
BONIK: A Blockchain Empowered Chatbot for
Financial Transactions

Md. Saiful Islam Bhuiyan∗, Abdur Razzak∗, Md Sadek Ferdous∗, Mohammad Jabed M. Chowdhury†,
Mohammad A. Hoque‡, Sasu Tarkoma‡

∗Department of Computer Science and Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
†Department of Computer Science & Information Technology, La Trobe University, Melbourne, Australia

‡Department of Computer Science, University of Helsinki, Helsinki, Finland
Email: saif lesnar@outlook.com, razzakrana17@gmail.com, sadek-cse@sust.edu, m.chowdhury@latrobe.edu.au,

{mohammad.a.hoque, sasu.tarkoma}@helsinki.fi

Abstract—Chatbot is a popular platform to enable users to
interact with a software or website to gather information or
execute actions in an automated fashion. In recent years, chatbots
are being used for executing financial transactions, however, there
are a number of security issues that must be carefully handled
for their wide-scale adoption. Similarly, blockchain technology,
with a number of security advantages, has emerged as one of the
foundational technologies with the potential to disrupt a number
of application domains, particularly in the financial sector. In
this paper, we forward the idea of integrating chatbot with
blockchain technology in the view to improve the security issues
in financial chatbots. More specifically, we present BONIK, a
blockchain empowered chatbot for financial transactions, discuss
its architecture and the design choices that we have adopted
for its different aspects. Furthermore, we explore the developed
Proof-of-Concept (PoC), evaluate its performance, analyse how
different security and privacy issues are mitigated using BONIK.

Index Terms—Blockchain, Chatbot, Financial Chatbot, Finan-
cial Transaction, Private Blockchain, Hyperledger Fabric

I. INTRODUCTION

Chatbot is an advanced application of Artificial Intelligence
(AI) providing a platform for users to interact with a soft-
ware or web services in an automated fashion. In recent
times, chatbot has emerged as a technology with a wide-
scale adoption in the industry, particularly as an alternative
for customer care services that require trivial interactions [1].
A recent study finds that 74% of users prefer to engage with
chatbots for answers to simple queries [2]. The increased
adoption of chatbot has resulted its market size to grow to
an estimated 2.6B USD in 2019 with a forecast to increase
to 9.4B USD by 2025 [3]. Following this trend, the service
industry is exploring the possibility for financial chatbots
to facilitate financial transactions in a seamless fashion [4].
For example, WeChat, a prominent Chinese message app
with chatbot facility, introduced a fund transfer facility in
their messaging platform [5]. However, transactions are much
more sensitive than services answering to mere trivial queries.
Therefore, such chatbots must guarantee a number of secu-
rity and privacy properties, such as confidentiality, integrity,
authenticity, availability, control and transparency of financial
transactions [6]–[8]. Also, relying on a single entity to transfer
funds introduces a single point of failure. These issues must

be addressed before a wide-scale adoption of such chatbots.
In recent years, Blockchain technology (blockchain, in

short) has emerged as one of the fundamental technologies
with the potential to disrupt a number of application domains
[9]. Blockchain offers a number of advantages such as im-
mutability of data and code, distributed consensus mechanism,
data provenance and transparency [10], which have the po-
tential to effectively tackle many security issues mentioned
above for financial chatbots. Even though a few existing
works (e.g. in [6]–[8]) explored different security and privacy
issues in chatbots including WeChat, an effective solution is
still at large. In this paper, we present BONIK, a blockchain
empowered chatbot for financial transactions that effectively
addresses many security issues involving a financial chatbot.
Using BONIK, one can execute financial transactions in a
secure and privacy friendly way by just interacting with a
chatbot. In this paper, we present its architecture, protocol
flow, usages and different other aspects.

Contributions: The main contributions of the paper are pre-
sented below:

• We formulate a number of functional, security and pri-
vacy requirements, underpinned by a rigorous threat
model, for a financial chatbot.

• We provide a detailed architecture of BONIK and discuss
how we have developed a Proof-of-Concept prototype
along with its detailed protocol flow.

• We evaluate its performance, analyse how the developed
prototype has satisfied the formulated requirements and
explore its advantages and limitations.

Structure: Section II provides a brief background on
blockchain and chatbot. Section III introduces the proposal a
threat model and requirement analysis. Section IV presents the
architecture of BONIK with implementation details. In Section
V, the protocol flow of BONIK illustrates its use-case. Sec-
tion VI evaluates the performance of BONIK under different
criteria. In Section VII, we discuss how the design choices
for BONIK have helped it to satisfy different requirements
and explore its advantages, limitations and the possible future
research scopes. Finally, we conclude in Section VIII.



II. BACKGROUND

In this section we provide a brief background on blockchain
technology (Section II-A) and chatbot (Section II-B).

A. Blockchain

Bitcoin is regarded as the first widely-used decentralised
digital currency in the world which does not rely on a central
entity, such as a central bank, for its creation and circulation
[11]. Its main technological breakthrough is due to its under-
lying mechanism called blockchain technology, an example
of a distributed ledger shared among a group of Peer-to-Peer
(P2P) nodes [9]. The ledger itself maintains an ordered data
structure consisting of a number of blocks chained together by
cryptographic mechanisms. Each block contains a number of
transactions where each transaction enables a user to transact
a certain amount of bitcoin to another user/users. Each blocks
refer to its previous block using a cryptographic hash which
refers to its previous block and so on, thus forming a chain
and hence, colloquially known as blockchain.

Evolving from the Bitcoin blockchain, a new type of
blockchain system has emerged which facilitates the deploy-
ment and autonomous execution of computer programs, known
as smart-contracts, on top of the respective ledger [12]. Being
part of the ledger makes smart-contracts and their executions
immutable and irreversible, a sought-after property having a
wide-range of applications in different domains. In addition,
a smart-contract supporting blockchain system has a number
of other advantages such as distributed data control, data
persistence, data provenance, accountability and transparency.
Based on who can access a ledger in a blockchain system,
there are generally two types of blockchain:
• Public blockchain: In a public blockchain, also known

as permissionless blockchain, anyone can join and par-
ticipate in the network for blockchain governance and
transaction creation at any time. Examples of public
blockchain systems are Bitcoin [13], Ethereum [14],
Litecoin [15], Monero [16] and so on.

