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Abstract
Wear leveling – a technology designed to balance the write counts among memory cells regardless
of the requested accesses – is vital in prolonging the lifetime of certain computer memory devices,
especially the type of next-generation non-volatile memory, known as phase change memory (PCM).
Although researchers have been working extensively on wear leveling, almost all existing studies
mainly focus on the practical aspects and lack rigorous mathematical analyses. The lack of theory is
particularly problematic for security-critical applications. We address this issue by revisiting wear
leveling from a theoretical perspective.

First, we completely determine the problem parameter regime for which Security Refresh – one
of the most well-known existing wear leveling schemes for PCM – works effectively by providing a
positive result and a matching negative result. In particular, Security Refresh is not competitive for
the practically relevant regime of large-scale memory. Then, we propose a novel scheme that achieves
better lifetime, time/space overhead, and wear-free space for the relevant regime not covered by
Security Refresh. Unlike existing studies, we give rigorous theoretical lifetime analyses, which is
necessary to assess and control the security risk.
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1 Introduction

1.1 Background
Wear leveling is a technology intended to prolong the effective lifetime of computer memory
devices that have a severe write limit on each cell by balancing the write counts. The main
source of motivation for modern wear leveling studies is phase change memory (PCM)2, which
is a type of next-generation non-volatile memory [5]. PCM has multiple attractive features
such as low latency comparable to DRAM, high scalability/energy-efficiency comparable
to flash memory and non-volatility3. Thus, PCM has the potential to supersede DRAM
or flash memory/magnetic disks to drastically improve computer performance. However,

1 Corresponding author
2 Wear leveling for flash memory has been studied extensively since the early 1990s and is widely used

today [12, 2]. PCM requires new wear leveling schemes because it differs from flash memory in important
respects, such as access speed, access granularity, and in-place write capability [5].

3 A memory device is called non-volatile if it can maintain the contents without (much) power supply.
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65:2 Wear Leveling Revisited

the disadvantage of PCM is its small write endurance: each cell can be updated at most
108–109 times, meaning that a cell can reach the write limit within minutes if it is repeatedly
updated. To resolve this problem, researchers have been working extensively on wear leveling
for PCM [15, 16, 19, 17]. (See also Section 1.5.)

In the literature, the security aspect of wear leveling has been realized and emphasized
multiple times [15, 19, 17, 21, 22]. In particular, it is important to take into account an
attacker who chooses the access requests adversarially. For example, consider a computational
outsourcing service where the server executes tasks provided by the users. A malicious user
may outsource a program that issues adversarial memory access requests to cause the early
death of a particular cell.

However, almost all existing wear leveling studies lack rigorous theoretical analysis, which
is essential to understand and control the security risk. A notable case in point is that of
a published scheme, which was claimed to be capable of enduring attacks for months, but
ultimately proved to be breakable within a few days [15, 18].

1.2 Problem Formalization

Wear leveling can be formalized as a game between a user and a server.4 The server is a
RAM machine [13] with a) memory consisting of a small number of B-bit cells referred to as
wear-free memory5; b) memory consisting of N B-bit cells referred to as physical RAM ; c)
a randomness source. Using these resources, the server provides the user with an access
interface to virtual RAM – RAM consisting of n b-bit cells. The server should process as
many write queries as possible without updating any physical cell more than L times where
L is a given threshold. In addition, the time/space overhead should be minimized where the
computational cost of the server is measured by the number of accesses (both read and write)
to the physical RAM. The user chooses read/write queries adversarially, without knowing
the physical state of the server memory or the server randomness. Equivalently, the user
chooses an infinitely long query sequence adversarially at the beginning of the game.

We refer wear leveling formalized above as Wear Leveling.

1.3 Our Work

We revisit Wear Leveling from theoretical perspective.6The results can roughly be summa-
rized as follows. We analyze Security Refresh [17] – one of the most practical and well-known
existing schemes for Wear Leveling.7 We give both a positive result (Theorem 1) and
a matching negative result (Theorem 2), determining the regime of problem parameters n
and L for which Security Refresh works effectively. In particular, Security Refresh is not
competitive for the practically relevant regime of large-scale memory. Then, we propose a
novel Wear Leveling scheme that achieves better performance for the relevant regime
Security Refresh does not cover (Theorem 3). In particular, unlike existing methods, our
method has a rigorous theoretical lifetime guarantee.

4 This formalization is novel though many existing studies can be thought of addressing the current
problem without explicit formalization. See Section 1.5.

5 Wear-free memory models main memory (DRAM) or cache (SRAM). Though DRAM/SRAM have
finite write limits, the limits are so large that they can be considered as virtually “wear-free.”

6 There are a few theoretical studies on wear leveling formalized differently. See Section 1.5.
7 In the original paper [17], some heuristic extensions of Security Refresh are proposed. We focus on the

basic scheme.
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More concretely, we first analyze Security Refresh [17] and prove the following theorems:

I Theorem 1. If the write limit of each physical cell L = nδ for some constant δ > 1, where
n is the number of simulated virtual cells, Security Refresh satisfies the following:
1. it requires only N := n physical memory cells, each with B := b bits, where b is the

simulated virtual cell size;
2. for any infinite sequence of write queries, with high probability, it can process at least

(1−O(n−β))NL write queries without updating any physical cell more than L times;
3. it has worst-case 3 and amortized 1 +O(n−γ) access time overhead; and
4. it requires only O(1) cells in the wear-free memory,
where β, γ are positive constants depending on δ.

I Theorem 2. If L ≤ cn where c = c(n), the amortized access overhead is at least 1 + 1/c or
some cell reaches the write limit during the first 2L write queries. In particular, if L = o(n),
the amortized access overhead is ω(1) or some cell reaches the write limit during the first 2L
write queries.

