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ABSTRACT 

Proteogenomics is an emerging field that combines genomic (transcriptomic) and 

proteomic data with the aim of improving gene models and identification of 

proteins. Technological advances in each domain increase the potential of the field 

in fostering further understanding of organisms. For instance, the current low cost 

and fast sequencing technologies have made it possible to sequence multiple 

representative samples of organisms thus improving the comprehensiveness of the 

organisms’ reference proteomes. At the same time, improvements in mass 

spectrometry techniques have led to an increase in the quality and quantity of 

proteomics data produced, which are utilized to update the annotation of coding 

sequences in genomes. 

Sequencing of pooled individual DNAs (Pool-seq) is one method for sequencing 

large numbers of samples cost effectively. It is a robust method that can accurately 

identify variations that exist between samples. Similar to other proteogenomics 

methods such as the sample specific databases derived from RNA-seq data, the 

variants from Pool-seq experiments can be utilized to create variant protein 

databases and improve the completeness of protein reference databases used in mass 

spectrometry (MS)-based proteomics analysis. In this thesis work, the efficiency of 

Pool-seq in identifying variants and estimating allele frequencies from strains of three 

β-hemolytic bacteria (GAS, GGS and GBS) is investigated. Moreover, in this work 

a novel Python package (‘PoolSeqProGen’) for creating variant protein databases 

from the Pool-seq experiments was developed. To our knowledge, this was the first 

work to use Pool-seq for sequencing large numbers of β-hemolytic bacteria and 

assess its efficiency on such genetically polymorphic bacteria. The ‘PoolSeqProGen’ 

tool is also the first and only tool available to create proteogenomic databases from 

Pool-seq data. 

The accuracy of the Pool-seq method in variation identification and allele 

frequency estimation was evaluated by comparing with the variants identified from 

individual sequencing of samples in the pools. Pool-seq had a high sensitivity (>90%) 

in identifying variants from all the 6 GAS and majority of the 40 GBS individually 

sequenced genome samples. The allele frequency estimates from the Pool-seq and 

individual sequencing of the GBS data also showed high correlation (R=0.96). The 

effect of sequencing coverage on the sensitivity of Pool-seq was assessed by down-

sampling analyses. 

The Pool-seq driven proteogenomic databases created were compared to 

conventional reference protein databases, and ~5% more and ~10% less peptides 
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were identified than the single genome and multi-genome based protein databases 

respectively. In comparison to other proteogenomic based databases created from 

ab initio gene predictions by Prodigal (after assembling with MEGAHIT) and 6-

frame translation based ‘Metapeptides’ created by the Sixgill tool, respectively ~4% 

and 19% more peptides were identified. 

For organisms such as the β-hemolytic bacteria GAS, GBS and GGS that have 

open pangenomes, the sequencing and annotation of multiple representative strains 

is paramount in advancing our understanding of these human pathogens and in 

developing mass spectrometry databases. Due to the increasing use of MS in 

diagnostics of infectious diseases, this in turn translates to better diagnosis and 

treatment of the diseases caused by the pathogens and alleviating their devastating 

burdens on the human population. In this thesis, it is demonstrated that Pool-seq 

can be used to cost effectively and accurately identify variations that exist among 

strains of these polymorphic bacteria. In addition, the utility of the tool developed 

to extend single genome based databases and thereby improve the completeness of 

the databases and peptide/protein identifications by using variants identified from 

Pool-seq experiments is illustrated. 
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TIIVISTELMÄ 

Proteogenomiikka on kehittyvä tieteenala, joka yhdistää genomiikkaa ja 

proteomiikkaa geenimallien parantamiseksi ja proteiinien tunnistamiseksi. 

Molempien alojen tekninen kehitys lisää tämän yhdistetyn tieteenalan 

mahdollisuuksia eri eliöiden toimintojen ymmärtämiseksi. Esimerkiksi nykyiset 

edulliset ja nopeat sekvensointitekniikat ovat mahdollistaneet useiden eri 

organismien kattavan sekvensoinnin, mikä luonnollisesti parantaa myös näiden 

organismien vertailuproteomien kattavuutta. Samanaikaisesti 

massaspektrometriatekniikan kehitys on johtanut proteomiikka-analyysien laadun 

paranemiseen ja syvyyden lisääntymiseen. Tämä mahdollistaa ennustettujen 

sekvenssialueiden (esim. uusien geenien) validoinnin. 

Yhdistettyjen yksittäisten DNA-näytteiden sekvensointi (Pool-sekvensointi) 

mahdollistaa suurten näytemäärien sekvensoinnin erittäin kustannustehokkaasti. Se 

on luotettava menetelmä, jolla voidaan tunnistaa tarkasti eri näytteiden väliset 

vaihtelut. Pool-sekvensointikokeiden muunnelmia voidaan käyttää luomaan 

variantti-proteiinitietokantoja ja parantamaan massaspektrometriaan perustuvien 

proteiinitietokantojen kattavuutta. Tässä väitöskirjassa tutkittiin Pool-sekvensoinnin 

tehokkuutta eri varianttien tunnistamisessa ja alleelitaajuuksien arvioimisessa kolmen 

β-hemolyyttisen streptokokki-bakteerin (GAS, GGS ja GBS) kannoista. Lisäksi 

työssä kehitettiin uusi Python-ohjelmointikielellä kirjoitettu ohjelmisto 

(‘PoolSeqProGen’) proteiinivariantitietokantojen luomiseksi Pool-sekvensointi -

kokeista. Tämä on ensimmäinen työ, jossa Pool-sekvensointia käytettiin 

sekvensoimaan suuri määrä streptokokkeja ja arvioimaan menetelmän tehokkuutta 

geneettisesti polymorfisissa bakteereissa. ”PoolSeqProGen” -työkalu on myös 

ensimmäinen ja ainoa saatavilla oleva työkalu proteogenomisten tietokantojen 

luomiseen Pool-sekvensoinnilla tuotetusta datasta. 

Pool-sekvensointimenetelmän tarkkuus variaation tunnistamisessa ja 

alleelitaajuuden estimoinnissa arvioitiin vertaamalla variantteja, jotka tunnistettiin 

poolien näytteiden yksittäisistä sekvensoinneista. Pool-sekvensoinnin herkkyys oli 

erittäin hyvä (> 90%) kaikkien testattujen kuuden GAS-kannan geenivariaatioiden 

tunnistamisessa. Sillä havaittiin myös suurin osa neljänkymmenen GBS-kannan 

erikseen sekvensoiduista genominäytteistä. Pool-sekvensoinnin 

alleelitaajuusestimaatit ja GBS-datan yksittäiset sekvenssit korreloivat myös erittäin 

hyvin (R = 0,96). Sekvensoinnin kattavuuden vaikutus Pool-sekvensoinnin 

herkkyyteen arvioitiin alinäytteenotto-analyyseillä. 
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Pool-sekvensoinnilla luotuja proteogenomisia tietokantoja verrattiin lisäksi 

tavanomaisiin vertailuproteiinitietokantoihin. Tunnistimme noin 5% enemmän 

peptidejä kuin yksittäisiin genomeihin perustuva menetelmä ja noin 10% vähemmän 

peptidejä kuin useisiin eri genomeihin perustuvissa tietokannoissa. Verrattuna 

muihin proteogenomisiin tietokantoihin, jotka on luotu Prodigalin ab initio -

geeniennusteista (MEGAHIT) ja Sixgill-työkalun luomiin 6-kehyksisiin 

käännöspohjaisiin 'Metapeptideihin', tunnistettiin vastaavasti noin 4% ja 19% 

enemmän peptidejä. 

Kehitettäessä massaspektrometria tietokantoja avoimiin pangenomeihin 

perustuville organismeille, kutenβ-hemolyyttisille streptokokeille GAS, GBS ja GGS, 

useiden edustavien kantojen sekvensointi ja annotointi on ensiarvoisen tärkeää. 

Massaspekrometrian lisääntynyt käyttö tartuntatautien diagnosoinnissa parantaa 

näiden mikrobien aiheuttamien sairauksien diagnosointia ja mahdollistaa siten myös 

hoidon paremman kohdentamisen. Tässä väitöskirjatyössä osoitetaan, että Pool-

sekvensointia voi käyttää kustannustehokkaasti ja tarkasti polymorfisten 

bakteerikantojen välillä esiintyvien variaatioiden tunnistamiseen. Lisäksi 

havainnollistamme yhteen genomiin pohjautuvien tietokantojen laajentamiseksi 

kehitetyn työkalun hyödyllisyyttä, jolla voidaan parantaa tietokantojen kattavuutta ja 

peptidi- ja proteiinitunnistusta käyttämällä Pool-sekvensointikokeissa tunnistettuja 

variantteja. 
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1 LITERATURE REVIEW 

1.1 From DNA to proteins 

Deoxyribonucleic acid (DNA) is a molecule that holds the genetic instructions which 

specify the structure and function of cells in all living things and are passed down 

from one generation to the next. These instructions are embedded in the 

arrangements of the 4 nucleotide bases A (Adenine), T (Thymine), G (Guanine) and 

C (Cytosine), and are first transcribed into messenger RNA (mRNA) and then 

translated to proteins which carry out most of the task in the organism’s body. This 

one-way flow of information from DNA to mRNA and finally to protein proposed 

by Crick in 1958(Crick, 1958) is known as the central dogma of molecular biology 

(Figure 1). 

