
EFAS Score - Validation of Finnish and Turkish Versions by the Score Committee of the European Foot and Ankle Society (EFAS)

Martinus Richter Per-Henrik Agren Jean-Luc Besse Maria Coester Hakon Kofoed Nicola Maffulli Martijn Steultjens Kaan Irgit Mikko Miettinen Jussi P. Repo Esat Uygur

PII: S1268-7731(20)30042-4

DOI: https://doi.org/doi:10.1016/j.fas.2020.03.004

Reference: FAS 1428

To appear in: Foot and Ankle Surgery

Please cite this article as: Richter M, Agren P-H, Besse J-L, Coester M, Kofoed H, Maffulli N, Steultjens M, Irgit K, Miettinen M, Repo JP, Uygur E, EFAS Score - Validation of Finnish and Turkish Versions by the Score Committee of the European Foot and Ankle Society (EFAS), Foot and Ankle Surgery (2020), doi: https://doi.org/10.1016/j.fas.2020.03.004

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

1 EFAS Score - Validation of Finnish and Turkish Versions by the

- 2 Score Committee of the European Foot and Ankle Society
- 3 **(EFAS)**

4

Martinus Richter^{a, 1}, Per-Henrik Agren^{b, 2, *}, Jean-Luc Besse^{b, 3, *}, Maria Coester^{b, 4, *}, Hakon Kofoed^{b, 5, *}, Nicola Maffulli^{b, 6, *}, Martijn Steultjens^{c, 7, *}, Kaan Irgit^{d, 8, *}, Mikko Miettinen^{d, 9, *}, Jussi P. Repo^{d, 10, *}, Esat Uygur^{d, 11, *}

- ^{a-d} Score Committee European Foot and Ankle Society, c/o European Foot and Ankle Society (EFAS), Brussels, Belgium
- ^a Head and core member
- ^b Core member
- ^c Outcome measure development expert and core member
- d National affiliate member
- * Equal coauthor
- Department for Foot and Ankle Surgery Rummelsberg and Nuremberg, Schwarzenbruck, Germany
- ² Stockholms Fotkirurgklinik, Sophiahemmet University, Stockholm, Sweden
- Laboratoire de Biomecanique et Mecanique des Chocs, Universite Lyon, Bron Cedex, France and Service de Chirurgie Orthopedique et Traumatologique, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Benite Cedex, France.
- Department of Clinical Sciences and Orthopedics, Skane University Hospital, Malmoe, Sweden and Department of Foot and Ankle Surgery, Capio Movement, Halmstad, Sweden
- ⁵ Charlottenlund, Denmark
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK

- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
- Department of Orthopaedics and Traumatology, Pendik Training and Research Hospital, Marmara University, Istanbul, Turkey
- Department of Orthopedics and Traumatology, Peijas Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Orthopedics and Traumatology, Central Finland Health Care District, Jyvaeskylae, Finland
- Department of Orthopaedics and Traumatology, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey

Corresponding author:

Score Committee European Foot and Ankle Society (EFAS)
European Foot and Ankle Society (EFAS)
280, Boulevard du Souverain
1160 Brussels
Belgium

5

6

7 Abstract

- 8 Background
- 9 The Score Committee of the European Foot and Ankle Society (EFAS)
- 10 developed, validated, and published the EFAS Score in seven European
- 11 languages (English, German, French, Italian, Polish, Dutch, Swedish). From
- 12 other languages under validation, the Finnish and Turkish versions finished data
- 13 acquisition and underwent further validation.
- 14 Methods

15	The EFAS Score was developed and validated in three stages: 1) item
16	(question) identification (completed during initial validation study), 2) item
17	reduction and scale exploration (completed during initial validation study), 3)
18	confirmatory analyses and responsiveness of Finnish and Turkish version
19	(completed during initial validation study in seven other languages). The data
20	were collected pre-operatively and post-operatively at a minimum follow-up of 3
21	months and mean follow-up of 6 months. Item reduction, scale exploration,
22	confirmatory analyses and responsiveness were executed using classical test
23	theory and item response theory.
24	Results
25	The internal consistency of the scale was confirmed in the Finnish and Turkish
26	versions (Cronbach's Alpha >0.8). Responsiveness was good, with moderate to
27	large effect sizes in both languages, and evidence of a statistically significant
28	positive association between the EFAS Score and patient-reported improvement.
29	Conclusions
30	The Finnish and Turkish EFAS Score versions were successfully validated in the
31	orthopaedic ankle and foot surgery patients, including a wide variety of foot and
32	ankle pathologies. All score versions are freely available at www.efas.co.
33	
34	Keywords
35	Score; Foot; Ankle; Validation; PROM
36	
37	Introduction
38	The Score Committee of the European Foot and Ankle Society (EFAS)
39	developed, validated, and published the EFAS Score in seven European
40	languages (English, German, French, Italian, Polish, Dutch, Swedish)[1]. The