All asymptotic notations are in terms of n → ∞. The term high probability means
1−O(1/n). Note that the term NL in item 2 is the maximum number of memory updates
that can be supported without wear leveling in the best case where the write queries were
totally balanced among all physical cells.

The gist of Theorem 1 lies in the high probability lifetime bound in item 2. As far as we
know, no previously reported work on Wear Leveling has provided such a guarantee.

The typical value of L in real-life PCM is 108–109 [5]. If the cell size is 256 bytes and
L = 109, L ≤ n holds for memory larger than 256 gigabytes. Non-volatile memory of 100
gigabyte order capacity or more is on high demand as indicated, e.g., by the advent of Intel
Optane memory. Theorem 2 means that Security Refresh is not effective for such applications
(though it may be useful for small-scale applications, e.g., for embedded systems).

To overcome this barrier, we propose a novel scheme for Wear Leveling and prove the
following theorem:

I Theorem 3. If L = nδ for some constant 0 < δ ≤ 1 and the simulated cell size b ≥
(1.1) lgn,8there exists a Wear Leveling scheme that satisfies the following:
1. it requires only N := (1 +O(n−α))n physical memory cells, each with B = b+ 2dlgne+ 1

bits;
2. for any infinite sequence of write queries, with high probability, it can process at least

(1−O(n−β))NL write queries without updating any physical cell more than L times;
3. it has b1/δ + 1c+ 2 +O(n−γ) expected and amortized access time overhead (elaborated

below); and
4. it requires only O(1) cells in the wear-free memory,
where α, β, γ are positive constants depending on δ.

Some schemes are designed to achieve a long lifetime under adversarial settings [19, 22, 11]
but none of these seems to achieve 1)–4) above at the same time.

The assumption L = nδ for δ > 0 is reasonable given the typical real-life parameter size
and possible application scenario mentioned above.9

8 The constant 1.1 can be replaced by any other constant greater than 1.
9 On the other hand, a memory with very small L compared to n, e.g., O(logn), seems to be of little
use in practice. For example, simply sorting n numbers requires updating each cell Θ(logn) times on
average, at least by a naïve implementation.

ISAAC 2020
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The assumption on the cell size b ≥ (1.1) lgn is reasonable and the cell size overhead
B = b + 2dlgne + 1 is minimal in most practical cases. The typical value of B in the
PCM applications is 128–256 bytes [15, 19, 17]. If B is within this range and n = 230,
b/ lgn = (B − 2dlgne − 1)/ lgn is ≈ 32.1–66.2� 1.1 and (lgn)/B is ≈ 1.46–2.93%.10

As for the time overhead, a read query always takes d1/δ + 1e+ 1 accesses in the worst-
case. The cost of a write query depends on the state of the data structure. In most (1− o(1)
fraction of) cases, the access time is deterministic and the worst case is d1/δ + 1e+ 2. In
rare cases, data structure maintenance procedures run, incurring additional costs. Two
types of maintenance procedures exist and each of them occurs at most once per nΩ(1) write
queries. The first type of maintenance is deterministic and takes O(1/δ)-time in the worst
case. The other type of maintenance is probabilistic and takes O(1/δ)-time in expectation
and O(logn)-time w.h.p.

To summarize the previous paragraph, in the overwhelming majority of cases in which
maintenance procedures are not executed, each read/write query takes d1/δ + 1e+ 2-time in
the worst case. Any time a write query arrives, most (1− o(1) fraction of) simulated cells
can be accessed much more efficiently than the worst-case time above: it takes only 1 read
for a read query, whereas a write query entails 1 read and 1 write operation. If a malicious
user attacks the memory by repeatedly issuing write queries to a particular virtual cell, the
access time to the targeted cell becomes temporarily larger (and eventually becomes small
again after the attack ceases); however, the attack does not affect the time to access other
cells. Thus, honest users can share a memory with malicious users without being affected by
the attack as long as there is a mechanism to separate the logical memory space – the set of
virtual cells each user can access.

In practice, the largest cost associated with the proposed scheme would be the one
additional physical memory read needed for each write query in the typical case described
above. In PCM, read is often faster than write: a read operation takes 20–60 ns whereas a
write operation takes 20–150 ns [5]. If read is three times faster than write, the time overhead
for a write query is approximately 30%. This cost is acceptable, especially in applications
in which PCM is used as the layer between DRAM and a slower/more expensive form of
storage such as a magnetic disk [5].

1.4 Our Technique
We achieve the aforementioned bounds by using a new tree-based scheduling method for
temporary access redirection. Prepare m(> n) physical cells V [0], ..., V [m − 1] to store n
virtual cells v[0], ..., v[n− 1]. Let f be some one-to-one function f : [n]→ [m]. Use V [f(i)]
as the default location to store v[i]. The other physical cells are spares. If v[i] is updated
frequently and the write count of V [f(i)] reaches some threshold t, we locally remap v[i] –
changing the location of v[i] without affecting the locations of other virtual cells – by using
pointers. That is, we allocate a spare cell V [i0] in which we store v[i]. Then, we store the
address of V [i0], i.e., i0, in V [f(i)]. To read from or write to v[i], we look at V [f(i)] and
follow the pointer. If the write count of V [i0] also reaches t, we allocate another spare cell
V [i00] in which we store v[i] and place the pointer to V [i00] in V [i0].

To avoid the need to follow many pointers, we refrain from connecting pointers linearly;
instead, we connect them according to a pattern similar to that of depth-first search (DFS)
of a complete d-ary tree with dh leaves, where d and h are positive integer parameters. For

10 In practice, B and N are given whereas, in the theorem, we expressed B and N as functions of given b
and n. These conventions are equivalent. We chose the one that permits more elegant mathematics.
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example, if d = h = 2, after the write count of V [i00] reaches t, we allocate V [i01] and place
a pointer to V [i01] in V [i0] (instead of V [i00]). If the write count of V [i01] reaches t, we
allocate V [i1] and a pointer to V [i1] in V [f(i)], and so on. Note that cells corresponding
to the internal nodes can be updated for t times to update the cell values, and d times for
updating the pointers.

