

PC-3MM2 (CD40-) cells (Figure 1 A-C, study III). In study II, we evaluated the oncolytic potency 

of the adenoviruses Ad3-hTERT-CMV-hCD40L or Ad3-hTERT-E1A in the presence of DCs, 

PBMCs, or both. In this study, two CD40-negative cell lines (SKOV3 and A549) and two CD40-

positive cell lines (LNCaP and EJ) were used. Cell killing in vitro was more prominent with the triple 

combination than with viruses alone or double therapy (virus with T cells or DCs). In LNCaP (Figure 
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3A, study II) and EJ cells (Figure 3B, study II), complete cancer cell killing was observed with the 

triple combination containing CD40L-armed adenovirus at 1000 VP/cell 24 hours after adding DCs 

and PBMCs. In contrast, in SKOV3 (Figure 3C, study II) and A549 cells (Figure 3D, study II), killing 

was observed only 72 hours after adding DCs and PBMCs. This difference was probably due to the 

proapoptotic effect of CD40L on CD40-positive cancer cells (Diaconu et al. 2012). The combination 

of Ad3-hTERT-CMV-hCD40L, DCs, and PBMCs showed more pronounced cell killing than Ad3-

hTERT-E1A, DCs, and PBMCs in all cell lines except Skov3 (Figure 3 E-H, study II). Collectively, 

our results showed that the oncolytic potency of Ad3-hTERT-CMV-hCD40L is comparable to 

unarmed backbone Ad3 virus, Ad3-hTERT-E1A. This indicates that the presence of the transgene 

does not affect the oncolytic potency of the virus. Moreover, Ad3-hTERT-CMV-hCD40L in the 

presence of DCs improved PBMCs-mediated cell killing in vitro.

4.4 Ad3-hTERT-CMV-hCD40L induces DC maturation and T-cell activation 
in vitro (I, II)

The functionality of virally produced CD40L was assessed with Ramos-Blue cells stably expressing 

an NF-κB/AP-1-inducible SEAP construct, since this cell line is responsive to human CD40L and 

upon activation expresses alkaline phosphatase. Supernatant was collected from Ad3-hTERT-CMV-

CD40L-infected A549 cells and filtered to remove the virus from supernatant. Experiments with 

virally produced CD40L demonstrated that Ad3-hTERT-CMV-hCD40L induces expression of 

functional CD40L (Figure 2B, study I). Moreover, virally produced CD40L induced DC maturation 

in vitro (Figure 2E–F, study I). In study II, we evaluated the functional consequences of DC 

stimulation. This was studied in two different settings. In the first setting, immature DCs cultured 

with lung cancer cells (A549) were infected with either Ad3-hTERT-E1A or Ad3-hTERT-CMV-

hCD40L. Cultures containing Ad3-hTERT-CMV-hCD40L-infected A549 cells induced pronounced 

upregulation of the DC maturation markers CD83, CD80, and CD86 (Figure 1A-C, study II). To 

study the ability of these matured DCs to activate T cells, T cells were added in the coculture. 

Significantly higher levels of T-cell activation in the cultures containing Ad3-hTERT-CMV-

hCD40L-infected tumor cells were observed (Figures 1D and 1E, study II). In the second setting, 

immature DCs were cultured with filtered supernatant collected after infection of A549 cells with 

either Ad3-hTERT-E1A or Ad3-hTERT-CMV-hCD40L. After 48 hours, we observed pronounced 

upregulation of DC maturation markers in DCs cultured with filtered supernatant containing hCD40L 

(Figure 2A-C, study II). Following addition of T cells into the coculture to further study the ability of 
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these matured DCs to activate T cells, we observed high levels of the T-cell activation marker CD69 

on both CD3+CD4+ T cells and CD3+CD8+ T cells (Figure 2E and 2D, study II). These results 

indicate that Ad3-hTERT-CMV-CD40L infection leads to expression of functional CD40L and can 

induce DC maturation and T-cell activation in vitro.