 

Figure 1.  The central dogma of molecular biology that depicts the one way genetic information flow 
from DNA to mRNA and finally to protein (which are composed of 20 amino acids specified 
by codons). Created with BioRender.com 

1.2 DNA sequencing 

The ability to read what is in a DNA sequence is a prerequisite for decoding the 

instructions contained in it. DNA sequencing is determining the exact order of the 

nucleotides in a certain segment of a DNA molecule. It was almost after two decades, 
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in 1977, since the molecular structure of DNA was resolved (Watson and Crick, 

1953), that the first DNA genome of the bacteriophage PhiX174 was sequenced 

(Sanger et al., 1977) using one of the first generation sequencing methods, i.e. 

Sanger’s chain termination method (Sanger and Coulson, 1975; Sanger, Nicklen, and 

Coulson, 1977). Prior to this, there were sequencing endeavors that targeted proteins 

(Edman et al., 1950; Sanger and Thompson, 1953; Sanger and Tuppy, 1951) and the 

comparatively simpler RNA molecules (Adams et al., 1969; Brownlee and Sanger, 

1967; Wu and Kaiser, 1968) and also shorter stretches of bacteriophage DNA using 

DNA polymerase (Padmanabhan, Jay, and Wu, 1974; Sanger et al., 1973). Besides 

Sanger’s chain termination method, Maxam–Gilbert’s chemical cleavage method 

(Maxam and Gilbert, 1977) was extensively used at the time.  

In Sanger’s chain termination method, four reactions that contained template 

DNA strand hybridized to a primer and chain terminating nucleotides (ddNTPs) as 

well as normal nucleotides (dNTPs) were used to synthesize different sized 

fragments of the complementary DNA using DNA polymerase. Meanwhile, in 

Maxam–Gilbert’s chemical cleavage approach, chemical treatments (acids, 

hydrazines and salts) were applied on the DNA that is radioactively labeled on the 

5’ end to create a break in a small proportion of bases which allow the creation of 

different sized fragments when the DNA is cleaved at the chemically modified site. 

In both methods polyacrylamide gel electrophoresis was used to separate the 

fragments based on size. 

Various technical improvements in the laboratory as well as in software 

technologies such as the adaptation of a single reaction containing all ddNTPS each 

tagged with a unique fluorescent label (Prober et al., 1987; Smith et al., 1986), 

capillary electrophoresis (Jorgenson and Lukacs, 1981; Kasper et al., 1988), double 

strand DNA sequencing (Zhang et al., 1988), the Phred quality metrics (Ewing et al., 

1998; Ewing and Green, 1998) and Celera assembler (Myers, 2000), enabled the 

sequencing of larger and more complicated genomes using Sanger sequencing in the 

1990s and early 2000s including, Saccharomyces cerevisiae (Goffeau et al., 1996), 

Caenorhabditis elegans (The C.elegans Sequencing Consortium, 1998) and the human 

genome (International Human Genome Sequencing Consortium, 2001). 

After the completion of the Human Genome project, the next wave of 

sequencing methodologies (known as next generation sequencing, NGS) took over 

Sanger sequencing and continue to be the prominent methods of sequencing to date. 

These technologies are massively parallel with DNA fragment templates 

immobilized on solid surfaces or on beads and clonally amplified in vitro before 

sequencing by synthesis (using DNA polymerase) or by ligation (using DNA ligase) 
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where the fluorescent signal or pH change introduced by the incorporation of a base 

is recorded to infer the type and number of bases added (Margulies et al., 2005; 

McKernan et al., 2009; Ronaghi et al., 1996). They include the 454, ABI SOliD, 

Illumina and Ion Torrent platforms that differ in the kind of amplification, 

sequencing and detection methods they employ (reviewed in Heather and Chain 

2016; Mardis 2009; Metzker 2010; Shendure et al. 2017; Voelkerding, Dames, and 

Durtschi 2009). The introduction of a commercial NGS instrument, the Genome 

Sequencer 20 (GS20) in 2005 by 454, and afterwards by different competitor 

companies resulted in the ‘democratization’ of sequencing and also in the 

plummeting of sequencing cost. NGS technologies produce millions to billions of 

short sequence reads compared to Sanger sequencing which produces a single, albeit 

longer, read per run. 

A couple of third generation real time, single molecule sequencing platforms 

(Clarke et al., 2009; Levene, 2003) are also available that aim to remedy errors and 

biases introduced by the amplification stage in NGS technologies and produce 

longer reads. These are especially important in genome assembly, haplotype phasing 

and structural variant identification (Giani et al., 2020). The base calling accuracy of 

these technologies used to be much lower than NGS technologies but recent 

advancements such as the HiFi (‘High Fidelity’) long-reads introduced by PacBio are 

reported to be highly accurate (Wenger et al., 2019). 

A genome can be sequenced in its entirety (termed whole genome sequencing) or 

part of it can be targeted and sequenced such as the protein coding regions in exome 

sequencing. Over the past decade, sequencing cost decreased at an unprecedented 

rate leading to whole genome sequencing of large numbers of model and non-model 

organisms and enabling various kinds of studies including comparative genomics 

such as between eukaryotes (Batzoglou, 2000; Rubin, 2000), prokaryotes (Abby and 

Daubin, 2007) and different strains of the same species (Tettelin et al., 2005). 

1.3 Pooled sequencing (Pool-seq) 

Population level studies require the sequencing of large numbers of individuals to 

elucidate the genetic basis of complex diseases and traits through the identification 

of polymorphic loci and allele frequency differences. And although sequencing cost 

is plummeting at a high rate, the $1000 per genome goal is not yet achieved 

(Schwarze et al., 2020) and especially for population level studies, the cost of 
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sequencing is still steep for many labs. Therefore there is a need for cost-effective 

sequencing approaches such as pooled sequencing (Pool-seq). 

Pool-seq involves constructing a single DNA library from several individual 

genomes and the sequencing of that library usually with NGS. This is unlike 

individual sequencing that requires individual libraries to be prepared for every 

genome (Figure 2). 

 

 

Figure 2.  The steps involved in Pool-seq. After DNA is isolated from multiple samples, it is pooled 
before library preparation, unlike in individual sequencing in which a library is prepared 
from each DNA genome isolated. The prepared library is then sequenced usually with 
NGS platforms such as Illumina. Created with BioRender.com. 

Pool-seq is mainly used to cut back on the cost and effort of individual sequencing 

in population genomics studies. It has been utilized in numerous study types 

including GWAS, Evolve & Resequence and Bulk segregant analysis in organisms of 

varying genome sizes(Amaral et al., 2011; Boitard et al., 2012; Burke et al., 2010; 

Calvo et al., 2010; Cheng et al., 2012; Kaartokallio et al., 2016; Kolaczkowski et al., 

2011; Lamichhaney et al., 2012; Micheletti and Narum, 2018; Nejentsev et al., 2009; 

Turner et al., 2010, 2011; Van Tassell et al., 2008; Zhu et al., 2012). To identify the 
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samples in the pools, the DNA fragments can be barcoded before pooling(Smith et 

al., 2010), or a combinatorial/overlapping pooling strategy can be adopted 

(Patterson and Gabriel, 2009; Wang et al., 2013) but both methods incur additional 

cost and effort. Pooling can also be used with other cost reducing sequencing 

techniques such as exome-sequencing (Calvo et al., 2010; Kaartokallio et al., 2016) 

and RAD-sequencing (Amaral et al., 2011; Van Tassell et al., 2008), methods that 

mainly achieve the economic benefits through targeted sequencing. 

The cost reduction in Pool-seq is as a result of the lower chance of sequencing 

the same reads repeatedly (unlike in individual sequencing) since usually large 

number of samples are pooled (Gautier et al., 2013; Schlötterer et al., 2014). This 

also reduces sampling variance leading to accurate population-wide allele frequency 

estimates (Anand et al., 2016; Futschik and Schlötterer, 2010). The accuracy of the 

allele frequency estimates and variation discovery improves with increasing 

sequencing coverage and pool size, while higher sequencing error rates and unequal 

representation of individual genomes (especially in small sized pools) have the 

opposite effect (Anand et al., 2016; Futschik and Schlötterer, 2010; Gautier et al., 

2013; Pérez-Enciso and Ferretti, 2010; Schlötterer et al., 2014). Besides such 

common factors, others such as the potential with-in and across-sample 

amplification bias, and reference allele preferential bias have been shown to have an 

impact on the accuracy of allele frequency estimates especially in disease association 

studies (Chen et al., 2012). In addition to re-sequencing of organisms that were 

previously whole genome sequenced, recently Pool-seq data was utilized for de-novo 

rough draft assemblies (with Transcriptome guided scaffolding of contigs) to detect 

genomic diversity in species that lack good quality reference genomes (Kurland et 

al., 2019; Neethiraj et al., 2017). 

Pool-seq has been successfully applied to study low frequency variants in 

complex diseases such as IBD and type1 diabetes (Calvo et al., 2010; Momozawa et 

al., 2011; National Institute of Diabetes and Digestive Kidney Diseases 

Inflammatory Bowel Disease Genetics Consortium (NIDDK IBDGC) et al., 2011; 

Nejentsev et al., 2009; Out et al., 2009). However, it is not suitable for studying rare 

variants (AF < 0.01) as it is difficult to distinguish such variants from sequencing 

errors (Anand et al., 2016; Druley et al., 2009; Schlötterer et al., 2014). Moreover, 

current Pool-seq setups that use NGS technologies are not favorable for studies that 

rely on linkage disequilibrium and haplotype information since the sequence reads 

are short making it difficult to associate which of the reads derive from the same 

haplotypes(Micheletti and Narum, 2018; Schlötterer et al., 2014). Nonetheless there 

are tools that can predict haplotype frequencies from Pool-seq data when the 



Literature Review 

 

16 

haplotypes are already known or can be predicted from existing databases (Cao and 

Sun, 2015; Kessner, Turner, and Novembre, 2013; Long et al., 2011). 