• Private blockchain: In a private blockchain, also known
as permissioned blockchain, only authorised and trusted
entities are allowed to participate supporting different
levels of permissions and privacy [17]. Examples of
private blockchain systems are Hyperledger Platforms
[18], Quoram [19] and others.

B. Chatbot

Chatbot (or a bot in short) is an application program that
can make auditory or textual conversations in real time with
users [20]. This is a smart implementation of AI It providing a
user-friendly conversational experience for users via multiple
channels. It is the upcoming leading technology for vast
potential for sales, customer service and marketing. In the next
section, we will explore several aspects of a chatbot.
Use-cases. Chatbots are increasingly being used as personal
assistants for users. For example, people can converse with
a chatbot, ask questions and get things done such as call
someone, pay bills, set up a meeting, provide replies to queries

based on contextual information such as locations and carry
on many other activities that a personal assistant is supposed
to do. On March 24, 2017, a 4 years old child Roman even
saved his mother’s life using Siri, a chatbot from Apple [21],
[22]. Other popular such chatbots are Google Assistant [23]
and Amazons Alexa [24]. Chatbots are also being used to
customer care centre so that a customer can query regarding
their products and receive instant replies 24/7.

Classification: Bots can be classified mainly in two types [25]:
• Text-based: A user interacts with a text-based chatbot

with texts only. Users will query with texts and get
answers with texts also. Such chatbots can be of two
types. One is a bot that provides fixed options and users
need to select an option to interact with. The other is a
dynamic chatbot where the bot, on taking random queries
from a user, provides a dynamic answer to the user.

• Voice-activated: This is the most sophisticated class of
chatbots in which users interact with the bot using voice.

Mechanisms: Here, we provide a simple working mechanism
of a chatbot. A chatbot consists of a number of compo-
nents. The front-facing component for a text chatbot is the
User Interface (UI) using which a user interacts and submits
queries or selects options. A voice-activated chatbot utilises
the microphone of the corresponding devices to receive in-
structions/inputs from the user. An option-based text chatbot
is the easiest to develop as it just needs to be equipped to
handle a limited number of pre-selected options. Dynamic
textual and voice chatbots, on the other hand, need to utilise
a number of additional components and advanced algorithms,
such as voice translation and Speech To Text Reporter (STTR),
to function properly. These chatbots also need to apply other
Natural Language Processing mechanisms, such as Part-Of-
Speech Tagging [26], Sentiment Analysis [27] to understand
the query and finally a suitable output is produced.

Financial chatbots: A financial chatbot is a specific type of
chatbot which is used within the financial domains with a
wide-range of use-cases, such as allowing users to execute
financial transactions, providing financial advises, preventing
financial frauds, maintaining a personalised customer service
and so on [4], [28]. In the scope of this paper, we restrict out
attention only to executing financial transactions.

Security and Privacy issues: Because of their wide usages in
different applications domains, chatbots often need to handle
sensitive data. Therefore, the security and privacy issues are
of great importance for chatbots. Here, we highlight a few
of such issues, mostly applicable to financial chatbots, such
as secure authentication, data confidentiality and integrity,
system availability, accountability and transparency [6]–[8].
Only authenticated users should be allowed to interact with
a chatbot so that they can submit queries for their respective
bank account and transact with only their bank account. Data
confidentiality and integrity will guarantee that the submitted
transaction is accessible by an authorised entity and is secure
against any corruption. System availability will ensure unin-



terrupted access while accountability and transparency of the
system will help to increase the trustworthiness of the system.
The principal data privacy issues mostly arise from the lack
of control and consent over any submitted transaction.

III. THREAT MODELLING & REQUIREMENT ANALYSIS

In this section, we present a threat model (Section III-A)
and analyse a number of functional, security and privacy
requirements (Section III-B) for a blockchain empowered
financial chatbot.

A. Threat Modelling

Threat modelling is an integrated process of designing
a secure system which is used to identify, communicate,
and understand threats and mitigation mechanisms within the
context of protecting (IT) assets, financial transactions and
chatbot in the scope of this paper. To model threats, we have
chosen a well established threat model called STRIDE [29]
developed by Microsoft. The STRIDE model encapsulates
different security threats which are briefly presented below.
• T1-Spoofing Identity: The act of spoofing refers to an

adversary using the identity of an authorised user (e.g. a
sender or a receiver of a financial transaction) to illegally
access or participate in financial transactions.

• T2-Tampering with Data: An attacker can try to change
a transacting amount in a financial transaction.

• T3-Repudiation: An attacker can repudiate certain in-
valid and illegal actions involving a financial transaction.

• T4-Information Disclosure: Private or sensitive data
stored in the system is leaked to an attacker unintention-
ally.

• T5-Denial of Service: The system that is used to access
the service can be the target of a denial of service attack.

• T6-Elevation of Privilege: An attacker might use other
attack vectors such as malicious software with potential
exploitable vulnerabilities in order to execute transactions
without the knowledge of a valid user.

In addition to these, we have considered an additional threat
which is crucial for any financial system.
• T7-Replaying Transactions: An attacker might capture

an old transaction and submit it afterwards, thus launch-
ing a replay attack.

The privacy threats mostly emerge from the lack of any
privacy control for any user. Based on this assumption, the
identified threats are as follows.
• T8-Explicit Consent: Each transaction is being carried

out with the explicit consent of a user.
• T9-Lack of control and Transparency: Users have little

control on the way transaction is being carried out.

B. Requirement analysis

In this section, we present a set of functional, security and
privacy requirements. The functional requirements capture the
core functionalities of the system while security and privacy
requirements ensure that they mitigate the identified threats.

Functional Requirements (FR): The requirements are pre-
sented below.

F1. Users should be able to execute financial transactions,
e.g. balance query and transfer money, through the
chatbot easily by interacting with it.

F2. The chatbot should be integrated with a private
blockchain infrastructure simulating banking function-
alities so that financial transactions can be carried out
without any error.

F3. The system should ensure the transparency of the trans-
actional data so that an authorised user can inspect dif-
ferent transactions when required, e.g. during a dispute.

