
Is Machine Learning Software Just Software: A
Maintainability View

Tommi Mikkonen1, Jukka K. Nurminen1, Mikko Raatikainen1, Ilenia Fronza2,
Niko Mäkitalo1, and Tomi Männistö1

1 University of Helsinki
Helsinki, Finland

email: first.[initial.]last@helsinki.fi
2 Free University of Bozen-Bolzano

Bolzano, Italy
email: Ilenia.Fronza@unibz.it

Abstract. Artificial intelligence (AI) and machine learning (ML) is be-
coming commonplace in numerous fields. As they are often embedded in
the context of larger software systems, issues that are faced with soft-
ware systems in general are also applicable to AI/ML. In this paper,
we address ML systems and their characteristics in the light of soft-
ware maintenance and its attributes, modularity, testability, reusability,
analysability, and modifiability. To achieve this, we pinpoint similarities
and differences between ML software and software as we traditionally un-
derstand it, and draw parallels as well as provide a programmer’s view
to ML at a general level, using the established software design principles
as the starting point.
Keywords: Software engineering, software maintenance, artificial intel-
ligence, machine learning, modularity, reusability, analysability, modifi-
ability, testability

1 Introduction

Artificial intelligence (AI) and machine learning (ML) is becoming commonplace
in numerous fields. Such techniques help us to build interactive digital assistants,
plan our route in traffic, or perform stock transactions.

While there are several ways to implement AI features, for the purposes of this
paper, we focus on ML, a flavor of AI where algorithms improve automatically
through experience [12] particularly by approaches based on neural networks.
Very large neural networks, commonly called deep learning, can have billions of
parameters whose values are optimized during the training phase. The resulting
trained networks are able, for example, to detect objects in pictures, understand
natural language, or play games at a superhuman level.

With these ML features, a new challenge has emerged: how to integrate ML
components into a large system? So far, we have found ways to build individual
(sub)systems but there is little established engineering support for creating and
maintaining large systems that should be always on, produce reliable and valid



2 Mikkonen et al.

results, have reasonable response time and resource consumption, survive an
extended lifetime, and, in general, always place humans first in the process.
Since ML systems are built using software, we believe that these issues can only
be mitigated by considering both software engineering and data science building
ML software.

There are several overview papers about software engineering of ML appli-
cations. Reporting workshop results [7] discuss the impact of inaccuracy and
imperfections of AI, system testing, issues in ML libraries, models, and frame-
works. Furthermore, Arpteg et al. [1] identified challenges for software design by
analyzing multiple deep learning projects. Some surveys have focused on particu-
lar aspects of software development, such as testing [15]. However, in comparison
to most of the prior overviews, we take a more holistic system view, and struc-
ture the challenges brought by ML to qualities of software design, in particular
in the context of software maintenance.

More specifically, we study ML systems and their features in the light of
maintenance as defined in software product quality model standard ISO/IEC-
25010 [6], and its five subcharacteristices (or attributes) – modularity, reusability,
analysability, modifiability, testability. The work is motivated by our experiences
in developing applications that include ML features as well as observations of
others, in particular Google’s machine learning crash course1, that points out
that even if ML is at the core of an ML system, only 5% or less of the overall code
of that total ML production system in terms of code lines. Our focus was on the
characteristics of ML themselves; patterns, such as wrappers and harnesses, that
can be used to embed them into bigger systems in a more robust fashion will be
left for future work. Furthermore, in this work we explicitly focused on software
maintainability, and other characteristics addressed by the standard are left for
future work.

The rest of this paper is structured as follows. Section 2 discusses the back-
ground and motivation of this work. Section 3 then continues the discussion by
presenting a programmer’s view to AI. Section 4 studies maintainability of AI
systems, and Section 5 provides an extended discussion and summary of our
findings. Finally, Section 6 draws some final conclusions.

