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Abstract

Mobility is a fundamental characteristic of human society that shapes various
aspects of our everyday interactions. This pervasiveness of mobility makes it
paramount to understand factors that govern human movement and how it varies
across individuals. Currently, factors governing variations in personal mobility are
understudied with existing research focusing on explaining the aggregate
behaviour of individuals. Indeed, empirical studies have shown that the aggregate
behaviour of individuals follows a truncated Lévy-flight model, but little
understanding exists of the laws that govern intra-individual variations in mobility
resulting from transportation choices, social interactions, and exogenous factors
such as location-based mobile applications. Understanding these variations is
essential for improving our collective understanding of human mobility, and the
factors governing it. In this article, we study the mobility laws of location-based
gaming – an emerging and increasingly popular exogenous factor influencing
personal mobility. We analyse the mobility changes considering the popular
PokémonGO application as a representative example of location-based games and
study two datasets with different reporting granularity, one captured through
location-based social media, and the other through smartphone application
logging. Our analysis shows that location-based games, such as PokémonGO,
increase mobility – in line with previous findings – but the characteristics
governing mobility remain consistent with a truncated Lévy-flight model and that
the increase can be explained by a larger number of short-hops, i.e., individuals
explore their local neighborhoods more thoroughly instead of actively visiting new
areas. Our results thus suggest that intra-individual variations resulting from
location-based gaming can be captured by re-parameterization of existing
mobility models.
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1 Introduction
Location-based gaming has steadily emerged as a popular pastime on smartphones,

and become a potentially effective way at promoting physical activity [1, 2, 3].

From a scientific standpoint, the most unique and interesting aspect of these games

is how they encourage and promote movement, which can improve physical and

mental health [4, 5], and be comparable to a health or a fitness app [1, 2, 3, 6, 7].

More generally, location-based games are examples of a broader class of smartphone

applications that attempt to promote physical activity – either directly through

recommendations or indirectly through objectives that are linked with physical lo-

cations [1, 2, 3, 8]. Other examples of applications in this category include varied

location-based services [9], online location-based social networks [10] and smart-

phone and wearable applications for physical activity [11]. In this article, we focus

on location-based games due to their immense popularity and their use of gamifica-
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tion, which has been shown to be among the most effective mechanisms for achiev-

ing sustained change in mobility [12, 13]. We study mobility changes in response to

location-based gaming through Pokémon GO, the best known, and one of the most

popular examples of location-based games. Pokémon GO remains among the most

popular mobile apps in many countries, it has over 100 million active users, and has

been downloaded over billion times in total. Pokémon GO is not an isolated success

story either with other location-based games, such as Zombies, Run!, Ingress,

Geocaching, Minecraft Earth and Harry Potter: Wizards Unite similarly being

highly popular.

Current research understanding suggests that location-based games, and related

applications, can have a sustained effect on mobility. Indeed, several studies have

demonstrated smartphone applications to have an effect on the daily activity levels

of their users [1, 8, 14]. As an example, empirical studies based on pedometers

have demonstrated that Pokémon GO has an effect on mobility, resulting in an

increase of around 1400 steps for each day that the user plays the game, and the

total effect lasting for at least 30 days [1]. Similar findings have also been obtained

from quantitative analyses, e.g., Colley et al. [15] characterized players through

questionnaires and geostatistical analysis of game elements and highlighted that

Pokémon GO may have introduced significant changes to their mobility. These

studies, however, have also shown that the retention of the application and the effect

on physical mobility tends to be short-lived with persuasion mechanisms, such as

gamification, and social interactivity, being central to prolonging the positive effect

on mobility.

While the overall effect on physical activity and movements has been established,

important gaps still exist in our understanding. In particular, little information

currently exists on how this increase affects the characteristics of the user’s mobility

patterns or which factors mediate these effects, and more importantly, how these

changes affect the underlying laws governing human mobility. Indeed, as many of

the game mechanisms in Pokémon GO are centered around physical movement,

the changes could result from increases in everyday physical activity instead of

changes in personal mobility patterns. In this article, we explore how the changes

in mobility induced by Pokémon GO relate to the laws governing human mobility,

in an attempt to fill up this gap in current scientific understanding. We analyse

displacement data captured from two sources to obtain a detailed view of mobility

patterns and how they are influenced by Pokémon GO. The first data set (Dataset-

A) consists of mobile phone app logging (Carat, an energy-awareness app) from over

3900 users, and the second (Dataset-B) of location-tagged social media (Twitter)

from over 21500 users. The granularity of location information differs in these data

sets, with social media providing GPS coordinates and app logging providing coarse

grained estimates of total displacements with approximately 2km resolution. Our

longitudinal dataset captures time before, during and after Pokémon GO’s initial

peak in popularity from January 2016 to June 2017 (18 months), allowing us to

better study the duration of the game’s effects, as well as to account for potential

novelty effects (see the Section Datasets for details about the data, data collection

process, and data validity).