Security Requirements (SR): Next, we present a set of
security requirements to address the identified security threats.
S1. The system must ensure that only securely authenticated

users can avail this service.
S2. The system must ensure that one user’s chatting infor-

mation is not shared with another user. S1 and S2 can
combinedly can mitigate T1 threat.

S3. Any conversational and transactional data must be trans-
ferred via networks in a secure manner so as to ensure
the confidentiality, integrity and authenticity of a user’s
transaction data. This can mitigate T2, T3 and T4 threats.

S4. The system must guard against any Denial of Service
attack so as to mitigate the T5 threat.

S5. The system must take protective measures against any
replay attack in order to mitigate the T7 threat.

Privacy Requirements (PR): Privacy requirements are impor-
tant to mostly mitigate the privacy threats. We present these
requirements below.
P1. The system must ensure that each transaction activity

must be carried out only with the user’s consent. This
mitigates T6 and T8 threats.

P2. The system should ensure that a user has full control over
any of their transactions. This mitigates T9 threat.

IV. ARCHITECTURE & IMPLEMENTATION

In order to effectively tackle the identified security and
privacy issues involving a financial chatbot, we propose to
develop a chatbot rooted on a blockchain system. A blockchain
system is decentralised in nature offering a secure transaction
and time-stamping recording mechanism with a strong support
for integrity and immutability. Moreover, a smart-contract
empowered blockchain system offers the opportunity to deploy
complex and immutable logic within a blockchain which can
be invoked autonomously using transactions. Towards this aim,
we present BONIK, a blockchain empowered financial chatbot,
in this paper.

A user can interact with BONIK to securely submit trans-
actions and carry out financial activities such as querying for
current balance. The blockchain integration enables BONIK to
validate each request against pre-defined access control rules
codified in smart-contracts and if only validated, user requests
are honoured. To achieve these goals, the proposed system
must satisfy a number of functional, security and privacy



requirements. The security and privacy requirements must be
formulated against a threat model. In the following, we present
our threat model and the formulated requirements.

We illustrate the top-level architecture of BONIK in Figure
1. This architecture consists of three main components, namely
Chatbot, dApp (Decentralised Application) and the Blockchain
platform. Next, we discuss the functionalities of each of
these components along with their implementation details and
interactions between the components.

BONIK

Blockchain Platform

Chatbot

Entities Intents

Modelling
Response

dApp

1. User
Query

6. Response

2. User
Query

3. Chatbot
Response

4. Transaction
Request

5. Transaction
Response

Fig. 1: Top-level architecture and flow in BONIK.

A. Blockchain platform

The chatbot in BONIK is integrated with blockchain plat-
form to facilitate a number of security features and some
crucial functionalities. For example, the smart-contract in the
platform simulates the functionalities of a financial institution
such as a bank. Every user of the system is assumed to
hold an account with this bank and every financial activity
in the system such as balance query and transfer money is
carried out by this bank. In the system, there are two smart-
contracts providing business logic to handle user requests.
The first one is provided by the system which handles user
registration and login while the other is provided by the bank
which holds the business logic for financial transactions. This
compartmentalisation of smart-contracts provides modularity
in the sense if other banks are added in the network, they will
just need to deploy and maintain their own smart-contracts in
the platform without making much modifications in the system
smart-contract.

For deploying the blockchain platform, we have studied dif-
ferent public and private blockchain systems. We have found
that public blockchain systems are more secure, however,
they are extremely slow, open to all and incur significant
amount of cost to process and store data in a smart-contract
supported public blockchain (e.g. Ethereum). Because of these
reasons, we have chosen to work with a private blockchain
system. Currently, Hyperledger Fabric is the most stable and
popular private blockchain platform supporting smart-contract
facility [30]. It also provides a unique concept of channel by
which different blockchains can be maintained within the same
network, thus creating a layer of privacy between different
organisations, a must-have feature in any financial setting so
that different activities remain private between different organ-
isations. That this why we have selected to use Hyperledger

Fabric as our preferred blockchain system for deployment in
this research.

Fabric utilises a number of network entities such as peers,
endorsers and orderers. A smart-contract is called a chaincode
in Fabric terminology which can be invoked using transactions.
A user utilises a peer for submitting a transaction which is
forwarded to the endorser(s). Each endorser is responsible for
validating a transaction by checking if an entity is allowed
to perform a certain action in a ledger encoded within the
transaction. The validated transaction is then forwarded to the
orderer(s). The Orderer creates a block using the transaction
and returns the block to the endorsers and peers which is then
added to the blockchain and thus, updating the state of the
ledger. Consequently, a response is returned to the user. All
the entities (peers, orderers and the endorsers) are registered
and authenticated via a Fabric specific special entity called
Membership Service Provider (MSP). This ensures that only
authorised entities are allowed in the blockchain network.
Figure 2 summarises the flows of activities in Fabric.

2. Transaction proposal
Peer

Orderer

Endorser

Peer

Endorser Peer

3. Proposal response

4. Transaction
proposal

5. Proposal
response

6. Proposal
response7. New

block

7. New
block

7. New
block

7. New
block

1. Submitted transaction

Fabric

7. New
block

Fig. 2: Flow of activities in Fabric

The chaincode for BONIK has been written in Go where the
blockchain platform consists of a varied number of endorsers,
peers, orderers. The blockchain platform is deployed using
Docker containers where each container assumes the role
of one of these entities. In addition, there is an additional
container which plays the role of the MSP including the
CA (Certificate Authority). These entities are connected via a
channel into which the chaincode is deployed. The consensus
is based on Kafka which utilises the two orderers for block
creation and dissemination as described above. As mentioned
earlier, the functionalities of the Bank entity have been sim-
ulated within its respective bank chaincode for simplicity.
During the starting phase, each user is initialised with 10,000
unit of currency for executing financial transactions.