2 Background: ML Explained for Programmers

Machine learning is commonly divided into three separate classes. The most
common is supervised learning where we have access to the data and to the
“right answer” often called a label, e.g., a photo and the objects in the photo. In
unsupervised learning, we just have the data and the ML systems try to find some
common structure in the data, e.g., classify photos of cats and dogs to different
categories. Finally, in reinforcement learning the system learns a sequence of
steps that leads it to a given goal, e.g., to a winning position in a game of chess.
In this paper, we primarily deal with supervised learning, which is the most

1 https://developers.google.com/machine-learning/crash-course/production-ml-
systems, accessed Aug. 18, 2020.



Is Machine Learning Software Just Software: A Maintainability View 3

Fig. 1. Illustration of the ML training process and the search for a good model.

common approach. Many of our examples deal with neural networks although
the ideas apply to other forms of supervised machine learning as well.

Developing an ML model requires multiple steps, which in industrial devel-
opment are more complicated than in academic exploration [4]. Figure 1 gives
an overview of the process. As the starting point, data must be available for
training. There are various somewhat established ways of dividing the data to
training, testing, and cross-validation sets. Then, an ML model has to be se-
lected, together with the hyperparameters of the model. The hyperparameters
define, e.g., how many and what kind of layers a neural network has and how
many neurons there are in each layer.

Next, the model is trained with the training data. During the training phase,
the weights of the neurons in the network are iteratively adjusted so that the
output of the neural network has a good match with the “right answers” in the
training material.

The trained model can then be validated with different data – although
in software engineering this would more correspond to verification rather than
validation that takes place with end users. If this validation is successful (with
any criteria we decide to use) the model is ready for use. Then, it has to be
embedded with the rest of the software system. Often the model, which can be
the core of the application, is just a small part of the whole software system,
so the interplay between the model and the rest of the software and context is
essential [13].

To summarize, on the surface, the promise of ML systems is tempting for
solving various problems. Based on the data only, the system learns to produce
results without any human involvement or consideration. Internally, however,
ML is just software and one way to think of deep learning is that it is just
a new, yet very powerful, algorithm to the toolbox of the software developers.
Its characteristics, however, are different from engineering tradition – instead
of predefined executions, ML defines its own algorithms based on training data
that is used to tailor the exact behavior, following the patterns that the system
was able to absorb from the data.



4 Mikkonen et al.

So far, some work on the differences between AI software and “vanilla”
software exist. In particular, Zhang et al. [15] refer to a number of challenges
for AI testing: statistical nature of machine learning; data-driven programming
paradigm with high sensitivity to data; evolving behavior; oracle problem; and
emergent properties when considering the system as a whole. Moreover, the
black-box nature of many ML approaches, especially neural networks, and the
huge input space making the testing of rare cases difficult are common problems
[10].

Next, we will elaborate the above challenges in the context of a real-life
software project, and then we relate them to maintainability in terms of modu-
larity, testability, reusability, analysability, and modifiability, as proposed by the
ISO/IEC-25010 standard [6].

3 Challenges with an ML component and experiences
from a sample Project

In this section, we present a set of practical issues with an ML component that is
concretized by a practical example. In this example research project2 discussed
in this paper, we worked with the Jira3 issues tracking software. The Jira in-
stallation for managing the development and maintenance of a large industrial
system contained over 120,000 Jira issues. Frequently, multiple (Jira) issues are
about the same thing and should be linked : they can be duplicates, or otherwise
related, such as an issue requiring the solution of another issue. As links are
encoded manually in Jira, many may be missing. Because of the large number
of issues, finding potentially missing links is hard. To help users to manage the
links, we studied different natural language processing services based on existing
algorithms and implementations to analyze the textual issue descriptions and to
propose the users potentially missing links between them.

