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Abstract: 

Background: We explored the genetic architecture of metabolic risk factors of 

cardiovascular diseases and their clustering in Chinese boys and girls.  

Methods: Seven metabolic traits (body mass index [BMI], waist circumference [WC], 

systolic blood pressure [SBP], diastolic blood pressure [DBP], total cholesterol [TC], 

triglyceride [TG] and uric acid [UA]) were measured in a sample of 1016 twins between 8 

and 17 years of age, recruited from Qingdao Twin Registry. Cholesky, independent pathway 

and common pathway models were used to identify the latent genetic structure behind the 

clustering of these metabolic traits.  

Results: The genetic architecture of these metabolic traits was largely similar in boys and 

girls. The highest heritability was found for BMI (a2=0.63) in boys and TC (a2=0.69) in girls. 

Three heritable factors, adiposity (BMI and WC), blood pressure (SBP and DBP) and 

metabolite actor (TC, TG and UA) which formed one higher-order latent phenotype, were 

identified. Latent genetic, common environmental unique environmental factors indirectly 

impacted the three factors through one single latent factor.  

Conclusions: Our results suggest that there is one latent factor influencing several metabolic 
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traits, which are known risk factors of cardiovascular diseases, in young Chinese twins. 

Latent genetic, common environmental and unique environmental factors indirectly imposed 

on them. These results inform strategies for gene pleiotropic discovery and intervening of 

CVD risk factors during childhood and adolescence.  
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Introduction 

Cardiovascular diseases (CVD) are the most important causes of death worldwide and 

have received increasing attention, not only in high income but also in many middle-income 

countries, due to their rising prevalence(Tefera et al. 2017;Raji, Mabayoje, and Bello 2015). 

Abdominal obesity, hypertension, hyperlipidemia, glucose intolerance and uric acid, 

reflecting the cardiometabolic risk profile, are well known metabolic risk factors for CVD. 

These factors develop early in life and track from childhood through adolescence and 

adulthood(Graves et al. 2014;Umer et al. 2017). Moreover, they show mutual correlations, 

and this clustering has found to be stable from childhood into adulthood (Umer et al. 

2017;Díez-Fernández et al. 2015;Andersen et al. 2003). Therefore, early treatment of 

adiposity in childhood and adolescence is recommended as the first-line approach to reducing 

CVD risk. Hotchkiss et al(Hotchkiss et al. 2014) reported that from the 43% decline in 

coronary heart disease mortality rates between 2000 and 2010, 39% was attributed to 

improvement in these risk factors. Meta-analyses of pediatric lifestyle intervention studies 

have also revealed that dietary modification and increased physical activity reduce weight 

and improve CVD risk factors such as dyslipidemia and hypertension, and interventions that 
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improve one condition are likely to ameliorate the others. However, the mechanisms linking 

these conditions are not fully understood. Whether these associations are the consequences of 

a shared genetic factor or environmental factor underlying these CVD risk factors remains 

controversial.  

   Epidemiologic studies have found that men have a higher risk of cardiovascular mortality 

compared to women and have a higher risk of developing CVD at earlier onset(Leutner et al. 

2016). Previous twin studies on common CVD risk factors have also established that genetic 

and environmental factors contributing to them often differ by sex , age and ethnicity (Liao et 

al. 2017;Song, Lee, and Sung 2015;Li et al. 2016;Tanaka et al. 2015;Silventoinen, 

Jelenkovic, et al. 2017;Poveda et al. 2017). For example, a review of twin and family 

studies reported that heritability estimates range from 0.25 to 0.70 for body mass index 

(BMI); from 0.25 to 0.60 for triglycerides (TG); from 0.50 to 0.60 for total cholesterol (TC); 

from 0.20 to 0.70 for resting systolic blood pressure (SBP); and from 0.10 to 0.50 for 

diastolic blood pressure (DBP)(Rankinen et al. 2015). Most studies reported heritability 

estimates of about 0.4 for uric acid (UA)(Kleber et al. 2015). Moreover, latent or 

unidentified genes and DNA sequence variants exerting pleiotropic influences on multiple 
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CVD risk factors are found by several twin and family studies. Furthermore, recent research 

in male adult twins suggested that some CVD risk factors, such as adiposity, lipids and 

insulin resistance shared one latent genetic factor by using multivariate biometrical modeling 

analyses(Panizzon et al. 2015). However, a limitation is that most of the studies have been 

conducted in Caucasian populations following Westernized life-style leaving it open whether 

the results can be generalized to other populations.  