The results of analysis show that Pokémon GO does indeed increase mobility –

in line with previous findings – but the characteristics governing mobility remain
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consistent with a truncated Lévy-flight model and that the increase in mobility

can be explained by a larger number of short-hops, i.e., individuals explore their

local neighborhoods more thoroughly instead of actively visiting new areas. Our

results thus suggest that intra-individual variations resulting from location-based

gaming can be captured by re-parameterization of existing mobility models. Be-

sides offering novel insights into variations in personal mobility and contributing to

our collective scientific understanding of human mobility, our results have practical

implications to transport policy planners (e.g., improve design of on-demand trans-

port networks), epidemiology (e.g., explaining characteristics of mobility patterns

and offering insights into potential disease transmission routes), urban sciences. and

other fields.

2 Datasets
We analyze mobility through two datasets, one collected by instrumenting mobile

phones with the Carat energy-awareness applications, and the other obtained from

Twitter. We include data from January 2016 to March 2018 from Carat and January

2016 to June 2017 from Twitter. The target game Pokémon GO was released in

July 2016. To assess the impact of Pokémon GO on gamers’ daily mobility and to

validate the generality of our findings, we make compare Pokémon GO use in each

of the two datasets against contrasting but complementary baselines. For Carat we

compare Pokémon GO users with players of Clash Royale, a non-location-based

game that was one of the most popular games released in 2016, whereas for Twitter

we compare gamers and non-gamers (i.e., infected vs. control-group).

2.1 Dataset A: Carat

The first major dataset used in this study was collected by application logging

integrated as part of the Carat[1][16] smartphone application. This Android and iOS

app collects information from the mobile device it is running on and recommends

personalized actions aimed at increasing battery life [17].

Carat uses energy-efficient and non-invasive instrumentation to record the state

of the device, including a list of running apps, mobile network technology being

used (e.g., WiFi or LTE), and distance traveled since the last record. Each of these

values is recorded at every 1% battery level change (either charging or discharging)

and it also contains a uniquely identifiable id per user and timestamp. The Carat

application does not run on the background, but instead registers to the smart

device OS’s battery change events. Because of this, Carat’s data can miss events

that happen when the device is in deep sleep, when the application is evicted from

memory by the OS, or when the Carat application has been terminated manually

by the user. This results in a temporally sparse dataset that requires preprocessing

with suitable statistical methods.

Since its first release in 2012, Carat has been deployed in over one million mobile

devices in dozens of countries. For our study, we analyze a subset of these data

spanning from January/2016 until March/2018. We consider only Android users

as the IOS version of the time no longer supported logging the list of running

[1]http://carat.cs.helsinki.fi/
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applications[2]. This subset includes 173.6 million records from 74,000 users out of

which 3,996 played the game at least once on Android. We classify a Carat user as a

gamer from his/her first record containing Pokémon GO as a running application.

To identify the effect of Pokémon GO on mobility, in our analysis of the Carat

dataset we compare the effects of Pokémon GO and Clash Royale – a non-location-

based game – on their players. We ensure these gamers had records before the day

of the installation of the respective app as well as records after the last day it was

observed in our records. Released in March/2016, Clash Royale[3] is a multi-player

game in which users battle in support of their clans. Fundamentally, while Pokémon

GO requires its users to physically move to reach other players and in-game objects,

Clash Royale is agnostic to any sensor in the phone and allows any two or more

players to interact regardless of their location. We study a total of 1, 323 users who

played this game at least once on Android. Table 4 lists the number of users of these

two games in the Carat dataset (for the top 10 countries).

For every new Carat record, the app stores the geographical coordinates of the

device locally. For that, it queries the coarse-grained last known location from the

Location Manager API for Android. The individual measurements are not stored

by Carat, and only distance between consecutive records is transferred to the back-

end for further analysis and location information from older records is destroyed.

The benefits of this approach are twofold: lower battery consumption since it does

not use the power-hungry GPS chip of the device, and the privacy of the user

is preserved by never disclosing the exact location of the user. One limitation of

this method is the variable accuracy of these location services. The distribution of

displacements from Carat shows an abrupt inflection (knee) at around 2 km. This

may be due to Android’s coarse-grained location granularity, which mostly seems

to report location with a cell-tower precision (around 2km accuracy).

2.2 Dataset B: Twitter

As our second dataset, we analyse 8.7 million geotagged tweets from over 21,500

users in 15 different countries. Studying this diversity of countries allowed us to

mitigate the impact of possible regional bias in our analyses. To obtain these records,

we first queried Twitter’s web page following a certain criterion, resulting in a list

of users. From each user account in this list, we downloaded its entire timeline (set

of tweets) through Twitter’s REST API[4], keeping only those records with a geotag

(17.4% of the total). For both gamers and non-gamers the query criteria were (i)

a given location (e.g., Bangkok, Thailand), and (ii) a period within the time of our

study. This approach ensures the availability of these data for reproducibility, as the

access to Twitter’s REST API[5] is the only requirement. Furthermore, Twitter’s

developer policy precludes long-term storage of location-based data.