To summarize the experiences from the example, services that were promis-
ing in small scale or during development produced less good outcome in indus-
trial scale use. There were also several challenges related to deployment, such
as continuous integration and security, which are not covered here. In the end,
rather than having one ML service that would produce the results, we used a de-
sign that combines the best results from different services and adds application-
specific filters and contextualization. For a traditional software application, such
design could have implied design flaws, but for AI software such design seemed
a somewhat normal, i.e., things that one must be prepared to deal with.

While the example can be regarded as simple, it allows us to highlight detailed
experiences, listed below in different subsections.

Stochastic results An ML model usually reaches certain accuracy, e.g., 98%.
But how do we deal with the cases which are not correct? In classical software

2 https://openreq.eu, accessed Aug. 18, 2020.
3 https://www.atlassian.com/fi/software/jira, accessed Aug. 18, 2020.



Is Machine Learning Software Just Software: A Maintainability View 5

we usually do not experience this at all. The problem gets even more complex
when considering the different kinds of errors, for instance false positives against
false negatives. The severity of errors is also system-specific.

Example: The detection of duplicates provides a score that can be used to
filter and order expected true positives. However, users did not consider false
positives, i.e., wrong proposals, a major problem when the results are ordered
by the score. In this case the system only assists users leaving them the final de-
cision and any help was considered beneficial. False negatives, i.e., not detecting
duplicates, are more problematic.

High sensitivity to data ML results are extremely sensitive to training data.
A very minor change – even such as changing the order of two training examples
– can change the system behavior. Similarly, any new training data will most
likely change the outcome. Furthermore, measures such as accuracy and precision
rely often on incomplete data, resulting in under- or overfitting due to, e.g.,
imperfect training data. Furthermore, operating in a dynamic environment of
constantly changing data is challenging, because batch processing of data causes
discontinuity and excessive resource consumption.

Example: Very careful fitting turned out to be unnecessary for the users
and impossible because training data is always incomplete. The missing links,
which we tried to detect, were also naturally largely missing from any available
training data sample. We decided that better solution would be to monitor users’
acceptance and rejection rates for the proposals.

Oracle problem In many cases where AI is involved, we do not know what
is the right answer. This oracle problem is also common in the context of some
algorithms, such as in optimization, where we do not know what is the best
answer either. An additional aspect of this, related to AI ethics, is that we may
have difficulty to agree what is the right answer [2]. A commonly used example
of such a case is how a self-driving car should behave in a fatal emergency
situation – to protect the persons inside the car or those around it, or, given a
choice between a baby and an elderly person, which should be sacrificed.

Example: The users differ: one prefers to add many links while another uses
links more scarcely. Likewise, if the issues are already linked indirectly via an-
other issue, it is a subjective and context-dependent decision whether to add a
redundant link. Thus, there are no single answers whether to add a link. Another
challenge is that two issues can be first marked as duplicates but then they are
changed and do not duplicate each other anymore.

Evolving behavior Many ML systems are build around the idea that the sys-
tem can learn on-the-fly as it is being used. For instance, so-called reinforcement
learning allows ML to chart the unknown solution space on the fly, aiming to
maximize some utility function. The learning can also take place in operational
use, meaning that the system can adapt to different situations by itself.



6 Mikkonen et al.

Example: All users decisions are anonymously recorded and the decisions can
be used to change the behavior. However, when to change behavior? Changing
behavior after each user might result in unbalanced behavior because decisions
are subjective. Constant behavior change was also considered computationally
expensive compared to its benefits.

Black box Neural networks are to a large degree regarded as black boxes.
Therefore, understanding why they concluded something is difficult. Although
there are new ways to somehow study the node activations in the network, it
is still hard to get an understandable explanation. On one hand, this influences
the trust users have to the system, and on the other hand, also makes debugging
neural networks and their behavior very hard.

Example: Even in our simple case, the proposals do not provide any rational
why a link is proposed so the users are not informed either. Without explanation
and too many false positives – and perhaps even false negatives – users’ trust
and interest in the system in the long term remains a challenge.