We have previously reported, using data from the Chinese Qingdao Twin Study (QTR) of 

children and adolescent, that genetic and environment contributed to eight CVD risk factors, 

including BMI, waist circumference (WC), waist-to-hip ratio (WHR), SBP, DBP, TC, TG and 

UA and there were different heritability for those CVD risk factors by sex(Ji et al. 2014). 

There has been recent interest in the use of multivariate modeling approach to explore the 

genetic architecture underlying these CVD metabolic risk factors and to clarify whether there 

are age, sex, and ethnic differences in genetic pleiotropy on multiple CVD risk factors. To our 

knowledge, this issue has not been addressed in the Chinese population. Given the above, the 

aims of the present study were to: 

1. Quantify genetic and environmental influences on seven CVD metabolic risk factors 
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(BMI, WC, SBP, DBP, TC, TG and UA) in boys and girl  aged 8-17 years. 

2. Investigate the common metabolic pathophysiological underlying the clustering of CVD 

metabolic risk factors in boys and girls aged 8-17 years. 

3. Examine whether there are different combinations of these CVD metabolic risk factors 

sharing genetic or environmental pathways in boys and girls aged 8-17 years.   

Methods 

Participants 

The Qingdao Twin Study (QTR) was initiated in 1998 as part of the National Twin 

Study in China which was described in detail elsewhere(Duan et al. 2013). All participants 

aged 8-17 years consisting of monozygotic (MZ) and dizygotic (DZ) twins were screened 

during May to August in 2006. The participants were reimbursed for travel expenses for their 

participation in the project. Written informed consent were obtained from the parents and 

verbal consent from their twin children. A questionnaire, anthropometric measurements and a 

fasting blood sample collection were included in the survey which is described elsewhere(Ji 

et al. 2014). The protocols were approved by the Institutional Review Board at Qingdao 

Center for Disease Control and Prevention. The current analyses are based on the 1016 
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participants who were free of major medical conditions and had complete data for the used 

variables.  

Metabolic trait measures 

BMI was calculated as body weight divided by squared body-height (kg/m2), where body 

weight and height were measured in lightweight clothes and without shoes. Body weight was 

rounded to the nearest 0.1 kg and height to the nearest centimeter. WC was measured in the 

midpoint between the rib cage and the iliac crest and rounded to the nearest 0.1 centimeter. 

SBP and DBP were measured in the right arm by a standard procedure using mercurial table 

stand model sphygmomanometer. Three measurements were taken and the average of them 

was used in the analysis. Biomedical measurements (TC, TG and UA) assay methods and 

zygosity examination have been reported elsewhere(Ji et al. 2014).  

Statistical analysis 

Descriptive statistics were calculated using R statistical software. To obtain normal or 

near-normal distributions, BMI and TG were log transformed and then multiplied by 100 to 

increase the variance, which facilitated the model-fitting. The outliers for WC>40 cm, 

TC>6.5 mmol/L, TG>2.8 mmol/L, UA>600 μmol/L, SBP>140 mmHg and DBP>100 mmHg 
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were removed. 

   Genetic analyses were performed using OpenMx(Boker et al. 2011) package of R 

software. OpenMx estimates parameters using maximum likelihood method and computes 

goodness-of-fit statistics based on minus twice the natural logarithm of the likelihood (-2lnL). 

Likelihood ratio tests (LRT) are used to test hypotheses, as a better balance between 

goodness-of-fit and parsimony, the Akaike’s Information Criterion (AIC) also served as an 

indicator of model fit, lowest values imply the best model.  

We started the multivariate modeling by fitting Cholesky decomposition which allows 

partitioning the phenotypic covariance into additive genetic (A), common environment (C) 

and unique environment (E) components and thus estimating genetic and environmental 

correlations between pairs of traits. The Cholesky decomposition provides the full saturated 

solution without making assumptions on the underlying genetic architecture. Thus, it can 

supply a base model for comparsion with more parsimonious models. In a trivariate Cholesky 

decomposition, we selected three phenotypic traits included obesity-related traits (BMI and 

WC), blood-pressure traits (SBP and DBP), metabolites (TC, TG and UA), respectively. In 

order to determine the genetic and environmental factor architecture, a series of multi-level 
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independent and common pathways models were fitted to the data in boys and girls 

seperately. Measurement error is largely restricted to the first level of variables in these 

models. 