For gamers, we require the string #PokemonGo to appear in the tweet (or some

capitalization alternatives, e.g., #pokemongo). We collected tweets from over 8,900

[2]iOS 9.3.4 was released on August 4, 2016: https://www.macrumors.com/2016/08/04/

apple-releases-ios-9-3-4-with-security-fix/
[3]https://clashroyale.com

[4]https://developer.twitter.com/
[5]https://developer.twitter.com/en/developer-terms/agreement-and-policy

https://www.macrumors.com/2016/08/04/apple-releases-ios-9-3-4-with-security-fix/
https://www.macrumors.com/2016/08/04/apple-releases-ios-9-3-4-with-security-fix/
https://clashroyale.com
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gamers. Manual inspection of 1% randomly sampled tweets from this set revealed

the content of the tweet to be associated with the game in 90% of the cases (e.g.,

screenshots or text about in-game actions), in line with the measurements of Althoff

et al. which were based on queries from a web search engine [1]. To eliminate

unwanted noise from bots in our Twitter set, we used the Botometer [18] API

and identified 3.1% of such profiles, which were then discarded. The list of cities

included in this study, along with the corresponding total number of gamers is

shown in Table 4.

The average number of tweets for gamers and non-gamers was statistically similar

(mean (µ): 390 vs. 351, median: 200 vs. 159, probability of the two distributions

being identical p < 0.001) as well as the inter-arrival-time of tweets per user (in

hours, µ: 57.8 vs. 58.1, median: 7.68 vs. 8.13, p < 0.001). In all cities analyzed,

these geo-tagged tweets were similarly distributed in space among both groups,

with urban areas resulting in higher densities of tweets.

2.3 Supporting Dataset — Google Trends

To define the periods of highest activity of a game, we compared some of the afore-

mentioned metrics with the Google Trends index[6] of Pokémon GO as a search

term (G). This metric measures the popularity of a search term, with values rang-

ing from 0 (lowest) to 100 (highest). It allows us to validate the trendiness of the

game per country over a period of time.

2.4 Dataset Validity

The combination of datasets used in our work gives us insights on various aspects of

how mobile location-based games influence human mobility. Our two main datasets

cover large amounts of users during periods before the release of the studied ap-

plication, and the months during which it had its highest popularity in various

countries. Carat’s longitudinal dataset contains fine grained measurements about

users’ displacements and app usage, enabling the study of the impact of the game

on mobility as well as investigating various aspects of game retention, such as the

availability of cellular networks and battery consumption. Twitter, in turn, allows

us to quantify the impact of the game on users’ visited areas by labeling those

discussing the game as gamers.

Carat records are captured without user intervention but contain only displace-

ments between samples. Twitter records contain a precise geographical location but

their availability is subject to the user’s desire to share the information. These differ-

ent characteristics allow us to study complementary aspects of the effect Pokémon

GO has on its gamers which would not be possible through a single source.

3 Methods
In this section, we describe the methods and metrics used to study the datasets de-

scribed in Section 2. Table 2 lists the probability functions P (x) of the distributions

used to model our data.

[6]https://trends.google.com/

https://trends.google.com/
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3.1 Spatial Clustering

Given the strong urban aspect of the game and small range of distances traveled

while playing it (< 10 km, < 6.2mi) [19, 15], we applied a series of clustering

algorithms to identify which records are from the user’s normal geographic area.

Specifically, we classify Twitter records as local or away depending on their distance

from the user’s city. These labels were computed with respect to the city from which

a user was initially discovered. Since users may visit other cities and countries which

may be many kilometers away, we focus our study in the local area of each city and

discard all samples labeled as away.

We classify a given city C using a two-stage clustering process. Let (CS) denote all

of the geographical coordinates of C regardless of user-id. We first cluster CS using

DBSCAN [20] with ε = 2 km (maximum distance for two points to be in the same

cluster). We then calculate the center of mass Ccm of the cluster with the most

records and compute the distances between every point in CS and Ccm, namely

ds,cm. Finally, we cluster the log transformation of these distances (ρ = log(ds,cm))

using KMeans with k = 2 clusters (number of clusters the algorithm should look

for). These algorithms were chosen for their simplicity and their characteristics

making them well-suited for the two phases. DBSCAN is a density-based cluster-

ing algorithm that allows grouping points based on a maximum distance, whereas

KMeans offers control for the number of clusters to extract in the second phase.

The resulting probability distribution of ρ showed a consistent separation between

the local and away clusters at around ρ = 5 (100 km or 62 mi) in all 18 cities studied.

We conjecture that this is the typical maximum commuting distance a person would

regularly travel, regardless of geographical location. From the classified records, for

a given city C, we studied the trajectories of local tweets of users who have at least

25% of their records at C.

3.2 Place Extraction

For analysing mobility using displacement data, we need to identify hops that cor-

respond to successive trajectories of users. We accomplish this using an approach

that is motivated by algorithms designed for extracting significant locations from

sequence data [21]. First, we define a stop as a sequence of records following three

rules: (1) no displacements are observed, (2) intervals between samples are shorter

than a threshold (∆T < τ), and finally (3) the sequence spans a minimum amount

of time (also τ for simplicity). Furthermore, we define a movement following rule

(2) as well as being interrupted by any stop. To further benefit from Carat’s faster

sampling rate, for our analysis we require a movement to be immediately preceded

(also within a max interval τ) by a stop. This approach significantly decreases the

uncertainty about when a movement actually started and allows us a more accurate

view of the users’ mobility. For this analysis, we set τ to 15 minutes, allowing us to

capture stops of that duration while accounting for sampling bias as well as very

shorts stop along the way (e.g. traffic lights) and ensuring movements are more

likely to start from important locations the user might visit.