Population genetics studies rely on accurate allele frequency estimates. Given 

large enough sequencing depth and pool sizes, Pool-seq based allele frequency 

estimates have been reported to be robust by several studies that assessed their 

accuracy using individual sequencing/genotyping, allele frequencies reported in 

publicly available databases and simulations (Amaral et al., 2011; Anand et al., 2016; 

Bansal et al., 2010; Hajirasouliha et al., 2008; Holt et al., 2009; Ingman and 

Gyllensten, 2009; Margraf et al., 2011; Out et al., 2009; Rellstab et al., 2013; Ryu et 

al., 2018; Shaw et al., 1998; Van Tassell et al., 2008; Wang et al., 2016; Zhu et al., 

2012). On the other hand, with smaller size pools and low sequencing coverage, 

Pool-seq was shown to be inadequate for estimating allele frequencies of especially 

low frequency variants in association studies of complex diseases (Chen et al., 2012; 

Day-Williams et al., 2011; Guo et al., 2013; Harakalova et al., 2011). The classical 

estimators in population genetics have been modified/adopted for Pool-seq data and 

tools for inferring patterns of variability and differentiation at the population level 

from these data have been developed (Boitard et al., 2013; Ferretti, Ramos-Onsins, 

and Pérez-Enciso, 2013; Futschik and Schlötterer, 2010; Kofler et al., 2011; Kofler, 

Pandey, and Schlotterer, 2011; Pérez-Enciso and Ferretti, 2010). 

1.4 Pool-seq variant detection 

After the DNA sequences of two or more samples are determined through 

sequencing, it is possible to compare them to identify genetic variants. Accurate 

identification of the genetic differences that exist at different levels, for instance 

between populations of the same species, is vital in understanding the genetic basis 

for the existing phenotypic variations. Variant calling is the process of identifying 

loci in a given genome that exhibit differences (such as SNPs and INDELS) 

compared to a representative (‘reference’) genome. It involves quality checking and 

preprocessing steps before usually aligning the sequence reads to a reference genome 

using tools such as BWA (Li and Durbin, 2009) and Bowtie (Langmead and Salzberg, 

2012), even though there are also tools capable of calling variants without using 

reference genomes (Chan et al., 2016; Lopez-Maestre et al., 2016; Peterlongo et al., 

2010; Ratan et al., 2010). One of the main challenges in this process is the 

distinguishing of errors from true variant calls. Most variant callers account for this 

error probability in the likelihood calculations of their Bayesian model, which can be 
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summarized as Pr(G|R) ∝ Pr(R|G) ∗ Pr(G), where G represents the genotypes at 

the variant sites and R the reads. 

As the ploidy (or the number of pooled samples) increases, distinguishing variants 

from sequencing errors becomes more complicated unlike in individual sequencing 

where evidence from multiple reads can be used to distinguish between rare alleles 

and sequencing errors (Futschik and Schlötterer, 2010; Wei et al., 2011). There are a 

number of variant calling tools suitable for pooled sequence data (Albers et al., 2011; 

Altmann et al., 2011; Bansal, 2010; Chen and Sun, 2013; Druley et al., 2009; Garrison 

and Marth, 2012; Koboldt et al., 2009; McKenna et al., 2010; Raineri et al., 2012; 

Vallania et al., 2010; Wei et al., 2011; Zhou, 2012) and among these, GATK’s Unified 

Genotyper (McKenna et al., 2010), SNVer (Wei et al., 2011) and FreeBayes(Garrison 

and Marth, 2012), were applied in this thesis work and below is a brief description 

of these tools. Besides these three Pool-seq suitable callers, SAMtools (Li et al., 

2009), which is a popular variant calling software for diploid organisms, was used to 

illustrate the consequences of using polyploidy unaware tools on pooled data. 

GATK’s unified Genotyper, which is currently retired and is replaced by 

HaplotypeCaller, uses a Bayesian model with a binomial likelihood to infer the 

posterior probability of all the possible genotypes. For reads traversing an INDEL 

which may as a result be misaligned, a local multiple sequence realignment is carried 

out to minimize false positive SNP calls. Additionally, base qualities are re-calibrated 

taking into account issues such as machine cycle and dinucleotide context which are 

known to result in inaccurate base qualities. There is also a post-processing step 

termed variant quality recalibration that uses information from high quality variants 

provided by users to assign a new quality score to the called variants. Multi-sample 

calling is also available that increases the sensitivity of the caller even when the 

sequencing depth is very low. 

FreeBayes, is a Bayesian caller that infers the genotypes of small stretches of 

sequences (haplotypes) rather than single positions to avoid issues that arise during 

the alignment stage such as misalignment of INDEL spanning reads. As the length 

of the haplotype increases, the chance of the artifact occurring in repeated instances 

(and therefore taken as evidence of true variation) decreases. It first identifies 

candidate polymorphic regions and then performs a local de-novo assembly of reads 

from these candidate regions. It also incorporates estimates of other sources of 

errors such as strand, cycle, placement and allele bias in its Bayesian model (which 

other callers usually handle in a post-processing step such as GATK’s variant quality 

recalibration). It also uses evidence from multiple samples to make high-quality calls. 

Post variant calling filtering is recommended to remove low quality calls. 
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SNVer, compares the observed allele frequency against sequencing error using a 

binomial-binomial model. It computes an overall P-value for each candidate site 

which can be used in deciding the false positive rate threshold by the user. It accepts 

different thresholds for filtering the variants based on for instance allele imbalance 

and reference bias. 

Various guidelines have been proposed for minimizing false positive variant calls 

in Pool-seq experiments. These include decisions during and after the alignment 

stage such as, using paired-end reads and trimming low quality bases towards the 3’ 

end in Illumina reads, avoiding the use of heterologous reference genomes, filtering 

by a quality threshold deduced from a comparison of the quality distributions of 

known variant sets, using replicated pools and removing variants from hard to align 

regions and also those that display strand bias (Anand et al., 2016; Schlötterer et al., 

2014). 

1.5 MS-based bottom up proteomics workflow 

The availability of databases that contain protein sequences (usually in silico 

translated from the genome or transcriptome sequences of organisms), has enabled 

large scale MS-based proteomics analyses of various organisms. To identify the 

proteins in samples, the experimental masses (from MS analysis) are often compared 

with that of the theoretical masses calculated from the sequences in the databases. 

Mass spectrometry (MS) is an analytical tool that can be used for identifying (and 

quantifying) the molecules that exist in a sample based on their mass. It can also be 

used to elucidate their structural and chemical properties. 

In the most commonly used bottom up shotgun MS proteomics analysis 

paradigm (Figure 3), proteins (protein mixtures) are first broken down into peptides 

(which are chains of amino acids linked by what are known as peptide bonds) in a 

digestion protocol using proteases. This is in contrast to the top-down approach 

which involves the analysis of whole proteins directly without first digesting them in 

to peptides (Chait, 2006; Demirev et al., 2005; McLafferty et al., 2007). While one 

MS analysis is enough to measure the mass and thereby identify a peptide in very 

simple mixtures, known as peptide mass fingerprinting (PMF) (Mann, Højrup, and 

Roepstorff, 1993; Pappin, Hojrup, and Bleasby, 1993; Yates et al., 1993), for 

extracting the sequence of a peptide especially in complex mixtures (where the same 

mass can match different peptides even from different proteins), most often 

two/tandem MS analyses are carried out to increase the sensitivity of the 

identification. 
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Figure 3.  The commonly used bottom-up shotgun proteomics analysis workflow. The proteins are 
first digested with a protease such as Trypsin and analyzed by LC-MS/MS. Peptide/protein 
identification is carried out using database searching by comparing the experimental 
spectra to the theoretical spectra produced based on the fragmentation technique 
employed after in silico digestion of the sequences in the protein database. 

