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Large-scale ab initio calculations of the electronic contribution to the electric quadrupole hyperfine constant
B were performed for the 5s25p6s 1,3Po

1 excited states of neutral tin. To probe the sensitivity of B to different
electron correlation effects, three sets of variational multiconfiguration Dirac-Hartree-Fock and relativistic
configuration interaction calculations employing different strategies were carried out. In addition, a fourth set of
calculations was based on the configuration interaction Dirac-Fock-Sturm theory. For the 5s25p6s 1Po

1 state, the
final value of B/Q = 703(50) MHz/b differs by 0.4% from the one recently used by Yordanov et al. [Commun.
Phys. 3, 107 (2020)] to extract the nuclear quadrupole moments Q for tin isotopes in the range 117−131Sn from
collinear laser spectroscopy measurements. Efforts were made to provide a realistic theoretical uncertainty for
the final B/Q value of the 5s25p6s 1Po

1 state based on statistical principles and on correlation with the electronic
contribution to the magnetic dipole hyperfine constant A.

DOI: 10.1103/PhysRevA.103.022815

I. INTRODUCTION

The uninterrupted developments of computational method-
ologies [1–3], together with the growing computational
resources at the disposal of atomic physicists, have increased
tremendously the accuracy of atomic structure calculations
in the past decades [4–11]. Theoretical predictions of atomic
properties have, therefore, become efficient tools to support
the corresponding experimental measurements. This is ex-
emplified by the recent precision measurements of hyperfine
structures [12–15]. In atoms, the hyperfine structure splittings
are, to the lowest orders, described by the magnetic dipole
(M1) and electric quadrupole (E2) hyperfine coupling con-
stants A and B, respectively. The A constant arises from the
interaction of the nuclear magnetic dipole moment μI , with
the magnetic field generated by the electrons at the site of the
nucleus. At the same time, the B constant is the result of the
interaction between the nuclear electric quadrupole moment
Q and the electric field gradient (EFG), which reflects the
electronic charge distribution in the vicinity of the nucleus.
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The quadrupole moments Q are important characteristics
of nuclei that provide a measure of the deviation of the nu-
clear charge distribution from a spherical shape. In general,
they can be determined from nuclear, atomic, molecular, or
solid-state spectroscopies, such as high-resolution laser spec-
troscopy [12], muonic or pionic x-ray spectroscopy [16], nu-
clear magnetic resonance (NMR) [17,18], nuclear quadrupole
resonance (NQR) [19,20], Mössbauer measurements [21,22],
or perturbed angular correlation (PAC) of nuclei passing thin
foils [23,24]. Most of these techniques require to evaluate
the electronic contribution B/Q to the E2 hyperfine constant.
The accuracy of the extracted Q values is, therefore, strongly
affected by the uncertainties in the calculations of this elec-
tronic property. Three compilations of available Q values are
provided by Raghavan [25], Stone [26], and Pyykkö [27].

In this work, we focus on tin, with an atomic number
Z = 50. All proton shells at this magic number are closed,
but the incomplete neutron shells can still induce a Q with
quadratic dependence on the neutron number N , which will
not become magic until the 132Sn isotope, with N = 82 and
nuclear spin I = 0. The nuclear trends of the Q moments
among 8 isotopes in the range 117−131Sn, which is below the
doubly magic isotope, have just recently been published by
Yordanov et al. [12]. The Q(Sn) values given in Ref. [12] were
based on measured atomic hyperfine structures for odd-N
isotopes. More specifically, they were obtained by combining
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the measured B constant in the [Pd]5s25p6s 1Po
1 state1 of the

neutral atom (Sn I), for each isotope, with the calculated
electronic contribution B/Q. The B/Q value resulted from
the three independent multiconfiguration Dirac-Hartree-Fock
(MCDHF) and relativistic configuration interaction (RCI) cal-
culations [28,29] reported in this work. The relative accuracy
of the calculated B/Q is of the order of 7%, while the accuracy
of the measured B constants varies, depending on the isotope,
between 1.5% for 131Sn and 33% for 125Sn, as also reflected in
Table 1 of Ref. [12]. As a result, the accuracy of the evaluated
Q(Sn) values ranges between 7% and 34%.

In Ref. [12], the focus was on the description of the
experimental methods and the interpretation of the nuclear
physics results. The aim of this work is to provide the details
of the employed MCDHF-RCI computational methodolo-
gies for evaluating the electronic contribution B/Q for the
5s25p6s 1,3Po

1 excited states in Sn I. Additionally, the inferred
B/Q values from averaging the individual results of the three
independent series of MCDHF-RCI calculations are validated
by a fourth set of calculations, based on the configuration
interaction Dirac-Fock-Sturmian (CI-DFS) theory [30–34].
After taking into account the results from this new set of
calculations, the final B/Q value for the 1Po

1 state is slightly
shifted from 706(50) MHz/b in Ref. [12]2 to 703(50) MHz/b
in this work. Aside from the E2 hyperfine electronic contribu-
tions, the electronic parts AI/μI of the M1 hyperfine constants
were also calculated for the same 1,3Po

1 states. The correlation
between the M1 and E2 hyperfine structures was used as a tool
to evaluate the theoretical uncertainty of the B/Q value for the
1Po

1 state.
Due to the sensitivity of the hyperfine electronic factors to

different electron correlation effects, one must often perform
more than one set of calculations, which follow different
computational strategies and correlation models, to be in a
position to evaluate the accuracy of the results [35]. That being
the case, a detailed description of the employed computational
strategies is deemed necessary to better understand the contri-
butions from the different correlation effects in systems with
similar electronic structure and to, eventually, advance the
current computational methods and computer codes.

In Sec. II, the underlying theories of the MCDHF-RCI and
CI-DFS methods are briefly described. In the same section,
the forms of the M1 and E2 hyperfine interaction operators
that are used to compute the electronic contributions to the
hyperfine structure constants A and B are given. In Sec. III, the
computational details and results from the four independent
sets of calculations are discussed. These results are combined
in Sec. IV to provide the final B/Q value for the 1Po

1 state and
its associated theoretical uncertainty. The resulting B/Q value
is, then, used in Sec. V to reextract the nuclear quadrupole mo-
ment Q of the 119Sn isotope. Finally, our concluding remarks
are presented in Sec. VI.

1[Pd] is used, for brevity, to indicate the 46-electron palladiumlike
core and will be omitted in the following.

2Although the electronic contribution B/Q is proportional to the
computed EFG value (see also Sec. II C), one should note that, in
Ref. [12], the quantities EFG and B/Q are used interchangeably.

II. THEORY

A. MCDHF-RCI multiconfiguration methods

The principles of the MCDHF-RCI method are fully dis-
cussed in, e.g., the book by Grant [28] and the review article
by Froese Fischer et al. [29]. With this section, we provide the
reader with a short introduction of the main concepts, as im-
plemented in the GRASP2K [36] and GRASP2018 [1] computer
packages that were used to perform the calculations presented
in Sec. III A.

In the relativistic framework, the MCDHF method de-
scribes an atomic state function (ASF), �(γ�JM ), as
an expansion over a set of j j-coupled relativistic CSFs,
�μ(γμ�JM ), characterized by the parity �, the total elec-
tronic angular momentum J , and the projection quantum
numbers M, i.e.,

�(γ� JM ) =
NCSFs∑
μ=1

cμ�μ(γμ� JM ), (1)

where
NCSFs∑
μ=1

c2
μ = 1.

The CSFs are antisymmetrized many-electron functions built
from one-electron Dirac orbitals. In the expression above,
γμ represents the configuration, the angular momentum cou-
pling tree, and other quantum numbers that are necessary to
uniquely describe each CSF.

In the MCDHF method, the radial parts of the Dirac
orbitals and the mixing coefficients cμ are computed in a self-
consistent field (SCF) procedure. The SCF radial equations
to be iteratively solved are derived from the application of
the variational principle on a weighted Dirac-Coulomb en-
ergy functional of the targeted atomic states according to the
extended optimal level scheme (EOL) [37]. The angular inte-
grations needed for the construction of the energy functional
are based on the second quantization formalism in the coupled
tensorial form [38,39].

The MCDHF calculations provide the one-electron orbital
basis, which, in the subsequent relativistic configuration in-
teraction (RCI) calculations, is used to determine the final
wave functions �(γ�JM ) by diagonalizing the interaction
matrix. At this RCI step, the transverse photon interaction,
which reduces to the Breit interaction at the low-frequency
limit, and the leading quantum electrodynamic (QED) cor-
rections are added to the Dirac-Coulomb Hamiltonian (see
Refs. [40,41] for more details). In the RCI calculations, the
atomic-state expansions are usually augmented by CSFs that
capture additional electron correlation effects.