B. dApp

A dApp (Decentralised Application) interfaces between a
blockchain platform and other web (or mobile) applications so
that those applications can interact with the blockchain plat-
form. More specifically, a dApp is configured as a web server
exposing APIs to web applications as well as is connected to
a peer of the blockchain platform. Web applications use these



APIs to submit queries which are translated into blockchain
transactions by the dApp. Then, the dApp uses the blockchain
API to submit these transactions, via a peer, for invoking a
smart-contract on the blockchain and then the usual flows, as
illustrated in Figure 2, takes place. A chatbot is essentially a
web application, however, has no mechanism to interact with
a blockchain platform. To breeze this gap, we need a dApp
which creates an interface between these two.

The dApp in BONIK has been developed using Node.js with
Express [31], [32]. Node.js is a server-side JavaScript platform
that is widely used for creating dApps in the blockchain
domain. Express is a web application framework for Node.js
which is used for developing web applications using Node.js.
Fabric provides the required APIs to interact with any Node.js
application. We have developed the dApp in such a way that it
is integrated with the chatbot and Fabric APIs and can facilitate
the flow described above.

C. Chatbot

Chatbot is the component with which a user interacts, via
their browser, to submit different financial queries. BONIK
utilises a text-based dynamic chatbot enabling the user to gen-
erate random queries and receive the corresponding responses.
The chatbot is developed with the help of Dialogflow agent that
uses strong Natural Language Understanding (NLU) modules
in the backbone developed by Google [33]. It functions by
taking inputs from a user as a query, processing the data after
training itself using machine learning techniques and giving a
response in return.

There are three basic elements in Dialogflow: intents, en-
tities and training. An Intent refers to the mapping between
the user’s query and the agent’s response. Each Intent looks
like a cluster where seemingly different queries map to a single
output, a preset output matched with a high probability. Indeed,
a user may ask the system to initiate a transaction in many
ways, however, the agent should detect that this is a user’s
attempt to create a transaction and responds with a single
output.

Entities in Dialogflow extract the parameter values from a
user’s input with natural language. For example, with respect
to BONIK, a query for a transaction (e.g. “send account
no 1123158964 1000 unit”) will have several corresponding
entities: account number (1123158964) and amount (1000
unit). Training enables the Dialogflow agent to understand
what user implies and approach them in a structured way.
Machine Learning techniques are used in the backend for this
purpose which enable the Dialogflow agent to cluster similar
intents and handle entities. For this, Dialogflow uses their own
language models. In addition, a developer can feed in their
own training data suitable for a particular application. Based
on these two, Dialogflow trains itself to handle user queries
and generates responses. This model improves dynamically
as users converse more and more with the agent which
increases its performance and reliability. For our system, a
Dialogflow agent named ‘Transactional Chatbot’ has been
created. dApp interacts with this Dialogflow agent by calling

TABLE I: Cryptographic Notations

Notations Description
KUf

Public key of the sender.
K−1

Uf
Private key of the sender.

Kd Public key of the Dapp.
Ni A fresh nonce.
{}K Encryption operation using a public key K.

{}K−1 Signature using a private key K−1.
H(M) SHA-256 hashing operation of message M .
[]https Communication over HTTPS channel K.

the corresponding API with necessary information. The ML
model of the agent has been trained with two datasets, namely
user dataset and bot dataset, both have been developed by us
for BONIK. The user dataset consists of the set of queries
that a user can generate. The bot dataset, on the other hand,
consists of sentences which are generated in response to any
query from the user dataset.

Next, a high-level flow involving different components of
BONIK is discussed. Once the user is securely logged in
(the process is described in the subsequent section), the user
can submit different queries to the dApp via the Chatbot
UI. These queries are passed to the Dialogflow service and
are handled accordingly. When the response is returned from
Dialogflow, the dApp processes and parses the response. If
additional query is required, the response is returned to the
user via the UI. If the response is sufficient to create a Fabric
transaction, the dApp converts that response into a transaction
which is then submitted to the blockchain platform via the
connected peer and then the usual flows takes place. If the
transaction is for balance query, upon receiving the response
from the chaincode, the dApp displays the result on the UI.
If the transaction is for transferring funds and the transfer
is successful, an appropriate message is shown to the user.
Alternatively, an appropriate error message is shown to the
user via the UI if there is any error executing the transaction.
The dApp flow in BONIK is illustrated in Figure 1.

V. PROTOCOL FLOW

In this section, we present the protocol flow between differ-
ent components in BONIK. Before we illustrate the protocol
flow, we introduce mathematical notations in Table I and data
model in Table II.

TABLE II: Data Model

req , 〈type, data〉
resp′ , 〈resp,KUf

,K−1
Uf
〉

TYPE , 〈registration, login, balQuery, transfer〉
DATA , 〈regisData, loginData, balData, transferData〉
regisData , 〈userName, h〉
loginData , 〈userName, h〉
balData , 〈userName, accountNum〉
transferData , 〈userName, fromAcc, toAcc, amount〉
string , 〈string1, string2, ..., stringn〉

Data Model: We start with the request (denoted with req
in Table II), which is submitted to the blockchain platform.
req consists of type and data . Here, TYPE denotes the set



of different data types within a request and type ∈ TYPE
whereas, DATA represent the set of corresponding data and
data ∈ DATA. Both TYPE and DATA are defined as
presented in Table II.

Next, registration in type signifies that the corresponding
request will be a registration request consisting of the data
set denoted with regisData and so on. In regisData , h =
H(Password) denotes the hash of the provided password and
userName denotes the username (identifier) of the user. This
implies that a registration request must contain a username
and the hash of the password. loginData also has the similar
semantic in the sense that a login request must consist of the
username and the hash of the provided password.

balData on the other hand is used for balance query and
consists of the userName and accountNum , implying it must
provide the username of the user and the account number to
retrieve the balance of the user. Finally, transferData is used
for balance transfer requiring username of the user as well as
the sender’s account number (fromAcc), the receiver’s account
number (toAcc) and amount to transfer (amount).

Next, we model the functionality of Dialogflow in which
a user query is submitted and a set of entities is returned. A
user query, in essence, represents the interactions between the
user and the chatbot for a meaningful request. For example, a
balance transfer query will consist of all required interactions
between the user and the chatbot. We use the notations
STRING , ENTITY to denote the sets of strings (represent-
ing a Dialogflow interaction) and entities (as generated by
Diaglogflow algorithm). Next, we define a function to model
the core functionality of Dialogflow: transforming a string of
query into a set of entities.