For complex proteins, different separation methods such as gel electrophoresis and 

liquid chromatography (at the protein or peptide level) can be used to reduce the 

sample complexity and increase the sample coverage. In the most commonly used 

high pressure liquid chromatography (HPLC) method in proteomics (Domon, 

2006), peptide mixtures are dissolved in a liquid mobile phase and passed through a 

column stationary phase using high pressure pumps to be separated from the liquid 

mixture based on for instance hydrophobicity differences (known as reversed-phase 

chromatography). When these are coupled to a mass spectrometer online, 

components that are eluted from the column will first move through the ionization 

source where they will be ionized using soft ionization methods such as electrospray 

ionization (ESI) (Gaskell, 1997; Yamashita and Fenn, 1984). The first MS analysis is 

then used for determining the accurate mass of precursor ions and to select those 

that fall within a certain m/z ratio from the MS1 spectrum, say the n most intense 

peaks as in Data Dependent Accusation (DDA) or all the peaks as in Data 

Independent Accusation (DIA). These parent ions will then be fragmented by the 

second MS analysis usually via collision induced dissociation (CID) (Mitchell Wells 

and McLuckey, 2005) producing an MS2 spectrum and are finally detected by the 

detector component of the mass spectrometer which is connected to a computer 

that displays the spectrum (which is a graph of the ion intensity as a function of the 

m/z ratio). 
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Identification of peptides usually proceeds by supplying the experimental peak 

list to special software programs called search engines (Cox et al., 2011; Craig and 

Beavis, 2004; Diament and Noble, 2011; Dorfer et al., 2014; Eng, Jahan, and 

Hoopmann, 2013; Geer et al., 2004; Kim and Pevzner, 2014; Kong et al., 2017; Tabb, 

Fernando, and Chambers, 2007) that compare them to the theoretical spectra 

produced from sequences found in the database. The sequences in the databases are 

first in silico digested based on the specificity rules of the experimental protease 

utilized followed by filtering based on the precursor mass of the peptide that resulted 

in the MS2 spectra (taking into account the precursor mass accuracy). The theoretical 

fragmentation spectra is then produced from these filtered peptides based on the 

fragmentation rules of the dissociation technique employed during the experiment 

(for instance a list of b and y-ions if CID was used). The candidate peptides are 

subsequently scored (Bafna and Edwards, 2001; Colinge et al., 2003; Elias et al., 2004; 

Eng, McCormack, and Yates, 1994; Havilio, Haddad, and Smilansky, 2003; Zhang, 

Aebersold, and Schwikowski, 2002) and ranked based on how similar the produced 

theoretical spectra is to the experimental spectra, and the top ranking sequence is 

taken as a match (known as peptide to spectrum match, PSM). The Andromeda 

score (Cox et al., 2011) employed in the MaxQuant software for instance is a 

probabilistic score that determines the probability of at least k matches out of n 

theoretical masses to the experimental masses by chance; it is the logarithm of this 

binomial distribution probability multiplied by -10 such that the higher the score the 

more confident the match is. 

The scores calculated by the different search engines are not comparable in their 

initial form and need to be converted in to valid statistical measures that assess the 

confidence of PSMs. Such statistical scores (reviewed in (Granholm and Käll, 2011; 

Nesvizhskii, 2010) include those that consider individual PSMs such as posterior 

error probabilities (PEP) and q-values as well as those that take in to account sets of 

PSMs (and therefore the multiple testing effect) (Bern and Kil, 2011; Cerqueira et 

al., 2010; Joo et al., 2010; Käll et al., 2008a, 2008b; Navarro and Vázquez, 2009) such 

as the most widely used False Discovery Rates (FDRs) based on target-decoy search 

setups (Elias and Gygi, 2007) . In these setups, equal number of decoy sequences 

that imitate the amino acid composition and the peptide lengths of the target 

sequences are created usually by reversing the target peptide sequences and searched 

(either separately or appended to target sequences) to estimate the false positive 

matches. MaxQuant uses Bayesian statistics to calculate PEP of a peptide hit being 

a false hit given the score and the peptide length. There are also post-search 

validation tools such as PeptideProphet (Choi and Nesvizhskii, 2008; Ding, Choi, 
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and Nesvizhskii, 2008; Keller et al., 2002) and Percolator (Käll et al., 2008a; Spivak 

et al., 2009) that use statistical modeling and machine learning techniques to 

distinguish correct and incorrect identifications and compute probabilities such as q-

values and PEPs based on initial scores/p-values and other additional features such 

as precursor mass accuracy and the delta mass. The utilization of these statistical 

measures instead of the original scores by the search engines allows for the merging 

of results from different search tools which could lead to improved identification 

and reliability (Higgs et al., 2007; Price et al., 2007; Resing et al., 2004; Yu et al., 

2010). Once confident PSMs are obtained, the search engines map the peptides to 

the proteins they originated from using various methods that aim to address the 

problem of the same peptide mapping to multiple proteins (Huang et al., 2012; 

Noble and Serang, 2012). 

Instead of protein sequences, the search databases can also contain spectra (Yates 

et al., 1998) (from a previous protein sequence database search) which result in a 

faster processing time. There are also methods that identify the peptide sequences 

de novo, merely from the spectra (Frank and Pevzner, 2005; Ma et al., 2003; Taylor 

and Johnson, 1997) which can be especially useful for organisms with no or 

incomplete protein sequence databases (Ma and Johnson, 2012; Menschaert et al., 

2010) even though they are limited by the lack of the complete ladder of fragment 

ion peaks, which happens more often than not. It is also possible to combine these 

different methods for improved identification (Thomas and Shevchenko, 2008). 

1.6 Protein databases 

Protein database search tools are by far the most popular methods employed in MS- 

based proteomics studies owing to their simplicity and performance especially with 

today’s high throughput mass spectrometers. Since the introduction of the first 

database search program SEQUEST (Eng, McCormack, and Yates, 1994; Yates et 

al., 1995) in 1994/95, protein databases outplaced de novo methods that preceded 

them and have become the prominent approach for large scale proteomics analysis. 

The most commonly used public protein databases include Swissprot (Gasteiger, 

Jung, and Bairoch, 2001), UniProtKB (Apweiler, 2004), Ensembl (Cunningham et 

al., 2019), NCBI RefSeq (O’Leary et al., 2016), Entrez (Maglott, 2004), and UniRef 

(Suzek et al., 2015). Some of these databases, such as Swissprot, are highly curated 

and annotated and contain non-redundant entries while others are repository style 

databases that contain in silico translated sequences from reference 
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genomes/transcriptomes of organisms with redundant (e.g.Entrez) or non-

redundant (e.g RefSeq) sequence collections (Apweiler, Bairoch, and Wu, 2004). 

The completeness and accuracy of protein sequence databases plays a decisive 

role in peptide/protein identifications since spectra matching will fail or produce 

false identifications if the correct peptide sequence is not available in the search 

database. For instance, peptide sequences that contain disease related proteomics 

data such as oncogenic mutations would not be identified from standard protein 

sequence databases that are derived from few representative samples. Moreover, 

unaccounted chemical/post-translational modifications also add to the ‘dark matter’ 

of bottom-up proteomics (Skinner and Kelleher, 2015). For this reason, various 

methods have been adopted to improve identifications of the unassignable spectra 

including, but not limited to 

 Proteogenomic approaches that utilize data from genomic/transcriptomic 

sequence sources (Albertsen et al., 2013; Edwards, 2007; Evans et al., 2012; 

Hu et al., 2015; Krishna et al., 2015; Kumar et al., 2016; Li, Duncan, and 

Zhang, 2010; May et al., 2016; Tanner et al., 2007; Zhu et al., 2018; 

Zickmann and Renard, 2015). The extension/creation of protein databases 

using proteogenomics approaches can be based on de novo predicted 

genes/exon-graphs, 6 frame translation of raw (for prokaryotes whose 

genome contains mostly coding sequences) or assembled sequence reads, 

and known SNPs from public databases. 

 The consideration of all possible linear combinations of amino acids during 

database searches (Yates et al., 1995). 

 Using “error tolerant” methods that allow mismatches in spectra matching 

to account for modifications (Hughes, Ma, and Lajoie, 2010; Mann and 

Wilm, 1994; Tabb, Saraf, and Yates, 2003; Shilov et al., 2007; Creasy and 

Cottrell, 2002; Starkweather et al., 2007; DiMaggio, Jr. et al., 2008; Yonghua 

Han, Bin Ma, and Kaizhong Zhang, 2004; Searle et al., 2004; Wang et al., 

2014; Renard et al., 2012). 

 Blind searches (also referred to by the names unrestrictive, open or mass 

tolerant searches) that allow for large mass tolerances to identify all possible 

post-translational and chemical modifications (Bittremieux et al., 2018; 

Chen et al., 2009; Chick et al., 2015; Devabhaktuni et al., 2019; Kong et al., 

2017; Na, Bandeira, and Paek, 2012; Tanner, Pevzner, and Bafna, 2006).  

Most of the above approaches extend the search spaces and as a result suffer 

from runtime and memory complexity and more importantly decreased 

identification sensitivity due to an increase of high scoring decoys which can 



Literature Review 

 

23 

confound the true peptide targets. The increased redundancy can also affect protein 

inference. (Blakeley, Overton, and Hubbard, 2012; Muth et al., 2015; Nesvizhskii, 

2014; Reiter et al., 2009; Renard et al., 2012; Schiebenhoefer et al., 2019; Shanmugam 

and Nesvizhskii, 2015) Therefore the best approach for striking a balance between 

the completeness and the size of protein databases has been a subject of much 

discussion (Noble, 2015; Noble and Keich, 2017; Sticker, Martens, and Clement, 

2017). Moreover, Colaert et al.(Colaert et al., 2011) showed that in a target-decoy 

setup, when very similar isobaric (“targeted”) decoys were introduced to the 

database, for 95% of the target matches the decoy hits had equal or better score. As 

such, the appropriateness of target-decoy strategies and the associated statistical 

significance measures need to be carefully investigated when querying an extended 

search space. For the case of proteogenomic approaches, Nesvizhskii (Nesvizhskii, 

2014) recommends the application of “class-specific” FDRs, that is, FDRs calculated 

separately for the novel (and ideally for all the different types of the novel peptides) 

and known peptides. 