B. CI-DFS method

The detailed description of the CI-DFS method can be
found in Refs. [30–34]. We highlight hereafter the most im-
portant underlying theoretical background.

Dirac-Fock-Sturm orbitals of a general type ϕ j can be
obtained as the solutions of the following eigenvalue problem:

(hD − ε) ϕ j = λ j W (r) ϕ j, (2)
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where hD is the one-electron Dirac Hamiltonian, W (r) is a
weight function, ε is a reference energy, and λ j is the eigen-
value. Following Refs. [30,31], we adopt the weight function

W (r) =
[

1 − exp[−(βr)2]

(βr)2

]
, (3)

where the parameter β is chosen to speed up the convergence
of the Sturmian series. The set of Sturmian eigenfunctions
forms a discrete and complete orthonormalized basis set of
one-electron wave functions with weight W (r), which are
used as virtual orbitals in subsequent calculations.

The next step is the construction of an orthonormalized
set of one-electron wave functions from the solutions of the
DF equations in the DFS orbital basis. One-electron wave
functions that were previously obtained using the DF method
stay intact, whereas the virtual Sturmian orbitals are modified
to be eigenfunctions of the DF operator and they can, thus, be
used for the construction of determinants in the configuration
interaction (CI) method.

C. Hyperfine structure

The hyperfine structure contribution to the Hamiltonian is
represented by a multipole expansion

Hhfs =
∑
k�1

T(k) · M(k), (4)

where T(k) and M(k) are spherical tensor operators of rank k
in the electronic and nuclear spaces, respectively. The k = 1
and 2 terms represent the M1 and E2 interactions. In the fully
relativistic approach, the electronic contributions are obtained
from the expectation values of the irreducible spherical tensor
operators [42,43]

T(1) = −iα
Ne∑
j=1

(α j · l j C(1)( j))
1

r2
j

(5)

and

T(2) = −
Ne∑
j=1

C(2)( j)
1

r3
j

, (6)

where l is the electronic orbital angular momentum and
C(1) and C(2) are the renormalized spherical harmonics of rank
1 and 2, respectively.

The hyperfine structure splitting for a state J is normally
expressed in terms of the A and B hyperfine constants, respec-
tively, given by

A = μI

I

1√
J (J + 1)(2J + 1)

〈�||T(1)||�〉 (7)

and

B = 2Q

√
J (2J − 1)

(J + 1)(2J + 1)(2J + 3)
〈�||T(2)||�〉 (8)

In the equations above, we adopted the definition of the
reduced matrix element, which is compatible with the Wigner-
Eckart theorem of Edmonds [44], as used in most of the

atomic physics textbooks. For later use, we introduce the Ael

and Bel electronic factors of the hyperfine constants, i.e.,

Ael = AI/μI [MHz/μN], (9)

Bel = B/Q [MHz/b], (10)

assuming that A and B are expressed in MHz, μI in nuclear
magnetons (μN) and Q in barns (b). Given the electronic
factors, the hyperfine constants A and B can easily be eval-
uated for a given isotope characterized by the (μI , I , Q) set of
nuclear parameters.

Due to the extended magnetic and charge distributions
of the nucleus, respectively, resulting in the Bohr-Weisskopf
(BW) and the Breit-Rosenthal-Crawford-Schawlow (BR) cor-
rections, the quantity Ael is not purely electronic. A change
in these nuclear structure properties for different isotopes
contributes to the hyperfine anomaly, which is particularly
important for extracting magnetic dipole moments from ex-
perimental measurements [45]. However, the BW effect was
estimated, in the CI-DFS calculations, to be <0.1% for both
considered states (see also Sec. III B). Additionally, as shown
in Ref. [12], the hyperfine anomaly along the tin isotope se-
quence remains small. An analogous effect takes place when
computing the quantity Bel and it was also estimated to be
<0.1% for the states in question (see Sec. III B for details).
In all four independent sets of calculations presented in this
work, the BR correction was included by using the Fermi
model approximation for the nuclear charge distribution. It
should be mentioned that the Bel factor is proportional to the
EFG, also denoted q. Expressing the latter in a−3

0 and Bel in
MHz/b, the conversion factor should be

Bel[MHz/b] = 234.9646 q
[
a−3

0

]
(11)

where the latter is often given in theoretical works [46].

III. CALCULATIONS

In this section, we report the computational details of the
three independent sets of MCDHF-RCI calculations and the
fourth set of CI-DFS calculations that were carried out. The
respective values of the computed isotope-independent hyper-
fine structure constants Ael and Bel are, then, presented and an-
alyzed. Experimental data (see, e.g., Ref. [12]) and state com-
positions indicate that the hyperfine structure in Sn I is charac-
terized by a substantial E2 splitting in the 1Po

1 state and a large
M1 splitting in the 3Po

1 state. For this reason, in what follows,
we only display the Ael[3Po

1] and Bel[1Po
1] values. Nonetheless,

the computed Ael[1Po
1] and Bel[3Po

1] values are still used (see
Sec. III A 4) for evaluating the ratios of the Ael and Bel factors
between the two states and for further comparing with the
corresponding experimental values deduced in Ref. [12].

A. MCDHF-RCI calculations

The accuracy of the MCDHF-RCI multiconfiguration cal-
culations relies on how the atomic-state expansions of Eq. (1)
are built. A first approximation of the atomic states is obtained
by performing an MCDHF calculation on expansions that
are built from one, or more, reference configurations. These
configurations are associated with the targeted atomic states
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TABLE I. The sequence of layers of correlation orbitals optimized in the S-MR3-MCDHF and S-MR4-MCDHF calculations. The former
optimization scheme is based on S substitutions from the MR3 set of reference configurations, i.e., {5s25p6s, 5s25p5d, 5s5p3}, whereas the
latter scheme also includes the 5s25p7s configuration in the so-called MR4 multireference. When all four configurations are included in the
MR, the 7s orbital is part of the spectroscopic orbitals and it is, thus, placed in parentheses in row 3, which displays the i = 2 correlation orbital
layer. In columns 3 and 4, the numbers of generated CSFs, NCSFs, are, respectively, given for each of the two different optimization schemes.
Columns 5 and 6 display the number of CSFs for the subsequent RCI calculations when additional VV correlations have been accounted for
by D substitutions from the valence orbitals.

NCSFs NCSFs, RCI

i Layers of correlation orbitals MR3 MR4 MR3 MR4

None (MR) 9 11
1 6p, 4 f 2097 2479 2570 3093
2 (7s,) 7p, 6d , 5 f 4349 4820 6574 7295
3 8s, 8p, 7d , 6 f , 5g 7054 7886 13 195 14 789
4 9s, 9p, 8d , 7 f , 6g 9759 10 952 21 904 24 689
5 10s, 10p, 9d , 8 f , 7g, 6h 12 563 14 120 34 056 38 498
6 11s, 11p, 10d , 9 f , 8g, 7h 15 367 17 288 49 038 55 551
7 12s, 12p, 11d , 10 f , 9g, 8h, 7i 18 242 20 529 68 286 77 435
8 13s, 13p, 12d , 11 f , 10g, 9h, 8i 21 117 23 770 91 108 103 403

and can be merged with important closely degenerate con-
figurations, forming the multi-reference (MR) space. When
only one configuration is considered, the latter reduces to
a single-reference (SR) space. Applying the rules for cou-
pling angular momenta, the reference configurations produce
a number of CSFs that account for the major electron correla-
tion effects or else what is known as static correlation [29].
The spectroscopic (occupied) orbitals that take part in this
initial calculation are kept frozen in all following MCDHF
and RCI calculations.

The initial approximation of the wave functions is im-
proved by gradually augmenting the atomic-state expansions
with CSFs that interact, i.e., have nonzero matrix elements,
with the ones that are generated by the reference configura-
tions. These CSFs are, due to the one- and two-body character
of the Hamiltonian, obtained from configurations generated
by allowing single (S) and, possibly, double (D) substitutions
from orbitals of the configurations in the MR to an active
set (AS) of correlation orbitals. The AS is systematically
increased by introducing, at each step, a layer of correlation
orbitals consisting of at most one orbital per angular sym-
metry. The correlation orbital layers in the AS are optimized
in successive MCDHF calculations, in which the previously
generated orbitals are kept frozen. It should, therefore, be
highlighted that the correlation orbitals of the MCDHF-RCI
methods differ from the virtual orbitals of the CI-DFS method
in that the former orbitals are variationally optimized through
the MCDHF procedure, while the latter orbitals are generated
according to Eq. (2).