3.3 Temporal Analysis

Figure 1 shows the level of Pokémon GO activity in the second half of 2016, through

4 different metrics: number of installations (I, Carat), number of gaming sessions
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(S, Carat), number of tweets with #pokemongo (Nt), and the Google search index

for Pokémon GO. The shaded area in all plots highlights the highest levels of activ-

ity, between July/2016 (release of the game) and end of September/2016. For the

analysis of the Twitter dataset, we therefore define 3 equally long periods for our

study: before the game (April-June/2016), during (July-September/2016) and after

(October-December/2016).

Since we are analyzing the overall impact of the game on gamers’ mobility, and

comparing it with non-gamers, we only consider users who had records in all three

of the periods as well as gamers whose first game activity (e.g., tweet containing

#pokemongo) was between beginning of July and end of September/2016.

To ensure the validity of our results, we compare observations across the two

datasets. From Twitter, the average time between the first and last tweet containing

#pokemongo is 59.2 days (median: 34.6 days ,σ: 69.2 days), significantly smaller

than the number of days gamers were observed playing Pokémon GO on Carat (99

days). Despite this difference, both present very similar power law exponents for the

distribution of these reletable time intervals (Carat: α = 1.285, Twitter: α = 1.305).

3.4 Radius of Gyration (rg)

This commonly used mobility metric [22] conveys the size of the dispersion of a

user’s studied trajectories. It can be interpreted as the radius of a circle covering

the trajectories of a user, centered at the center of mass of all observed points.

A gamer that moves to new areas would thus have an increased rg, but it would

remain the same for a gamer playing in the same area. The radius of gyration rg is

calculated with Equation 1:

rg(t) =

√√√√ 1

nc(t)

nc∑
i=1

(−→ri −−−→rcm)
2

(1)

where −−→rcm = 1
nc

∑nc
i
−→ri represents the center of mass of all visited locations by a

given user, and −→ri represents location i = 1, . . . , nc(t) up to time t.

For the Twitter data set, Figure 2 depicts the probability distribution P (rg) and

the corresponding best fit model of a lognormal distribution (i.e., ln(rg) is normally

distributed). Given that our analysis is constrained to local points, we therefore

also limit trip lengths (i.e., we study regular flights of less than 100 km in the

studied cities). Under similar constrained circumstances, a lognormal distribution

has been observed by Zhao et al. [23]. Both user groups had very similar distribution

parameters, µ = 2.44 and σ = 0.705 for gamers and µ = 2.43 and σ = 0.7244 for

non-gamers.

The distribution of P (rg) being well described by a lognormal function implies

that this mobility metric is a result of a multiplicative random process [24]. There-

fore, we conjecture that the area covered by a user’s local trajectories is a result

of mechanisms such as transport prices, locations of origin and destination and

availability of certain means of transportation.
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3.5 Isotropy ratio (σy/σx)

While the radius of gyration rg describes the size of the area covered by a user’s

trajectory, isotropy [22] describes how a user’s trajectories are dispersed inside this

area given a common reference frame (ex, ey). For example, a highly anisotropic set

of trajectories would have most of its points dispersed along one of these axes and

fewer close to its orthogonal axis. This metric allows us to capture changes in the

visits of gamers who play in the vicinity of previously visited locations (and whose

rg may not change).

As proposed by Gonzalez et al. [22], using moment of inertia, we calculate the

intrinsic reference frame of a user’s trajectories (e1, e2), then rotate it around its

center of mass into a common reference frame (ex, ey). Finally, the dispersion of the

observed points of a user can be calculated along each axis of this common reference

frame. We use the ratio (σy/σx) of these two since it captures the proportionality

of these dispersions along both axes.

For Twitter, Figure 3 shows the distribution of σy/σx for varying values of rg.

Given that our analysis is constrained to local points, the average ratio observed

is higher than in previous works [25, 22], especially for higher values of rg. This

outcome possibly captures the tendency for more isotropic trajectories in urban

environments. The behavior was similar for both gamers and non-gamers.

3.6 Number of visited locations (ϕ)

To perform a user-centric as well as a location-centric study of visits, we perform

spatial binning of the observed tweets. We bin every observed point to the nearest

intersection of a mesh grid of 250 meter by 250 meter square cells. Every studied

city is covered with this grid. The binning allows us to correct for GPS inaccuracies,

as well as group visits which may fall within the area of a large city block.

For Twitter, the distribution of the number of visited locations (ϕ) between Jan-

uary/2016 and June/2017 is well-described by a stretched exponential (Tab. 2). For

this analysis, we only considered users who were registered before 2016. With a

stretching exponent β close to 1, its behavior can be approximated to that of an

exponential distribution. This allows us to estimate the number of visits a user will

make after some time t by ϕ(t) = 1/λ(t), where λ(t) is the average number of visits

per user, and the value of ϕ(t) will be independent of the users already sampled.

If this observation persists for gamers while playing, the game would have a differ-

ent impact on each player’s visitation distribution. The distribution fit parameters

for gamers were λ = 0.0226 and β = 0.946, whereas for non-gamers we observed

λ = 0.0193 and β = 0.916. Note the higher average visitation (1/λ) for non-gamers.