1.7 β-hemolytic streptococci 

Bacteria are the most widely sequenced organisms and currently more than 150 

thousand of bacterial strains have been whole genome sequenced, of which more 

than 12 thousand are streptococci (a spherically shaped gram-positive, facultative 

anaerobe bacteria) (Reddy et al., 2015). The β-hemolytic streptococci belong to the 

streptococcus genus and form a broad and entirely transparent zone around colonies 

when grown in blood agar due to the complete lysis of the red blood cells. They are 

also one of the most clinically relevant species in this genus besides Streptococcus 

pneumoniae. They are divided into 20 groups (A to H and K to V) based on the 

Lancefield classification (Lancefield, 1933) and among those, serogroups A, B, C and 

G (GAS, GBS, GCS, GGS) are known to cause variety of diseases in humans 

including mild ones such as pharyngitis and impetigo, and the more invasive ones 

for instance toxic shock syndrome, sepsis and necrotizing fasciitis, in addition to 

sequelae of infections such as acute rheumatic fever (ARF), post streptococcal 

glomerulonephritis, and post streptococcal reactive arthritis (PSRA). 

The spectrum of diseases associated with these groups largely overlap (Haslam 

and St. Geme, 2018) especially with groups A, C and G, which are usually found in 

the upper respiratory tract. Group B mostly cause sepsis, meningitis and pneumonia 

in neonates and are often found in the vagina of women which could lead to 

transmission to infants through the amniotic fluid or during delivery (Heath and 
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Jardine, 2014). There is a high disease burden associated with these bacteria, for 

instance GAS is estimated to cause at least 517,000 deaths from invasive infections 

every year worldwide (Carapetis et al., 2005). Some serotypes of these bacteria are 

associated with certain disease types and severity of the diseases. For instance, in 

GAS, strains with serotypes M1, M3, M12 and M18 are usually associated with 

invasive infections; the M3 and M18 were prominently isolated during the rheumatic 

fever outbreak of the mid 1980s in the US (Johnson, Stevens, and Kaplan, 1992). In 

GBS, the serotypes Ia, II, III, and V are known to cause majority of the infections 

in the US and Europe, with serotypes Ia and III causing most of the neonatal 

infections (Hickman et al., 1999; Kieran et al., 1998). There is also geographical and 

temporal variations; certain dominant serotypes in a region or at a certain point in 

time could be rare in other regions or disappear gradually (Colman et al., 1993; 

Gaworzewska and Colman, 1988).     

GAS and GBS are the best studied serogroups with a few hundred strains whole 

genome sequenced currently (170 group A, 101 group B) (Reddy et al., 2015) as well 

as having their proteomic profiles investigated in several studies using various 

techniques such as mass spectrometry and 2D-PAGE (Campeau et al., 2020; Hughes 

et al., 2002; Johri et al., 2007; Malmström et al., 2012; Nakamura et al., 2004; 

Nordenfelt et al., 2012; Papasergi et al., 2013; Wen et al., 2011; Wilk et al., 2018; 

Yang et al., 2010; Zhang et al., 2007). 

1.8 Application of MS for bacterial characterization 

Accurate identification is vital for characterizing and classifying microorganisms. In 

the case of bacterial pathogens, it enables improved diagnosis, treatment and tracing 

of infectious outbreaks. Traditionally, mainly immunochemical (e.g. ELISA) and 

phenotypic based methods (e.g. the API system) that require the isolation and 

culturing of microbes were employed to identify and characterize microbes. 

Although inexpensive, these methods have limited identification sensitivity and 

specificity, are laborious, and could be slow in identifying certain organisms (Franco-

Duarte et al., 2019). With the advent of molecular methods such as PCR and DNA 

sequencing in the past few decades, nucleotide based approaches including the 

sequencing of the16s rRNA and other conserved genes have been complementarily 

used with these traditional approaches. This facilitated the accurate identification and 

characterization of a wide variety of microbes including uncultivable bacteria 

(Prakash et al., 2007). Even though the molecular based methods have high 
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discriminatory power, they are not routinely employed in clinical microbiology since 

they are time consuming and expensive. 

In recent years, MS based approaches for characterization of bacteria are growing 

in popularity owing to their simplicity, reliability, speed, and cost effectiveness 

(Bizzini and Greub, 2010; Croxatto, Prod’hom, and Greub, 2012; Seng et al., 2009, 

2010). Most notably, the Matrix-assisted Laser Desorption Ionization technique 

coupled to the Time-of-flight analyzer (MALDI-TOF) MS-based method has been 

successfully applied for characterizing large numbers of gram positive (Barbuddhe 

et al., 2008; Boggs, Cazares, and Drake, 2012; Lartigue et al., 2011; Lasch et al., 2009; 

Moura et al., 2008; Reil et al., 2011; Williamson et al., 2008) as well as gram-negative 

bacteria (Berrazeg et al., 2013; Christner et al., 2014; Clark et al., 2013; Kuhns et al., 

2012), at the species and sub species levels. The spectra produced by this method is 

compared to the available spectral library to identify the bacteria, and thus the 

accuracy of the method is affected by the completeness of the reference database.  
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2 STUDY AIMS 

The aims of this thesis work are: 

1. Assessing the accuracy of Pool-seq for identifying genomic variants and 

estimating allele frequencies in the three β-hemolytic bacteria utilized in our 

studies. 

 The effect of sequencing coverage and the choice of variant calling 

tools and approaches on the accuracy of Pool-seq are investigated. 

2. Developing a bioinformatics method that utilizes variants mined from the 

Pool-seq experiments to create proteogenomic databases. 

3. Applying the bioinformatics method on Pool-seq data of the three β-

hemolytic bacteria to evaluate the performance of the tool. 

 The protein databases created by this method are compared to 

conventional as well as other proteogenomic databases.  
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3 MATERIALS AND METHODS 

This study used 100 GAS, 137 GGS and 80 GBS bacterial strains that were mostly 

selected from the bacterial culture collections of the National Institute of Health and 

Welfare and United Medix Laboratories Ltd, Finland. Pool-seq was used to sequence 

these strains and variant protein databases based on the variants identified from the 

Pool-seq experiments were created for mass spectrometry analysis of a small number 

of strains randomly selected from the pools. 

The GAS study establishing the efficiency of Pool-seq was used in publication I, 

while the Pool-seq driven variants from GGS were used in publication III. For GBS, 

we individually whole genome sequenced the 40 strains that were in one of the pools 

(unlike in GAS with only 6 strains individually sequenced) and the pool was 

sequenced at lower sequencing depth than GAS and GGS. Thus, I have included 

results from the GBS Pool-seq experiment in this thesis to further extrapolate on 

our findings from the two published articles. In addition, for GAS we had previously 

analyzed with MS 10 other strains that were not in the pools and we reanalyzed those 

strains using our Pool-seq driven database and the result from the re-analysis is 

included in this thesis. The materials and methods employed in our studies is 

summarized below. 

3.1 DNA isolation and pooling 

DNA was isolated from the bacteria that were cultured on blood agar plates in 5% 

CO2 over one or two nights at +37 ° by using the UltraClean Microbial DNA 

Isolation Kit (QIAGEN) according to the instructions by the manufacturer except 

at the start, 6 μl mutanolysin (1 mg/ml) was mixed with the MicroBead solution 

provided and 10ul of loopful bacteria scraped from the culture plate and incubated 

for 60 min at +37 °C. The mixture was then transferred to another MicroBead tube, 

and 2 μl of RNAse A (1 mg/ml) was added. Also at step 18, 35 μl of solution MD5 

(instead of 50 μl) was added and incubated for 2 min. The Nanodrop equipment 

(ThermoFisher) and agarose gel electrophoresis were used to check the quality and 

integrity of the isolated DNA. The final per sample DNA concentrations of the 

pooled GAS, GGS, and GBS were respectively 400ng, 200ng and 500ng (as 

measured by Qubit 2.0 Fluorometer). Two pools each containing 50 and 40 strains 

for GAS and GBS respectively, while for GGS 3 pools, two of them containing 47 

strains and the third one containing 43 strains were prepared. 
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3.2 DNA sequencing and analysis 

The pooled GAS and GGS samples were sequenced using Illumina Hiseq2500, 2 × 

125 bp in 2 and 5 lanes respectively at the National Genomics Infrastructure hosted 

by SciLife Lab, Stockholm. Illumina MiSeq 2×150 bp was used for sequencing the 

two pools of GBS, the 40 individual strains from one of the GBS pools (at GATC 

Biotech AB, Sweden) as well as the 6 individual strains from GAS (at Turku Centre 

of Biotechnology, Finland). 

For pre-processing of the raw reads FastQC (v0.11.2) and Trimmomatic (v0.33) 

were used for quality checking and adapter trimming before aligning them with Bwa 

mem (version0.7.10) using default parameters to their respective reference genomes 

(AE004092, NEM316_III and ATCC12394 for GAS, GBS and GGS respectively). 

Variant calling of the GAS and GGS pools was then performed using 4 different 

tools with default parameters except those listed in parenthesis that were used to 

make results comparable, namely SAMtools v1.1 (-q 20 -d 10000), UnifiedGenotyper 

v3.2–2 (stand_call_conf 20 -stand_emit_conf 20), FreeBayes v0.9.18-1 (m 20 -q 13 

-F 0.02) and SNVer v0.5.3 (bq 13 -t 0.02). SAMtools (v1.1) was also used to call 

variants from the 6 individual GAS strains and publicly available sequencing runs 

from ENA while only FreeBayes (v0.9.18-1) was used for calling variants from one 

of the GBS pools and also the 40 individual samples in that pool. 

Other tools that were utilized for variant processing include, C-Sibelia (v3.0.5) 

for variant identification of the 45 complete GAS genomes, Bedtools (v2.17.0) and 

SAMtools (v1.1) for sequencing coverage calculation, Picard (v1.122) for duplicate 

marking, Vt (v0.57721) for variant normalization, BCFtools (v 1.10) for variant 

concatenation and SnpEff and SnpSift (v4.0e) for variant annotation and filtering. 