Definition 1: Let dFlowModel : string → E be the function
that transforms a string into a set of entities.

Here, string ⊆ STRING and E ⊆ ENTITY . In other
words, string represents the set of all elements from the
user and chatbot datasets required to build a meaningful
balance query and balance transfer query and is modelled
as presented in Table II, where string1, string2, ..., stringn
represent different elements from the user and chatbot datasets
as submitted by the user and the chatbor while interacting for
a particular request.

The dApp in BONIK is responsible for handling the re-
turned set of entities (E) which is parsed into corresponding
requests, either a balance request or transfer request. We define
the following function to model this parsing capability.

Definition 2: Let parsing : E → req be the function that
transforms a set of entities into a corresponding request.

Algorithms: We present the algorithms of the system chain-
code and bank chaincode in Algorithm 1 and Algorithm 2
respectively.

Whenever the system chaincode (represented as SCC in
Algorithm 1) receives a request (denoted with req in the
algorithm), its invoke function is initiated. This function
retrieves data and type from the request (line 5 and 6)
and then invokes any of the other two functions, regFunc

Algorithm 1: SCC: // . System Chaincode

1 Input: req → the request from the user
2 Output: resp → the chaincode generated response
3 Start
4 function invoke(req)
5 data := req .data;
6 type := req .type;
7 if req.type == login then
8 resp = loginFunc(data);
9 else if req.type == registration then

10 resp = regFunc(data);
11 else
12 resp =BankCC.invoke(req);
13 end
14 send resp back to user;
15 function regFunc(data)
16 uName := data.userName;
17 h := data.h;
18 putState(uName, h); . store into blockchain
19 return TRUE ;
20 function loginFunc(data)
21 uName := data.userName;
22 hPasswd = getState(uName); . retrieve from

blockchain
23 if data.h == hPasswd then
24 return TRUE ;
25 else
26 return FALSE ;
27 end

and loginFunc, depending the request type (line 7 to 10).
For example, the loginFunc encodes the logic for the login
functionality whereas the regFunc encodes the registration
functionality. Once executed, a response is returned (denoted
resp) back to the dApp (line 14).

The bank chaincode (represented as BankCC in Algorithm
2) consists of three functions, namely invoke, balQFunc and
transFunc. The the balQFunc encodes the algorithm for the
balance query operation and finally, the transFunc encodes the
logic for the balance transfer operation. When invoke receives
req , data and type values are retrieved from the request (line 5
and 6 in 2). Depending on the type values, the corresponding
function is called with data (line 7 to 10). After executing
their code, each of these two functions return a result which
is stored in the response (denoted with resp, line 12 in the
algorithm) and is then returned back to the system chaincode
which consequently returns the response back to dApp.
Protocol flow: Now, we present the protocol flow illustrating
user interactions with different components in BONIK. To
interact with BONIK, a user must register herself following
protocol presented in Table III and illustrated in Figure 3.
Here, the user submits a username and password in the
registration form. The password is hashed using SHA-256
hashing algorithm in the client side. This userName and the
hashed password make up regisData where h denotes the



Algorithm 2: BCC: // . Bank Chaincode

1 Input: req → the request from the user
2 Output: resp → the chaincode generated response
3 Start
4 function invoke(req)
5 data := req .data;
6 type := req .type;
7 if req.type == balQuery then
8 resp = balQFunc(data);
9 else

10 resp = transFunc(data);
11 end
12 send resp back to SCC;
13 function balQFunc(data)
14 uName := data.userName;
15 acct := data.accountNum;
16 balance = getState(acct);
17 return balance;
18 function transFunc(data)
19 uName := data.userName;
20 fromAcct := data.fromAcc;
21 toAcct := data.toAcc;
22 amount := data.amount;
23 fromBalance = getState(fromAcct);
24 toBalance = getState(toAcct);
25 if fromBalance > amount then
26 fromBalance −= amount ;
27 toBalance += amount ;
28 putState(fromAcct , fromBalance);
29 putState(toAcct , toBalance);;
30 return “TRANSACTION SUCCESSFUL”;
31 else
32 return “TRANSACTION ABORTED”;
33 end

hashed password. The req in the registration process consists
of registration type and regisData . As per the protocol, in
the first message (denoted with M1 in Table III), a user (Uf )
sends to the dApp a nonce (N1), req encrypted with the public
key of the dApp (Kd), over an HTTPS channel. dApp decrypts
the request using its private key and forwards this request to
SCC (M2 in Table III). This is handled in the regFunction
where the username and the hashed password are extracted
and are stored in the blockchain (line 16 to 18 in Algorithm
1). Then a TRUE value is returned to the calling code (the
resp variable in line 10), signifying that the user registration
response is successful. This response is returned to dApp.
Next, dApp generates public and private keys for Uf , KUf

and K−1Uf
respectively, using Fabric MSP functionality. This

key pair and the response (resp) from SCC are combined to
create resp′ (see Figure 3). Then, this response and its SHA-
256 hash (resp′, H(resp′)) are returned to Uf over an HTTPS
channel. Then, the user stores her public and private keys in
her device for any future correspondence.

Every user must log in before accessing the service. The

TABLE III: Registration protocol

M1 Uf → D : [N1, {req}Kd
]https

M2 D → SCC : N2, req
M3 SCC → D : N2, resp
M4 D → Uf : [N1, resp′, H(resp′)]https

Sender (Uf) SCC
Blockchain Platform

Store 
in blockchain

Generate 

dApp (D)

Fig. 3: Registration flow in BONIK.

login protocol is similar to the registration protocol where the
user submits the username and password via their browser.
These data are encoded into an appropriate req and submitted
to dApp which invokes the loginFunc in SCC to handle this
request (line 20 to 26 in Algorithm 1). A successful validation
will sign in the user to the system. For security, every request
and response between the user and the dApp are signed with
the sender’s private key and are transmitted over HTTPS. Next,
we present the protocol flow for the balance transfer from Uf ,
assuming Uf is already logged in. The protocol is illustrated
in Figure 4. Once Uf logs in, a chat interface is loaded in her
web browser to interact with the chatbot. Uf submits a query
for balance transfer (denoted with string protocol), using this
interface, to dApp along with a nonce. It is to be noted, as
per the mathematical model, string encodes an interaction
between the user and the Dialogflow chatbot consisting of a
number of texts required for a meaningful query. We have not
shown this interaction in the protocol flow for brevity.