As time proceeds, the data structure gradually degrades because the tree above becomes
saturated and free spare cells become scarce. To cancel the degradation, we periodically
perform global remapping, i.e., we choose a new one-to-one function f ′ at random from some
family and store v[i] in the new default location V [f ′(i)] for all i ∈ [n]. This procedure resets
the state of the data structure as though it is initialized with a different function. Even though
it is possible to minimize the amortized access cost by appropriately setting the parameters
(remapping frequency, tree depth/branching factor etc.), the worst-case time overhead is
prohibitively large because remapping is carried out in batches. In the full construction, we
deamortize the aforementioned approach by performing global remapping gradually (this is
where we apply Security Refresh) and interleaving global and local remappings.

1.5 Related Work

There are practice-oriented studies that can be thought of as addressing Wear Leveling
without explicit formalization [15, 16, 19, 7, 20, 17, 6, 21, 14, 24, 22, 9, 23, 1, 10, 11, 25];
and theory-oriented studies on related but different problems than the current one [3, 8].

Comparison to existing practice-oriented studies. We give rigorous memory lifetime anal-
yses/guarantees. Such a guarantee, though needed for security risk assessment/control, does
not exist in the previous practice-oriented studies.

Comparison to existing theory-oriented studies. Our problem formulation is meant to
capture wear leveling for PCM and explicitly takes into account the maintenance cost of the
virtual-to-physical address mapping. On the other hand, the formulation of Ben-Aroya and
Toledo [3] is meant to capture wear leveling for flash memory and is based on the assumption
that arbitrary address mapping can be maintained for free. This assumption is reasonable
for flash memory because the unit access size of flash memory is large (i.e., B can be much
larger than b) and thus, the address mapping is small enough to fit in the wear-free memory
(DRAM). For PCM, the assumption above is not reasonable because the unit access size is
small. Eppstein et al. studied wear leveling customized for a Cuckoo hash table [8]. We,
instead, consider wear leveling for arbitrary RAM programs.

2 Preliminaries

Notation. For RAM M (virtual or physical), M [i] denotes the ith cell of M while M [i :
j) denotes M [i], . . . ,M [j − 1]. For a non-negative integer i, we let [i] denote the set
{0, 1, . . . , i−1}. By x U←− S, we mean sampling an element x from set S uniformly at random.
We let ⊥ denote a special symbol representing an empty data. We use nil for a null pointer.
For two bit strings x and y of the same length, we let x⊕ y denote the bitwise XOR of x
and y. We use lg (resp. ln) to mean the base-2 (resp. natural) logarithm whereas we use log
if the base is irrelevant.

ISAAC 2020
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Security Refresh. We briefly explain Security Refresh – a wear-leveling scheme proposed
by Seong, Woo, and Lee [17]. The pseudocode of the algorithm is provided in Algorithm 1
at the end of the paper. This algorithm maintains n virtual cells v[0], . . . , v[n − 1] in n

physical cells V [0], . . . , V [n − 1]. Upon initialization, the algorithm chooses two random
keys r0, r1 and sets V [i] to ⊥ for all i ∈ [n]. (We are assuming that n is a power of two.)
Although all the cells are empty, we regard this state as the virtual cell v[i] being stored in
the physical cell V [i⊕r0] for all i ∈ [n]. As the algorithm processes write queries, it gradually
remaps the virtual cells to the addresses specified by r1, that is, v[i] moves from V [i⊕ r0]
to V [i⊕ r1]. Suppose no virtual cell is remapped yet. If an attempt is made to move v[i]
from V [i⊕ r0] to V [i⊕ r1], there already exists v[j] where j = i⊕ r0 ⊕ r1 in the destination.
However, the new destination of v[j] is V [i⊕ r0], the current location of v[i], so swapping
the contents of V [i⊕ r0] and V [i⊕ r1] remaps both v[i] and v[j] correctly. In other words,
given r0, r1 the virtual address space [n] is partitioned into pairs of the form (i, i⊕ r0 ⊕ r1)
and remapping corresponds to swapping the locations of the paired virtual cells. To swap
all pairs while processing write queries, the algorithm prepares a counter, which is initially
set to zero, cremap in a wear-free space. For every t write queries processed, where t is a
positive integer parameter, the algorithm swaps (v[cremap], v[cremap ⊕ r0 ⊕ r1]) if it is not
already swapped, and increments cremap. The algorithm checks whether cells are “already
swapped or not” by using a simple procedure: since cremap increases from zero by one at a
time, (v[cremap], v[cremap⊕r0⊕r1]) is already swapped if and only if cremap⊕r0⊕r1 < cremap.
More generally, v[i] is already remapped if and only if i < cremap or i⊕ r0⊕ r1 < cremap. This
fact enables us to efficiently locate and read/write any v[i] at any time during the transition
from an r0-based map to an r1-based map. After v[i] is remapped to V [i⊕ r1] for all i ∈ [n],
the algorithm replaces r0 by r1 and updates r1 to be a newly chosen random key. Then, the
situation becomes exactly the same as immediately after the initialization except the keys
r0, r1. We repeat this process.

Bernstein’s inequality. ((2.10) of [4]) Let X1, . . . , Xn be independent random variables
with finite variance such that Xi ≤ b for some b > 0 almost surely for all i ≤ n. Let
v =

∑n
i=1 E[X2

i ]. For any λ > 0, Pr (
∑n
i=1(Xi −EXi) ≥ λ) ≤ exp

(
− λ2

2(v+bλ/3)

)
.