3.3 Protein extraction and digestion 

From the strains that were pooled for sequencing, for GAS and GBS 7, and for GGS 

8 strains were randomly selected for MS- based proteomics analysis. The strains were 

extracted from −70 °C milk/glycerol suspensions and grown on blood agar plates at 

37 °C under an atmosphere of 5% CO2. Individual colonies were taken for growth 

in 10 ml Todd–Hewitt broth at 37 °C under 5% CO2 atmosphere. The over-night 

cultures were diluted 1:20 in 10 ml of prewarmed Todd–Hewitt broth the next day 

and grew under the same conditions as before until they reached the exponential 

phase (OD 0.4–0.5). Three types of protein fractions i.e., exoproteome, shaved 

surface proteome and proteins extracted from the entire cellular proteome were 
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prepared from the mid-exponential cultures by splitting into twice 5 ml and 

centrifuging at 2500×g for 10 min. From the combined growth supernatants, the 

exoproteome proteins were extracted by 30 kDa filtration (Amicon Ultra-15 

Centrifugal Filter Units, 30 MWCO, Millipore). While one of the pellets was treated 

with 5 μg of trypsin for 15 min at 37 °C to produce the shaved surface proteome 

fraction, the other pellet was used for isolating the proteins from the entire cellular 

proteome by bead beating with 200 mg mm Zirconia/Silica Bead, Biospec without 

Triton. The fractions were analyzed together for the purposes of this thesis work. 

The extracted proteins were reduced and alkylated with 25mM dithiothreitol (45 

min at 37°C) and 50mM iodoacetamide (45 min at room temperature) respectively 

before tryptic digestion (at 37 °C).The peptides were then cleaned using C18 spin 

column purification (The Nest Group, Southborough, MA, USA). 

3.4 LC-MS/MS 

An EASY-nLC 1000 (Thermo Fisher Scientific) LC coupled online to an Orbitrap 

Elite (Thermo Fisher Scientific) mass spectrometer with a nano-electrospray 

ionsource was used. The RPLC started with a 5-min gradient at 5% of buffer B (98% 

acetonitrile, 0.1% formic acid and 0.01% trifluoroacetic acid) followed by a 60-min 

linear gradient (300 nl/min) at 5 to 35% of buffer B, a 5-min gradient at 35 to 80% 

of buffer B, a 1-min gradient from 80 to 100% of buffer B and finally a 9-min column 

wash with 100% of buffer B. 

MS was acquired in positive ion profile mode with a resolution of 60,000 at 

normal mass range (m/z 50–2000) and for MS/MS the 20 most intense peaks were 

chosen to be fragmented by CID. 

3.5 MS/MS analysis 

The Andromeda search engine in MaxQuant (v1.6.0.16) was used for 

peptide/protein identification of the MS/MS spectra. The parameters used for the 

searches include reversed decoy, specific Trypsin/P digestion, Carbamidomethyl (C) 

as a fixed modification, and Oxidation (M) and Acetyl (N-term) as variable 

modifications, and FDR (Peptide, Protein, Site) set at 0.01. 

The databases used for the searches (and their unique tryptic peptide sizes) are 

listed in the table below.  
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Table 1.  The different types of databases employed in this study together with their tryptic 
peptide size. The Pool-seq driven in-house databases refer to the proteogenomic 
protein databases that were created using the Python package ‘PoolSeqProGen’ 
developed in this study which is discussed in the results section. 

Databases Tryptic peptide size 

Single genome GAS (AE004092) 72272 

 GBS (NEM316_III) 43047 

 GGS (ATCC12394) 38173 

Multi-genome GAS (49complete/294assembly) 89705/20469 

 GGS (4complete/26assembly) 57898/113208 

Pool-seq driven GAS 91650 

 GBS 62256 

 GGS 72050 

Megahit + Prodigal ab initio  153248 

Sixgill Metapeptides  251946 
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4 RESULTS AND DISCUSSION 

In this chapter, the findings of the three publications used in the current thesis work 

will be summarized and discussed. Based on our Pool-seq studies of the three β-

hemolytic bacteria, the first three results offer guidelines regarding the sequencing 

coverage, choice of variant calling tools and methods for Pool-seq experiments that 

involve highly diverse bacterial species and establish the robustness of the Pool-seq 

approach for SNP discovery and allele frequency estimation. The next result then 

discusses the PoolSeqProGen software that utilizes the variants mined from Pool-

seq experiments to create proteogenomic protein databases that are used during MS 

searches. The last two results compare the performance of the variant protein 

databases created using PoolSeqProGen with conventional databases as well 

proteogenomic databases created by other tools.     

4.1 A sequencing coverage of ~200-250X is optimal for 
accurately identifying variants from bacterial Pool-seq data 

Sequencing coverage has a direct effect on the accuracy of SNP detection both in 

individual and Pool-seq experiments, high coverage resulting in highly confident 

base calls. The average sequencing coverage for our Pool-seq experiments were very 

high (Figure 4A), which allowed us to set a 2% threshold for reads supporting variant 

alleles, compared to the error rate of Illumina sequence reads which is at most 1% 

(Glenn, 2011), to minimize false positive calls. We individually sequenced all 40 of 

the samples in one of the GBS pools and we downsampled reads from this pool to 

determine the optimal sequencing coverage for our experiments. For most of the 40 

samples, the sensitivity of the Pool-seq approach stabilizes at around 30% of the 

downsampled reads (~200X), although few samples required higher coverage to 

achieve increased sensitivity (Figure 4B). Similarly, in the GAS Pool-seq experiment, 

a downsampling to only 1% (~230X) resulted in maximum 1% loss in sensitivity for 

the 6 samples for which we had individual sequencing information. This suggests 

that we could have adopted lesser sequencing depth for GAS and GGS to sequence 

higher number of samples without substantially increasing our initial budget and 

compromising the accuracy of the variant detection using Pool-seq.  

Holt et al. (2009) showed that at a coverage of 40X they could obtain an 83% 

SNP detection sensitivity when their pool containing 6 samples of the pathogen 

Salmonella paratyphi A was compared to the individual sequence data. However, the 

SNPs they considered were those with high frequency (found in at least 2 strains) 
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and the sensitivity declined to 37% for SNPs from only a single strain indicating that 

identifying low frequency alleles would require a much higher coverage. Moreover, 

the Salmonella Paratyphi A bacteria is highly monomorphic and as a result such a 

low coverage could result in inaccurate SNP discovery for more polymorphic 

bacteria. In our GBS experiment for instance, at ~60X (10% downsampling), the 

sensitivity decreased by 8%.  

Even though in Pool-seq a coverage of 50X is deemed sufficient for SNP calling 

(Schlötterer et al., 2014), it has been demonstrated that higher coverages might be 

required for certain study types. For instance, Kofler et al. (2011) noted that even a 

coverage of 90X was small for individual SNP based population estimators and 

analysis based on larger window size was recommended for studies with such low 

coverages (e.g. 40X with a window size of 1 kb). Likewise, Kofler & Schlötterer 

(2014) showed in a simulation analysis that a coverage of at least 200X was needed 

to detect weakly selected loci in E&R studies. We also found that at a coverage of 

~200-250X, the Pool-seq approach results in accurate variant identification and the 

results from our studies can be taken as a guideline for similar studies that aim to 

identify variants from other genetically polymorphic bacteria.   
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Figure 4.  Sequencing coverage and its effect on accuracy of Pool-seq. A) The aligned read depth 
per base of the three Pool-seq experiments included in this thesis. While most of the 
bases in the GAS and GGS Pool-seq studies were covered by ~8000 reads, the GBS 
experiment had an average of ~600 reads covering most of the bases. B) Downsampling 
of aligned reads from the GBS Pool-seq experiment to analyze the fraction of variants that 
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could be identified from the 40 individual samples that were pooled. For most of the 
samples the increase in sensitivity was not that high above 200X (30% of the reads). 

4.2 Pool-seq incompatible variant calling results in substantial 
reduction of sensitivity 

The efficiency of 4 variant calling tools for Pool-seq data was assessed by the overlap 

of variants identified by 2 or more of the tools as well as by the number of variants 

they could identify from the individually sequenced strains. While FreeBayes, UG 

and SNVer had comparable recall and precision, SAMtools had the least sensitivity 

when applied to Pool-seq data, identifying ~25% less variants from the 6 individually 

sequenced GAS strains (Table 2 and Figure 5). Furthermore, when SAMtools was 

used on the de-duplicated Pool-seq GAS data its recall decreased by ~20% more 

(see Table 1 of Publication I). 

Mullen et al. (2012), found that a large number of the dbSNP variants could not 

be discovered from their Pool-seq data and based on our studies we anticipate that 

might partly be because they used SAMtools on de-duplicated data even though they 

attributed the false negative results to factors such as low coverage and erroneous 

dbSNP data. On the other hand, de-duplication might be necessary for certain study 

types such as those involving RADseq; for instance Gautier et al. (Gautier et al., 

2013) showed that the overall experimental error increases when duplicates are not 

removed. Our results suggest that utilizing polyploidy aware variant calling tools and 

avoiding de-duping (for non-RADseq data) in Pool-seq experiments can improve 

the sensitivity of the approach. 

 

Table 2.  The recall (sensitivity) and precision of the four variant calling tools for GAS Pool-
seq data as assessed by the overlap of calls in 2 or more tools. 