Like before, string is signed with K−1Uf
and transmitted

over an HTTPS channel. After a successful signature ver-
ification, this string along with a secret key (denoted with
key in Figure 4) is forwarded to Dialogflow over an HTTPS
channel. Every request submitted to Dialogflow API must
be registered and authorised beforehand. The secret key is
used to validate the authorisation. Then, Dialogflow utilises its
dFlowModel function to convert this string to a set of entities
(E) which is returned to dApp. dApp utilises its parsing
function to convert it to a balance transfer request (consisting
of balQuery and balData). dApp then invokes SCC with this
request which is internally forwarded to the invoke function
of BCC. This balance transfer request consequently invokes
the transFunc (line 10 in Algorithm 2) where the balances



Sender (Uf) SCC BCC
Blockchain Platform

dApp (D) Chatbot (C)

Update accounts
using transFunc

Fig. 4: Balance transfer flow in BONIK.

of the corresponding users’ accounts are retrieved from the
blockchain and after a validity check (if the user has sufficient
balance), accounts are updated with the correct balance and
stored in the blockchain (as outlined in line 19 to 29 in
Algorithm 2). A successful balance transfer operation will
return a “TRANSACTION SUCCESSFUL” response, otherwise
a “TRANSACTION ABORTED” response will be returned.
This response will be returned back to dApp and from there
ultimately to the user over HTTPS. The balance query protocol
for Uf will be similar and is excluded for brevity.

VI. EVALUATION

To evaluate the performance of BONIK, we have utilised
Hyperledger Caliper [34], a state-of-the-art blockchain bench-
marking tool for Hyperledger blockchain platforms, including
Hyperledger Fabric. With BONIK integrated with Caliper, we
can measure the performance of its blockchain implementation
with a set of predefined network configurations such as the
number of entities within the network, the number of simulated
users and requests accessing BONIK simultaneously.

The experiment has been carried out in a PC with a Ubuntu
18.04-64 OS and hardware configurations of Intel(R) Core i5-
8265U @1.60GHz quad-core CPU, 8 GB DDR4 RAM, 256
GB SSD, 1 TB HDD and 2GB GeForce MX150 Graphics
GPU. We have simulated between 10 to 50 users who have
submitted different transactions for creating users (registra-
tions), balance query and transfer at varied degrees of rate with
three different network configurations consisting of 2 orderers
2 peers (denoted with 2O2P), 2 orderers 4 peers (2O4P) and
2 orderers 6 peers (2O6P).

Caliper supports a wide-range of different configurations.
Before our main experiments, we have tested these config-
urations to identify the ideal setup which is the following.
The amount of time to wait before creating a batch, the Batch

Timeout is set as 1s. The maximum message count for a single
batch is set as 500 and the transaction rate is set 20 per second.
With these configurations, each experiment has been carried
out 5 times and the result is then averaged and presented next.

A. User Creation

In Figure 5a the average TPS vs different number of users
against different configurations is plotted. Two trends are clear
from this figure. The first trend is that TPS increases with the
number of users in every configuration. For example, in 2
orderers 2 peers configuration (denoted with 2O2P), the TPS
for 10 users is 8.6 which increases to 37.98 for 50 users
under the same configuration, a 4x increase. This trend is
seen in other configuration sets as well. This seems counter-
intuitive, however, the underlying reason for this increase is
because of the batching mechanism in Fabric in which Fabric
waits for a certain number of transaction for putting them in a
single block. With more users, more transactions are batched
together within a single block, thus resulting in higher TPS.
The second trend is that TPS decreases within the same user
set with increased number of entities. For example, in 50 users
set, TPS decreses from 37.98 to 28.14 for 2O2p and 2O6P
respectively. As the number of entities increases in Fabric
network, it takes more time for endorsing and creating blocks,
resulting in decreased TPS.

B. Balance Transfer

The performance for balance transfer experiment is pre-
sented in Figure 5b. It exhibits similar treads, as in Figure 5a,
TPS increases as the number of users increases while, within
the same user set, TPS decreases as the number of network
entities in Fabric increases. Furthermore, in both experiments,
TPS remains almost similar. For exmaple, in 2O2P setting for
50 users, the TPS is 37.98 and 36.72 for user creation and



0
5

10
15
20
25
30
35
40
45
50

10 Users 20 Users 30 Users 40 Users 50 Users

TP
S 

in
 S

ec
on

ds

2O2P 2O4P 2O6P

(a) User creation

0
5

10
15
20
25
30
35
40
45

10 Users 20 Users 30 Users 40 Users 50 Users

TP
S 

in
 S

ec
on

ds

2O2P 2O4P 2O6P

(b) Balance transfer

0

50

100

150

200

250

300

350

10 Users 20 Users 30 Users 40 Users 50 Users

TP
S 

in
 S

ec
on

ds

2O2P 2O4P 2O6P

(c) Balance query

Fig. 5: Transaction Per Second (TPS) using BONIK

balance transfer respectively.

C. Balance Query

The result for balance query is presented in Figure 5c. With
a maximum TPS of 286.16 for 10 users in 2O2P setting, TPS
for balance query is significantly higher than the previous
two experiments. The main reason is that balance query is
essentially a read operation from the chaincode which can be
carried out locally from the Fabric, thus significantly reducing
the latency and increasing the TPS. However, as the number
of users increases, the TPS tends to to decrease for balance
query: from 286.16 for 10 users to 194.9 for 50 users in the
same 2O2P setting.

VII. DISCUSSION

In this section, we examine how BONIK has satisfied its
different requirements (Section VII-A), discuss its advantages
and limitations (Section VII-B) and highlight possible future
works (Section VII-C).