3.7 Gaming session (S)

To better understand the behavior of users while playing the game, we define a

gaming session (S ). Figure 4 depicts the distribution of inter-record-time (∆T ) for

all Carat users. A gaming session is then defined as a sequence of records (containing

the game) in which ∆T < 5 minutes (shaded area in P (∆T )). A limitation of the

Carat dataset is that the application can only record device behavior when running.

The background process of Carat may be terminated by the OS at any time when

the user is not actively using the Carat app. Therefore the data from Carat are
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inherently sparse, and records may be missing throughout the day. Given these

constraints, for any analysis of S, we only consider those longer than 5 minutes.

Mobile application usage has been shown to reflect geographic and cultural bound-

aries [26], which suggests that cultural factors could mediate the results. To demon-

strate that this is not the case, and that Pokémon GO usage is highly similar across

countries, Figure 5 and Figure 6 compare the gaming session times of Pokémon

GO and Clash Royale across different countries included in our analysis. From

these plots we can observe that the session times for both Pokémon GO and Clash

Royale are highly similar across all countries, suggesting that cultural factors have

little or no effect on how the games are played. Indeed, the distributions of gaming

sessions shown in Figure 5 and Figure 6 are consistently similar across the different

countries.

3.8 Distance traveled between consecutive records (∆r)

Given the set of (local) tweets from a user, ∆r is the computed distance between

two consecutive records. For simplicity and scalability, this distance is calculated

as a straight line between these two points, and not the length of the shortest

path between them [27]. Since we are only considering points within an urban

environment, we discard all ∆r where the corresponding velocity was > 120 km/h

(75mph, maximum speed limit on highways).

For Twitter, Figure 7 depicts the probability distribution P (∆r) for a fixed time

interval (∆To) as well as for the entire dataset (D). The former shows that P (∆r) is

not affected by different sampling rates when only local records are considered. The

latter shows a multi-modal distribution of P (∆r), composed by a truncated power

law (fit 1) and an exponential (fit 2), divided at an inflection point around 30 km

(18.6mi). Similar to results by Jurdak et al. [25], this result validates the multi-

modal aspect of human mobility, where short and long distances are covered using

different means of transportation. Parameters of each distribution fit had similar

values between user groups, summarized in Table 3.

The first part of the model (fit 1) being a truncated power law implies a relative

proportionality between a distance traveled and its probability, up to a cut-off point

from which probabilities decrease much faster (∼ 1/λ). Likewise, the second part

of the model (fit 2) being an exponential implies that the probability of distances

traveled diminishes very fast, rendering very high values of ∆r extremely rare.

Since we are not able to distinguish between local and away points for Carat as

we did for Twitter, we limit our analysis of the former to displacements which are

smaller than 100 km (62 mi). Similar to our Twitter analysis, Figure 8 depicts a

multi-modal fit for P (∆r) with a truncated power law (fit 1) and an exponential

(fit 2), although for Carat data, the distribution is split at 50 km (31mi). Note

that Twitter users are more likely to share their location while at their destination,

whereas Carat is capable of sampling intermediate displacements. These scaling

differences can explain the different exponents of the power laws (αtwitter = 0.329,

αcarat = 1.469). It is interesting to note the similarities between datasets in the decay

parameters of the exponential cut-off in fit 1 (λtwitter = 0.08386, λcarat = 0.08346)

and the exponential in fit 2 (λtwitter = 0.03589, λcarat = 0.04505).
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3.9 Performance and Usability Mediate Mobility Change

To obtain further insights into factors mediating mobility, we next perform an anal-

ysis of how the increase in mobility correlates with different release versions of

Pokémon GO. To understand changes in technical functionality, we also correlate

our findings against Pokémon GO changelogs.

From Carat’s user base, the percentage of adoption for each version during the

first four months of its release is depicted in Figure 9. Changelogs of these early

versions point to battery issues being addressed in versions 0.31 and 0.33. Analysis

of the expected time a user played the game given the initial version they first played

shows a statistically significant increase of 117% (3.5 days to 7.6 days) between these

two versions. This result suggests that performance and usability effects mediate

mobility changes (and retention). Conversely, our results suggest that location-

based games may struggle at achieving persistent change in mobility if they have

performance or usability issues.

4 Results
4.1 Location Based Online Game introduces significant changes to mobility

We first validate that Pokémon GO indeed has a significant effect on mobility. To

demonstrate this, we split the records in Dataset-A (i.e., Carat) between week-days

and week-ends, and categorize users into three groups: low, intermediate, and high

engagement users, according to the number of days they were observed playing (A:

[1,21) days, B: [21,90) days, C: 90 or more days). Separating week-days and week-

ends is essential for eliminating possible biases resulting from daily and weekly

routines in mobility characteristics [28, 29], whereas categorizing the users is neces-

sary to control for differing engagement levels [30, 31] (see Section 3). To control for

the effect of location-based game design features, we compare Pokémon GO against

Clash Royale, a mobile game without location-based features that was highly popu-

lar during the observation period. The average daily displacements calculated from

Dataset-A are summarized in Table 1. Statistically significant increases were found

for groups B and C (over 2km and 1km, respectively) when comparing Pokémon

GO use to time before it. The increase is significant for both weekdays and weekends

(p < 0.02). For low engagement users and users of Clash Royale, no statistically

significant differences were observed (p > 0.09). For groups B and C, the increase

in mobility persists even after Pokémon GO use ends.