 GAS pool 1 GAS pool 2 

 Recall Precision Recall Precision 

FreeBayes 0.98 0.86 0.99 0.85 

GATK UG 1.00 0.94 1.00 0.96 

SAMtools 0.38 1.00 0.38 0.99 

SNVer 0.98 0.90 0.98 0.90 
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Figure 5.  The sensitivity of the 4 variant calling tools when used with the GAS Pool-seq samples. 

4.3 Pool-seq is robust for accurate SNP detection and allele 
frequency estimation 

Except in few of the GBS samples, Pool-seq was capable of calling more than 90% 

of the SNPs from the individually sequenced samples of GBS and GAS (Figures 6A 

and 6B). Publicly available sequence data analysis also showed that most of the 

variants mined from the GAS pools could also be identified from the 44 GAS 
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complete genomes (>70%) and 3407 GAS sequences from ENA (>90%), which 

were analyzed against the same reference genome (Figure 6C). 
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Figure 6.  Pool-seq’s variant identification sensitivity. The sensitivity of Pool-seq to identify variants 
from A) 6 GAS and B) 40 GBS individually sequenced samples. C) The overlap of variants 
mined from the GAS Pool-seq and publicly available sequence data. In A, FreeBayes, 
SNVer and GATK’s UG were used and the variants called by 2 or more tools were used, 
while in B, only FreeBayes was used for calling variants. 

Moreover, the correlation of the allele frequency estimates between the individual 

and pooled sequencing approaches for the GBS experiment was high (R=0.96, p<2-

2e-16) (Figures 7A and 7B). This is in accordance with other studies that showed 

high correlation in the frequency estimates (R values >0.9) between individually 

sequenced/genotyped and pooled samples (Bansal et al., 2010; Druley et al., 2009; 

Gautier et al., 2013; Holt et al., 2009; Van Tassell et al., 2008; Zhu et al., 2012). The 

accuracy of allele frequency estimates from Pool-seq experiments increases with the 

increase in sequencing coverage and pool size (Day-Williams et al., 2011; Gautier et 

al., 2013; Rellstab et al., 2013). In general, from the analysis of publicly available data 

and individual sequencing, we have demonstrated that Pool-seq is a robust method 

for variant identification and allele frequency estimation of large bacterial samples.  



Results and discussion 

 

40 

 

 

 

 

 

 



Results and discussion 

 

41 

 

Figure 7.  Allele frequency estimates from GBS pools and individually sequenced samples of the A) 
reference (major) allele and B) the variant (minor) alleles. From the 33716 total number of 
variants, 1000 were randomly chosen for easier display. The frequencies were estimated 
by using SAMtools mpileup (which shows the pileup of reads at a position). 

4.4 Pool-seq driven proteogenomics database generation  

The general workflow for variant discovery and annotation including, quality 

checking/filtering and mapping to the reference genome, followed by variant 

identification and annotation was applied to generate the variants that are 

incorporated to the protein databases. The Python package ‘PoolSeqProGen’ that 

implements the variant protein database creation from Pool-seq driven variants was 



Results and discussion 

 

42 

then developed (publication II) and applied to GAS, GBS, and GGS (publication 

III). The tool performs the following steps to create the variant protein databases 

(Figure 8): 1) Choosing the coding variants with non-synonyms effects (both SNPs 

and INDELs) from the variant annotations file, 2) Extracting reads that span those 

variant positions to identify unique combinations (assortments) of the variants, 3) 

Inserting these unique set of variants to the nucleotide sequence of the proteins, 4) 

Translating and in silico digesting the sequences, and 5) Writing to the fasta databases 

the variant peptide sequences (which are unique and >4 amino acids long) together 

with flanking sequences and also the wild type protein sequences. The fasta header 

holds information of the particular variants that resulted in the variant peptide in the 

form of bitwise flags that have been converted to decimal numbers to minimize the 

space required. For instance if 3 non-synonyms SNPs were identified in a protein 

and some reads contained 2 of the first SNPs and others contained all 3, then the 

bitwise flags will respectively be 110 and 111 which are then converted to 6 and 7 

and are appended to the fasta header of the respective variant peptides. 

Variant protein databases from known SNPs found in databases such as dbSNP 

and TCGA have been created (Ahn et al., 2014; Cao et al., 2017; Li, Duncan, and 

Zhang, 2010). There are also tools and pipelines for the generation and visualization 

of proteogenomic data (Ahn et al., 2014; Krasnov et al., 2015a, 2015b; Nagaraj et al., 

2015; Peterson et al., 2012; Sheynkman et al., 2014; Wang and Zhang, 2013; Wingo 

et al., 2017; Zickmann and Renard, 2015). Our tool is different as it is designed to 

take in to account the pooled nature of the samples. By interrogating the aligned 

reads for unique patterns of variant combinations, we include these ‘seen’ 

combinations of variants in the variant databases to capture the sample wise 

variations that exist in our Pool-seq data (Figure 9). This way, the database’s 

completeness is improved while avoiding unnecessarily inflating the size, unlike if 

for instance every combination of the variants were considered.  
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Figure 8.  Workflow of the Pool-seq driven proteogenomic database creation. After variants are 
identified and annotated, those with non-synonymous effects are inserted to the nucleotide 
sequence of the proteins they span and the sequence is then in silico translated and 
digested. The variant peptides and the flanking peptides are written to the database 
together with the wild type reference protein sequences. 
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Figure 9.  How the different combinations of Non synonymous variants that are ‘seen’ in the reads 
spanning the variants are incorporated to the variant peptides.  

4.5 The Pool-seq driven proteogenomic databases allow 
identification of identical tryptic peptides with different 
variant profiles 

The main distinguishing feature of our tool is the incorporation of combinations of 

observed variants so that the individual strains in the pools can be represented to a 

certain level even though it is not possible to differentiate the samples based on the 

sequence reads. This approach has allowed us to identify homologous tryptic 

peptides that contain different variants from 10 GGS proteins which are shown in 

Table 3. These are interesting findings as they confirm our tool’s ability to capture 

the strain wise differences to a certain extent. For instance the two variant peptides 

(IPVIAYGVCPECQAK, IPVIAYGVCPECQVK') that were identified from the 

transcriptional repressor protein ‘WP_014612608.1’, were identified uniquely from 

transcriptional repressor proteins of 13 and 4 of the assembly genomes respectively. 

This implies that these variant peptides do possibly exist in the different strains that 

were pooled and we have been able to identify them as a result of the read 

interrogation strategy we adopted in our tool and any tool that considers only a single 

version of these tryptic peptide would be unable to identify all of them.    
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Table 3.  The 10 GGS proteins that had same tryptic peptides but with different variant profiles 
identified from (these tryptic peptides and the AA changes that produced them are shown in 
red). Other variant peptides identified from these proteins are also listed. The total number of 
peptides identified from the proteins including ‘wild type’ and those with missed cleavages are 
shown in the last column. 

Id Length Name AA Variant peptides Total 

WP_003056081.1 304 Protein jag 

S55N&D56G KPAQVDIEGINGK 

17 D56G KPAQVDIEGISGK 

I82V QNAPVVNPADVELEEMK 

WP_014612608.1 155 
Transcriptional 

repressor 

I143V IPVIAYGVCPECQAK 

2 
I143V&A149 IPVIAYGVCPECQVK' 

WP_014611973.1 511 M protein 

E89D&L94F EVADYNSLFDK 

54 

A113T&E115K VVNDSLQTTK 

E105K&A113T&E11
5K 

MKVVNDSLQTTK 

D141N&Y145S&T1
49A 

NKEFSLGEALR 

Y145S&T149A EFSLGEALR 

K192Y&A193Q QTLEAEYQK 

K192Y&A193E QTLEAEYEK 

D184Y&K192Y&A1
93Q 

AEAYRQTLEAEYQKLEEEK 

E273D LEEQNKISDASR 

E442D ASDSQTPDATPGNKVVPGK 

E442D&T444K AGKASDSQTPDAKPGNK 

WP_003059396.1 145 
YtxH domain-

containing 
protein 

A40S AYQSYKENPDDYHQLAK 

11 N44S&L51F AYQAYKESPDDYHQFAK 

V104A TKETLAEVEAK 

WP_014612218.1 699 

ATP-dependent 
Clp protease 
ATP-binding 

subunit 

T335A SLEAEMATQK 

48 

E415G GHVIGQDGAVEAVAR 

E415G&V427A GHVIGQDGAVEAAAR 

T582A NTVIIATSNAGFGHQEDENT
DQPAIMDR 

WP_014611976.1 440 Kinase 

L88P SKPFATDSGAMPHKLEK 

32 

I155T VYFADKDGSVTLPTQPVQE
FLLK 

I155T&K164S VYFADKDGSVTLPTQPVQE
FLLSGHVR 

R202K&G204V SVDVEYTVQFTPLNPDDDF
KPVLKDTK 

G204V SVDVEYTVQFTPLNPDDDF
RPVLKDTK 

I220V TLAIGDTVTSQELLAQAQSIL
NK 
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N254K DSSIVTHDKDIFR 

H270R TILPMDQEFTYR 

WP_014612152.1 269 
Cof-type HAD-

IIB family 
hydrolase 

I29V&D31E ITDDVFQAVQEAK 

5 
D31E ITDDVFQAIQEAK 

WP_014611901.1 371 
Redox-regulated 

ATPase YchF 

D38N&I41V AGAEAANYPFATINPNVGM
VEVPDER 

22 
I41V AGAEAANYPFATIDPNVGM

VEVPDER 

WP_014612591.1 873 

SEC10/PgrA 
surface 

exclusion 
domain-

containing 
protein 

A63T ASNTSEESLPKTETCEETK 

105 

A129G&K133E ALTSAQEIYTNTLASSEETLL
GQGAEYQR 

K133E ALTSAQEIYTNTLASSEETLL
AQGAEYQR 

T207A AAQTANDNTKALSSELEK 

V774I IDTTPLVQEMIK 

P752L HLDEDIATVPDLQVAPLLTG
VKPLSYSK 

WP_003058857.1 350 

BMP family ABC 
transporter 
substrate-

binding protein 

A332D EALKDIEEAK 

15 A332D&S338A EALKDIEEAKAK 

 