We first fit a single-factor common pathway model to estimate the genetic and 

envrionmental covariance among latent phenotype. Then, we fit a three-correlated-factor 

common pathway model to estimate the phenotypic, genetic and environmental covariance 

among latent phenotype. The higher-order common pathway model (Figure 1a) assumes that 

the covariance among the three factors is accounted for by a single, higher-order latent 

phenotype and that the genetic and environmental covariance among the variables is 

accounted for by genetic and environmental influences operating through that phenotype. The 

higher-order independent pathways model (Figure 1b) assumes that the covariance among the 

three factors is accounted for by indepent, higher-order genetic and and environmental factors. 

The model does not require an overarching latent phenotype; it can account for the 

covariance via separate genetic and environmental factors that are independent of one another, 

and whose loadings do not have to be collinear. The model also allows for genetic and 

environmental factor structure to be tested separately from one another, thus remaining 
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agnostic as to whether genetic and environmental influences adhere to the same covariance 

structure.  

……………Figure 1 insert here………………..………..……….. 

Results 

Descriptive analyses      

The basic characteristics of the study cohort are presented in Table 1. The means of all 

metabolic factors, except for TC and TG, were slightly higher in boys than in girls. 

Significant sex differences were observed (p<0.001) except for DBP.  

…………………………..……....Table 1 insert here………………..………..……….. 

Table 2 shows the phenotypic correlations between the traits in boys and girls. WC-BMI 

and SBP-DBP displayed the highest correlation in boys and girls, ranging from 0.77 to 0.70 

and from 0.68 to 0.61, respectively. Obesity-related measures (WC and BMI) showed 

moderate correlations with SBP and UA in both sexes with the exception of with UA in girls. 

However, TC showed no correlation with obesity measures and BP measures in either sex. 

Weak but still significant correlations were found for TC with TG and UA (r=0.18 for TG-TC 

in boys and 0.17 in girls, r=0.27 for TC-UA in girls) except for TC-UA in boys.  



12 
 

…………………………..……....Table 2 insert here………………..………..……….. 

 Table 3 presents the relative influences of genetic and environmental factors on the 

metabolic traits based on the full ACE Cholesky decomposition. All traits were influenced by 

genetic factors with the heritability estimates ranging from 0.63 for BMI to 0.22 for WC in 

boys; the only exceptions was no significant genetic influences for DBP. In girls, the 

heritability estimates vary from 0.69 for TC to 0.38 for WC with an exception of no 

significant genetic influences for SBP. In addition, common environmental influences and 

unique environmental influences were all significant for all measures (c2=0.63-0.26, 

e2=0.36-0.15 in boys and c2=0.52-0.19, e2=0.42-0.10 in girls) in both sexes with some notable 

exceptions, namely, common environmental factors showed no significant influence for TC 

in boys, and for DBP, TC as well as TG in girls. 

…………………………..……....Table 3 insert here………………..………..………. 

Table 4.1-4.3 shows the genetic and environmental correlations between each pair of 

traits in based on Cholesky decomposition in boys and girls. For obesity-SBP, the common 

environmental correlations were higher than the additive genetic correlations in boys 

(rC=0.62-0.67 vs. rA=0.35-0.39). The same circumstance was observed for obesity-UA in 
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boys. Most of the genetic and environmental correlations were not significant in girls, with 

the exception of WC-BMI, SBP-DBP and TC-UA.  

…………………………..……Table 4.1-4.3 insert here………………..………..……… 

Multivariate Modeling Analyses  

Table 5 summarizes the goodness-of-fit indexes of the four multivariate models, that is, 

single-indicator model, three-correlated indicator model, high-order independent pathway 

ACE model and high-order common pathway ACE model in boys and girls when compared 

to the full Cholesky decompositions. The high-order common pathway ACE model showed a 

better fit than full ACE Cholesky decomposition and other multivariate models 

(BIC=-8092.19 in boy, BIC=-8862.57 in girl, respectively), indicating that observed 

measures covariance are modeled by three correlated indicators which referred to as obesity 

(WC and BMI), blood pressure (SBP and DBP) and metabolite factor (TC, TG and UA) with 

different factor loadings, and three correlated indicator are then unified into single common 

latent factor. The final model is presented separately for boys (Figure 2a) and for girls (Figure 

2b).  

As shown in Figure 2a, for boys, factor loadings on the single common latent factor were 



14 
 

higher for metabolite factor (0.89, 95% CI 0.59 to 1.00) and obesity (0.75, 95% CI 0.60 to 

0.92) than BP (0.65, 95% CI 0.49 to 0.81). Furthermore, each latent indicator was statistically 

significant heritable, with the estimates of 0.51 (95% CI 0.26 to 0.76) for obesity, 0.20 (95% 

CI 0.04 to 0.51) for BP and 0.28 (95% CI 0.05 to 0.76) for metabolite factor. The genetic and 

environmental factors account for the coherence of the three latent indicators by one common 

latent factor with moderate heritability (a2=0.35, 95% CI 0.06 to 0.76; c2=0.63, 95% CI 0.24 

to 0.90; e2=0.01, 95% CI 0 to 0.05).  