To validate that the increase in daily displacements is not biased by the use of app

logging as a sampling mechanism or the user population of said app, we separately

compute the total daily ∆r from Dataset-B for all users with at least 3 records per

day. We split the users into a gamer and a control group depending on whether

they had used Pokémon GO or not. Similarly to the results for Dataset-A, we

observe a statistically significant increase in total daily ∆r for gamers during week-

days, from 13.1 km to 14.6 km (p = 0.03). Conversely, there is a decrease in ∆r for

control group from 16.2 km to 15.9 km (p = 0.03). The small, but nevertheless

statistically significant, decrease in mobility for the control group is likely explained

by a combination of different factors with seasonality and decreased retention, and

hence reduced Twitter activity, over time being among the contributing factors.

During week-ends, there were no statistically significant differences for gamers, but
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there was a decrease in total daily ∆r for control group users between the last two

periods (16.7 km to 15.2 km, p = 0.007).

4.2 Increased Mobility from exploring nearby vicinity

The increase in mobility could be explained by three hypotheses: (i) individuals

move to and explore new regions, (ii) they explore familiar regions more carefully,

or (iii) they engage in higher level of physical activity without exploring any new

areas. For example, an increase in step count, could result from increased everyday

routine activity instead of changes in personal mobility patterns. As Pokémon GO

incorporates several game mechanics that require physical activity from the users to

progress and to accumulate achievements with the game, it is essential to separately

analyze the extent to which increased mobility affects underlying mobility laws

(hypotheses (i) and (ii)) and to which it results from the game mechanics (hypothesis

(iii)). To explore the first hypothesis, we use Dataset-B to calculate the evolution

of rg, i.e., the radius of gyration across the different periods. We cluster users by

their rg before, during, and after the game at intervals of 5 km, up to 50 km and an

additional cluster for rg > 50 km. We observe a strong monotonic relationship in the

distributions of rg between each studied period (for all comparisons: Spearman’s

rank correlation coefficient rs > 0.75, p = 0). However, there were no significant

changes in rg across those months. For both the gamer and the control groups,

only those with initial rg values of 5 km and 10 km showed changes greater than

10%: gamers: 7.38 km and 11.18 km, control: 7.08 km and 11.36 km, respectively.

For all clusters and observed periods, a statistical test for distribution similarity

between gamers and control had ps > 0.05. The results thus strongly indicate

that the geographic area within which users move remains consistent over time

regardless of the user playing Pokémon GO or not, i.e., we find no support for the

first hypothesis.

To explore the second hypothesis, we assess the total number of locations visited

(ϕ) by users. For gamers we observe a small but statistically significant increase

during gameplay. Before exposure to the game (April-June/2016), gamers visited on

average 15.4 locations (p < 0.001) whereas for control users the respective average

number is 18. However, during the game, gamers visited two more locations than

before (17.4, p < 0.001) while for control, there was no statistically significant

difference in the number of locations visited before and during (18.9, p = 0.08).

This increase in visited locations implies that mobility changes are not a result from

trivial increases in everyday activity, but also a result from individuals exploring

familiar regions more thoroughly (i.e., hypothesis (ii)).

We next examine potential changes in the spatial distribution of mobility by

analysing isotropy ratios σy/σx (see Methods 3.5), i.e., uniformity of mobility. We

cluster users by their ratio before the game, at intervals of 0.2, from 0.2 to 0.8, and

analyze changes during Pokémon GO use. For users with a high anisotropy, we find

that Pokémon GO significantly increases their isotropy, i.e., their geographic dis-

tribution of mobility becomes more homogeneously distributed, further supporting

hypothesis (ii). For users with σy/σx = 0.2 before the game, we observed gamers

to have more isotropic trajectories than the control group users during game-

play (0.299 and 0.270 respectively, with p = 0.016). For all other clusters and peri-

ods there was no statistically significant difference between user groups (p > 0.05).
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Analysis of isotropy thus shows that characteristics of mobility largely remain in-

tact, with only individuals with a low isotropy (i.e., high anisotropy) experiencing

changes. These correspond to individuals whose mobility is dominated by long hops,

whom Pokémon GO can improve the balance of the mobility distribution.

Given the location-based nature of Pokémon GO, increases in mobility could be

associated with higher game playing time instead of an actual effect on physical

mobility. To explore this potential bias, we first calculate average session times

for Pokémon GO and Clash Royale players from Dataset-A. These are µPS = 26

minutes (median: 14.2 minutes, σ: 29.3 minutes) for Pokémon GO, and µPS =

28.6 minutes (median: 16.4 minutes, σ: 35 minutes) for Clash Royale, respectively.

The usage patterns thus are similar to other non-location-based games. Similar

patterns can be observed with the number of days users continue to play Pokémon

GO. Specifically, on average, we observe Pokémon GO gamers to play for 99 days

(median: 52.8 days, σ: 119.5 days), 21.5 total gaming sessions (median: 7 sessions,

σ: 45.9 sessions). For Clash Royale, gamers play on average for 95 days (median: 35

days, σ: 135 days), 16.1 sessions (median: 4 sessions, σ: 40.65 sessions). For both the

session times and the playing time we can observe significant differences between

mean and median values, suggesting the distributions are heavily skewed. As shown

in Section 3.7, the session times are also similar across different countries.