3 Analysis of Security Refresh

3.1 Proof of Theorem 1
Let a round be the period from one re-initialization (or the initialization) to the next re-
initialization. We start counting rounds from one. Suppose we use Security Refresh for T
rounds, where T is a positive integer parameter.

We have not yet specified parameters t and T . We derive sufficient conditions of these
parameters for Theorem 1 to hold and provide parameter settings that satisfy those conditions.
Let g := nt, the number of write queries processed in each round.

First, we derive a sufficient condition for item 2 of Theorem 1. For i = 1, . . . , T , let Xi

be the number of times the first physical cell V [0] is updated during the ith round. We
need a large deviation bound for the sum X1 + · · ·+XT . These random variables are not
independent. We cope with this problem by splitting the sum into two sums of independent
random variables. Also, we bound the second moment of Xi and apply Bernstein’s inequality
because Hoeffding bound is not effective to the case δ ≤ 2.

I Lemma 4. For i = 1, . . . , T , 0 ≤ Xi ≤ g,EXi = g/n = t, and E[X2
i ] ≤ g2/n.
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Proof. The first inequality is true because g write queries are processed during a round.
Fix i ∈ {1, . . . , T}. We call the time at which the jth query in the ith round is processed
as time step j. Let Yj be the indicator random variable of the event that the 1st physical
cell is updated at time step j. Since the location of each logical cell at each time step is
uniformly at random, EYj = Pr(Yj = 1) = 1/n. Thus, EXi =

∑
1≤j≤g EYj = g/n = t,

and E[X2
i ] =

∑
1≤j≤g E[Y 2

j ] + 2
∑
j<k E[YjYk] ≤

∑
1≤j≤g EYj + 2

∑
j<k

√
E[Yj ]E[Yk] =

g/n + 2
(
g
2
)
/n = g2/n where we used Cauchy-Schwarz and the fact that Yj ∈ {0, 1} in the

inequality. J

Let R0, R1 be (r0, r1) chosen at the initialization and, for i = 2, . . . , T , let Ri be the random
bits chosen at the beginning of the ith round. The random variable Xi is a function of
Ri−1 and Ri. (The queries are fixed in advance.) Thus, X1, X3, . . . , XT−1 are mutually
independent and so are X2, X4, . . . , XT . (We are assuming that T is even for brevity.) Let
X =

∑T
i=1Xi, Xodd =

∑
i:oddXi and Xeven =

∑
i:evenXi. By linearity of expectation,

EX = tT and EXodd = EXeven = tT/2.
Let v =

∑
i:odd E[X2

i ] ≤ g2T/(2n). For any λ > 0, Pr(Xodd − EXodd ≥ λ) ≤
exp

(
− λ2

2(v+gλ/3)

)
≤ exp

(
− 3nλ2

3g2T+2gnλ

)
where the first (resp. second) inequality follows

from Bernstein’s inequality (resp. v ≤ g2T/(2n)). By setting λ = εEXodd = εtT/2 with
0 < ε ≤ 1, 2gnλ = εg2T ≤ g2T and thus, Pr(Xodd ≥ (1 + ε)EXodd) ≤ exp

(
−3ε2T/n

)
.

Similarly, Pr(Xeven ≥ (1 + ε)EXeven) ≤ exp
(
−3ε2T/n

)
. Thus, Pr(X ≥ (1 + ε)EX) =

Pr(Xodd + Xeven ≤ (1 + ε)(EXodd + EXeven)) ≤ Pr(Xodd ≥ (1 + ε)EXodd) + Pr(Xeven ≥
(1 + ε)EXeven) ≤ 2 exp

(
−3ε2T/n

)
. The same bound also applies to each of the other

physical cells V [1], . . . , V [n]. By union bound, the probability that some physical cell is
updated more than L times (including the T updates for remapping) is bounded by 2/n
if exp(−3ε2T/n) ≤ 1/n2 and L − T ≥ (1 + ε)EX = (1 + ε)tT . Since the number of
write queries processed in T rounds is gT , the lifetime bound claimed in item 2 holds if
gT ≥ (1−O(n−β))nL.

To summarize, the following is sufficient for item 2 of Theorem 1:

3ε2T ≥ n lnn, L− T ≥ (1 + ε)tT (0 < ε < 1), tT ≥ (1−O(n−β))L. (1)

The sufficient conditions for the other items of Theorem 1 are straightforward. First, items
1 and 4 always hold directly from the scheme specification. Second, as for the access cost, we
access 1 cell for each read/write query whereas we access two additional cells for remapping
for every t write queries. Thus, the worst-case time overhead is 3 and the amortized time
overhead is 1 + 2/t. Thus, for item 3, it suffices that

1/t = O(n−γ)⇔ t = Ω(nγ). (2)

Next, we provide the parameter settings of g (and thus, t), T , and ε that satisfy conditions
(1)–(2). Take constants γ ∈ (0, δ − 1), η ∈ (0, (δ − 1− γ)/2), and β ∈ (0,min{γ, η}). Note
that each interval is not empty. Then, set t = nγ , T = (1− n−β)nδ−γ , ε = n−η. For the sake
of brevity, we are assuming that g and T above are integers. The theorem holds without this
assumption. Finally, (1)–(2) can be verified as follows:

(1) first η < (δ − 1− γ)/2⇔ δ − γ − 2η > 1, and thus,

3ε2T = 3n−2η(1− n−β)nδ−γ

= (3− o(1))nδ−γ−2η

≥ n lnn.