4.5 Ad3-hTERT-CMV-hCD40L enhances the oncolytic efficacy and DC 
maturation in vivo (I - III).

The oncolytic potency of constructed Ad3 viruses and their ability to transduce tumors following 

intravenous administration was examined in immunodeficient nude mice bearing human lung cancer 

(A549) and bladder cancer (EJ) xenografts. Both Ad3-hTERT-E1A and Ad3-hTERT-CMV-hCD40L 

were able to transduce tumors upon intravenous administration and to significantly control tumor 

growth when compared with the control group (injected with PBS) (Figure 3 A-B, study I). However, 

there were no significant differences between the virus-treated groups. This result shows that the 

arming device (CD40L) does not compromise the oncolytic ability of Ad3-hTERT-CMV-hCD40L in 

vivo. Expression of CD40L was confirmed from the tumors collected at the end of the experiment 

(Supplementary Figure 1). As an important safety aspect, expression of the transgene remained local 

(i.e. only detected in tumors). This is important for preventing the potential toxic effects of high-dose 

systemic administration (Sun et al. 2000).

Of note, human CD40L is not active in mice (Diaconu et al. 2012). Therefore, we also chose 

immunodeficient mice bearing human xenografts to study the ability of Ad3-hTERT-CMV-hCD40L 

to induce maturation of immature DCs in vivo. DC maturation in vivo was significantly enhanced in 

the mice treated with Ad3-hTERT-CMV-hCD40L (Figure 3C-E, Study I).

4.6 Ad3-hTERT-CMV-hCD40L improves the efficacy of adoptive dendritic cell 
therapy but not adoptive T-cell therapy in immunocompetent mice (I)

In study I, we used immunocompetent C57BL/6 mice bearing either subcutaneous murine B16.OVA 

or B16.F10 melanoma tumors. Ad5/3-CMV-mCD40L was used to assess the impact of adenovirus-

expressing CD40L on adoptive T-cell therapy and DC therapy. Since human CD40L is not active in 

mice, this virus encodes murine CD40L. Human adenovirus replication is non-permissive in mice 

(Blair et al. 1989), so studies with immunocompetent mice do not have the effect of viral oncolysis. 
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Replication-deficient Ad5/3-CMV-mCD40L (coding for murine CD40L) virus did not improve 

adoptive T-cell therapy, as we did not observe significant differences between mice treated with 

Ad5/3-CMV-mCD40L with or without OT-1 T-cell adoptive therapy (Figure 4A, study I). To 

evaluate the ability of CD40L-armed adenovirus to enhance adoptive DC therapy, Ad5/3-CMV-

mCD40L was next used to study the effect of adenovirus-expressing CD40L on adoptive DC therapy. 

These studies revealed that Ad5/3-CMV-mCD40L improved adoptive DC therapy the most, as the 

mice treated with the adenovirus-expressing CD40L together with DCs showed significantly 

enhanced antitumor efficacy when compared with mice treated with either Ad5/3-CMV-mCD40L 

alone, murine DCs alone, or PBS (Figure 4B). 

4.7 Ad3-hTERT-CMV-hCD40L and human DCs enhance antitumor efficacy 
and survival of humanized mice (II)

To study the ability of Ad3-hTERT-CMV-hCD40L to enhance DC therapy in a situation that 

resembles the clinical setting, we used mice humanized by intravenous injection of human PBMCs. 

PBMCs and DCs alone and the combination of PBMCs and DCs had minimal inhibitory effects on 

tumor growth. Addition of viruses showed significant inhibition of tumor growth compared to mock-

treated mice. However, the triple combination of virus, PBMCs, and DCs had more pronounced 

antitumor efficacy than double therapy. Significant antitumor efficacy was observed in the group of 

mice treated with Ad3-hTERT-CMV-hCD40L, PBMCs, and DCs when compared with Ad3-hTERT-

E1A, PBMCs, and DCs (Figure 4 and Supplementary Figure 1A, Study II). Impressively, cancer-

specific survival data showed that mice treated with the hCD40L-armed virus, PBMCs, and DCs had 

markedly improved survival (Figure 4B and Supplementary Figure 1B, study II). Collectively, these 

data indicate that Ad3-hTERT-CMV-hCD40L is a potent enhancer of DC therapy.