However, as shown in Figure 2b, for girls, factor loadings on the single common latent 

factor were lower for metabolite factor (0.28, 95% CI 0 to 0.72) than obesity (0.81, 95% CI 

0.43 to 1.00) or blood pressure (0.51, 95% CI 0.30 to 0.87). At the first higher-order common 

pathway level, only obesity presented statistically significant heritable with the estimates of 

0.55 (95% CI 0.32 to 0.87), common environmental influences and unique environmental 

influences on BP (c2= 0.52, 95% CI 0.13 to 0.69; e2= 0.36, 95% CI 0.25 to 0.51) and unique 

environmental influences on metabolic-related factor (e2= 0.30, 95% CI 0.11 to 0.54) were 

statistically significant. At the second higher-order common pathway level, the effects of the 

genetic and environmental factors on the single common latent factor were not statistically 
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significant.  

…………………………..Table 5 insert here………………..………..……… 

…………………………..……....Figure 2 insert here………………..………..……… 

Discussion  

We examined  the genetic architecture on seven metabolic CVD metabolic risk factors in 

boys and girls by a multivariate modeling approach. Among boys, we found three heritable 

factors behind the seven metabolic CVD risk factors: obesity (BMI and WC), blood pressure 

(SBP and DBP) and metabolite factors (TC, TG and UA). Obesity, blood pressure and 

metabolite factors were united by a higher-order common factor, which was influenced by 

latent genetic and environmental factors. In contrast for girls, one heritable factor was found 

with the estimate of 0.55 for obesity. These results help to further elucidate the physiologic 

mechanisms underlying the clustering of CVD risk factors and explain the strategies to 

prevent these CVD risk factors during childhood and adolescence. Furthermore, our findings 

indicate that there are differences between boys and girls in the genetic and environmental 

influences on these seven metabolic factors. However, it can be expected that CVD risk in 

adults will decrease if there are more common interventions on CVD risk factors during 
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children and adolescents whatever for boys and girls.  

It is well known that metabolic CVD risk factors are correlated, and obesity is usually 

behind the clustering of metabolic factors in children and adolescents(Silventoinen, Gouveia, 

et al. 2017). Our findings were not only consistent with the previous twin studies but also 

showed evidence for sex-specific phenotypic correlations which was much larger in boys 

than in girls, such as BMI relating to WC with the range from 0.77 to 0.70 and SBP relating 

to DBP with the range from 0.69 to 0.62. In particularly, in boys, we observed significant 

moderate association between uric acid and other CVD risk traits except for triglycerides. In 

girls, uric acid only presented significant associations with total cholesterol and triglycerides 

Recently Luciano et al.(Luciano et al. 2017) investigated age-and sex-specific percentiles of 

serum uric acid in overweight/obese children and adolescent in Italy. The authors reported 

that higher serum uric acid was associated with an increased risk of high triglycerides and 

atherogenic profile in children and adolescent, and further confirmed that serum uric acid 

would act as marker of impaired adipogenesis which was reported already in 1998 by 

Matsuura et al.(Matsuura et al. 1998) Thus, we took TC, TG and UA as one unified factor 

when we explored the genetic background of this clustering of metabolic factors in our 



17 
 

analysis to support our hypothesis which is latent genetic and environment factor indirectly 

impacting on three factors, namely obesity (BMI and WC), BP (SBP and DBP) , and 

metabolites (TC, TG and UA) through one single latent factor. This factor resembles the 

metabolic syndrome (MetS), which is conceived as a clustering of metabolic risk factors, 

including visceral obesity, insulin resistance, hyperglycemia, high blood pressure, and 

dyslipidemia; Mets increases the risk for both cardiovascular disease and type II 

diabetes(Shen et al. 2003). To our knowledge, although uric acid is a CVD risk factor 

independent of insulin resistance(Facchini et al. 1991), the definition of MetS does not 

include uric acid. Our study was the first time to examine the genetic background of the 

clustering of metabolic traits including uric acid. Hence, our novel results would provide the 

opportunity to determine whether uric acid is one of components of MetS.    