ISAAC 2020
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(1) second L − T = nδ − (1 − n−β)nδ−γ and (1 + ε)tT = (1 + n−η)nγ(1 − n−β)nδ−γ =
nδ − (1− o(1))nδ−β . Thus,

L− T − (1 + ε)tT = (1− o(1))nδ−β − (1− n−β)nδ−γ

= (1− o(1))nδ−β

≥ 0.

(1) third Obvious.
(2) Obvious.

3.2 Proof of Theorem 2
We import the notion of round and the shorthand g := nt from Section 3.1.

Suppose the adversary selects a virtual cell v[i] at random and continuously issues write
queries to v[i]. Let Vi (resp. V ′i ) be the physical cell storing v[i] at the beginning of the
first (resp. second) round. If L ≤ g/2 = nt/2, either Vi or V ′i reaches the write limit while
processing the first 2L write queries. The amortized access overhead is 1 + 2/t as we have
seen in the proof of Theorem 1. If nt/2 < L and L ≤ cn, 1 + 2/t > 1 + 1/c.

4 Construction for Small Write Limit

4.1 Description
In short, the full construction is a deamortized version of the method briefly described in
Section 1.4. Instead of batch global remapping, we gradually perform global remapping by
Security Refresh while we process write queries by implementing the pointer-based local
remapping “on top of” Security Refresh. The pseudocode is provided in Algorithms 2 to 6 at
the end of the paper.

We attach three labels to each physical cell: a global counter, local counter, and pointer.
We explain the meaning of these labels together with the explanation of the algorithm.

In this construction, the virtual to physical address mapping is composed of two parts:
local mapping and global mapping. To explain these notions, it is convenient to introduce a
hypothetical RAM u consisting of N = n+ 2m cells where m is a positive integer parameter.
The first n cells u[0], . . . , u[n − 1] correspond to the default locations of the virtual cells
v[0], . . . , v[n− 1], respectively, and the remaining 2m cells correspond to the spare cells used
to store frequently updated virtual cells.

Global mapping f is a bijection between N cells of u and N cells of V . This mapping
changes continuously but it is maintained in such a way that at any time, we can efficiently
derive the latest f(i) for any i ∈ [m]. More concretely, global (re)mapping is almost the
same as Security Refresh and f(i) can be computed as described in Algorithm 3. The only
difference from Security Refresh is that global remapping has another role, namely to reset
local mapping, which we explain later. We define the global write count of each physical
cell to be the number of times the physical cell has been updated since the last time it was
globally remapped or initialized. We use the global counter label to maintain the global write
count. In addition, we let t denote the parameter of global remapping frequency. That is, f is
partially remapped for every t write queries processed (line 8–10 of Write in Algorithm 4).

Local (re)mapping refers to links from some cells of u to other cells of u implemented
by pointers stored as labels. At each moment in the algorithm lifetime, the following is
maintained:
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The N cells of u are partitioned into n disjoint pointer-linked paths starting at u[0], . . . ,
u[n− 1], and free cells – those cells that are not on any pointer-linked path. Each path
contains at most h+ 1 cells where h is a positive integer parameter;
The virtual cell v[i] is stored in the last cell of the path starting form u[i];
Each cell u[i] on a pointer-linked path is associated with a positive integer termed local
write count, which is stored in the local counter label. The local write count is at most a
certain threshold: 2d if u[i] is the (h+ 1)th cell in the path and d otherwise, where d is a
positive integer parameter.

To access v[i] (i ∈ [n]), we follow the pointers from u[i] until there is no pointer to follow.
Suppose, say, u[j] is at the destination. Each time we update v[i], we increment the local
write count of u[j] and if it reaches the threshold, we perform local remapping. In local
remapping, we first find an allocatable cell – a free cell with a global write count of at most
2d – by rejection sampling from spare cells. The sampling pool depends on the parity of
round count, where round refers to the time period between one (re)initialization to the next
initialization. In an even-indexed round, we sample a cell from u[n+ 1 : n+m) if the head
of the path u[i] is already globally remapped in the round. Otherwise, we sample a cell from
u[n+m : n+ 2m). We exchange the role of u[n+ 1 : n+m) and u[n+m : n+ 2m) in the
odd-indexed rounds. The sampling procedure does not halt if there is no allocatable cell.
We will ensure that this never happens. We set the local write count of the newly allocated
cell, say u[k], to 1. Then, we store v[i] in u[k], let u[`] point to u[k], and increment the local
write count of u[`], where u[`] is the deepest cell on the path from u[i] to u[j] that is not the
(h+ 1)th cell on the path and has a local write count of less than 2d.11(The search of u[`] is
conducted simultaneously with pointer tracing in FollowPointer in Algorithm 3.) If no
such u[`] exists, local remapping fails (line 3 of LocalRemap). The cells on the path from
the previous child of u[`], if any, are now free and we reset the local counters of these cells to
zero. This local remapping procedure realizes the allocation pattern similar to the DFS of
the complete binary tree with dh leaves described in Section 1.4. Note that the failure of
local remapping in line 3 of LocalRemap described above corresponds to the case in which
no further tree nodes are available for v[i].

We use addressess in u, rather than V , as pointers. This ensures that the pointers remain
valid even if global remapping modifies the mapping between u and V . For example, in line
7 of LocalRemap, we store pointer k, rather than f(k), in V [f(`)]. If we stored f(k), the
pointer would be broken if global remapping was to update f(k) to another value.

Now we explain the role of global remapping to reset local mapping, as mentioned
above. This function makes it possible to combat the “degradation” (i.e., where the tree
becomes saturated and allocatable cells become scarce) mentioned in Section 1.4 without
computationally intensive batch procedures. When a cell u[i] is globally remapped to V [j],
there are two possible cases: a) i < n, i.e., u[i] is one of the n default locations of virtual
cells; or b) u[i] is a spare. In case a), we free all spare cells on the pointer-linked path from
u[i]. Even though this procedure does not reset the global write count of the freed cells,
those with global write count of at most 2d become allocatable. In addition, we reset the
global write count of V [j] to zero. As a result, the “DFS” of the tree for v[i] is reset to the
root. In case b), we copy the current content of u[i] to V [j] except that we reset the global
write count to zero. This ensures that unallocatable free cells become allocatable.