41	score covers pain and physical function. The EFAS Score is internally consistent,
42	unidimensional and responsive to change in samples of orthopaedic foot and
43	ankle surgery patients[1]. The score contains six questions. The maximum score
44	is 24 points (best possible), and the minimum 0 points (worst possible). The
45	language-specific cross-cultural validation was necessary because simple
46	translation of a validated score does not necessarily result in an instrument that
47	provides valid scores in the target language[1]. This issue is especially important
48	for Europe with numerous languages[1]. The most spoken mother tongues in
49	Europe are German (16%), English (13%), Italian (13%), French (12%), Spanish
50	(8%), Polish (8%), Romanian (5%) and Dutch (4%) (source Wikipedia, January
51	16, 2020). Therefore, a need for different language-specific (validated) scores,
52	especially in Europe, is clear[1]. After having validated the EFAS Score in seven
53	languages initially, the data acquisition in eight other languages (Arabic, Danish,
54	Finnish, Hungarian, Norwegian, Portuguese, Spanish, Turkish) started. This data
55	acquisition was finished in Finnish and Turkish so far and the results of the
56	validation process and the results scores are presented.
57	
58	Methods
59	The EFAS patient-reported outcome measure (PROM), the 'EFAS Score', was
60	developed and validated in three stages: 1) item identification, 2) item reduction
61	and scale exploration, 3) confirmatory analyses and responsiveness[1].
62	
63	Type of score (initial score development)[1].
64	A questionnaire-based PROM, with a 5-point Likert scale (0-4) was chosen[1].
65	
66	Questions - Item identification (initial score development)[1]

67	In the first stage of the initial validation, potentially relevant items from existing
68	questionnaires were identified[1]. Given the low relevance of items related to
69	sports activities for some diagnostic groups, it was decided at this point to
70	develop two separate scores: a general item score and a sports-specific score[1]
71	In total, 31 general items and 7 sports-specific items were taken forward into the
72	second phase of the project[1].
73	
74	Item reduction and scale exploration (initial score development)[1].
75	Through a process of forward and backward translation performed by bilingual
76	translators, the original English pool of 38 items was translated into German,
77	French and Swedish[1]. These four language versions were then used for the
78	Stage 2 data collection[1]. Participants were recruited from orthopaedic foot and
79	ankle surgery departments[1]. Inclusion criteria for participants were clinical and
80	imaging indications for foot and ankle surgery and age ≥ 18 years[1]. No
81	exclusion criteria were used other than an inability to complete a written
82	questionnaire[1]. Data collection was performed in France, Germany, Sweden
83	and Ireland[1]. In addition to providing an answer to each item on a 5-point
84	scale, all participants also rated the relevance of the item to their situation on a 5-
85	point scale[1].
86	
87	Following data collection, the following analytic steps were taken to reduce the
88	item pool into one general PROM and one sports PROM[1].
89	1. Items with a ceiling effect, low perceived relevance and a high proportion of
90	missing values were noted and shortlisted for exclusion in subsequent
91	steps[1].