4.6 The Pool-seq driven proteogenomic databases result in 
more peptide identification compared to single genome 
databases 

The Pool-seq driven proteogenomic databases identified ~600 (Figure 10A) and 

~200 more peptides than the single reference genome based databases of GAS and 

GGS respectively. The improvement in identification is also apparent when the 

samples analyzed were not part of the pools (Figure 10B). This indicates that in 

situations where multiple individual whole genome sequences are not available 

(which is the situation for most non model organisms), augmenting databases with 

variant sequences identified from pooled sequencing could be a better approach in 

terms of performance as well as cost. On the other hand, multi-genome databases 

(that contain 49 GAS and 4 GGS complete genomes, and 294 GAS and 26 GGS 

assemblies) identified ~1000 (Figure 10A) and ~500 more peptides compared to the 

Pool-seq derived proteogenomic databases, emphasizing the importance of 

sequencing and annotating several representative strains especially for organisms 

with high intra species diversity. Our results indicate that augmenting databases with 
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variants identified from Pool-seq data improves identification in MS based 

proteomic analyses.    

 

 

Figure 10.  The number of peptides identified when using the Pool-seq driven variant databases 
(Variant_Pools) compared to conventional single genome and multi-genome (from 49 
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complete genomes and 294 assemblies of GAS) A) 7 GAS samples that were in the pools 
and B) 10 GAS samples that were not in the pools were analyzed by MS. 

Other options for constructing protein databases from genome sequence 

information include ab initio gene prediction after assembly and predicting genes 

directly from the sequence reads for prokaryotes without assembly since most part 

of their genomes is protein coding. Both methods do not require a reference genome 

and therefore could also be applied in Pool-seq experiments lacking good quality 

reference genomes. We used the GBS Pool-seq experiment to compare the peptide 

identifications from such methods to our Pool-seq driven variant database approach. 

For the assembly we used the metagenome assembler MEGAHIT (Li et al., 2015), 

followed by Prodigal (a gene prediction tool for prokaryotic genomes) for predicting 

genes from the contigs. For the assembly free approach we used the Sixgill (May et 

al., 2016) tool that produces ‘Metapeptides’, which are tryptic peptide sequences 

derived from open reading frames without stop codons either considering all 6-

frames or after gene prediction by MetaGeneAnnotator (Noguchi, Taniguchi, and 

Itoh, 2008) and are expected to be identified in a MS analysis.  

Compared to the ab initio gene prediction based and the ‘Metapeptides’ 

databases, the GBS Pool-seq driven databases identified ~200 and ~1000 more 

peptides respectively (Figure 11A). May et al. noted that peptide identifications from 

assembly based approaches may be low owing to the challenges of reliably 

assembling real genes in to contigs from metagenomics data. But contrary to this 

observation, the assembly based methods identified more peptides than the 

‘Metapeptides’ when applied to our GBS Pool-seq data (Figure 11A). One reason 

for this could be because our Pool-seq data does not contain metagenomes but 

rather different strains of the same species and therefore the sequences could be 

more alike leading to better assembly yield. And so, if the tools were used on real 

metagenomic data, the assembly free method may perform better. The other and 

more likely reason has to do with the size and content of the databases. Large, 

redundant databases that especially contain “wrong” sequences from other 

organisms or 6-frame translations result in lower number of identifications as a result 

of the expanded search space (Blakeley, Overton, and Hubbard, 2012; Muth et al., 

2015; Nesvizhskii, 2014). Due to the 6-frame translation, the ‘Metapeptides’ database 

size is inflated (by ~64% compared to the assembly based database) and contains 

‘wrong’ sequences leading to the low sensitivity as a result of high scoring decoys as 

can be seen in Figure 11C. The target peptide hits were also marginally of higher 

scores in the ‘Metapeptides’ database even though in general their score and PEP 

distributions were similar to the other two databases (Figure 11D). 
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Open search tools are other alternative approaches that are mainly applied for 

the identification of unaccounted for chemical and post translational modifications 

and could help fill the gap of identifying unassigned spectra. In proteogenomics 

studies it has been recommended to rule out that novel peptides are not as a result 

of such modifications (Nesvizhskii, 2014) and therefore these tools can be applied 

towards that purpose. In addition, great strides have been achieved in alleviating the 

computational bottlenecks associated with such tools with the development of fast 

tools such as MSFragger. However, these approaches could lead to loss of sensitivity 

as a result of the expanded search space. This was evident in our GBS Pool-seq data 

where an open search using the MSFragger tool resulted in the identification of the 

least number of peptides (~2000 peptides less than the ‘Metapeptides’ approach) 

(Figure 11A) and also had higher numbers of exclusive peptides (Figure 11B) albeit 

the authors demonstrating that open searches do not lead to a huge reduction in the 

number of identified peptides (see Table 1 in Kong et al. (Kong et al., 2017)). It is 

therefore important to consider various options to maximize identification while 

avoiding pitfalls such as inflated FDRs and search spaces that could result in 

increased false positives and false negatives. Our studies demonstrate that one way 

to achieving such a goal is to utilize the data obtained from cost effective Pool-seq 

experiments to expand existing protein databases.  
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Figure 11.  Comparison of the Pool-seq driven approach with other proteogenomics methods i.e., 
assembly based ab initio prediction and the non-assembly ‘Metapeptides’ approaches as 
well as an open search method MSFragger. A) The number of unique peptides identified 
from these approaches B) The overlap of the unique peptides among these approaches C) 
The Andromeda score distribution of the decoy sequences from the Pool-seq, 
Metapeptides and Assembly driven databases and D) The distribution of the Andromeda 
Score and PEP of the target hits from the Pool-seq, Metapeptides and Assembly driven 
databases. Since MSFragger uses different scoring and statisitcal measures than 
MaxQuant which was used for searching the Pool-seq, Metapeptides and Assembly driven 
databases, only the latter three databases are compared in C&D. 

 

 



 

54 

5 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

Protein databases have been playing a major role in bottom up shotgun mass 

spectrometry analyses as they are the source of the theoretical spectra that is 

compared with the experimental spectra to identify the proteins that exist in a 

sample. The databases are usually constructed from translation of genomic 

sequences of organisms and certain databases such as Swissprot contain curated 

protein sequences and are usually used in such analyses if they exist for the organism 

of interest. Two major issues with protein database based identifications are: 1) If 

the sequences are not available in the databases, the proteins will not be identified 

and 2) Large databases create problems for search engines in scoring candidate hits 

and hence result in suboptimal identifications due to the extended search space. 

Therefore there is a need to consider the tradeoff between creating a complete 

database that contains all possible sequences and keeping the database size small 

enough. One way to increase the completeness of databases is to expand existing 

protein databases with evidence from genomic/transcriptomic sources in what are 

known as proteogenomics approaches. However such approaches will increase the 

database size and do not allow the searching of unknown variants. Instead, error and 

mass tolerant searches could be adopted to identify novel peptides. But these 

methods will also expand the search space resulting in decreased sensitivity on top 

of requiring longer run times. The extended search space also warrants 

reexamination of the suitability of routinely used statistical measures of confidence 

in these scenarios. 

The ideal solution would have been to de novo sequence the peptides but current 

de novo methods are not capable of sequencing the entire peptide accurately mostly 

due to the incomplete fragment peak ladder. With the continuous improvements in 

the quality of data produced by mass spectrometers and also the software tools, de 

novo methods are increasingly being used in MS-based proteomics analyses. 

However, currently no single tool/approach is able to identify all the spectra that is 

available in shotgun proteomics with high confidence. Therefore, integrating 

different approaches appears to be the best option to characterize much of the 

unidentified spectra and getting us closer to uncovering the ‘dark’ matter of shot gun 

mass spectrometry.  

When large number of samples are sequenced comparatively inexpensively using 

the Pool-seq approach, our method can be utilized to incorporate variants from the 

samples in a way that reflects their composition in the pooled samples improving the 
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completeness of protein databases without greatly inflating the search space. By 

utilizing this method novel peptides that have important implications for instance in 

the virulence of certain bacterial strains could be investigated. In addition, the 

databases produced by the method can be utilized for novel diagnostic marker 

screening which are underway at the moment for the β-hemolytic bacteria. 

Additionally, since in certain bacteria the accessory genome could also be a major 

source of variation, alignment free methods, such as the ab initio prediction of genes 

from reads that do not align to reference genomes, could be integrated with our 

method to further enhance the comprehensiveness of the protein databases. 

Utilizing MS based approaches for characterizing bacteria will continue to grow in 

the years to come enabling a plethora of applications that are aimed towards typing, 

novel virulence/antibiotic resistance antigen identification, disease biomarker 

discovery, and vaccine development, to mention but a few, and the role of 

comprehensive protein databases in these endeavors is indispensable. 
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