Holistic influences With ML, it is not possible to pinpoint the error to a
certain location in the software, but a more holistic view must be adopted.
The reason why the classical approach of examining the logic of the computer
execution does not work is that both the quality of entire training data set as well
as the selected model have an influence. Consequently, there is no single location
where to pinpoint the error in the design. As a result, a lot of the development
work is trial-and-error to try to find a way how the system provides good results.

Example: It was not always clear should we improve data, model or software
around it. Testing was largely manual requiring inspection and domain knowl-
edge. We also tested another duplicate detection service but any larger data
(more than 30 issues) crashed the service without explanation of the cause. As
the results were similar with the first service, we quickly disregarded this service.

Unclear bug/feature division The division between a bug and a feature is
not always clear. While it is possible there is a bug somewhere, a bad outcome
can be a feature of the ML component caused by problems in the data (too little
data, bad quality data, etc.). Some of the data related problems can be very
hard to fix. For instance, if a problem is caused by shortage of training data it
can take months to collect new data items. Moreover, even if the volume of data
is large it can cover wrong cases. For example, in a system monitoring case, we
typically have a lot of examples of the normal operation of a system but very
few examples of those cases where something accidental happens.

Example: The Jira issues use very technical language and terminology, and
can be very short and laconic. This caused sometimes incorrect outcome that is
immediately evident for a user, e.g., by considering the issue, its creation time,
and the part of software the issue concerns.



Is Machine Learning Software Just Software: A Maintainability View 7

Huge input space Thorough testing of an ML module is not possible in the
same sense as it is possible to test classical software modules and to measure
coverage. Thorough testing of classical software is as such also difficult but there
are certain established ways, especially if the input space to a function/module is
constrained. In an ML system, the input data often has so many different value
combinations that there is no chance to try out them all or even to find border
cases for more careful study. As shown in the adversarial attack examples, a small
carefully planned change in input data can completely change the recognition
of a picture or spoken command. In all cases we do not have nasty adversarial
attackers but those examples show that such situations can happen if the data
randomly happens to have certain characteristics.

Example: The Jira issues are very different from each other: Some of them
are very short and laconic while others contain a lot of details. Sometimes the
title contains the essential information while sometimes the title is very general
and information is in the description. Thorough testing for optimal solutions,
and even finding archetypal cases is hard.

4 ML in the Light of Maintainability

To study software maintenance in relation to ML software, the characteristics of
ML systems were analyzed in the light of the key quality attributes. The analysis
was first performed by two first authors, based on their experience on software
design and ML, and then validated and refined by the rest of the authors.

Modularity Modularity is the property of computer programs that measures
the extent to which programs have been composed out of separate parts called
modules. Module is generally defined to be a self-contained part of a system,
which has a well-defined interface to the other parts, which do not need to
care what takes place inside the module. The internal design of a module may
be complex, but this is not relevant; once the module exists, it can easily be
connected to or disconnected from the system.

In the sense of modularity, ML modules and classical SW modules coexist.
Dependencies between modules may happen via large amounts of data, and
output of an ML module can be input to another ML module. However, because
the ML module operation is not perfect (e.g., accuracy 97%) modules taking
output from ML modules need to live with partly incorrect data. When an
upstream ML module is learning to be better, it is unclear what happens to
downstream ML modules that have learned to deal with faulty input – when
input now becomes more correct, will the downstream ML module actually give
worse results? Oftentimes this implies that instead of decomposing complex ML
function to simpler ones, the ML system is trained as a self-contained entity.

Another issue is related to interfaces. ML and especially neural networks are
a bit too good to hide information. Therefore, understanding what is happening
in an ML module is challenging and a lot of work on explainable AI is ongoing.



8 Mikkonen et al.

Sometimes – as is the case in our example – dealing with this leads to using
several modules that overlap in features for the best results.

Testability Testing the software that implements machine learning can be
tested like any other piece of software. Furthermore, the usual tools can be
used to estimate the coverage and to produce other metrics. Hence, in the sense
of code itself, testing ML software has little special challenges.