The CSFs can, based on the nature of the SD substitutions,
be classified into CSFs that capture valence-valence (VV),
core-valence (CV), and core-core (CC) electron correlation
effects [[47], p.71]. The radial orbital basis is obtained by
performing MCDHF calculations, where all, or some, of these
classes of CSFs are taken into account. Additional electron
correlation effects, captured by CSFs formed from higher-
order substitutions, i.e., triple (T), quadruple (Q), etc., can be
considered in the subsequent RCI calculations. In general, the
selection of the CSFs that take part in the MCDHF and RCI

calculations depends on the shell structure of the atom at hand
and the atomic properties under investigation.

The computations of the hyperfine factors Ael and Bel are
usually challenging due to their high sensitivity to differ-
ent electron correlation effects. To investigate and assess the
role of the separate electron correlation contributions, three
alternative MCDHF-RCI computational approaches were em-
ployed in this work. Below, we describe the three independent
multiconfiguration calculations and present their individual
results.

1. S-MR-MCDHF calculations

In this first computational approach, the MCDHF cal-
culations were performed with CSF expansions that were
produced by allowing S substitutions from an MR set of
configurations. Due to the one-body nature of the hyperfine
operators (5) and (6), the S substitutions play an important role
in the calculations of hyperfine structures. This also agrees
with the perturbative analysis conducted, e.g., in Ref. [48].
CSFs generated by S substitutions interact with at least one
of the CSFs built from the MR configurations. By using
more than one reference configuration, the current computa-
tional strategy further takes into account important D and T
substitutions from the targeted 5s25p6s configuration. The T
substitutions are quite crucial. The latter may be decomposed
into D substitutions followed by S substitutions. CSFs built
from configurations that differ by T substitutions from the
targeted configuration, thus, interact through the one-body
hyperfine operators with the energetically important CSFs
generated by D substitutions.

Two separate S-MR-MCDHF calculations were per-
formed, using different MR spaces, which are, respectively,
denoted MR3 and MR4. Aside from the 5s25p6s configu-
ration of the targeted states, the MR3 set incorporates the
5s25p5d and 5s5p3 configurations. The 5s5p3 configuration
was found to strongly influence the odd levels of Sn I due to its
large mixing [49]. The MR4 set further includes the 5s25p7s
configuration accounting for the LS-term dependence [47],
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FIG. 1. The convergence patterns of the electronic hyperfine factors Ael[3Po
1](in MHz/μN ) and Bel[3Po

1] (in MHz/b) as functions of the
correlation orbital layers. The radial orbital basis was obtained by applying two different optimization schemes with respect to the selected MR
spaces. The purple dashed lines connect the values resulting from the S-MR3-MCDHF optimization, where three reference configurations are
included in the MR, and the black solid lines link the resulting values from the S-MR4-MCDHF optimization, where the MR was extended to
include four reference configurations. Both sets of values are the results from the RCI calculations that followed the orbital optimization step.
For further details, see text in Sec. III A 1.

i.e., the difference between the 6s orbital of the 5s25p6s 3Po
1

and 5s25p6s 1Po
1 states. The calculations are performed in

the EOL scheme for the average of the configuration states
included in the MR.

In both S-MR-MCDHF calculations, all spectroscopic
orbitals were opened for S substitutions. The layers of
correlation orbitals that were progressively added to the
AS are shown in column 2 of Table I. In total, eight
correlation orbital layers were built, corresponding to the
13s13p12d11 f 10g9h8i set of orbitals. For every additional
correlation orbital layer i, the resulting numbers of CSFs,
NCSFs, in the MR3 and MR4 optimization schemes are, re-
spectively, given in columns 3 and 4 of Table I. As seen in
Table I, the configurations in each of the MR3 and MR4 sets
generate 9 and 11 CSFs.

The RCI calculations included CSFs that were produced
by allowing D substitutions from the valence orbitals of the
configurations in the MR. In this manner, VV electron corre-
lation effects were ultimately captured. D substitutions from
core orbitals were not considered to keep the number of CSFs
at a manageable level. The numbers of CSFs for the RCI
calculations are given in columns 5 and 6 of Table I.

The resulting values of the hyperfine electronic factors
Ael[ 3Po

1] and Bel[ 1Po
1] from applying the two different op-

timization schemes are shown in Fig. 1 with the labels
S-MR3-MCDHF+RCI and S-MR4-MCDHF+RCI, respec-
tively. As seen in Fig. 1, both computed electronic factors
are effectively converged. For the largest CSF expansions, the
variations between the S-MR3-MCDHF+RCI and S-MR4-
MCDHF+RCI results are insignificant. As the final results
of this first MCDHF-RCI computational approach, we take
the resulting values from the largest S-MR4-MCDHF+RCI
calculation, corresponding to expansions with 103 403 CSFs,
so that

Ael
[

3Po
1

] = 2180 MHz/μN; Bel
[

1Po
1

] = 622 MHz/b.

(12)

2. SrD-SR-MCDHF calculations

In the second computational approach, the MCDHF cal-
culations were performed in the EOL scheme for the average
of the 5s25p6s 1,3Po

1 states using CSF expansions that were
produced by S and restricted double (rD) substitutions from
the SR configuration of the targeted states, i.e., 5s25p6s.

More specifically, S substitutions from all spectroscopic
orbitals and D substitutions, restricted by the limitation of
leaving maximum one hole in core orbitals with n < 5, were
enabled. In this manner, the generated CSFs in the orbital
optimization phase also captured CV correlation effects. The
AS was systematically increased to include layers with one
additional correlation orbital of the s, p, d , f , and g angular
symmetries, respectively, apart from the very last, eighth,
layer, which only contained the s, p, d , and f symmetries.
The largest multiconfiguration expansions were then built on
the 14s13p12d11 f 11g set of orbitals. For every layer of corre-
lation orbitals that was added in the SrD orbital optimization
phase, the resulting values of the electronic factors Ael[3Po

1]
and Bel[1Po

1] are shown in Fig. 2 (magenta circles). We note
that, after adding the sixth layer of correlation orbitals, both
the Ael[3Po

1] and Bel[1Po
1] values were converged. For this rea-

son, the CSFs produced during this first phase by allowing
SrD substitutions to the seventh and eighth layers were not
considered in the subsequent RCI calculations.

The RCI calculations were performed in two phases,
which, respectively, allowed SD and SDT substitutions. In the
so-called SD and SDT phases, the multiconfiguration expan-
sions were obtained by systematically increasing the AS, the
maximum angular momentum quantum number l within the
AS, and the number of opened spectroscopic orbital shells.
The computed electronic factors Ael[3Po

1] and Bel[1Po
1] for the

different multiconfiguration expansions that were used in the
SD and SDT phases are given in Table II. The Ael[3Po

1] and
Bel[1Po

1] values are also plotted in Fig. 2 for both SD (green
squares) and SDT (blue triangles) approaches. The numbers
10–26 on the x axis of Fig. 2 are equivalent to the labels
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FIG. 2. The electronic hyperfine factors Ael[3Po
1] (in MHz/μN ) and Bel[1Po

1] (in MHz/b) based on three computational approaches: the SrD
(magenta circles), SD (green squares), and SDT (blue triangles). On the x axes, the number 0 indicates the DHF computation, the numbers
1–8 represent the consecutive layers of correlation orbitals developed in the SrD phase of the calculations, and the numbers 10–26 match the
labels of the multiconfiguration expansions presented in column 1 of Table II, corresponding to the calculations performed in the SD and SDT
phases. The red straight horizontal line on the left graph represents the experimental value Aexpt

el [ 3Po
1] = 2398 MHz/μN from Ref. [12]. See

also text in Sec. III A 2.

displayed in column 1 of Table II. For each calculation, col-
umn 2 of Table II provides the principal quantum number n of
the deepest orbital shell that was opened for substitutions, e.g.,
n � 4 involves substitutions from 4s, 4p, 4d, 5s, 5p, 6s,
and column 3 displays the AS of orbitals to which the substi-
tutions were allowed. As a reference, the Ael[3Po

1] and Bel[1Po
1]

values resulting from the sixth layer of the SrD phase are

presented in the second row of Table II, while the first row
displays the electronic factors from the DHF computation,
restricted to two CSFs.

After generating CSF expansions by allowing substitutions
from the n � 3 spectroscopic shells to the 12s11p10d9 f 10g
set of orbitals in the label 24 calculation, the electronic fac-
tors computed in the SD phase were ultimately converged.