11By setting this parameter 2d, we are essentially using the same parameter d for the update threshold
and tree branching factor, for the sake of brevity.
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4.2 Analysis
We prove Theorem 3 in this section. Recall that a round is the period between one
(re)initialization of the global mapping and the next re-initialization. We start counting
rounds from one. Let g := Nt – the number of write queries processed in a round.

Suppose we use the scheme for T rounds. We have not yet specified parameters m, h, t
(and thus g), d, and T . We determine conditions for these parameters that are sufficient for
Theorem 3 and provide the parameter settings that satisfy the conditions.

I Lemma 5. The number of local remappings in a round is at most 2g/d.

Proof. For one execution of local remapping for v[i], we associate d write queries for v[i]
that update v[i] stored in the DFS predecessor of the newly allocated node. Distinct local
remapping executions are not associated with the same write query. The DFS from u[i]
is reset to the root once in every round when u[i] is globally remapped. Thus, at most 2g
queries in the round i and i− 1 are associated with the local remappings in the round i. J

I Lemma 6. The number of freed spare cells in a round is at most 4g/d.

Proof. A spare cell can be freed only after it is allocated. All spare cells allocated in or
before the (i− 2)th round are freed until the end of the (i− 1)th round (when the node at
the root of the corresponding tree is globally remapped). One spare cell is allocated for each
execution of local remap. Thus, the number of freed cells in the ith round is bounded by the
number of local remappings in the round i and i− 1, which is at most 4g/d by Lemma 5. J

I Lemma 7. The number of physical cell updates in a round is at most g(1 + 2/t+ 6/d).

Proof. Physical cell updates are categorized as follows: 1) the update of the cell storing
the updated value (Write line 6 or LocalRemap line 7); 2) Local remapping; 3) Global
remapping. 2) is further categorized as 2a) the update of the pointer of the parent of the
newly allocated node; 2b) updates for freeing. 3) is further categorized as 3a) the update of
two cells swapped; 3b) updates for freeing. Thus, the number of physical cell updates in a
round is nquery + nlocal + 2nglobal + nfree where nquery, nlocal, nglobal is the number of queries,
local remappings, global remappings in the round, respectively, and nfree is the number of
freed cells in the round. Obviously, nquery = g and nglobal = g/t. By Lemma 5, nlocal ≤ 2g/d.
By Lemma 6, nfree ≤ 4g/d. J

I Lemma 8. The algorithm works correctly and cell allocation halts in expected O(1) time if

dh+1 ≥ g, m ≥ 26g/d. (3)

Proof. The algorithm functions correctly as long as a) local remapping never fails as a result
of tree nodes running out (line 3 of LocalRemap in Algorithm 5); and b) allocation always
halts.

We first derive a sufficient condition for a). Fix a virtual cell, say, v[i]. At most 2g
write queries for v[i] are processed during a pair of successive global remappings of v[i].
(The maximum is attained if v[i] is the first of m cells that are globally remapped in one
round and the last in the next round and all write queries in the two rounds are targeted
at v[i].) On the other hand, assuming that the cell allocation does not fail, the maximum
number of times a virtual cell can be updated during a pair of successive global remappings
is (1 + d+ · · ·+ dh−1)d+ dh(2d) = d(dh − 1)/(d− 1) + 2dh+1. If more queries for the virtual
cell are issued, local remapping fails due to tree nodes running out. (A leaf is used for 2d
write queries instead of d because it is not used to store pointers.) Thus, for a), 2dh+1 ≥ 2g,
i.e., the first half of (3) suffices.
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Next, we give a sufficient condition for cell allocation to halt in expected constant time.
This is also sufficient for condition b) above. It suffices to ensure that, at any time, at least
half of each sampling pool (u[n : n+m) or u[n+m : n+2m)) is allocatable. A spare cell is not
allocatable if and only if a) it is already allocated; or b) it has global write count greater than
2d. Recall the fact that the global write count of each physical cell is reset once in every round
(when the cell is globally remapped). Fix time arbitrarily. By the fact above, the number of
allocated cells is at most the number of local remappings in the current and the previous
round. This is at most 4g/d by Lemma 5. By the fact above and Lemma 7, the number of
spare cells satisfying b) is at most 2g(1 + 2/t + 6/d)/(2d) = (g/d)(1 + 2/t + 6/d) ≤ 9g/d.
Thus, the number of non-allocatable spare cells never exceeds 4g/d+ 9g/d = 13g/d. Hence,
the last half of (3) suffices. J

Next, we derive a sufficient condition for item 2 of Theorem 3. Let Xi be the number of
times the first physical cell is updated during the ith round. Unlike the previous section, Xi

includes updates for global and local remapping. Let X =
∑T
i=1Xi.

I Lemma 9. For each i = 1, . . . , T , 0 ≤ Xi ≤ 4d+ 2 ≤ 6d. and EXi ≤ tT (1 + 2/t+ 6/d).

Proof. It is trivial that 0 ≤ Xi and 4d+ 2 ≤ 6d. To see Xi ≤ 4d+ 2, note that the maximum
is attained when a spare cell with write count 2d is allocated, updated 2d + 1 times for
storing virtual cell values and pointers, and freed. The last one count comes from the global
remapping. The bound EXi ≤ tT (1 + 2/t+ 6/d) follows from Lemma 7 and the symmetry
of physical cells. J

I Lemma 10. Each of X1, X3, . . . and X2, X4, . . . is independent.