In study III, a similar experiment was performed with PC-3MM2 prostate cancer xenograft mice 

humanized by intravenous injection of human PBMCs. Here, the addition of adenovirus enhanced 

antitumor efficacy and survival of mice when compared with the mock and PBMCs only groups 

(Figure 2A-B, study III). Experiments with DCs along with adenovirus showed that Ad3-hTERT-

E1A plus PBMCs plus DCs did not significantly enhance antitumor efficacy and survival when 

compared with the group in which mice received Ad3-hTERT-E1A plus PBMCs treatment. Thus, 

unarmed virus did not enhance DC therapy (Figure 3A, 3B, study III). Significant antitumor efficacy 

in mice treated with Ad3-hTERT-CMV-hCD40L, PBMCs, and DCs was observed when compared 

with other groups in which mice were either treated with PBS (mock group) or PBMCs plus DCs or 
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Ad3-hTERT-CMV-hCD40L plus PBMCs (Figure 3C, study III). We did not observe enhanced 

cancer-specific survival in the group treated with Ad3-hTERT-CMV-hCD40L plus PBMCs plus DCs 

when compared with control groups. However, we did observe significant differences between 

PBMCs plus Ad3-hTERT-CMV-hCD40L and PBMCs plus Ad3-hTERT-CMV-hCD40L plus DC 

groups (Figure 3D, study III). Thus, our results indicate that Ad3-hTERT-E1A and Ad3-hTERT-

CMV-hCD40L both have oncolytic potency resulting in antitumor effects. However, unarmed Ad3-

hTERT-E1A does not improve the antitumor efficacy of adoptively transferred DCs, whereas Ad3-

hTERT-CMV-hCD40L enhances adoptive DC therapy.

4.8 Combination of CD40L-armed adenovirus and DC therapy modulates 
immune responses (I, II, III)

Our results suggested that CD40L-armed adenovirus and DC therapy modulate immune responses 

towards a Th1-type immune response. In study I, analysis of lymph nodes showed significantly higher 

levels of B and T lymphocytes and mature DCs in the group of mice treated with adenovirus and DCs 

compared with other groups (Figure 5, study I). In the same experiment, analysis of tumors revealed 

an increased proportion of tumor-specific CD8+ T cells, CD4+ T cells, mature DCs, and NK cells in 

the group treated with adenovirus and DCs (Figure 6, Study I). The presence of high levels of 

proinflammatory cytokines (such as TNF-α, IFN-γ, and RANTES) in tumors of mice treated with 

CD40L-armed adenovirus and DCs further suggests the induction of a Th1-type immune response 

(Supplementary figure 2, Study I). Collectively, the results suggest that the expression of CD40L 

induces DC maturation, which in turn is required for the activation of other immune cells. In study II 

with humanized mice, four mice from each group were euthanized a week after treatment to 

investigate the treatment mechanism of action. Tumor analysis showed that mice treated with Ad3-

hTERT-CMV-hCD40L, DCs, and PBMCs had increased upregulation of DC maturation makers 

CD83, CD80, and CD86 (Figures 5A-C, study II) and significant infiltration of B and T lymphocytes.  

In the same group, high levels of TNF-α, IFN-γ, IL-2, IL-12, granzyme B, and IL-6 were observed in 

the tumors (Supplementary Figure 3, Study II).

In study III, five human patient prostate cancer samples were studied in vitro. Treatment of human 

prostate cancer samples with Ad3-hTERT-CMV-hCD40L induced significant upregulation of DC 

maturation markers (such as CD83, CD80, CD86) when compared with the mock (uninfected cells) 

or Ad3-hTERT-E1A-treated samples in 4 out of 5 patients studied (Figure 4; B-D, study III). In 

addition, cytokine analysis of the supernatant of treated samples showed significant production of 
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proinflammatory cytokines (such as IL-2, TNF-α, IL-12, granzyme B, and IFN-γ) and CD40L along 

with reduced production of immunosuppressive cytokines TGF-β1 and IL-10 (Figure 5 A-E, study 

III). Our results suggest that Ad3-hTERT-CMV-hCD40L infection in the TME leads to the 

expression of virally expressed CD40L, which in turn induces DC maturation and production of 

proinflammatory cytokines.