TABLE II. The computed electronic factors Ael[ 3Po
1] (in MHz/μN ) and Bel[ 1Po

1] (in MHz/b) for various multiconfiguration expansions that
were used in the RCI phases following the SrD-SR-MCDHF calculations. In each RCI phase, the considered CSFs were, respectively, generated
based on SD (columns 4 and 6) and SDT (columns 5 and 7) substitutions from the opened spectroscopic shells displayed in column 2 to the AS
of correlation orbitals given in column 3. The first row contains the resulting Ael[ 3Po

1] and Bel[ 1Po
1] values from the DHF computation, where

only the CSFs of the two targeted states were considered, and the second row displays the converged results from the SrD orbital optimization
phase after the sixth correlation orbital layer was added. The labels given in column 1 correspond to the labels used on the horizontal axes of
Fig. 2.

Ael[ 3Po
1] (MHz/μN ) Bel[ 1Po

1] (MHz/b)

Label Open shells Active orbital set SD SDT SD SDT

0 Phase 1: DHF computation 1869 607
6 Phase 1: SrD correlation layer 6 2353 757
10 n � 5 8s7p 2329 2348 751 756
11 n � 4 7s6p5d4 f 2200 2268 727 753
12 n � 4 8s7p5d4 f 2192 2291 723 756
13 n � 4 8s7p5d4 f 5g 2180 2288 722 758
14 n � 4 9s8p 2335 2351 753 758
15 n � 4 9s8p5d 2266 2330 739 760
16 n � 4 9s8p5d4 f 2185 2297 722 759
17 n � 4 9s8p5d4 f 5g 2173 2295 720 760
18 n � 4 10s9p6d5 f 6g 2163 716
19 n � 4 11s10p7d6 f 7g 2156 714
20 n � 4 12s11p10d9 f 10g 2147 712
21 n � 3 9s8p5d4 f 5g 2170 719
22 n � 3 10s9p6d5 f 6g 2157 715
23 n � 3 11s10p7d6 f 7g 2129 709
24 n � 3 12s11p10d9 f 10g 2094 699
25 n � 3 13s12p11d10 f 11g 2093 699
26 n � 2 12s11p10d9 f 10g 2089 698

Expt. [12] 2398(2)
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Extending further the multiconfiguration expansions by either
adding one more layer of correlation orbitals (label 25 cal-
culation) or opening the n = 2 spectroscopic shells (label 26
calculation) has nearly no effect on the Ael[3Po

1] and Bel[1Po
1]

values (see columns 4 and 6 in Table II). The multiconfigu-
ration expansions used in the label 24 calculation of the SD
phase constituted the starting point for the RCI calculations
of the SDT phase, which followed a pattern similar to the SD
approach for generating the CSFs. Yet, the number of CSFs
produced by T substitutions grew very rapidly, and the limits
of the computational resources available to us were reached
after performing the label 17 calculation. It should be pointed
out that the latter calculation included 4 406 086 CSFs and
took 37 days of wall time on the computer cluster at our
disposal (6 × 96 CPU @ 2.4 GHz with 6 × 256 GB RAM).
For the next calculation, the label 18 calculation, 17 817 617
CSFs were generated, which exceeded the capacity of the
cluster. The Ael[3Po

1] and Bel[1Po
1] values computed in the SDT

phase were, thus, not fully converged.
The dependence of the resulting Ael[3Po

1] and Bel[1Po
1] val-

ues on CSF expansions formed from different classes of
electron substitutions is well illustrated in Fig. 2. We notice
that, in the SD phase, the values of the computed hyper-
fine factors decrease compared to the SrD results. On the
other hand, when T substitutions are also considered, the
values of the computed properties increase in relation to the
respective calculations of the SD phase. This behavior has
also been observed in many earlier calculations of hyperfine
structures [35,50–55]. When performing RCI calculations by
allowing D substitutions from core orbitals, CSFs that account
for CC correlation effects are included in the atomic-state
expansions. These CSFs have relatively large mixing coeffi-
cients due to their important contribution to the total energy
and, as a result, the mixing coefficients of CSFs describing
effects, such as spin and orbital polarization, that are more
important for hyperfine interactions take lower values. This is
eventually counterbalanced by the inclusion of CSFs gener-
ated from T substitutions.

Further, the comparison between the two graphs in
Fig. 2 illustrates the similar synchronous dependence of the
computed Ael[3Po

1] and Bel[1Po
1] values on the increasing multi-

configuration expansions in the SrD (magenta circles) and SD
(green squares) phases of the computations. This correlated
behavior between computed Ael and Bel hyperfine interac-
tion factors has also been observed in numerous previous
works [13,56–59]. The M1 and E2 hyperfine factors are ob-
tained by evaluating the expectation values of the operators
(5) and (6), respectively. These expectation values are ex-
pressed in terms of reduced matrix elements of the operators
above, involving radial integrals that have a common depen-
dence on the radial factor r−3. Although it is not directly
obvious from Eqs. (5) and (6), the common r−3 dependence
is explained by the different structures of the relevant one-
electron matrix elements in the nonrelativistic limit [[60],
Sec. 5.2]. For this reason, when, at each step of the compu-
tations, the same CSF expansions are considered, the values
of the Ael[3Po

1] and Bel[1Po
1] factors will most likely syn-

chronously oscillate (see also, e.g., the curves adip and bquad

in Fig. 8 of Ref. [48]).

In consideration of the foregoing, the relative shifts in the
Ael[3Po

1] and Bel[1Po
1] values induced by an additional MCDHF,

or RCI, calculation are expected to be proportional, i.e.,

�Ael/Ael ≈ �Bel/Bel. (13)

The equation above may be transformed into a relation in
which the computed Ael[3Po

1] and Bel[1Po
1] values are related

to the corresponding experimental Aexpt
el [3Po

1] and Bexpt
el [1Po

1]
values according to∣∣Ael − Aexpt

el

∣∣/Aexpt
el ≈ ∣∣Bel − Bexpt

el

∣∣/Bexpt
el . (14)

The latter equation can then be used to adjust the computed
Bel[1Po

1] factor by applying a semiempirical shift based on
the known error in the computed Ael[3Po

1] factor. Given
the experimental result Aexpt

el [3Po
1] = 2398 MHz/μN from

Ref. [12], Eq. (14) was used to adjust the resulting Bel[1Po
1]

values from all three phases of the calculations, i.e., SrD,
SD, and SDT. This leads to the following “shifted” values:
Bel(SrD)shifted = 759 MHz/b, Bel(SD)shifted = 800 MHz/b,
and Bel(SDT)shifted = 793 MHz/b.

Looking at Fig. 2 and Table II, one notices that the Bel[1Po
1]

value (in contrast to the Ael[3Po
1] value) is overall insensitive

to T substitutions. That being so, the result from the largest
completed calculation in the SDT phase, i.e., Bel[1Po

1] ≡
Bel(SDT) = 760 MHz/b, is considered reliable and taken into
account in the evaluation of the final Bel[1Po

1] result for the cur-
rent SrD-SR-MCDHF+RCI approach. By taking the average
of the above-mentioned four values, we ultimately arrive at

Bel
[

1Po
1

] = 778 MHz/b. (15)

3. SrD-MR-MCDHF calculations

In the third computational approach, the MCDHF calcu-
lations were performed in the EOL scheme for the average
of the 5s25p6s 1,3Po

1 states using CSF expansions produced
by allowing SrD substitutions from a set of MR config-
urations and are, therefore, denoted SrD-MR-MCDHF. By
allowing S and D substitutions from the MR space, important
T and Q substitutions from the targeted 5s25p6s configuration
were also taken into account. To determine the MR space,
a preliminary SD-SR-MCDHF calculation was carried out,
using CSFs that were formed by enabling SD substitutions
from the valence orbitals (n � 5) to a first layer of correla-
tion orbitals, i.e., 7s, 6p, 6d , and 4 f . After analyzing the
LS composition of the two targeted states (see Table III),
we defined an MR composed of the 5s25p6s, 5p36s, and
5s5p5d6s configurations. The MR was restricted to the three
leading configurations due to the limitations of our compu-
tational resources. This strategy for defining the reference
configurations differs from the one used in Sec. III A 1, thus
leading to different MR sets.

In the SrD-MR-MCDHF calculations, the 4d, 5s,
5p, 5d, and 6s spectroscopic orbitals were opened for
SD substitutions, with the restriction that there was at most
one substitution from the 4d core orbital. All other inner-core
subshells were kept closed. The polarization of the 4d orbital
was, thereby, taken into account together with VV correlation
effects. The AS was systematically increased to include layers
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TABLE III. The LS composition of the two targeted 5s25p6s 1,3Po
1 states after performing an initial SD-SR-MCDHF calculation. The

percentages of the four most dominant LS components are solely displayed. The first percentage value corresponds to the assigned configuration
and term.