In contrast, testing ML systems with respect to features related to data and
learning has several complications. To begin with, the results can be stochastic,
statistical or evolving over time, which means that they, in general, are correct
but there can also be errors. This is not a good match with classical software
testing approaches, such as the V-model [11], where predestined, repeatable ex-
ecution paths are expected. Moreover, the problems can be such that we do not
know the correct answer – like in many games – or, worse still, us humans do
not agree on the correct answer [2]. Finally, while many systems are assessed
against accuracy, precision, or F-score using a test data set, there is less effort
on validating that the test data set is correct and produces results that are not
over- or underfitted.

In cases where the ML system mimics the human behavior – such as “find
traffic sign in the picture” in object detection – a well-working AI system should
produce predictable results. Again, most ML systems do not reach 100% accu-
racy so we need ways to deal with also inaccurate results. In some cases, like
in targeted advertisement, it is adequate that the accuracy level is good enough
while in other cases, like in autonomous vehicles, high trust to the results is
necessary.

Reusability Reusability is a quality characteristic closely associated with porta-
bility; it refers to the ability to use already existing pieces of software in other
contexts. As already mentioned, in ML, the amount of code is relatively small
and readily reusable, but reusing data or learning results is more difficult.

To begin with, there are reuse opportunities within the realm of ML itself. For
instance, models can be reused. In fact, the present practice seems to be to pick a
successful model from the literature and then try to use it – instead of inventing
the models each time from scratch – even in completely different domains and
use cases. Furthermore, the same data set can be used for training in several
services, or one service can combine different data for training. For instance,
in the example presented above, we used a number of different training data.
Moreover, some data can be also quite generic, such as corpus from Wikipedia.

In ML, there is also a form of reuse called transfer learning [9]. In essence,
transfer learning is an act of storing knowledge gained while solving one problem,
and then applying the knowledge to a different but related problem at the level of
trained ML modules. While the initial training often requires massive datasets,
and huge amount of computing, retraining the module for particular data often
requires far less data and computation. However, it may be hard to decide for
sure if the retrained module is behaving well, because starting the training with



Is Machine Learning Software Just Software: A Maintainability View 9

a pretrained model can lead to rapid learning results, but this process does not
guarantee much about its correct eventual behavior.

Finally, as ML modules can evolve over time, it is possible that they help to
adapt the software to a new context. This can help reusing the modules in new
applications.

Analysability Since computer programs are frequently read by programmers
while constructing, debugging, and modifying them, it is important that their
behavior can be easily analyzed. Moreover, the behavior of neural networks can
be studied and recorded for further analysis.

However, in ML, structural information associated with a neural network or
characteristics of individual neurons bear little value in terms of analysability.
Instead, the behavior is intimately related to data. Hence, while we can study
individual neurons, for instance, the decision making process as a whole cannot
be analysed without additional support in the system.

Modifiability An ML module typically requires very little code. Therefore,
modifying the logic of the ML module does not require much effort, and it seems
that such code is modified somewhat routinely by the developers. There are also
options to prune and shrink pre-trained networks so that they can be run with
less hardware resources [14].

In contrast, modifying data can have dramatic effects. For instance, during
training, a small change in input data – or just the change of the random gener-
ator seed – can change the results. Furthermore, the same training set can gen-
erate totally different neural network structure if we allow the system to search
in an automated fashion – so-called AutoML [5] – for the best hyperparameters
and network structure. As the neural network self-organizes itself, chances are
that different instances trained with the same datasets organize themselves dif-
ferently, so that their structures cannot be compared directly, and, worse still,
produce partially different results.

The fact that different training data produces different results does not only
introduce problems associated with modifiability. There can be cases where the
only modification that is needed for using the same software is training with
different data, and the software can be used intact.