Compared to the similar study in adult male twins(Panizzon et al. 2015), our results 

demonstrated that higher-order common pathway ACE model is the final model for our data, 

that is, three separate factors formed by seven metabolic CVD risk variables tended to 

aggregate together into a single latent factor in both sex groups, especially in boys which the 

common latent factor with the significant genetic and environmental influences. We further 
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detected the genetic and environmental influences on the common latent factor. Despite there 

is sex-specific difference in genetic and environmental contributions to these metabolic traits, 

such that female group had a higher heritability of WC, DBP, TC and UA with the range from 

0.69 to 0.38, vice versa, the heritability of BMI and TG was higher in boys than it was in girls, 

the hypothesized three-factor common pathway ACE model was shown to be stable across 

sex group.  

Varying different degrees of systematic correlation between three factors stem from 

higher-order common pathway ACE model were observed, in boys, lipid-related factor 

(TC,TG and UA) and obesity appeared to the main essential features of the clustering of 

these CVD risk factors; while in girls, obesity and blood pressure were. However, in both sex 

group, the mechanisms linking obesity, blood pressure and lipid-related factor (TC,TG and 

UA) can both be explained by genetic, common environmental and unique environmental 

factor, although genetic and environmental influences did not achieve statistical significant in 

girls. Genome-wide association studies (GWAS) studies have revealed pleiotropic effects on 

CVD risk factors(MacArthur et al. 2017). Kleber et al.(Kleber et al. 2015) studied 

pleiotropic effects of uric acid SNPs (single-nucleotide polymorphisms) and other CVD risk 
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factors, and identified that two SNPs were associated with TC(rs675209 and rs17050272), 

one SNP was associated with TG (rs1260326), three SNPs were associated with BMI 

(rs2231142, rs10480300, and rs3741414), five SNPs were associated with SBP (rs17632159, 

rs1165151, rs10480300, rs1171614, and rs2078267), and five SNPs were associated with 

DBP (rs17632159, rs1165151, rs10480300, rs1171614, and rs675209). Thus, our results will 

provide the support to find pleiotropic genes affecting CVD risk factors in Chinese young 

population. Further, past studies based on children and young adults have suggested that 

obesity associated.   

Interestingly in our study it was shown that common environmental influences such as 

diet and lifestyle played an important role underlying association between these metabolic 

traits, especially in girls. This finding is supported by previous studies in adult populations 

(Recchioni et al. 2017). Ambrosini et al.(Ambrosini et al. 2013) reported that increased 

sugar-sweetened beverage intake is associated with CVD in young people. CVD has long 

been recognized as lifestyle-related disease, and physical inactivity is regarded as a major 

factor which is related to CVD. It suggests that we should focus on this age group because it 

is a critical period for physical and behavioral development.  
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  In summary, this study is one of few studies to examine genetic architecture on several 

metabolic risk factors on CVD, especially in a non-Caucasian population. We identified three 

heritable factors, that is, obesity, blood pressure and metabolites (TC, TG and UA), which 

united one single phenotype in both sex groups, and genetic and environmental factors 

indirectly impact on them. These findings suggest that it would helpful to implement 

considerable interventions in CVD risk factor management as early as childhood and 

adolescent. In addition, further research investigating the impact of specific genes and 

environmental factors on CVD risk factors will continue to provide insight into the most 

successful CVD therapies. Current health recommendations need to be adjusted accordingly.  
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TABLE 1   Baseline characteristics of phenotypes in boys and girls 

Characteristics Boy 

(n= 498 twins from 

249 pairs)                               

  Girl 

(n=518 twins from 

259 pairs) 

 

( 

  

Mean(SD) Range Mean(SD) Range P value  

Age(years) 12.33(1.95) 8.0 to 17.0 12.26(1.94)    8.0  to 17.0    P=0.573  

WC(cm) 65.91(9.83) 16.70 to 105.0 63.1(8.64)   18.0 to 95.50 p<0.0001  

BMI(kg/m2) 18.15(3.15) 10.90 to 29.20 17.51(2.88) 12.2 to 29.70 P=0.001  

SBP(mmHg) 103.3(12.63) 73.5 to 143.0 101.2(11.02)   72.0 to 138.0 P=0.004  

DBP(mmHg) 65.18(8.89) 37.5 to 92.0 64.71(9.14)    40.0 to 112.0 P=0.405  

TC(mmol/L) 3.70(0.64) 2.04 to 9.44 3.80(0.61)    1.73 to 6.03 P=0.014  

TG(mmol/L) 0.87(0.51) 0.26 to 3.99 0.98(0.45)  0.24 to 3.45 P<0.0001  

UA(umol/L) 311.3(83.44) 150.0 to 731.0 273.4(67.75) 103.0 to 745.0 p<0.0001  

Note: SD= standard deviation; BMI= body mass index; DBP= diastolic blood pressure; SBP= 

systolic blood pressure; TC=total cholesterol; TG=triglyceride; UA= uric acid; WC=waist 

circumference; P= z test for sex difference in means. 