Pos. Conf. LSJ LS composition

1 5s25p6s 3Po
1 0.761 + 0.186 5s25p6s 1Po + 0.016 5p36s 3Po + 0.010 5s5p5d6s 3Po

2 5s25p6s 1Po
1 0.761 + 0.185 5s25p6s 3Po + 0.017 5p36s 1Po + 0.009 5s5p5d6s 1Po

with one additional correlation orbital of the s, p, d , and
f symmetries. The effects of orbitals with higher angular
symmetries on the computation of hyperfine structures are
generally known to be small, justifying the choice of the
“f limit” [61]. Overall, nine correlation orbital layers were
built, corresponding to the 15s14p14d12 f set of orbitals.

Table IV displays the computed excitation energies E [3Po
1]

and E [1Po
1], energy separations �E = E [ 1Po

1] − E [ 3Po
1], hy-

perfine electronic factors Ael[ 3Po
1] and Bel[ 1Po

1], and numbers
of CSFs, NCSFs, as functions of the increasing AS of
correlation orbitals. The values associated with the initial MR
calculation that corresponds to 17 CSFs are given in the first
row of Table IV. After optimizing nine layers of correlation
orbitals, all computed properties were effectively converged.
One should note that the number of CSFs in the expansions of
the final SrD-MR-MCDHF calculation exceeded one million.
At this point, the predicted energy separation agrees with the
observed value to within 3%, which provides an initial as-
sessment of the computed hyperfine factors. The convergence
patterns of the computed Ael[ 3Po

1] and Bel[ 1Po
1] values with

respect to the increasing number of correlation orbital lay-
ers optimized in the SrD-MR-MCDHF calculations are also
graphically illustrated in Fig. 3.

As a final step, an RCI calculation was carried out using
the 15s14p14d12 f orbital set. For this RCI calculation, the
CSFs were produced by enabling S substitutions from all
spectroscopic orbitals, along with D substitutions from the

4p, 4d, 5s, 5p, 5d, and 6s orbitals, with the two following
restrictions: (1) at most one substitution from the 4p orbital
and (2) no simultaneous substitutions from the 4p and 4d
orbitals. Hence, CC correlation effects were solely captured
by the allowed D substitutions from the 4d orbital. Based on
preliminary RCI calculations that used a smaller orbital basis,
the polarization effect of the 4s core orbital was deduced to be
significant too. However, the capacity of the computer cluster
at our disposal did not allow us to include it. The SrD-MR-
MCDHF+RCI results are presented in the second last row
of Table IV and correspond to atomic-state expansions with
3 583 001 CSFs.

At each step of the calculations that followed this third
MCDHF-RCI computational approach, the atomic-state ex-
pansions were restricted to CSFs that interact with the ones
generated by the MR configurations. Indicatively, we mention
that the number of CSFs in the atomic-state expansions of the
final RCI calculation, initially, were 5 313 860. It has been
shown, in previous works, that such reduction of CSFs does
not bring any major losses in accuracy [64–66]. In any case,
the effect of limiting the number of CSFs to the “interacting”
ones was also evaluated in this work. It was deduced that
utilizing the full CSF space causes the Ael[ 3Po

1] and Bel[ 1Po
1]

values to rise by ∼7 MHz/μN and ∼1 MHz/b, respectively.
In addition, it was estimated that when orbitals of the g and h
angular symmetries are added to the orbital basis, the Ael[ 3Po

1]
value further increases by ∼3 MHz/μN, while the change in

TABLE IV. The convergence of the energies and hyperfine factors Ael (in MHz/μN) and Bel (in MHz/b) for the 1,3Po
1 states as the MR orbital

basis extends to include nine layers of correlation orbitals optimized in the SrD-MR-MCDHF calculations. The results after the subsequent RCI
calculations are also presented in the second last row. The computed excitation energies of the 3Po

1 and 1Po
1 states are, respectively, presented

(in cm−1) in columns 2 and 3, whereas the evaluated energy separations are displayed in column 4. For comparison, the observed energies are
shown in the last row. In each of the columns 5 and 6, the values of the Ael[3Po

1] and Bel[1Po
1] factors are given. The last column exhibits the

numbers of generated CSFs for every additional correlation orbital layer.

Energies (cm−1)

Correlation layer 3Po
1

1Po
1

1Po
1 − 3Po

1 Ael[3Po
1] Bel[1Po

1] NCSFs

None (MR) 33 301 38 002 4701 1869 613 17
1 34 327 38 990 4663 2044 586 16 593
2 34 789 39 323 4534 2055 586 57 086
3 34 644 39 154 4510 2092 587 122 610
4 34 587 39 072 4485 2109 591 212 946
5 34 544 39 020 4476 2120 596 328 094
6 34 529 39 004 4475 2117 590 468 054
7 34 521 38 993 4472 2121 593 632 826
8 34 519 38 987 4468 2119 590 822 410
9 34 517 38 984 4467 2120 592 1 036 806
+ RCI 34 374 38 938 4565 2169 716 3 583 001
Expt. [62,63] 34 914 39 257 4343
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FIG. 3. The convergence patterns of the electronic hyperfine factors Ael[3Po
1] (in MHz/μN) and Bel[3Po

1] (in MHz/b) with the increasing
number of correlation orbital layers optimized in the SrD-MR-MCDHF calculations. For the computational details, see text in Sec. III A 3.

the Bel[ 1Po
1] value is negligible. Considering the above correc-

tions to the final SrD-MR-MCDHF+RCI results, we finally
arrive at

Ael
[

3Po
1

] = 2179 MHz/μN; Bel
[

1Po
1

] = 717 MHz/b. (16)

4. Sensitivity to orbital bases and CSF expansions

As previously seen, different calculations based on the
same general method, i.e., the MCDHF-RCI, and performed
with the same program, the GRASP2018 computer pack-
age, lead to different results. The Ael[3Po

1] and Bel[1Po
1]

values obtained with the three approaches do agree within
approximately 10%. The differences in the S-MR-MCDHF,
SrD-SR-MCDHF, and SrD-MR-MCDHF approaches lie in
the choice of their respective orbital bases and CSF ex-
pansions, each with its benefits and drawbacks. In this
subsection, we investigate the sensitivity of the SrD-SR-
MCDHF and SrD-MR-MCDHF approaches by arbitrarily
interchanging their orbital bases and CSF expansions. In
addition to the Ael[3Po

1] and Bel[1Po
1] values, we also dis-

cuss the Ael[1Po
1]/Ael[3Po

1] and Bel[3Po
1]/Bel[1Po

1] ratios, as it
was recently done with the experimental results presented in
Ref. [12], to provide additional information about the sensi-
tivity of our calculations.

For each of the two above-mentioned methods, the final
results were obtained by performing RCI computations. These
results are shown in the first two rows of Table V using

the labels SrD-MR/SrD-MR and SrD-SR/SrD-SR, for the
SrD-MR-MCDHF and SrD-SR-MCDHF approaches, respec-
tively (the notation X/Y defines the orbital basis from X and
CSF expansion from Y). Two additional sets of computations
were performed: one combining the SrD-SR-MCDHF orbital
basis and the SrD-MR-MCDHF CSF space (see SrD-SR/SrD-
MR in Table V) and one combining the SrD-MR-MCDHF
orbital basis and the SrD-SR-MCDHF CSF space (see SrD-
MR/SR-SrD in Table V). Minor changes in the CSF spaces
were required. The SR active space was restricted to the
s, p, d , and f symmetries as the MR orbital basis is limited
to lmax = 3, and the SrD-MR-MCDHF CSF space was limited
to only six correlation layers.

Although far from being in perfect agreement, the results
presented in Table V are consistent. The effect of replacing
the orbital set, for a given CSF expansion, is surprisingly
small. Additionally, the Ael[1Po

1]/Ael[3Po
1] and Bel[3Po

1]/Bel[1Po
1]

values are also presented in Table V, where it is seen that
the former ratio is less stable than the latter. The computed
Ael[1Po

1]/Ael[3Po
1] values vary from 0.124 to 0.185, which cor-

responds to a deviation of 50% from the lowest value. By
considering a simple term mixing between the 3Po and 1Po

terms, it is shown in the Appendix that this sensitivity is
expected. Using the same model, one further explains the
steadier values of the Bel[3Po

1]/Bel[1Po
1] ratio. The computed

Bel[3Po
1]/Bel[1Po

1] values range from −0.240 to −0.270, which
is in very good agreement with the experimental value of

TABLE V. The electronic hyperfine factors Ael[3Po
1] (in MHz/μN) and Bel[1Po

1] (in MHz/μN) as well as the Ael[1Po
1]/Ael[3Po

1] and
Bel[3Po

1]/Bel[1Po
1] ratios, computed for six different combinations of orbital basis sets and CSF spaces. The SrD-SR-MCDHF and SrD-MR-

MCDHF computational approaches are compared by expanding the total wave function over the largest CSF expansion of the one method and
using the orbital basis of the other method. Adjustments were made in the CSF expansions due to the specific properties of the orbital bases
obtained in the two different approaches. For details, see text in Sec. III A 4.