Proof. For i = 1, . . . , T , Xi is determined by the evolution of global and local mapping over
the ith round. Let R0, R1 be (r0, r1) chosen at the initialization and, for i = 2, . . . , T , let Ri
be the random bits chosen at the beginning of the ith round. Let R′i be the random bits used
for spare cell sampling in the ith round for i = 1, . . . , T . The evolution of global mapping in
the ith round is determined by Ri−1 and Ri. The evolution of local mapping in the ith round
is determined by Ri−1, Ri, R

′
i−1 and R′i. It does not depend on Rj or R′j (j < i− 1) because

two spare cell pools u[n : n+m) and u[n+m : n+ 2m) are used alternately round-by-round
and, in particular, u[n : n + m) (resp. u[n + m : n + 2m)) becomes all free at the end of
every odd-indexed (resp. even-indexed) round. J

I Lemma 11. The following is sufficient for the item 2 of Theorem 3:

72d2 lnN/(t2T ) ≤ ε2 (ε > 0), 1 + ε+ 2/t+ 6/d ≤NL/(gT ) ≤ 1 +O(n−β). (4)

Proof. Let Xodd =
∑
i:oddXi and Xeven =

∑
i:evenXi. By Lemma 9, Lemma 10 and

Hoeffding inequality,12for any λ > 0, Pr(Xodd ≥ t(T/2)(1 + 2/t+ 6/d) + λ) ≤ exp
(
− λ2

36Td2

)
.

(We are assuming that T is even for brevity.) By setting λ = εtT , Pr(Xodd ≥ (1 + ε+ 2/t+
6/d)tT ) ≤ exp

(
− ε

2t2T
36d2

)
. Similarly, Pr(Xeven ≥ (1 + ε+ 2/t+ 6/d)tT ) ≤ exp

(
− ε

2t2T
36d2

)
. By

union bound and n ≤ N , the probability that some physical cell is updated more than L
times is bounded by 2/n if exp

(
− ε

2t2T
36d2

)
≤ 1

N2 ≤ 1
nN , which is equivalent to the first half of

(4), and L ≥ (1 + ε+ 2/t+ 6/d)tT . The claimed lifetime is achieved if gT = (1−O(n−β))NL.
The conditions can be summarized as (4). J
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The sufficient conditions for the remaining items of Theorem 3 are relatively straightfor-
ward.

I Lemma 12. The following is sufficient for the item 1, 3, and 4 of Theorem 3:

m = O(n1−α), d = o(n), h+O(1/d+ 1/t) ≤ b1/δc+ 1 +O(n−γ). (5)

Proof. First, it is obvious from the scheme specification that item 4 of Theorem 3 is satisfied.
As for item 1, m = O(n1−α) suffices for the first half. We consider the second half. Each

cell carries local/global counter and a pointer. Each counter takes lgO(d) = lg d + O(1)
bits. Since a physical cell is never used to store a pointer and a virtual cell value at the
same time, the pointer can be replaced by a one-bit flag and the value field if the value
field is at least lgN bits. This is the case if m = O(n1−α) since b ≥ (1.1) lgn. Thus, if
d = o(n) holds in addition to m = O(n1−α), all of the value, counters and the pointer fit in
B = b+ 2dlgne+O(1) bits.

Now we analyze the access cost to obtain a sufficient condition for item 3. For each
read/write query, we need to access at most h+ 2 physical cells on the tree (at most h+ 1
reads and at most one write) and we need to access more cells if local or global remapping
is executed. The additional cost incurred by local remapping consists of the cost for spare
cell allocation and the cost for freeing. The amortized cost of allocation is O(1/d) since
each execution takes expected constant time and local remapping occurs at most once per d
queries. The cost for freeing is also O(1/d) since the number of freed cells is bounded by
the number of allocated cells. The additional cost incurred by global remapping consists of
the cost for swapping and the cost for freeing. The amortized cost for swapping is O(1/t)
since one execution of swapping takes constant time and global remapping is executed once
for every t queries. The amortized cost for freeing is O(1/d) by the same reason as the
freeing involved in local remapping. Therefore, the amortized time overhead is at most
h+ 2 +O(1/d+ 1/t). Hence, h+O(1/d+ h/t) = b1/δ + 1c+O(n−γ) suffices for item 3. J

Next, we present parameter settings that satisfy conditions (3), (4), (5). For a given
0 < δ ≤ 1, let h = b1/δc + 1. Take ρ ∈ (max{1/(h + 1), (1 − δ)/(h − 1)}, 1/h); Take
τ ∈ (max{0, 2ρ− δ}, ρ(h+ 1)− 1); Take η ∈ (0, (δ + τ − 2ρ)/2); Take β ∈ (0,min{η, ρ, τ});
Take γ ∈ (0,min{ρ, τ}); Take α ∈ (0, 1− ρh). Note that each interval is not empty. Then,
define m, t (thus, g), T , d, ε as m = n1−α, t = nτ , T = L/(t(1 + n−β)), d = nρ, ε = n−η.
For brevity, we are assuming that m, t, T, d above are integers. The theorem holds without
this assumption. Finally, (3)–(5) can be verified as follows:

(3) first dh+1 = nρ(h+1). g = Nt = (1 + o(1))n1+τ = o(nρ(h+1)) because τ < ρ(h+ 1)− 1.
(3) second m = n1−α. g/d = (1 + o(1))n1+τ−ρ = o(n1−α) because 1 + τ − ρ < ρh < 1− α.
(4) first 100d2 lnN/(t2T ) = (100n2ρ ln((1 + o(1))n))/(nτL/(1 + n−β)) ≤ 200n2ρ−τ−δ lnn.