92	2.	A principal component analysis (PCA) was performed[1]. At the end of this
93		step, the remaining items in their respective principal components would
94		provide optimal scale reliability according to classic test theory[1].
95	3.	An Item-response theory (IRT) analysis was performed for each of the
96		identified scales (i.e., principal components) to further reduce the number of
97		items and optimize scale unidimensional[1].
98		
99	Со	nfirmatory analysis and responsiveness (initial score validation)[1]
100	Da	ta collection for this final stage of the initial validation took place in the four
101	ori	ginal language versions, as well as Dutch, Italian and Polish[1].
102		
103	Со	nfirmatory analysis and responsiveness Finnish and Turkish versions
104	Da	ta collection stage of the validation was performed in Finland and Turkey.
105	Inc	lusion criteria for participants were scheduled foot and ankle surgery and age
106	≥ 1	8 years. No exclusion criteria were used other than an inability to complete a
107	wri	tten questionnaire. Data were collected preoperatively and at postoperative
108	foll	ow-up. Minimum postoperative follow-up of 3 months and mean follow-up of 6
109	mo	nths planned, collecting at least 100 completed score sheets. To confirm the
110	inte	ernal consistency for each language version, Cronbach's Alpha of the EFAS
111	Sco	ore was computed for each language version separately[1]. To establish the
112	res	ponsiveness of the EFAS Scores, both distribution-based and criterion-based
113	ana	alyses were used[1]. Distribution-based measures of responsiveness included
114	the	effect size (ES) and minimal important difference (MID)[1]. The criterion-
115	bas	sed measure of responsiveness used was the linear association (Pearson's
116	cor	relation) between improvement on the EFAS Score and a 5-point Likert scale

117 anchor question: did the surgery improve the foot and/or ankle problem? (0= no, 118 not at all; 4 = yes, very much)[1]. 119 The ES was calculated as the difference between the baseline and three to six-120 month follow-up mean EFAS Score, divided by the standard deviation of the 121 baseline EFAS Score[1]. 122 The MID was considered to be equal to the standard error of measurement 123 (SEM) of the baseline EFAS Score. The SEM was calculated as[1]: 124 (Formula 1), where: $SEM = SD * \sqrt{1-r}$ 125 126 127 = standard deviation of the EFAS Score baseline score SD 128 = value of Cronbach's Alpha for the EFAS Score at baseline. r 129 130 To assess the responsiveness of the EFAS Score using the MID, the percentage 131 of participants with an improvement in their EFAS Score between baseline and follow-up exceeding the MID was identified[1]. 132 133 134 Statistical analyses were performed in SPSS (IBM SPSS Statistics 23, IBM, 135 Armonk, NY, USA). The IRT modelling was performed in XCalibre 4 (Assessment 136 Systems, Inc.) 137 138 **Ethics** 139 Approvals from the relevant ethical committees in different contributing countries

141

140

were obtained, adhering to local legislation.

142

143	Results
144	Table 1 and 2 show the language-specific demographic data (Table 1) and
145	diagnoses (Table 2) for the patient samples.
146	
147	Confirmatory analyses and responsiveness
148	The internal consistency of the scale was excellent in both language versions.
149	Cronbach's Alpha was 0.84 in Finnish and 0.81 in Turkish. Responsiveness of
150	the EFAS Score is shown in Table 3 and Figures 1a and b. Large effect sizes
151	(ES>0.8) were found in both language versions. A clear majority of patients
152	showed a minimally important difference following surgery, 67.7% in Finnish and
153	79.4% in Turkish. The change in EFAS Scores between baseline and follow-up
154	was significantly correlated with the patient-reported change in health status.
155	
156	Discussion
157	The EFAS Score was successfully validated in Finnish and Turkish. Not all
	The El 7to ocole was successially validated in Filmish and Farkish. Not all
158	measurement properties of the EFAS Score have been established. In particular
158 159	
	measurement properties of the EFAS Score have been established. In particular
159	measurement properties of the EFAS Score have been established. In particular test-retest reliability, i.e. reproducibility of the score in a stable (pre-surgery)
159 160	measurement properties of the EFAS Score have been established. In particular test-retest reliability, i.e. reproducibility of the score in a stable (pre-surgery) population, was not included in the initial validation and the present study[1]. The
159 160 161	measurement properties of the EFAS Score have been established. In particular test-retest reliability, i.e. reproducibility of the score in a stable (pre-surgery) population, was not included in the initial validation and the present study[1]. The MID as reported in this and the initial validation study was based on the internal
159 160 161 162	measurement properties of the EFAS Score have been established. In particular test-retest reliability, i.e. reproducibility of the score in a stable (pre-surgery) population, was not included in the initial validation and the present study[1]. The MID as reported in this and the initial validation study was based on the internal consistency of the scale (Cronbach's Alpha) rather than test-retest reliability[1]. In
159 160 161 162 163	measurement properties of the EFAS Score have been established. In particular test-retest reliability, i.e. reproducibility of the score in a stable (pre-surgery) population, was not included in the initial validation and the present study[1]. The MID as reported in this and the initial validation study was based on the internal consistency of the scale (Cronbach's Alpha) rather than test-retest reliability[1]. In future, if the test-retest reliability becomes available, this may lead to an
159 160 161 162 163 164	measurement properties of the EFAS Score have been established. In particular test-retest reliability, i.e. reproducibility of the score in a stable (pre-surgery) population, was not included in the initial validation and the present study[1]. The MID as reported in this and the initial validation study was based on the internal consistency of the scale (Cronbach's Alpha) rather than test-retest reliability[1]. In future, if the test-retest reliability becomes available, this may lead to an adjustment in the SEM and therefore MID of the EFAS Score.
159 160 161 162 163 164 165	measurement properties of the EFAS Score have been established. In particular test-retest reliability, i.e. reproducibility of the score in a stable (pre-surgery) population, was not included in the initial validation and the present study[1]. The MID as reported in this and the initial validation study was based on the internal consistency of the scale (Cronbach's Alpha) rather than test-retest reliability[1]. In future, if the test-retest reliability becomes available, this may lead to an adjustment in the SEM and therefore MID of the EFAS Score. The process to develop the EFAS Sports Score was ultimately unsuccessful