Orb. basis CSF expansions Ael[3Po
1] Ael[1Po

1]/Ael[3Po
1] Bel[1Po

1] Bel[3Po
1]/Bel[1Po

1]

SrD-MR SrD-MR 2179 0.185 717 −0.240
SrD-SR SrD-SR 2295 0.124 760 −0.250
SrD-MR SrD-SR (spdf limit) 2303 0.126 739 −0.254
SrD-SR SrD-SR (spdf limit) 2297 0.126 722 −0.263
SrD-MR SrD-MR (6 layers) 2161 0.183 709 −0.243
SrD-SR SrD-MR (6 layers) 2168 0.158 718 −0.270
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TABLE VI. The numbers of CSFs and the resulting energy separations between the targeted 3Po
1 and 1Po

1 states for each virtual orbital layer
used in the CI-DFS calculations. Two approaches, the direct (full basis) and the one based on perturbation theory (PT), were implemented.
The numbers of additional determinants NDPT, built using PT, are displayed in parentheses. �E = E [ 1Po

1] − E [ 3Po
1] are the energy separations

in cm−1. The numbers of virtual orbital layers given in column 1 correspond to the labels used on the horizontal axes of Fig. 4, and column 2
displays the respective orbital basis sets. For details see Sec. III B.

Virtual Orbital Full basis Perturbation theory

layer basis set NCSFs �E (cm−1) NDPT NCSFs �E (cm−1)

1 6s5p4d 1 520 4 537 (1184) 886 4 538
2 6s5p5d4 f 39 021 4 868 (69 759) 23 504 4 868
3 7s6p5d4 f 80 018 4 930 (123 905) 47 828 4 930
4 7s6p6d5 f 198 543 4 880 (341 769) 119 338 4 880
5 8s7p6d5 f 282 859 4 888 (452 698) 169 363 5 102
6 8s7p7d6 f 482 408 4 859 (819 851) 289 765 5 069
7 9s8p7d6 f 610 043 4 858 (987 563) 365 491 5 279
8 9s8p8d7 f 890 616 4 842 (2 343 509) 534 785 5 268
9 10s9p8d7 f 1 061 570 4 848 (2 942 992) 636 212 5 495
10 10s9p9d8 f (4 691 292) 854 398 5 508
Expt. [62,63] 4 343 4 343

−0.25(2) [12]. On the other hand, the Ael[1Po
1]/Ael[3Po

1] values
(ranging from 0.124 to 0.185) do not agree with the experi-
mental result of 0.0517(2) [12].

B. CI-DFS calculations

In this last set of calculations, which is based on the CI-
DFS theory, we used for all Sturmian functions the same
reference energy, namely, the one of the hydrogenic 5s state.
Allowing SD substitutions from all spectroscopic orbitals with
n � 5, together with the 6s and 6p orbitals, to an increasing
AS of virtual orbitals results in a large number of configura-
tions and huge matrices for the numerical diagonalization. By
freezing the 1s, 2s, and 2p orbitals and by using perturbation
theory (PT) to build low-lying closed shells and highly excited
states, we were able to extend the one-electron basis to the
12s11p10d9 f set of orbitals. For the three smallest orbital
basis sets, T substitutions from the n = 4, 5 orbitals, in ad-
dition to the 6s and 6p orbitals, were included, although their
influence was smaller than the uncertainty level we aim at.

In the CI-DFS calculations of the hyperfine electronic
factors Ael, the nuclear dipole moment distribution, or else
Bohr-Weisskopf (BW) effect, was also taken into account.
This was done by multiplying the operator T(1) in Eq. (7) by
a nuclear distribution function FBW(r). In the homogeneous-
nuclear-current-distribution approximation, this function is
determined by the nuclear radius RN so that [67]

FBW(r) =
{

(r/RN )3, r � RN

1, r > RN .
(17)

The calculated BW correction was �0.001% and �0.1%, for
the 3Po

1 and 1Po
1 states, respectively. Analogously, a nuclear

quadrupole moment distribution function can be introduced
for the Bel property as a factor to the operator T(2) in Eq. (8).
For the shell model, i.e., assuming that the quadrupole distri-
bution is concentrated around the nuclear radius, this function

is given by [67]

FQ(r) =
{

(r/RN )5, r � RN

1, r > RN .
(18)

The latter effect is on the level of 0.1% for both considered
states, which is in good agreement with the estimations made
for the Cd ground state in [68].

For each virtual orbital layer that was used in the CI-DFS
calculations, the corresponding orbital basis set, numbers of
CSFs, and computed energy separations �E between the tar-
geted 3Po

1 and 1Po
1 states are listed in Table VI. One can see

that the resulting energy difference �E = E [ 1Po
1] − E [ 3Po

1]
from the direct (full basis) calculations is well converged, in
contrast to the PT calculations, where the �E value is not
saturated. In Fig. 4, the convergence patterns of the com-
puted Ael[ 3Po

1] and Bel[ 1Po
1] values are shown for both non-PT

(solid circles) and PT (empty circles) bases. It is seen in the
figure that the E2 hyperfine electronic factor Bel[ 1Po

1] is more
sensitive to variations of the orbital basis set, in comparison
to the M1 electronic factor Ael[ 3Po

1] and, for that reason, its
theoretical uncertainty is larger. In addition, we observe that
the results from the non-PT and PT calculations progressively
diverge as the number of virtual PT orbitals increases. That
being so, and taking also into account the weaker stability of
the PT energy separation value, the results from the perturba-
tive treatment can only be used for estimating the theoretical
error bars (see Sec. IV A), and not for extending the basis
further. The final results of the CI-DFS calculations based
on the largest non-PT orbital basis set, which corresponds to
1 061 570 CSFs, are

Ael
[

3Po
1

] = 2082 MHz/μN ; Bel
[

1Po
1

] = 693 MHz/b. (19)

IV. FINAL VALUE AND EVALUATION OF ACCURACY

In Secs. III A 1–III B, four different computational ap-
proaches for evaluating the electronic hyperfine factors Ael
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FIG. 4. The convergence of the electronic hyperfine factors Ael[ 3Po
1](in MHz/μN ) and Bel[ 1Po

1](in MHz/b) with the increasing number of
virtual orbital layers, optimized by employing the CI-DFS method. The solid black circles represent the results from the direct (full basis)
calculations, while the empty brown circles illustrate the values obtained using perturbation theory (PT). The numbers of virtual orbital layers
on the x axes are equivalent to the numbers given in column 1 of Table VI. See also text in Sec. III B.

and Bel of the 1,3Po
1 excited states in neutral tin were presented.

In this section, we solely focus on Bel[1Po
1] that can be used to

extract the quadrupole moments Q of tin isotopes for which
spectroscopic data are available. The Bel[1Po

1] values obtained
from the four independent sets of calculations are summarized
in Table VII. By taking their average, we ultimately arrive at
Bel[1Po

1] = 703 MHz/b.
As a crude estimate of the uncertainty of the con-

cluding Bel[1Po
1] value, we can consider the half-range

of the aforementioned individual results, i.e., 78 MHz/b.
Yet, if one wants to be in a position to discuss atomic,
or nuclear, properties and their underlying physics, a
rigorous assessment of the uncertainties of the com-
puted values is required. In recent years, atomic physi-
cists have been putting great efforts into providing reli-
able uncertainties on their theoretical results [6,35,69–71].
In line with these efforts, the following subsections take into
account a number of considerations to determine the accuracy
of the final Bel[1Po

1] value. Some of these considerations are
only applicable to one (or more) particular set(s) of calcula-
tions (see Sec. IV A), while others are analogously applied to
all four separate results (see Sec. IV B). Statistical principles
are implemented (see Sec. IV C), and former outcomes from
computations of electronic hyperfine factors, regarding atomic
states with electronic structure similar to the structure of the
5s25p6s 1,3Po

1 states in Sn I, are also used as an estimate of
the accuracy of the Bel[1Po

1] value deduced in this work (see
Sec. IV D).

TABLE VII. The resulting Bel[1Po
1] values (in MHz/b) from the

four independent sets of calculations presented in Secs. III A 1–III B.
The last row displays their average.