 

 



TABLE 2  Phenotypic correlations among the observed variables in boys and girls with 95%CI 

 

Phenotype 

Girl 

WC BMI SBP DBP TC TG UA 

Boy        

WC  0.70 

(0.63;0.75) 

0.33 

(0.22;0.43) 

0.17 

(0.06;0.28) 

-0.03 

(-0.15;0.09) 

0.19 

(0.07;0.30) 

-0.02 

(-0.14;0.10) 

BMI 0.77 

(0.72;0.82) 

 0.36 

(0.25;0.46) 

0.20 

(0.09;0.31) 

0.005 

(-0.11;0.12) 

0.21 

(0.09;0.32) 

0.08 

(-0.04;0.19) 

SBP 0.39 

(0.28;0.49) 

0.45 

(0.35;0.55) 

 0.62 

(0.55;0.68) 

-0.05 

(-0.17;0.06) 

0.23 

(0.12;0.33) 

0.02 

(-0.10;0.13) 

DBP 0.27 

(0.15;0.37) 

0.33 

(0.22;0.43) 

0.69 

(0.63;0.75) 

 -0.08 

(-0.19;0.03) 

0.12 

(0.01;0.23) 

-0.12 

(-0.23;-0.01) 

TC -0.03 

(-0.15;0.09) 

0.02 

(0.097;0.14) 

-0.14 

(-0.26;-0.03) 

-0.06 

(-0.17;0.06) 

 0.17 

(0.05;0.28) 

0.27 

(0.16;0.37) 

TG 0.23 

(0.11;0.34) 

0.22 

(0.097;0.33) 

0.17 

(0.05;0.29) 

0.16 

(0.047;0.27) 

0.18 

(0.056;0.28) 

 0.16 

(0.05;0.27 

UA 0.31 

(0.20;0.42) 

0.33 

(0.21;0.43) 

0.34 

(0.23;0.45) 

0.18 

(0.06;0.29) 

0.01 

(-0.11;0.13) 

0.17 

(0.05;0.28) 

 

Note: BMI= body mass index; DBP= diastolic blood pressure; SBP= systolic blood pressure; 

TC= total cholesterol; TG= triglyceride; UA= uric acid; WC= waist circumference . Results are 

derived from the multivariate ACE Cholesky model.  

 



TABLE 3  Genetic and environmental influences on observed variables in boys and girls with 95% CI 

 Additive genetic influences (a2) Common environmental influences 

(c2) 

Unique environmental influences 

(e2) 

Phenotype Male   female male female male female 

WC 0.22 

(0.08;0.44)  

0.38 

(0.22;0.61) 

0.63 

(0.41;0.77) 

0.52 

(0.29;0.68) 

0.15 

(0.11;0.20) 

0.10 

(0.07;0.13) 

BMI 0.63 

(0.46;0.81) 

0.38 

(0.19;0.65) 

0.28 

(0.11;0.46) 

0.45 

(0.18;0.64) 

0.08 

(0.06;0.12) 

0.17 

(0.13;0.23) 

SBP 0.23 

(0.065;0.47) 

0.18 

(0;0.55) 

0.60 

(0.36;0.75) 

0.46 

(0.098;0.67) 

0.17 

(0.13;0.23) 

0.36 

(0.28;0.46) 

DBP 0.09 

(0.0073;0.31) 

0.38 

(0.07;0.62) 

0.56 

(0.34;0.68 

0.20 

(0;0.47) 

0.35 

(0.28;0.44) 

0.42 

(0.33;0.54) 

TC 0.54 

(0.22;0.70) 

0.69 

(0.42;0.78) 

0.10 

(0;0.38) 

0.04 

(0;0.29) 

0.36 

(0.28;0.47) 

0.27 

(0.21;0.35) 

TG 0.42 

(0.12;0.69) 

0.33 

(0.06;0.62) 

0.26 

(0.018;0.53) 

0.40 

(-0.11;0.63) 

0.32 

(0.24;0.41) 

0.28 

(0.21;0.36) 

UA 0.51 

(0.27;0.77) 

0.55 

(0.22;0.78) 

0.32 

(0.064;0.55) 

0.19 

(0;0.51) 

0.17 

(0.13;0.22) 

0.26 

(0.20;0.33) 

Note: BMI= body mass index; DBP= diastolic blood pressure; SBP= systolic blood pressure; 

TC= total cholesterol; TG= triglyceride; UA=uric acid; WC= waist circumference. Results are 

derived from the multivariate ACE Cholesky model.   