5 Discussion

Above, we have presented a number of ML/AI related challenges to software
maintenance. Table 1 presents the relationships between maintenance related
characteristics and different aspects of machine learning. To summarize, soft-
ware written for implementing ML related features can be treated as any other
software from the maintainability perspective. However, when considering the
data and the machine learning part, chances are that tools and techniques that
are available are not enough. Therefore, in the end, the users should also be
involved in the activities to ensure correct behavior.



10 Mikkonen et al.

Table 1. Summary of relationships between quality attributes and ML features.

Modularity Testability Reusability Analysability Modifiability
SR neutral negative; testing

aims to identify
bugs, whereas
stochastic results
escape discrete
testing

neutral negative;
stochastic results
cannot be easily
analyzed

negative; modi-
fying stochastic
process can
produce results
that are hard to
predict

HSD neutral negative; testing
aims to iden-
tify bugs, and
reliance to data
does not lend
itself to discrete
testing.

mixed; data sets
can be reused,
whereas reusing
trained systems
in different
contexts can be
hard

negative;
analysing data
centric features
often requires
additional sup-
port from the
infrastructure

mixed; code can
usually be mod-
ified with ease,
whereas modify-
ing data set can
introduce compli-
cations

EB neutral negative; testing
in general builds
on discrete
behaviors and
faults, and has
little room for
evolving behavior

mixed; evolving
behaviors can
adapt to new sit-
uations, whereas
their validation
and verification
in a new context
can be hard

negative;
analysing an
evolving behavior
is more complex
than analyzing
static behaviors

mixed; the
behavior can
evolve to satisfy
new needs, but
triggering this
can be complex

OP neutral negative; testing
features whose
output is not well
defined is hard

neutral negative;
analysing an
outcome that is
based on foreseen
results is hard

neutral

BB positive; mod-
ules by default
respect modular
boundaries

mixed; modules
can be tested
separately, but
calculating
metrics is hard

positive; modules
can be easily
reused

negative; the be-
havior is invisi-
ble and hence es-
capes analysis

negative; black
box behav-
ior cannot be
modified directly

HI negative; separa-
tion of concerns
does not really
happen as ML
modules may be
intertwined

negative; testing
cannot be fo-
cused but needs
to be holistic

negative; units of
reuse are hard to
define

negative; holistic
behavior is hard
to analyze

negative; modifi-
cations can have
holistic effect

UD neutral negative; it is un-
clear when a test
fails for what rea-
son

neutral negative; it is un-
clear what to an-
alyze

neutral

HIS negative; module
with arbitrarily
large input inter-
face is difficult to
manage

negative; testing
large input space
is complex

neutral negative; the
larger the input
space, the more
complex analysis
might be needed

neutral

Legend:
SR: Stochastic results HSD: High sensitivity to data

EB: Evolving behavior OP: Oracle problem

BB: Black box HI: Holistic influences

UD: Unclear bug/feature division HIS: Huge input space



Is Machine Learning Software Just Software: A Maintainability View 11

Threats to Validity A key threat to the validity of our observations is that
the study was performed by the authors based on their subjective experience
on software design and maintenance, and ML systems. This can be a source
of bias in the results. To mitigate this, all the results were analyzed by two or
more authors as they were recorded in Table 1. A further threat to external
validity is that there are various approaches to AI/ML, whose characteristics
differ considerably. To mitigate this threat, we have narrowed the scope of this
work to maintainability as defined by the ISO/IEC-25010 standard [6] and ML,
which is only a subset of AI.

Future Work As for future work, there are obvious directions where we can
extend this work. To begin with, as already mentioned. we plan to perform a
similar analysis of other software quality aspects of ISO/IEC-25010 standard.
These include functional suitability, performance efficiency, compatibility, us-
ability, reliability, security, and portability. While some of these are related to
maintainablity addressed in this paper, these topics open new viewpoints to
AI/ML software.