4.9 Ad5/3 adenoviruses are able to reversibly bind to the surface of human 
lymphocytes and erythrocytes and this does not inhibit the oncolytic 
capacity of the viruses in vitro (IV)

To evaluate the binding of a chimeric adenovirus Ad5/3 with blood cells (i.e. lymphocytes and 

erythrocytes), Ad5/3 virus was incubated with lymphocytes at 1, 10, and 100 VP/cell and with 

erythrocytes at 0.0036, 0.036, and 0.36 VP/cell for 30 minutes followed by centrifugation. Analysis 

of the cellular fractions at all ratios showed the presence of Ad5/3 virus (Supplementary figure 1, 

study IV). The binding of Ad5/3 adenovirus to lymphocytes and to erythrocytes was further 

determined in another experiment, in which Ad5/3 adenovirus with lymphocytes (at 10 VP/cell) 

(Figure 1A and 1B, study IV) and with erythrocytes (at 0.036 VP/cell) (Figure 1C and 1D, study IV) 

were incubated for 30 minutes at 37°C. After incubation, samples were centrifuged and the cellular 

fractions were washed with PBS five times. Samples were collected for viral DNA quantification 

after each wash. Although we observed unbound virus in the supernatant after every wash, a portion 

of the virus persisted in the cellular fraction. Thus, our results indicate that the virus can consistently 

bind to the selected blood cell types. 

After studying virus binding ability with selected blood cell types, we next evaluated whether this 

binding is reversible and whether it inhibits adenovirus transduction. This was first studied through a 

luciferase assay using replication-deficient Ad5/3-Luc1 to detect if the virus can transduce cancer 

cells when delivered with the selected cell types, which would lead to luciferase expression. Cell-

virus mixtures (lymphocytes or erythrocytes plus Ad5/3-Luc1) were incubated for 30 minutes at 

37°C. After centrifugation, either different dilutions (i.e. 1:1.7, 1:2.7, 1:6.7) of cell-virus mixture were 

directly incubated with A549 cells or cell-virus mixtures were washed three times before incubating 

with A549 cells. We observed comparable Ad5/3-Luc1 transduction to the control conditions (i.e. 

virus only at 0.1-10 VP/cell). We did not observe luminescent signal from negative control samples, 

i.e. erythrocytes or lymphocytes incubated with Ad5/3-Luc1 only without A549 cells (Supplementary 
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Figure 2, study IV). Our results therefore demonstrated a clear transduction of Ad5/3-Luc1 virus 

regardless of the presence of lymphocytes or erythrocytes (Figure 2A and B, study IV).

Replication-competent TILT-123 adenovirus was used to study the oncolytic potency of cell-bound 

adenovirus. Similar conditions as in the previous experiment were used to examine the cell-killing 

efficacy of cell-bound adenovirus with the MTS assay. We observed cell killing comparable to the 

control conditions (i.e. virus only 0.1-10 VP/cell). This indicates that the binding of adenovirus to 

these cell types does not inhibit the oncolytic potency of the virus (Figure 2C and D, study IV).

The result was further confirmed through a migration assay, where we observed that cell-bound 

adenovirus (TILT-123) was able to kill tumor cells. This suggests that the virus can be released from 

the cells, migrate through the transwell, and kill tumor cells. Thus, our results showed that the 

adenovirus binds reversibly to lymphocytes or erythrocytes and retains oncolytic ability 

(Supplementary figure 3, study IV).

We also visualized the binding of adenovirus (i.e. TILT-123) to blood cells with electron microscopy 

(both SEM and TEM). Images from SEM confirmed that the adenovirus binds to the surface of 

lymphocytes (Figures 3A and B) and erythrocytes (Figures 3C, study IV). Erythrocytes are not able 

to internalize adenoviruses (Rojas et al. 2016b), but this has not been well studied for lymphocytes. 

We used TEM to analyze the binding of adenovirus Ad5/3 to lymphocytes. Analysis with TEM 

showed that TILT-123 bound only to the surface of lymphocytes, as we did not observe any 

internalized adenovirus (Figure 3D, study IV). Thus, these results further confirmed our finding that 

Ad5/3 adenovirus has a surface association with both lymphocytes and erythrocytes. 