 

 



TABLE 4.1 Additive Genetic Correlations of observed variable pairs in boys and girls with 95% CI 

 

Phenotype 

Girl 

WC BMI SBP DBP TC TG UA 

Boy        

WC  0.53 

(0.30;0.85) 

0.34 

(-0.17;1.02) 

1.01 

(NS) 

0.33 

(NS) 

0.02 

(NS) 

-3.44 

(NS) 

BMI 0.43 

(0.24;0.68) 

 0.42 

(-0.08;1.10) 

0.85 

(NS) 

3.23 

(NS) 

0.18 

(-0.86;1.26) 

1.46 

(NS) 

SBP 0.35 

(0.01;0.79) 

0.39 

(0.09;0.77) 

 0.25 

(-0.11;0.72) 

0.61 

(NS) 

0.25 

(NS) 

-1.68 

(NS) 

DBP 0.45 

(-0.01;1.20) 

0.58 

(0.12;1.17) 

0.18 

(-0.00;0.48) 

 0.61 

(NS) 

0.37 

(NS) 

1.06 

(NS) 

TC -3.32 

(NS) 

1.60 

(NS) 

1.02 

(NS) 

0.07 

(NS) 

 1.33 

(NS) 

0.68 

(0.24;1.33) 

TG 0.42 

(-0.39;1.43) 

0.61 

(-0.24;1.55) 

-0.18 

(NS) 

0.23 

(NS) 

0.81 

(NS) 

 0.12 

(NS) 

UA 0.33 

(-0.17;0.99) 

0.37 

(-0.09;0.91) 

0.23 

(-0.26;0.08) 

0.29 

(NS) 

-8.61 

(NS) 

-0.38 

(NS) 

 

Note: BMI= body mass index; DBP=diastolic blood pressure; SBP= systolic blood pressure; 

TC=total cholesterol; TG= triglyceride; UA= uric acid; WC= waist circumference . Results are 

derived from the multivariate ACE Cholesky model.  

 



TABLE 4.2  Common environmental correlations of observed variable pairs in boys and girls with 95% CI 

 

Phenotype 

Girl 

WC BMI SBP DBP TC TG UA 

Boy        

WC  0.40 

(0.08;0.63) 

0.61 

(-0.06;1.09) 

0.01 

(NS) 

1.43 

(NS) 

0.70 

(NS) 

4.12 

(NS) 

BMI 0.49 

(0.24;0.68) 

 0.53 

(-0.14;1.00) 

0.16 

(NS) 

-6.60 

(NS) 

0.58 

(NS) 

-0.19 

(NS) 

SBP 0.67 

(0.24;0.98) 

0.62 

(0.25;0.91) 

 0.43 

(-0.02;0.76) 

0.50 

(NS) 

0.71 

(-0.38;1.70) 

3.82 

(NS) 

DBP 0.57 

(-0.15;1.02) 

0.46 

(-0.10;0.91) 

0.65 

(0.36;0.83) 

 0.09 

(NS) 

0.38 

(NS) 

-0.19 

(NS) 

TC 4.25 

(NS) 

-1.52 

(NS) 

0.13 

(NS) 

0.31 

(NS) 

 -0.63 

(NS) 

0.03 

(-0.66;0.87) 

TG 0.51 

(-0.48;1.26) 

0.30 

(-0.66;1.10) 

0.92 

(NS) 

0.70 

(NS) 

-0.18 

(NS) 

 0.56 

(NS) 

UA 0.71 

(0.07;1.19) 

0.60 

(0.06;1.04) 

0.78 

(0.23;1.25) 

0.63 

(NS) 

2.94 

(NS) 

1.27 

(NS) 

 

Note: BMI= body mass index; DBP= diastolic blood pressure; SBP= systolic blood pressure; 

TC=total cholesterol; TG= triglyceride; UA= uric acid; WC= waist circumference . Results are 

derived from the multivariate ACE Cholesky model.  