ε2 = n−2η = ω(n2ρ−τ−δ logn) because η < (δ − τ − 2ρ)/2.
(4) second NL/(gT ) = 1 + n−β is trivial. 1 + ε+ 2/t + 6/d = 1 + n−η + 2n−τ + 6n−ρ =

1 + o(n−β) because β < min{η, ρ, τ}.
(5) first Obvious.
(5) second Obvious.
(5) third 1/d+ 1/t = n−ρ + n−τ = o(n−γ) because γ < min{ρ, τ}.

12 It is also possible to apply Bernstein’s inequality to the proposed method (with, additional, second
moment analysis for Xi). It does not affect the theorem statement. (The constants α, β, γ will change.)
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5 Conclusion

In this study, we revisited wear leveling from a theoretical perspective. We provided a rigorous
lifetime analysis of Security Refresh and also proposed a novel algorithm with a strong
theoretical performance guarantee. An important open problem is to prove impossibility
results for general wear leveling schemes (rather than specific schemes such as Security
Refresh).

Algorithm 1 Security Refresh.

1: function Initialize()
2: (r0, r1) U←− [n]× [n] . global variables; stored in wear-free space
3: (cremap, cwrite)← (0, 0) . global variables; stored in wear-free space
4: for i ∈ [n] do V [i]← ⊥

1: function Reinitialize()
2: r0 ← r1
3: r1

U←− [n]
4: cremap ← 0

1: function Pair(i): return i⊕ r0 ⊕ r1

1: function Swap(i, j)
2: tmp← V [i]
3: V [i]← V [j]
4: V [j]← tmp

1: function f(i)
2: if min{i,Pair(i)} < cremap then
3: return i⊕ r1
4: else
5: return i⊕ r0

1: function Read(i): return V [f(i)]
1: function Write(i, x)
2: V [f(i)]← x

3: cwrite ← cwrite + 1
4: if cwrite = t then
5: Remap()
6: cwrite ← 0

1: function Remap()
2: if cremap < Pair(cremap) then
3: Swap(cremap ⊕ r0, cremap ⊕ r1)
4: cremap ← cremap + 1
5: if cremap = n then
6: Reinitialize()
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Algorithm 2 Initialization.

1: function Initialize()
2: (cremap, cwrite, cround)← (0, 0, 0) . global variables; stored in wear-free space
3: (r0, r1) U←− [N ]× [N ] . global variables; stored in wear-free space
4: for i ∈ [N ] do V [i]← (0, 0,nil,⊥) . (V [i].global, V [i].local, V [i].ptr, V [i].val)

1: function Reinitialize()
2: r0 ← r1
3: r1

U←− [N ]
4: (cremap, cround)← (0, 1− cround) . cround maintains the parity of round

Algorithm 3 Utility functions.

1: function Pair(i): return i⊕ r0 ⊕ r1

1: function f(i): if min{i,Pair(i)} < cremap then return i⊕ r1 else return i⊕ r0

1: function FollowPointer(i)
2: (j, cell, k, `)← (i, V [f(i)], 0,nil)
3: while cell.ptr 6= nil do
4: if cell.local < 2d then `← j

5: (k, j)← (k + 1, cell.ptr)
6: cell← V [f(j)]
7: return (j, cell, k, `) . (path tail addr, path tail, depth, parent of next DFS node)

1: function FreePath(i)
2: while i 6= nil do
3: cell← V [f(i)]
4: V [f(i)]← (cell.global + 1, 0,nil,⊥)
5: i← cell.ptr
6: return cell.val

Algorithm 4 Read/write.

1: function Read(i)
2: (j, cell, k, `)← FollowPointer(i) . j, k, ` are not used
3: return cell.val
1: function Write(i, x)
2: (j, cell, k, `)← FollowPointer(i)
3: if (k < h ∧ cell.local = d) ∨ (k = h ∧ cell.local = 2d) then
4: LocalRemap(i, `, x)
5: else
6: V [f(j)]← (cell.global + 1, cell.local + 1,nil, x)
7: cwrite ← cwrite + 1
8: if cwrite = t then
9: GlobalRemap()

10: cwrite ← 0



T. Onodera and T. Shibuya 65:15

Algorithm 5 Local remapping.

1: function Alloc(lb, ub) . non-negative integers with lb ≤ ub
2: i

U←− {lb, . . . , ub}
3: while (V [f(i)].local > 0) ∨ (V [f(i)].global > 2d) do i

U←− {lb, . . . , ub}
4: return i
1: function LocalRemap(i, `, x)
2: if ` = nil then return error . tree nodes run out
3: if ((min{i,Pair(i)} < cremap) ∧ (cround = 0)) ∨

((min{i,Pair(i)} ≥ cremap) ∧ (cround = 1)) then
4: k ← Alloc(n, n+m− 1)
5: else
6: k ← Alloc(n+m,N − 1)
7: V [f(k)]← (V [f(k)].global + 1, 1,nil, x)
8: FreePath(V [f(`)].ptr) . returned value is ignored
9: V [f(`)]← (V [f(`)].global + 1, V [f(`)].local + 1, k,⊥)

Algorithm 6 Global remapping.

1: function ClearCopy(i, j, cell)
2: if i < n then
3: x← cell.val
4: if cell.ptr 6= nil then x← FreePath(cell.ptr)
5: V [f(j)]← (0, 0,nil, x)
6: else
7: V [f(j)]← (0, cell.local, cell.ptr, cell.val)

1: function Swap(i, j)
2: (cell0, cell1)← (V [f(i)], V [f(j)])
3: ClearCopy(i, j, cell0)
4: ClearCopy(j, i, cell1)

1: function GlobalRemap()
2: if cremap < Pair(cremap) then
3: Swap(cremap,Pair(cremap))
4: cremap ← cremap + 1
5: if cremap = N then Reinitialize()
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