Methods Bel[1Po
1] (MHz/b)

S-MR-MCDHF+RCI 622
SrD-SR-MCDHF+RCI 778
SrD-MR-MCDHF+RCI 717
CI-DFS 693

Average 703

A. Model-specific uncertainties

In each of the four independent approaches that were dis-
cussed in the previous sections, the wave functions (radial
orbitals and configuration-mixing coefficients) that describe
the atomic states were obtained based on various approx-
imations with respect to the orbital basis and the list of
configuration states. In Sec. III A 4, the sensitivity of the SrD-
SR-MCDHF+RCI and SrD-MR-MCDHF+RCI results to the
orbital basis was investigated by combining the radial orbital
basis obtained in one of these two computational approaches
with the CSF expansions used in the RCI computations of
the other approach. As seen in Table V, these combinations
gave rise to Bel[1Po

1] values that range from 709 MHz to
760 MHz/b. The half-range of these values yields an uncer-
tainty of 26 Hz/b. Further, in the CI-DFS calculations, the
electronic hyperfine factors were computed using both non-PT
and PT orbital bases. The comparison between the non-PT
and PT results for different orbital basis sets suggests an un-
certainty of 70 MHz/b in the deduced Bel[1Po

1]. Lastly, in the
instance of the SrD-SR-MCHDF calculations, the outcome for
the Bel[1Po

1] value is the average of four separate values. One
can, thus, assume an error bar corresponding to the half-range
of these values, i.e., 20 MHz/b.

B. Difference between the theoretical Ael[3Po
1] and

experimental Aexpt
el [3Po

1] values

The deviation of the calculated M1 hyperfine constant from
the experimental value |Atheor − Aexpt | is often assumed to be
a measure of the overall accuracy of the hyperfine struc-
ture calculations [35,50,72]. In Sec. III A 2, the experimental
Aexpt

el [3Po
1] value was used to accordingly shift the result-

ing Bel[1Po
1] values from all three approximations, i.e., SrD,

SD, and SDT, that were used in the SrD-SR-MCDHF+RCI
calculations. Considering only the Bel[1Po

1] result from the
most extensive SDT calculation and evaluating the differ-
ence Bel(SDT) − Bel(SDT)shifted yields an error estimate of
32 MHz/b. When applying this shift to the final results of
the remaining calculations, we acquire three more error bars:
54 MHz/b from the S-MR-MCDHF calculations, 64 MHz/b
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from the SrD-MR-MCDHF calculations, and 91 MHz/b from
the CI-DFS calculations.

C. Statistical standard deviation

The individual results provided by the four independent
sets of calculations could be regarded as a statistical sample
and, in that case, the average value μ and the standard devia-
tion σ can be evaluated. For the {622, 693, 717, 778} set of
Bel[1Po

1] values, it is μ ± σ = 703 ± 56 MHz/b, which places
Bel[1Po

1] between 591 and 815 MHz/b within the 2σ condition
(95%). In this manner, we obtain another uncertainty estimate
equivalent to 56 MHz.

D. Zinc analogy

In a recent paper [35], the quadrupole moment Q(67Zn)
was evaluated based on 11 independent multiconfiguration
calculations of the EFG ∝ Bel for the 4s4p 3Po

1 and 4s4p 3Po
2

states in Zn I. The final accuracy of the calculated EFGs
was estimated using the scatter of the individual results of
these 11 calculations, resulting in a relative error of about
8%. The valence structure of the 4s4p 3Po

1,2 states in neutral
zinc is quite similar to the structure of the 5s25p6s 1,3Po

1 tin
states, which are of interest in this work; in both cases, there
are two electrons outside the closed shells, and the orbitals
of these valence electrons have similar angular symmetries.
Thereby, one expects that, for atomic calculations using sim-
ilar computational approaches, the relative error bars of the
computed hyperfine factors will be comparable. Adopting the
8% relative error bar, an uncertainty of 56 MHz/b is inferred
for the Bel[ 1Po

1] value deduced in this paper.

E. Final accuracy

The considerations above lead to diverse error bars, which,
according to the order of their appearance in the text, are (in
units of MHz/b): 78, 26, 70, 20, 32, 54, 64, 91, 56,
and 56. The largest of these uncertainties, i.e., 91 MHz/b,
places Bel[ 1Po

1] between 521 and 885 MHz/b within the
2σ condition, which is a rather conservative choice. On the
other hand, the smallest of all these error estimates, i.e.,
20 MHz/b, positions Bel[ 1Po

1] between 663 and 743 MHz/b
within the 2σ condition. This interval does not overlap with
all individual Bel[ 1Po

1] values resulting from the four inde-
pendent sets of calculations and, therefore, such an error bar
is not appropriate. Assuming that some of the obtained error
bars possibly overestimate the uncertainty in our concluding
Bel[ 1Po

1] value, and that a few others might underestimate it,
the rounded value of 50 MHz/b is a reasonable choice. The
final result of this paper, then, becomes

Bel
[

1Po
1

] = 703 ± 50 MHz/b, (20)

localizing Bel[ 1Po
1] between 603 and 803 MHz/b with 95%

confidence.
Recent calculations performed in [73] based on Fock-space

coupled-cluster theory resulted in a slightly smaller value of
Bel[ 1Po

1] = 645(58) MHz/b, lying within our error bars. The
only other available value is the one given by Eberz et al. [74],
i.e., Bel[ 1Po

1] = 593 MHz/b, which is approximately 15%
smaller than the result of this work. It is, therefore, seen that

the recent rigorous reinvestigations of the hyperfine electronic
factors of excited states in Sn I yield, independently of the
method used, Bel[ 1Po

1] values, which are larger than the ini-
tially computed value a few decades ago.

V. QUADRUPOLE MOMENTS

The computed Bel[ 1Po
1] value can be used to deduce the nu-

clear quadrupole moments Q(ASn) = B/Bel of the tin isotopes
for which the E2 hyperfine constant B was measured. The
Bel[ 1Po

1] value resulting from the present multiconfiguration
calculations was recently employed by Yordanov et al. [12]
to extract the nuclear quadrupole moments of odd-A tin iso-
topes. As mentioned in the Introduction, the final Bel ∝ EFG
value for the 5s25p6s 1Po

1 state has been slightly shifted from
706(50) MHz/b that was reported and used in Ref. [12] to
703(50) MHz/b in this paper. The Q values listed in the last
column of Table 1 in Ref. [12] should, therefore, be increased
by a tiny factor of 706/703.

For a few tin isotopes, more than one experimental value
of E2 hyperfine constants is available, allowing us to com-
pare the extracted quadrupole moments. The E2 hyperfine
constant B[1Po

1] for the I = 5/2 state of 109Sn was measured
independently in Refs. [12,74], and their results are, respec-
tively, B[1Po

1] = 212.0(27.0) MHz and B[1Po
1] = 154(5) MHz.

In Ref. [74], the computed Bel[1Po
1] = 593 MHz/b value is

also available, despite the fact that they used the data related to
the 3Po

1 state, i.e., B[3Po
1] = −43.0(12.0) MHz and Bel[3Po

1] =
−138 MHz/b, to extract the quadrupole moment Q(109Sn) =
310(100) mb. By combining the experimental B[1Po

1] result
of Ref. [12] with the presently computed Bel[1Po

1] = 703(50),
we obtain Q(109Sn) = 219(7)(16), which significantly differs
from the above-mentioned value of Q(109Sn) = 310(100) mb.
These two quadrupole moments merely overlap with each
other due to the large uncertainty of 100 mb in the latter value.
Further, the Bel[1Po

1] value given in Ref. [74] barely overlaps
with the present Bel[1Po

1] value, which strengthens the need to
improve the accuracy of the electronic hyperfine factors.

Finally, taking the 119Sn isotope as an example, we propose

Q(119Sn) = −0.176(4)(12) b, (21)

where (12) represents the theoretical uncertainty of 7% of
the Bel[1Po

1] deduced in this work and (4) represents the ex-
perimental uncertainty of the measured B[1Po

1] in Ref. [12].
We notice that the theoretical uncertainty suggested above is
about three times larger than the experimental uncertainty. In
the previous section, a number of considerations were taken
into account to provide a well-grounded estimate of the the-
oretical uncertainties in our final Bel[1Po

1] value. Nonetheless,
one should always remain cautious toward error estimates of
electronic hyperfine factors deduced from atomic calculations
and of the corresponding error bars in the evaluated nuclear
quadrupole moments Q. The element bismuth is a good ex-
ample of the difficulties in estimating such error bars. Table I
in Ref. [56] lists the proposed values of the nuclear quadrupole
moment Q for the 209Bi isotope. The error bars of several of
those values not only do not overlap, but they do not even
touch each other (to make all of the error bars overlap, the
relative uncertainties would have to exceed 50%). We should,
however, also note here that the valence structure of the tin
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atom is less complicated and less demanding computationally
than the valence structure of the bismuth atom, and we are
confident enough that the deduced error bars in this paper are
trustworthy.