4.10 Adenovirus Ad5/3 binding with erythrocytes and lymphocytes is reversible 
and does not inhibit tumor transduction in vivo (IV)

Systemic administration of virus provides the possibility to treat the primary tumor and metastatic 

tumors simultaneously (Ferguson, Lemoine and Wang 2012). Therefore, we decided to study the 

ability of erythrocytes and lymphocytes to deliver Ad5/3 into tumors upon intravenous administration 

and whether binding to these cells could protect the virus from neutralization. 

In this study, we used immunodeficient mice bearing human prostate tumors (PC-3MM2) 

subcutaneously. They were administered intravenously either TILT-123 alone (1.5 x 10e10 VP/100 

μl as positive control or 1.5 x 10e9 VP/100 μl as experimental control) or bound to erythrocytes or 

lymphocytes at 500 VP/cell. Tumors were analyzed with qPCR for the presence of virus. The 
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presence of viral DNA was observed in all groups, indicating that binding of virus to erythrocytes or 

lymphocytes did not impede tumor transduction in vivo (Figure 4A, study IV).

In addition to the tumors, viral DNA was also found in different organs, such as the liver, spleen, and 

lungs (Figure 4B-D, study IV). Less viral DNA was found in the liver when TILT-123 was delivered 

with lymphocytes than when delivered with erythrocytes. When TILT-123 was bound to 

lymphocytes, significantly less viral DNA was found in the lungs than the positive control (10x, i.e. 

10 times more virus). We also observed extended blood persistence of virus in the positive control 

group (10x) when compared with the other groups (Figure 4E, study IV). Thus, our results suggest 

that human erythrocytes and lymphocytes did not prevent adenovirus transduction in tumor or organs. 

Interestingly, analysis of tumor-to-liver ratios showed that when adenovirus was bound to either 

lymphocytes or erythrocytes a better relative tumor transduction was observed (Figure 4F, study IV). 

Even in the presence of neutralizing antiserum, which was incubated with adenovirus alone or 

adenovirus previously incubated with either lymphocytes or erythrocytes at room temperature before 

injecting the mice, adenovirus bound to either lymphocytes or erythrocytes showed enhanced 

transduction of the tumor when compared with the liver (Figure 5A,F study IV). In contrast, we 

observed more viral DNA in the liver when the virus was administered alone than when it was mixed 

with antiserum (Figure 5B, Study IV). 

As every tumor is different regarding the TME and tumor vasculature, they may respond differently 

to oncolytic viral therapy (Wojton and Kaur 2010). Therefore, we repeated the experiment described 

above using a different tumor model (human lung adenocarcinoma A549 tumors). In this experiment, 

the experimental dose of TILT-123 alone and TILT-123 bound to lymphocytes had a comparable 

delivery efficacy of virus to tumors (Figure 6A, study IV) and to a lesser extent to the liver (Figure 

6B, study IV) and spleen (Supplementary figure 4A, study IV). In the group receiving 10 times more 

virus (positive control group), we observed more viral DNA in the tumors, spleen, and liver. Viral 

DNA was not found in the blood serum except for one case from the positive control group 

(Supplementary figure 4B, study IV). Although the tumor-to-liver ratio of viral DNA was higher 

when the virus was bound to lymphocytes, we did not find significant differences between the groups 

(Figure 6C, study IV). We also detected the expression of IL-2 and TNF-α in the tumor samples, as 

TILT-123 (adenovirus armed with IL-2 and TNF- α) expressed these cytokines when replicating in 

the tumor. Thus, this further confirmed that the virus is functional when delivered to the tumors 

(Supplementary figure 5 A-B, study IV).
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Upon addition of neutralizing antiserum, the mice that received virus bound to erythrocytes plus 

antiserum showed higher viral DNA levels in tumors and to a lesser extent in the liver and spleen 

when compared with other groups (Figure 6D, E, F Supplementary Figure 4C, study IV). In this 

experiment, antiserum had a greater neutralizing effect on the virus alone, which resulted in more 

virus in liver. This is because liver uptake (by e.g. Kupffer cells) is not dependent on the interaction 

with the primary receptor of the virus. We also observed a notable neutralizing effect in case of virus 

plus lymphocytes and antiserum (Figure 6D-F, Supplementary figure 4C, study IV). We detected the 

expression of IL-2 and TNF-α in the tumor samples, indicative of the replication of TILT-123

(adenovirus armed with IL-2 and TNF-α) within the tumor, thus confirming virus replication 

(Supplementary figure 5 C-D, study IV). 

