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PREFACE 
 
The Finnish National committee of the International Lithosphere Programme (ILP) 

organises every second year the LITHOSPHERE symposium, which provides a 

forum for lithosphere researchers to present results and reviews as well as to inspire 

interdisciplinary discussions. The tradition was disturbed by the Covid-19 pandemic, 

and the 2020 meeting was shifted to 2021. Regardless of the exceptional 

circumstances the symposium provides a wide selection of geological and 

geophysical presentations. The eleventh symposium – LITHOSPHERE 2021 – 

comprises 44 presentations. The extended abstracts (in this volume) provide a good 

overview on current research on structure and processes of solid Earth.  

 

The two-day symposium takes place completely in the internet as a virtual meeting 

during January 19 – 20, 2021. The participants will present their results in oral and 

poster sessions. Posters prepared by graduate and postgraduate students will be 

evaluated and the best one will be awarded. Research Professor Peter M. Malin, Duke 

University, USA, will give the invited talk. 

 

This special volume “LITHOSPHERE 2021” contains the programme and extended 

abstracts of the symposium in alphabetical order. 

 

 

Helsinki, January 13, 2021 
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Karell, Elena Kozlovskaya, Arto Luttinen, Kaisa Nikkilä, Vesa Nykänen, Markku 

Poutanen, Pietari Skyttä, Eija Tanskanen, and Timo Tiira  
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Trace element and Platinum Group Element distribution in 

chromites: constraints on mineral chemical tracers in  

mafic-ultramafic host lithologies 
 

M.A. Aaltonen1, C. Beier1, A. Abersteiner1 and A.P. Heinonen1 
 

1Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland 

E-mail: milla.aaltonen@helsinki.fi 

 

The compositional heterogeneity of chromites in mafic-ultramafic lithologies can be used as a multifunctional 

petrological tool in geosciences for determining the formation and modification of ore-forming lithologies. The 

formation of immiscible sulfide melts, i.e. sulfide-saturation, can potentially be identified using the PGE contents 

in chromite grains. In this project, we investigate the distribution of trace elements in chromites through in situ 

analyses of six chromite-bearing Finnish samples from mineralized and barren lithologies. Our preliminary data 
show that trace elements can be sufficiently used to distinguish between primary magmatic, as well as secondary, 

metamorphic processes. Our new results imply that a careful consideration of the trace element distribution in 

chromites may make them a suitable lithochemical tracer in prospecting Ni-Cu-PGE deposits. 
 

Keywords: Chromite, mineral chemistry, indicator mineral, sulfide saturation 

 

1. Introduction 

Igneous ore-forming processes leave unique geochemical fingerprints in the crystallizing 

minerals, however, distinguishing between primary magmatic and secondary, metamorphic 

processes remains challenging. Indicator minerals can be used as lithochemical tracers in ore 

deposit exploration to track and estimate the mineralization potential. Ideally, an indicator 

mineral is abundant across a range of compositions and is relatively resistant to alteration and 

weathering.  

Chromite sensu lato is a common mineral in mafic-ultramafic rocks derived from the 

upper mantle (Barnes and Roeder 2001) and is often associated with Ni-Cu-PGE deposits (Papp 

and Lipin 2010). Compared to common primary silicates in mafic lithologies (e.g., olivine and 

pyroxenes) (Barnes and Roeder 2001), chromite is relatively resistant to alteration and may thus 

preserve the primary magmatic mineral chemistry.  

Previous studies suggest that the mineral chemistry of chromites can give insights to 

sulfide saturation of the host magma (Fiorentini et al. 2008). Platinum group elements (PGEs; 

Ru, Rh, Pd, Os, Ir, and Pt) are strongly chalcophile elements and thus partition to the sulfide 

liquid, leaving the residual melt relatively depleted in PGEs. However, PGEs can also behave 

as siderophile elements in sulfide-undersaturated conditions, where Ru is compatible in 

chromite (Fiorentini et al. 2008). Fiorentini et al. (2008) suggested that Ru concentration in 

chromites could be used as a fingerprinting element to identify sulfide saturation processes in 

komatiitic systems. However, only a few studies have systematically investigated the mineral-

scale chemical heterogeneity of trace elements (Ti, V, Mn, Co, Ni, Zn, Ru) in altered and 

unaltered chromites (e.g., Mukherjee et al. 2015).  