 



TABLE 4.3 Unique environmental correlations of observed variable pairs in boys and girls with 95% CI 

 

Phenotype 

Girl 

WC BMI SBP DBP TC TG UA 

Boy 

WC 

       

 0.00 

(0.04;0.11) 

0.06 

(-0.04;0.16) 

-0.02 

(-0.33;0.21) 

-0.76 

(NS) 

0.29 

(0.13;0.79) 

0.33 

(NS) 

BMI 0.08 

(0.05;0.12) 

 0.05 

(-0.06;0.17) 

-0.01 

(-0.29;0.23) 

4.36 

(NS) 

0.23 

(0.07;0.60) 

-0.26 

(NS) 

SBP -0.02 

(-0.09;0.06) 

-0.01 

(-0.06;0.04) 

 0.32 

(0.21;0.46) 

-0.11 

(NS) 

0.04 

(-0.23;0.30) 

-1.14 

(NS) 

DBP -0.02 

(-0.19;0.11) 

-0.04 

(-0.15;0.04) 

0.17 

(0.11;0.25) 

 0.31 

(NS) 

0.25 

(NS) 

0.13 

(NS) 

TC 0.07 

(NS) 

0.93 

(NS) 

-0.15 

(NS) 

-0.05 

(NS) 

 0.31 

(NS) 

0.29 

(0.13;0.57) 

TG 0.07 

(-0.10;0.27) 

0.09 

(-0.05;0.30) 

0.26 

(NS) 

0.07 

(-0.41;0.52) 

0.38 

(NS) 

 0.32 

(NS) 

UA -0.03 

(-0.14;0.06) 

0.04 

(-0.03;0.11) 

-0.01 

(-0.11;0.09) 

0.09 

(-0.17;0.42) 

6.67 

(NS) 

0.11 

(-0.17;0.55) 

 

Note: BMI= body mass index; DBP= diastolic blood pressure; SBP= systolic blood pressure; 

TC= total cholesterol; TG=triglyceride; UA= uric acid; WC= waist circumference . Results are 

derived from the multivariate ACE Cholesky model.  

 



TABLE 5 Multivariate model-fitting results in boys and girls 

Model -2LL df AIC BIC LRT Δdf p 

Boys        

1.ACE Cholesky 6106.78 2658 790.78 -7935.97 - - - 

2.Single FactorCP 6378.7 2712 954.7 -7949.35 271.92 54 8.08e-31 

3.Three Factors CP 6183.94 2699 785.94 -8075.43 77.16 41 5.40e-04 

4.Higher-order IP ACE 6184.68 2699 786.68 -8074.69 77.89 41 4.47e-04 

5.Higher-order CP ACE* 6188.31 2703 782.31 -8092.19 81.52 45 7.01e-04 

Girls        

1.ACE Cholesky 6426.54 2831 764.54 -8697.61 - - - 

2.Single Factor CP 6691.38 2885 921.38 -8721.25 264.84 54 1.41e-29 

3.ThreeFactors CP 6493.19 2872 749.19 -8849.99 66.65 41 0.01 

4.Higher-order IP ACE 6493.41 2872 749.41 -8849.78 66.86 41 0.01 

5.Higher-order CP ACE* 6501.99 2876 749.99 -8862.57 75.45 45 0.003 

Note : -2LL = -2log likelihood; df = degrees of freedom; AIC= Akaike’s information criterion; 

BIC = Bayesian information criterion; LRT = likelihood ration test; Δdf = change in degree of 

freedom; p = significance of LRT; CP = common pathway model; IP = independent pathway 

model; A = additive genetic influences; C = common environmental influences; E = unique 

environmental influences; Asterisk(*) indicates best-fitting model. Through model 2 to 

model 5, the fit is tested relative to model 1. 
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Figure 1a  Higher-order common pathway  models of the clustering of metabolic risk traits. Rectangles represent 
observed variables, ellipses represent latent factor, and circles represent latent genetic and environmental influences 
for the higher-order factor are designated by the subscript”L”; genetic and environmental influences for the three 
factors  have numerical subscripts.  
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Figure 1b Higher-order independent pathway models of the clustering of metabolic risk traits. Rectangles represent 
observed variables, ellipses represent latent factors, and circles represent latent genetic and environmental influences 
for the higher-order factor are designated by the subscript”L”; genetic and environmental influences for the three 
factors  have numerical subscripts.  
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Figure 2a: Higher-order CP ACE model in boy with 95%CI. As, Cs and Es are the additive genetic, common and unique environmental influences on the 
measured variable. 
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Figure 2b: Higher-order CP ACE model in girl with 95%CI.  As, Cs and Es are the additive genetic, common and unique environmental influences on the measured variable. 
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