169	result in a unidimensional EFAS Sports Score[1]. Based on the findings of the
170	IRT model, a 4-item EFAS Sports Score could be considered, as this was the
171	best-performing option[1]. The EFAS Sports Score was included in the data
172	acquisition of all languages because this was part of the initially defined
173	validation process that was decided not be changed during the process[1].
174	
175	In conclusion, the Finnish and Turkish EFAS Score versions were successfully
176	validated in the orthopaedic ankle and foot surgery patient population, including a
177	wide variety of foot and ankle pathologies. All score versions are freely available
178	at www.efas.co.
179	
180	Acknowledgements
181	The EFAS Score Committee thanks the following contributors for data
182	acquisition: Antti Latvala, Department of Orthopedics and Traumatology, Oulu
183	University Hospital, Oulu, Finland; Alar Toom, Department of Surgery, Central
184	Finland Health Care District, Jyvaeskylae, Turkey; Emre Baca and M. Utku Ciftci,
185	Orthopaedics and Traumatology, Bakirkoy Sadi Konuk Training and Research
186	Hospital, Istanbul, Turkey; Omer Büyüktopcu, Orthopaedics and Traumatology,
187	Marmara University, Faculty of Medicine, Istanbul, Turkey.
188	
189	
190	Reference
191	1. Richter M, Agren PH, Besse JL, Coester M, Kofoed H, Maffulli N,
192	Rosenbaum D, Steultjens M, Alvarez F, Boszczyk A, Buedts K, Guelfi M,
193	Liszka H, Louwerens JW, Repo JP, Samaila E, Stephens M, Witteveen AGH.
194	EFAS Score - Multilingual development and validation of a patient-reported

outcome measure (PROM) by the score committee of the European Foot and

196 Ankle Society (EFAS). Foot Ankle Surg 2018; 24(3): 185-204.

197

198 Figure 1a and b. Association between change in EFAS Score from pre- to post-

surgery and patient self-reported improvement (a, Finnish; b, Turkish)

200

201

Table 1 Demographic data. N = sample size; F = Female; L/R/B =

202 Left/Right/Both; N/A = not available

	n	Age (mean±SD)	Sex (% F)	Affected side (% L/R/B)
Finnish	130	53.8±15.9	80.0	40.0/57.7/2.3
Turkish	131	46.9±14.7	70.0	40.8/42.1/17.1

203204

205

206

Table 2. Prevalence of primary diagnoses, in %, based on ICD-10 codes

	Osteoarthritis (M19)	Deformities (M20-21, Q66)	Soft-tissue disorders (M60-79)	Other musculoskeletal (M)
Finnish	13.8	54.0	11.7	12.3
Turkish	10.7	46.9	5.5	28.7

207

208 Table 3. Responsiveness of the EFAS Score.

209

	Finnish	Turkish
Duration of follow up in days: mean (std)	206 (77)	187 (39)
DISTRIBUTION-BASED METRICS		
Effect Size	0.88	1.23

SEM (baseline)	0.323	0.403
% of patients improving > SEM	67.7	79.4
ANCHOR-BASED METRIC		
Pearson correlation between change in EFAS-PROM and patient-reported improvement	0.37	0.25

210 211

212

213 Appendices

214 Appendix 1, EFAS Score, Finnish version

215 Appendix 2, EFAS Score, Turkish version