VI. CONCLUSIONS

We presented the details of the theoretical calculations of
the isotope-independent E2 hyperfine factor Bel (∝ EFG),
which was recently used to extract nuclear quadrupole mo-
ments Q of tin isotopes [12]. Four independent computational
approaches were employed to finally provide the value of
Bel = 703(50) MHz/b for the 5s25p6s 1Po

1 excited state of
Sn I. Three of these approaches were based on the MCDHF-
RCI method as implemented in the GRASP packages, while the
fourth approach relied on the CI-DFS theory. The convergence
of the Bel[ 1Po

1] values was monitored as the CSF expansions
were enlarged by allowing single, double, and, depending on
the correlation model, also triple electron substitutions from
the reference configuration(s). Efforts were made to provide
a realistic theoretical uncertainty for the final Bel[ 1Po

1] value
by accounting for statistical principles, the correlation with
the isotope-independent M1 hyperfine factor Ael, and previous
calculations of electronic hyperfine factors on systems with
electronic structure similar to that of Sn I.

The deduced relative accuracy of the present atomic ab
initio calculations of the EFG is of the order of 7%, leading
to even larger uncertainties in the extracted Q(Sn) values due
to the uncertainty in the measured B. This level of accu-
racy is certainly inferior to the deduced Q(Sn) values from
the solid-state density functional calculations performed by
Barone et al. [75], which are about an order of magnitude
more accurate. In general, the accuracy of the atomic ab
initio calculations of EFGs strongly depends on the valence
structure of the atom, or ion, in question. We should note
that, in the extreme case of lithiumlike systems, the relative
uncertainties of the atomic calculations of hyperfine structures
can be limited to 0.001%–0.01% [58,59,76–81]. Even though
the tin atom is far more demanding computationally than
the lithiumlike systems, an atomic calculation of hyperfine
structures with lower uncertainty would be possible for singly
ionized tin, with one electron outside closed shells, and it
would be even more accurate, for triply ionized tin, which has
one electron outside the n < 5 core. Such calculations, as the
latter, would likely challenge the accuracy of the solid-state
methods. We hereby encourage experimentalists to consider
one, or both, of the above-mentioned ions.

Interestingly, we observe that all computed Ael[3Po
1]

values are smaller than the experimental Aexpt
el [3Po

1] =
2398 MHz/μN value, independently of the computational
method, or the correlation model. This could be explained by
the lack of variational freedom intrinsic to the layer-by-layer
optimization strategy, which hinders the contraction of spec-
troscopic orbitals when core-valence correlation is accounted
for. In the specific case of Sn I, the spectroscopic 4d soft shell,
i.e., lying between the core and the valence orbitals, is ex-
pected to be highly sensitive to core-valence correlation that
might not be effectively captured. Natural orbitals were re-
cently used, as an efficient tool to overcome the limitation of
the layer-by-layer optimization scheme, to estimate hyperfine

structure constants in Na I. Thanks to the radial reorganization
of the orbitals, the spectroscopic orbitals are ultimately con-
tracted, which affects both M1 and E2 electronic hyperfine
factors [72]. Further investigations on the usefulness of the
natural orbitals in the calculations of hyperfine structures are
in progress.
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APPENDIX: SENSITIVITY OF THE HYPERFINE FACTORS
AND STABILITY OF THE Bel RATIO

As shown in Table V, where the influence of the choice
of the CSF expansion and the orbital basis was investigated,
the Ael[ 1Po

1]/Ael[ 3Po
1] ratio displays a much higher sensitivity

in comparison to the Bel[ 3Po
1]/Bel[ 1Po

1] ratio. Also accord-
ing to Table V, the computed Ael[ 3Po

1] values range from
2161 to 2303 MHz/μN (6%–7%). Hence, the sensitivity of
the Ael[ 1Po

1]/Ael[ 3Po
1] ratio, which takes values from 0.124 to

0.185 (30%–50%), must arise from the computed Ael[ 1Po
1]

values.
The extreme sensitivity of Ael[ 1Po

1] to correlation models
is not really surprising if one performs calculations using
the quasirelativistic Hartree-Fock and Breit-Pauli [47] method
in the single-configuration approximation. In the Breit-Pauli
(BP) scheme, the low value of the ratio Ael[1Po

1]/Ael[3Po
1] can

indeed be understood. The Ael value of the pure 3Po
1, i.e.,

without considering any relativistic LS-term mixing, arises
from the addition of the three contributions [82] (orbital,
spin-dipole, and contact term), which interfere positively. On
the other hand, the Ael value of the pure 1Po

1 is only made
of a (larger) orbital contribution, the total spin value (S = 0)
forbidding the two other contributions. For J = 1, the two
singlet and triplet symmetries are mixed with relative phases
that result from the orthogonality constraints. The eigenvector
dominated by the triplet character has the same signs of both
components, which makes the Ael[3Po

1] value even larger than
the one of the pure triplet (increase of 40%). For the state
dominated by the singlet, strong cancellation occurs due to
the triplet contamination, reducing the Ael[1Po

1] value by 61%.
Strong cancellation in the estimation of a property usually
involves high uncertainty.

The “sharing rule” [83,84] that is used to quantify con-
figuration mixing from the measured isotope shifts can be
applied to the term-mixing analysis of the Bel. In the single-
configuration approximation, the ratio Bel[3Po

1]/Bel[1Po
1] is ex-

actly − 1
2 = −0.5, resulting from angular momentum algebra,

when using the same orbital sets for describing both levels.
Assuming a simple 3Po − 1Po mixing for J = 1, we have

�
(
“ 3Po

1 ”
) = a

∣∣3Po
1

〉 + b
∣∣1Po

1

〉
,

�
(
“ 1Po

1 ”
) = b

∣∣3Po
1

〉 − a
∣∣1Po

1

〉
, (A1)
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where | 1,3Po
1〉 are the two lowest J� = 1− states resulting from

pure LS terms and �(“ 1,3Po
1 ”) are the corresponding mixed

states. Using the analytical ratio Bel[1Po
1]/Bel[3Po

1] = −2, one
can estimate

Bel
[
“ 3Po

1 ”
] = Bel

[
3Po

1

]
(a2 − 2b2),

Bel
[
“ 1Po

1 ”
] = Bel

[
3Po

1

]
(b2 − 2a2), (A2)

from which we deduce

R = Bel
[
“ 3Po

1 ”
]
/Bel

[
“ 1Po

1 ”
] = a2 − 2b2

b2 − 2a2
. (A3)

Adopting for this ratio a reasonable guess that is guided
by the experimental result from Ref. [12] and that offers
numerical simplicity, R = − 1

4 , one gets the following
analytical eigenvector compositions:

�
(
“ 3Po

1 ”
) =

√
7

3

∣∣3Po
1

〉 +
√

2

3

∣∣1Po
1

〉
,

�
(
“ 1Po

1 ”
) =

√
2

3

∣∣3Po
1

〉 −
√

7

3

∣∣1Po
1

〉
. (A4)

In other terms, the ratio Bel[“ 3Po
1 ” ]/Bel[“ 1Po

1 ” ] only
reflects the singlet-triplet mixing in this simple model. We
should not be surprised by its relative stability when more
elaborate models are used. Extracting the 3Po character (a2)
from the lowest (“ 3Po

1 ” ) BP eigenvector obtained in a simple
MR model mixing the {5s25p6s, 5s5p5d6s, 5p36s} config-
urations, we get after renormalization a2 = 0.776 17 from
which we determine Bel[“ 3Po

1 ” ]/Bel[“ 1Po
1 ”] = −0.247

according to

Bel
[
“ 3Po

1 ”
]
/Bel

[
“ 3Po

1 ”
] = a2 − 2b2

b2 − 2a2
= −3a2 − 2

3a2 − 1
. (A5)

For the other BP eigenvector (“ 1Po
1 ” ), we have

a2 = 0.776 41 from which one confirms the ratio
Bel[“ 3Po

1 ” ]/Bel[“ 1Po
1 ” ] = −0.248. The latter value

is not too far from the above R = − 1
4 ratio value that

would be obtained from the hypothetical (a2 = 7
9 ; b2 = 2

9 )
singlet-triplet mixing, taking into account that (i) one trusts
the nonrelativistic ratio Bel[3Po

1]/Bel[1Po
1] = − 1

2 of the single-
configuration approximation, (ii) the BP eigenvector has to
be renormalized, and (iii) one assumes no contamination by
other LS symmetries ( 3Do

1,
5Po

1 , 5Do
1,

5F o
1 , 7Do

1, . . . ,
25X o

1 ).
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