4.3 Pokémon GO increases the likelihood of short hops

We next analyze the mobility distribution before and after Pokémon GO to under-

stand how the changes affect the underlying mobility model. We use Dataset.B to

analyze the distribution of placements for both the gamers and the control group.

For both groups, mobility is consistent with a truncated Lévy-flight model, but

the ratio between short and long displacements changes between the two groups.

Specifically, the distribution of displacements follows a truncated power law com-

bined with an exponential (see Methods). Compared to baseline values shown in

Table 3, the value of long-tailed parameter α changes to significantly higher values

for gamers (αg = 0.35± 0.02) than for control (αc = 0.33± 0.02), i.e., gamers ex-

hibit an increase in the probability of short hops and a decrease in the probability

of long hops compared to control.

4.4 Better power management by the app led to greater effects on mobility

Pokémon GO was chosen as representative example of smartphone applications that

can promote physical activity, and other applications could have similar effects on

mobility. Findings in literature appear mixed on this aspect, showing that many ap-

plications only have a temporary effect on mobility [11]. This contrasts with studies

on Pokémon GO, which have almost consistently reported sustained change [1, 2, 3].

To better understand this discrepancy, we analyzed how the increase in mobility

differs across different versions of Pokémon GO, and correlated our findings against

technical change-logs (see Methods 3.9). We find mobility increases to be significant

only from Pokémon GO version 0.33 onward, which introduced significant battery

saving strategies. Specifically, the impact on daily mobility when starting to play

these initial versions of the game is statistically significant only with highly-engaged

users (i.e., players of group C, >90 days), whereas all users (i.e., groups A, B and C)
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starting Pokémon GO with a later version significantly change their mobility while

playing the game. Early reports of Pokémon GO linked the app with high battery

drain [32], which in turn has been linked with high attrition [33]. Our results sug-

gest that application design mediates mobility changes and that the discrepancy in

findings across different applications may be a result from differences in application

design and user-friendliness.

5 Discussions
Lack of physical activity has been tightly associated with several health prob-

lems [34, 35, 36], and ranks high amongst risk factors for premature death as well as

disability [37]. Understanding of how location-based games can alter users’ mobil-

ity can have a significant impact on future policies aimed at incentivizing physical

activity [36]. Indeed, physical activity can have health effects comparable to those

brought by medications [38], making our findings relevant for physicians and public

health.

Mobility laws are of paramount importance for disease transmission modeling as

mobility results in opportunities to meet other people and hence creates possible

situations where diseases can be transmitted [39, 40, 41]. Our results showed that

location-based games as an exogenous factor result in higher number of short hops

and hence can cause higher local transmission rates [42]. Reversely, while our study

focuses on the increase of mobility through location-based games, a reduction of

mobility could be also achieved with the appropriate game elements [15]. Such idea

could be implemented in order to curb the spread of infectious diseases by gamifying

the adoption of curfew measures as well as social distancing. Physical activity could

be retained by, e.g., rewarding users for increased step count or physical activity

(e.g., measured by heart rate sensors in a smartwatch) while requiring them to stay

within a small geo-fenced area.

Our findings are also interesting to urban scientists and policy makers. The anal-

ysis showed how exogenous factors can result in increased exploration of the local

region, which in turn is essential for understanding districts and their dynamics.

Our results also offer opportunities for transport and city planning through more

detailed mobility models and mechanisms that can be used to shape mobility. In-

deed, while extensive literature exists on the utilization of current urban spaces

(e.g, [43, 44]), more investigation is needed on how to change such patterns and our

work offers an important first step in this direction. For example, a possible exam-

ple is the use of a location-based game to shape the use of public spaces by driving

pedestrians away from congested areas or better planning of public transport.

Pokémon GO had and has a large, worldwide user base, which lends itself well to

studying mobility. Applications with smaller and more localized user bases could be

used to study the population of a city, speakers of a particular language, a specific

socioeconomic group [15], or a geographical area where the app is popular [45]. As

these types of applications target specific groups, the characteristics of mobility may

differ [46]. Our results shed light on the characteristics and laws that govern the

changes when they do occur, showing that re-parameterization of existing models

is sufficient to account for the changes in mobility.

Our results corroborate with strong evidence the link between location-based on-

line games and changes in human mobility found in existing research [1, 14, 8],
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even though our study was limited to a single, albeit exceptional, location-based

online game. Other location-based applications, including location-based recom-

mender systems and other location-based games, are likely to have similar effects –

provided that they can induce a positive change in the first place. Previous studies

on other location-based games have not always shown an effect on mobility, which

can be due to lack of suitably engaging content, small user-base, or technical issues.

Indeed, our analysis also showed that early versions of Pokémon GO failed to in-

crease mobility and only later versions that improved the end-user experience were

successful in motivating people to increase their mobility. Further research is needed

to better understand the factors that mediate possible increases in mobility.