A. Analysing Requirements

Here, we explore if BONIK satisfies the formulated require-
ments of Section III-B.
Functional Requirements: BONIK enables a user to submit
financial transactions for balance query and transfer to another
account, thereby, satisfying F1. The blockchain component in
BONIK is based on Hyplerdger Fabric, a private blockchain
platform. The chaincode within the platform simulates the
banking functionalities in an immutable and error-free manner
and hence, BONIK satisfies F2. BONIK, underpinned by
Fabric, inherits a core property of any blockchain platform,
transparency, which enables every authorised entity to validate
and verify any transaction. Thus, BONIK satisfies F3.

Security Requirements: The BONIK protocol requires every
user to be registered and authenticated before submitting any
financial transactions. This ensures S1. A secure session is
maintained for each logged in user so as to create a layer of
separation between different users. In this way, no user can
access the chatting information of another user and thereby,
satisfying S2. All data between the user and the dApp as
well as between the dApp and Dialogflow are transmitted
over secure HTTPS channels which ensures the confidentiality
of the data. In addition, every request, except the registration

request, from the user is digitally signed with the private key
of the user. dApp only accepts such a request if the digital
signature is successfully validated. In addition, the communi-
cation between dApp and Dialogflow are futher secured with
a pre-generated secret key. All these steps combinedly fulfil
S3. Fabric, being a distributed blockchain platform, offers an
effective protection against any DoS attack. Even though it
was not created in the current Proof of Concept (PoC), it will
be trivial to build a network of dApps in order to guard against
the DoS attack against a single dApp so that BONIK services
would be accessible even if a single dApp is unavailable due
to a DoS attack. This satisfies S4. We have extensively used
nonces in every single step of our protocol to guard against
any replay attack, thereby satisfying S5.

Privacy Requirements: Each activity related to any financial
transaction, e.g. balance query or balance transfer, requires the
user to explicitly digitally sign the transaction with the private
key. If the transaction is not signed, the transaction will not be
considered as a valid one and thus discarded. This implicitly
represents the user consent and a control for the respective
transaction, thereby satisfying P1 and P2.

B. Advantages & Limitations

BONIK provides a number of advantages which are dis-
cussed next.

• BONIK is the first system to integrate a chatbot with a
blockchain platform enabling any user to submit financial
transactions using a chatbot in a secure and privacy-
friendly fashion.

• BONIK would be beneficial to any financial institutions
in order to supplement their existing services by which
their users can avail financial services. For example,
instead of calling to the customer care centre and being
in the call centre queue for unspecified amounts of time,
users could use BONIK to initiate financial transactions
24/7, any time of the day. BONIK’s utility can be hugely
increased by integrating with social network (e.g. Face-
book) chatbot services, thereby allowing users to avail
financial services from Facebook.

• Being underpinned by Hyperledger Fabric means that
BONIK enjoys all the essential benefits of any pri-
vate blockchain platform, such as decentralisation, im-



mutability of transaction data, resiliency, transparency,
automatic code execution and so on. These features
incredibly enhance the security of BONIK. Also, the
private blockchain ensures that only authorised entity can
participate in the blockchain network.

Unfortunately, the current implementation of BONIK has
some limitations as presented below:

• The current PoC does not facilitate the transactions be-
tween multiple banks. However, this feature can be added
by adding additional chanicode, for different banks and
modifying the logic of dApp and the algorithms.

• The current PoC utilises a small dataset to train the
chatbot with only limited query language.

C. Future Work

In future we would like to explore the following:

• We would like to explore how BONIK can be integrated
with Facebook chatbot service so that users can facilitates
its service from Facebook.

• We would like to add multiple bank feature in BONIK
so that users can transact between different banks.

VIII. CONCLUSION

In this paper, we have presented BONIK, a blockchain
empowered chatbot for financial transactions. At first, we have
formulated a set of requirements based on a rigorous threat
model for financial chatbots. The architecture of BONIK has
been designed in such a way so as to satisfy the formulated
requirements and to mitigate the identified threats. We have
developed a PoC prototype and described its protocol flow
to show its applicability. Furthermore, we have evaluated its
performance, analysed its security and privacy issues, advan-
tages and limitations. Using BONIK, one can execute financial
transactions within a chatbot. Being rooted in a state-of-the-
art private blockchain platform, Hyperledger Fabric, BONIK
offers a number of security advantages over any existing
financial chatbots. However, its true potential can be enhanced
if it can be integrated with the chatbot platform in any social
network, thereby laying out the foundation for a wide-scale
adoption. Thus, BONIK can be regarded as a pioneering
research with a far-reaching potential in this domain.

REFERENCES

[1] R. McGrath, “How To Improve Customer Service With Chatbots,”
https://chatbotsmagazine.com/ill-never-buy-from-them-again-using-
chatbots-to-avoid-bad-customer-service-e6a967360244, 2020-05-03.
Accessed: 2018-08-10.

[2] D. Zaboj, “Key Chatbot Statistics You Should Follow in 2020,” https://
www.chatbot.com/blog/chatbot-statistics/, 2020-05-06. Accessed: 2018-
08-10.

[3] “Key Chatbot Statistics You Should Follow in 2020,”
https://www.marketsandmarkets.com/Market-Reports/smart-advisor-
market-72302363.html, accessed: 2020-06-06.

[4] T. Okuda and S. Shoda, “Ai-based chatbot service for financial industry,”
Fujitsu Scientific and Technical Journal, vol. 54, no. 2, pp. 4–8, 2018.

[5] “PAYMENT METHODSWeChat Pay Rolls Out Utility To Transfer
Funds Between Smartphones,” https://www.pymnts.com/news/payment-
methods/2019/wechat-pay-rolls-out-utility-to-transfer-funds-between-
smartphones/, 2019-09-23. Accessed: 2018-03-17.

[6] J. Bozic and F. Wotawa, “Security testing for chatbots,” in IFIP Interna-
tional Conference on Testing Software and Systems. Springer, 2018,
pp. 33–38.

[7] S.-T. Lai, F.-Y. Leu, and J.-W. Lin, “A banking chatbot security control
procedure for protecting user data security and privacy,” in International
Conference on Broadband and Wireless Computing, Communication and
Applications. Springer, 2018, pp. 561–571.