In conclusion, we discovered that the Ad5/3 chimeric adenovirus can hitchhike on human 

lymphocytes and erythrocytes to reach non-injected tumors in vivo. It does so by binding to 

erythrocytes and lymphocytes in a reversible manner. Moreover, this binding does not inhibit viral

functionality.
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5 Summary and conclusions 

This study examined the cancer therapy potential of a novel oncolytic adenovirus Ad3-hTERT-CMV-

hCD40L, which is fully serotype 3 and designed to improve DC therapy. Results from this study 

suggest that Ad3-hTERT-CMV-CD40L transduces tumors upon intravenous administration, and 

induces antitumor responses. These responses were more pronounced with adoptive transfer of DCs. 

The antitumor responses were derived both from the virus infection (oncolysis) and the expression of 

an immunostimulatory transgene (CD40L). Virus-mediated lysis of tumor cells is important for the 

spread of virus within the tumor and release of tumor epitopes, while transgene expression induces 

immunological changes. This study revealed the ability of the virus to induce DC maturation, to direct 

T-cell responses towards Th1, and to promote cytotoxic T cells. Treatment with Ad3-hTERT-CMV-

hCD40L did not cause any toxicity. Thus, Ad3-hTERT-CMV-hCD40L is a potent enabler of DC 

therapy. Our findings provide a rationale for a phase I trial to investigate the safety of Ad3-hTERT-

CMV-CD40L together with DC treatment in patients with solid tumors.

The fourth part of this study also demonstrated the ability of a chimeric adenovirus to transduce non-

injected tumors despite the presence of neutralizing antibodies. Reversible interaction of virus with 

blood cells, such as lymphocytes and erythrocytes, was shown to enhance tumor transduction upon 

intravenous administration.
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6 Perspectives

Tumors and their microenvironments are highly heterogeneous due to the ability of tumors to escape 

immune responses and their constantly evolving nature. Therefore, targeting of multiple pathways is 

required to ensure active control of evolving tumor cells. Emerging targets for cancer therapy are co-

stimulatory or co-inhibitory molecules. These could have additional synergistic effects when 

combined with oncolytic adenovirus therapies. Oncolytic adenoviruses are safe and effective for 

cancer treatment. Adenoviruses can be armed with immunostimulatory molecules (transgenes), which

allows localized (i.e. within the tumor) expression of these molecules. However, the possible negative 

influence of these transgenes on the oncolytic capacity of virus should not be neglected. 

The contributions of DCs in initiating antitumor immune responses are recognized as targetable. DC 

therapies as monotherapy have been minimally successful. Lack of favorable responses to current 

DC-based immunotherapies are potentially due to the immunosuppressive TME, dysfunction of 

administered DCs, lack of prognostic biomarkers, low tumor mutational burden, and low T-cell 

infiltration in tumors. Hence, many clinical trials are combining DC therapy with other therapies, 

such as radiotherapy, chemotherapy or checkpoint inhibitor therapy. Nevertheless, this combination 

often lacks immunological rationale. 

Comparison of immunological responses and clinical efficacy between different studies is 

challenging due to variations in treatment schedule and dosing. Different clinical trials with DC 

therapy are also difficult to compare due to variations in use of DC subsets, DC maturation status or 

process, DC dose per injection, number of injections, or interval between injections. Comparisons 

may be simplified with appropriate immunomonitoring. The oncolytic adenovirus Ad3-hTERT-

CMV-CD40L is a potent enhancer of DC therapy; in the future a combination of DC therapy and this 

oncolytic adenovirus could provide clinical benefit for patients suffering from currently incurable 

cancers.
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