6 Conclusion
In this paper, we have studied the mobility laws governing location-based gam-

ing, an important exogenous factor affecting variations in personal mobility across

individuals. We analyzed measurements collected through two different means, a

location-based social network (Twitter) and mobile app-logging. Our results show

that exposure to location-based gaming can significantly influence an individual’s

mobility but the characteristics governing mobility remain consistent with a trun-

cated Lévy-flight model. The main difference in mobility is an increased degree

of short hops, evidenced from a more homogeneous isotropy ratio, but unaffected

radius of gyration. We showed that mobility changes are explainable by a higher

degree of exploration of previously visited regions, instead of a consistent change

in mobility patterns. Our results improve our collective understanding of human

mobility, demonstrating how exogenous factors can help to explain inter-individual

variations, and showing how these variations can be modeled using prevalent mo-

bility models with adjustments to their parameters. Specifically, variations in an

individual’s mobility can be captured using personal-level models that account for

the individual’s exposure to different factors. Taken together, our results corrobo-

rate the effect of location-based online games of changes in human mobility found

in existing research [1, 14, 8], while offering novel insights into the laws governing

the characteristics of these changes.

Beyond improving our collective understanding of mobility, the results provide

insights into mobility characteristics of location-based smartphone applications and

provide suggestions on how to improve their potential in promoting physical activ-

ity. For example, the game mechanics of Pokémon GO have been designed around

so-called (Poke)stops, which are important locations around which the game ac-

tivity is centered. Previous research has shown that these stops are not uniformly

distributed, but cover different regions of cities [15], with a strong bias towards

densely populated urban areas where most of mobility already took place before

the game. Our results showed that exploration largely takes place in close prox-

imity of previously visited places, suggesting that stops or other focal areas near

familiar regions have the highest likelihood of attracting the user.

7 Abbreviations
GPS: Global Positioning System

DBSCAN: Density-Based Spatial Clustering of Applications with Noise
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REST: Representational State Transfer

API: Application Programming Interface

OS: Operating System
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Figure 1 Time series of Pokémon Go activity from new installations (I ), game sessions (S),
number of tweets (Nt), and Google Trend index (G). The first three are normalized by their
average 〈•〉.
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Figure 2 Distribution of radius of gyration P (rg) for Twitter D, best approximated by a
log-normal distribution (fit).

Tables

Table 1 Daily movements (in km), per group according to the number of days playing — A: [1,21)
days, B: [21,90) days, C: 90 or more days, highlighting statistically significant changes, for Pokémon
GO (PG) and Clash Royale (CR). The sample sizes were (995, 1051, 1160) and (257, 317, 230) for
(A,B,C) on PG and CR respectively.

Game Period A B C

CR Week-day 30.3 30.2 32.5
Week-end 28.7 26.0 28.3

PG Week-day 27.3 → 31.2 28.0 ⇒ 29.9 30.6 ⇒ 31.6
Week-end 29.3 → 29.4 28.1 ⇒ 30.4 29.6 ⇒ 31.4
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Figure 3 Distribution of Isotropy ratio σy/σx for different values of radius of gyration (rg).
Average values (dots) and standard deviation (bars).
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Figure 4 Carat inter-record-time ∆T . Maximum ∆T for two records to be grouped in the same
session is 5 minutes (shaded area).

Table 2 Probability functions for different distributions.

Distribution Probability Function P (x)

Power Law x−α

Truncated Power Law x−αe−λx

Exponential e−λx

Stretched Exponential xβ−1e−λx
β

Log-normal 1
x
exp[− (lnx−µ)2

2σ2 ]

Table 3 Distribution parameters for fits in Figure 7.

Twitter Users Truncated Power Law (fit 1) Exponential (fit 2)

Gamers α = 0.279, λ = 0.089 λ = 0.036
Non-gamers α = 0.329, λ = 0.083 λ = 0.036
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Figure 5 Duration of game sessions for different countries Pokémon GO.
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Figure 6 Duration of game sessions for different countries Clash Royale.
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Figure 7 Distribution of displacements P (∆r) for a fixed time interval ∆To and a multi-modal fit
for Twitter D by a truncated power law (fit 1) and an exponential (fit 2), split at 30 km. From
entire observation period of Twitter.
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Figure 8 Distribution of displacements P (∆r) for Carat D and a multi-modal fit by a truncated
power law (fit 1) and an exponential (fit 2), split at 50 km.

Table 4 Left: Number of gamers on Twitter. Right: Number of gamers on Pokémon GO (PG) and
Clash Royale (CR).

Twitter

City (code), Country N.

São Paulo (SPO), Brazil 924
Jakarta (JKT), Indonesia 911
London (LON), UK 853
Singapore (SIN), Singapore 709
Santiago (SCL), Chile 661
Tokyo (TKY), Japan 631
Bangkok (BKK), Thailand 599
San Francisco (SFO), USA 597
New York (NYC), USA 564
Toronto (TOR), Canada 447
Paris (PAR), France 373
Seattle (SEA), USA 348
Boston (BOS), USA 279
Sydney (SYD), Australia 268
Hong Kong (HKG), China 263
Barcelona (BCN), Spain 247
Moscow (MOW), Russia 143
Helsinki (HEL), Finland 92

Carat

Country (code) PG CR

USA (us) 780 134
Finland (fi) 746 175
Germany (de) 495 79
UK (gb) 153 20
Canada (ca) 149 20
India (in) 122 137
Japan (jp) 113 6
Spain (es) 102 58
Italy (it) 78 43
Netherlands (nl) 50 9
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version

Figure 9 Pokémon GO version adoption (Carat users).
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