[8] F. Yan, M. Xu, T. Qiao, T. Wu, X. Yang, N. Zheng, and K.-K. R.
Choo, “Identifying wechat red packets and fund transfers via analyzing
encrypted network traffic,” in TrustCom/BigDataSE 2018. IEEE, 2018,
pp. 1426–1432.

[9] M. J. M. Chowdhury, M. S. Ferdous, K. Biswas, N. Chowdhury,
A. Kayes, M. Alazab, and P. Watters, “A comparative analysis of
distributed ledger technology platforms,” IEEE Access, vol. 7, no. 1,
pp. 167 930–167 943, 2019.

[10] M. S. Ferdous, M. J. M. Chowdhury, M. A. Hoque, and A. Col-
man, “Blockchain consensus algorithms: A survey,” arXiv preprint
arXiv:2001.07091, 2020.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

[12] M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In search of self-
sovereign identity leveraging blockchain technology,” IEEE Access,
vol. 7, pp. 103 059–103 079, 2019.

[13] “Bitcoin,” https://www.bitcoin.org/, accessed: 2020-07-10.
[14] “Ethereum,” https://www.ethereum.org/, accessed: 2020-07-10.
[15] “Litecoin,” https://litecoin.org/, accessed: 2020-07-10.
[16] “Monero,” https://www.getmonero.org/, accessed: 2020-07-10.
[17] “Public Private Blockchain,” https://www.draglet.com/blockchain-

applications/private-or-public-blockchain, accessed: 2018-03-17.
[18] “Hyperledger,” https://www.hyperledger.org/, accessed: 2020-08-01.
[19] “Quorum Blockchain,” https://www.goquorum.com/, accessed: 2020-

08-01.
[20] S. A. Abdul-Kader and J. Woods, “Survey on chatbot design techniques

in speech conversation systems,” International Journal of Advanced
Computer Science and Applications, vol. 6, no. 7, 2015.

[21] “Apple Siri,” https://www.apple.com/siri/, accessed: 2020-08-02.
[22] “Roman saves her mom:,” https://www.cnet.com/news/child-saves-

mother-iphone-siri-uk/, accessed: 2018-03-17.
[23] “Google Assistant,” https://assistant.google.com/, accessed: 2020-08-02.
[24] “Amazon Alexa,” https://alexa.amazon.com/, accessed: 2020-08-02.
[25] “The voice-activated experience and the text-based experience:,” https:

//www.abe.ai/blog/how-secure-are-chatbots/, accessed: 2018-03-17.
[26] E. Brill, “Transformation-based error-driven learning and natural lan-

guage processing: A case study in part-of-speech tagging,” Computa-
tional linguistics, vol. 21, no. 4, pp. 543–565, 1995.

[27] R. K. Bakshi, N. Kaur, R. Kaur, and G. Kaur, “Opinion mining and
sentiment analysis,” in 2016 3rd International Conference on Computing
for Sustainable Global Development (INDIACom). IEEE, 2016, pp.
452–455.

[28] J. Tarbal, “Chatbots in Financial Services: Benefits, Use Cases and Key
Features,” https://www.artificial-solutions.com/blog/chatbots-financial-
services-benefits-use-cases, 2020-01-27. Accessed: 2018-08-10.

[29] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[30] “Hyperledger Fabric,” https://www.hyperledger.org/use/fabric, accessed:
2020-03-17.

[31] “Node.js,” https://nodejs.org/en/, accessed: 2020-03-17.
[32] “Express js,” https://expressjs.com/, accessed: 2020-03-17.
[33] “Google dialogflow,” https://cloud.google.com/dialogflow, accessed:

2020-03-17.
[34] “Hyperledger caliper,” https://www.hyperledger.org/use/caliper, ac-

cessed: 2020-03-17.

https://chatbotsmagazine.com/ill-never-buy-from-them-again-using-chatbots-to-avoid-bad-customer-service-e6a967360244
https://chatbotsmagazine.com/ill-never-buy-from-them-again-using-chatbots-to-avoid-bad-customer-service-e6a967360244
https://www.chatbot.com/blog/chatbot-statistics/
https://www.chatbot.com/blog/chatbot-statistics/
https://www.marketsandmarkets.com/Market-Reports/smart-advisor-market-72302363.html
https://www.marketsandmarkets.com/Market-Reports/smart-advisor-market-72302363.html
https://www.pymnts.com/news/payment-methods/2019/wechat-pay-rolls-out-utility-to-transfer-funds-between-smartphones/
https://www.pymnts.com/news/payment-methods/2019/wechat-pay-rolls-out-utility-to-transfer-funds-between-smartphones/
https://www.pymnts.com/news/payment-methods/2019/wechat-pay-rolls-out-utility-to-transfer-funds-between-smartphones/
https://www.bitcoin.org/
https://www.ethereum.org/
https://litecoin.org/
https://www.getmonero.org/
https://www.draglet.com/blockchain-applications/private-or-public-blockchain
https://www.draglet.com/blockchain-applications/private-or-public-blockchain
https://www.hyperledger.org/
https://www.goquorum.com/
https://www.apple.com/siri/
https://www.cnet.com/news/child-saves-mother-iphone-siri-uk/
https://www.cnet.com/news/child-saves-mother-iphone-siri-uk/
https://assistant.google.com/
https://alexa.amazon.com/
https://www.abe.ai/blog/how-secure-are-chatbots/
https://www.abe.ai/blog/how-secure-are-chatbots/
https://www.artificial-solutions.com/blog/chatbots-financial-services-benefits-use-cases
https://www.artificial-solutions.com/blog/chatbots-financial-services-benefits-use-cases
https://www.hyperledger.org/use/fabric
https://nodejs.org/en/
https://expressjs.com/
https://cloud.google.com/dialogflow
https://www.hyperledger.org/use/caliper

	Introduction
	Background
	Blockchain
	Chatbot

	Threat Modelling & Requirement Analysis
	Threat Modelling
	Requirement analysis

	Architecture & Implementation
	Blockchain platform
	dApp
	Chatbot

	Protocol Flow
	Evaluation
	User Creation
	Balance Transfer
	Balance Query

	Discussion
	Analysing Requirements
	Advantages & Limitations
	Future Work

	Conclusion
	References