Furthermore, there are additional considerations, such as ethics [3], which
have emerged in the context of AI. Such topics can also be approached from
the wider software engineering viewpoint, not only from the perspective of novel
techniques.

Finally, running constructive case studies on the impact of the software design
principles in AI/ML software is one of the future paths of research. To dissem-
inate the results, we plan to participate in the work of SO/IEC JTC 1/SC 42,
which just accepted to start working on a working draft on ”Software engineer-
ing: Systems and software Quality Requirements and Evaluation (SQuaRE) –
Quality Model for AI-based systems”.

6 Conclusions

In this paper, we have studied ML in the context of software maintainability.
To summarize the results, while ML affects all characteristics of software main-
tenance, one source of complications is testing and testability of ML in general.
Testing builds on the fact that software systems are deterministic, and it has
long been realized that systems where different executions may differ – due to
parallel executions for instance – often escape the traditional testing approaches.
Same concerns arise when modules can have evolving behaviors or which can not
be debugged with the tools we have. Hence, building new verification and vali-
dation tools that take into account the characteristics of ML are an important
direction for future work.

To a degree, concerns that are associated with testability apply to analysabil-
ity, including in particular black box behavior and reliance on large data sets.
Hence, understanding how to measure test coverage or analyze the behavior of
an AI module forms an obvious direction for future work. Moreover, since data



12 Mikkonen et al.

is a key element in many ML systems, its characteristics will require special
attention in the analysis.

Finally, as already mentioned as well as pointed out, e.g., by Kuwajima et
al. [8], pattern-like solutions, such as wrappers, harnesses and workflows, for
example, that can be used to embed ML related functions into bigger systems in
a more robust fashion form a direction for future software engineering research.

References

1. Arpteg, A., Brinne, B., Crnkovic-Friis, L., Bosch, J.: Software engineering chal-
lenges of deep learning. In: Proceedings - 44th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2018. pp. 50–59. IEEE (8 2018).
https://doi.org/10.1109/SEAA.2018.00018

2. Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.F.,
Rahwan, I.: The moral machine experiment. Nature 563(7729), 59 (2018)

3. Bostrom, N., Yudkowsky, E.: The ethics of artificial intelligence. The Cambridge
handbook of artificial intelligence 1, 316–334 (2014)

4. Breck, E., Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data infrastructure
for machine learning. In: SysML conference (2018)

5. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in neural informa-
tion processing systems. pp. 2962–2970 (2015)

6. ISO: IEC25010: 2011 systems and software engineering–systems and software qual-
ity requirements and evaluation (SQuaRE)–system and software quality models
(2011)

7. Khomh, F., Adams, B., Cheng, J., Fokaefs, M., Antoniol, G.: Software engineering
for machine-learning applications: The road ahead. IEEE Software 35(5), 81–84
(2018)

8. Kuwajima, H., Yasuoka, H., Nakae, T.: Engineering problems in machine learning
systems. Machine Learning pp. 1–24 (2020)

9. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on knowledge
and data engineering 22(10), 1345–1359 (2009)

10. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing of
deep learning systems. In: 26th Symposium on Operating Systems Principles. pp.
1–18 (2017)

11. Rook, P.: Controlling software projects. Software engineering journal 1(1), 7–16
(1986)

12. Schapire, R.E., Freund, Y.: Foundations of machine learning (2012)
13. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary,

V., Young, M., Crespo, J.F., Dennison, D.: Hidden technical debt in machine learn-
ing systems. In: Advances in neural information processing systems. pp. 2503–2511
(2015)

14. Wang, H., Zhang, Q., Wang, Y., Hu, H.: Structured probabilistic pruning for con-
volutional neural network acceleration. arXiv:1709.06994 [cs.LG] (2017)

15. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: Survey, land-
scapes and horizons. IEEE Transactions on Software Engineering (2020)

https://doi.org/10.1109/SEAA.2018.00018

	Is Machine Learning Software Just Software: A Maintainability View