This project is designed to systematically describe and analyze in situ core to rim profiles 

of the major and trace elements, including PGEs, in both unaltered and altered chromites from 

a range of geodynamic environments. We use existing samples from mineralized and barren 

lithologies to constrain how the mineral chemistry of chromites reflects the changes from 
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sulfide-undersaturated to sulfide-oversaturated conditions in crystal-, outcrop- and regional 

scale, as well as between ophiolites and greenstone belts. 

 

2. Preliminary results 

Six Finnish chromite-bearing samples from mafic-ultramafic lithologies were selected for in 

situ analyses. They cover a range of compositions from komatiitic chromites from the Archean 

Vaara and Kauniinlampi cumulate lenses in the Suomussalmi greenstone belt, chromite seams 

from the Kellojärvi ultramafic complex belonging to the Archean Kuhmo greenstone belt and 

chromitites from the ophiolite-related Pitkänperä and Vasarakangas localities. Samples from 

the greenstone belts and ophiolites represent the mineralized and barren lithologies, 

respectively. Representative grains of visibly zoned and unzoned chromites (Figure 1) were 

analyzed by quantitative high precision laser ablation inductively coupled mass spectrometry 

(LA-ICP-MS) at the Department of Geosciences and Geography, University of Helsinki. The 

following dataset has not yet been standardized with external major element data. 

 

 
 

Figure 1. Chromite grains from the Finnish ophiolite related podiform chromitite (A) and 

greenstone belts (B and C) under reflected light. A. Brecciated chromitite from the 

Vasarakangas ophiolite fragment. B. Zoned chromites from Kellojärvi within the Kuhmo 

greenstone belt. C. Disseminated chromite from Vaara in the Suomussalmi greenstone belt.  

 

The preliminary LA-ICP-MS results (n=145) show a clear chemical distinction both 

between chromites from greenstone belt and ophiolite lithologies, and between mineral cores 

and rims (Figures 2 and 3). The Pitkänperä and Vasarakangas ophiolite chromitites have 

distinctly higher Mg# [Mg/(Mg+Fe)] and lower Cr# [Cr/(Cr+Al)], Zn/Al, Ru/Al, and Mn/Al 

(Figures 2 and 3) compared to the greenstone belt chromites from Vaara, Kauniinlampi, and 

Kellojärvi. The Kauniinlampi, Kellojärvi, and Vasarakangas chromites display a systematic 

core-to-rim variation in Cr# and Mg#, whereas the Vaara chromites have a more scattered 

distribution and variation mainly in Mg# (Figure 2). Generally, the rims of the greenstone 

chromites show an increase in Mn/Al, V/Al, Zn/Al, and Ru/Al relative to the cores (Figure 3). 

 

3. Discussion and proceedings 

The correlations of Cr# and Mg# in individual grains from the Kauniinlampi, Kellojärvi, and 

Vasarakangas chromites (Figure 2) indicate normal zoning caused by fractional crystallization 

(Mukherjee et al. 2015). A correlation of Mn/Al, V/Al, Ru/Al, and Zn/(Al, Ti) implies that fluids 

may have variably influenced the composition of the chromites. However, the cores have 

maintained the original magmatic composition, at least partially, whilst the rims display a 
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systematic and stronger elemental exchange. Our preliminary findings indicate that the cores 

of the highly metamorphosed Finnish chromites can be used to decipher the igneous  

 

 

 

Figure 2. The calculated Mg# [Mg/(Mg+Fe)] and Cr# [Cr/(Cr+Al)] of the chromite grains from 

the Finnish greenstone belts (Vaara, Kauniinlampi, and Kellojärvi) and ophiolite samples 

(Pitkänperä and Vasarakangas). 

 

 
Figure 3. Mn/Al vs. V/Al (A.) and Ru/Al vs. Zn/Al (B.) of the analysed chromites expressed 

in logarithmic scale. The measured chromites are from the Pitkänperä and Vasarakangas 

ophiolites and Vaara, Kauniinlampi, and Kellojärvi greenstone belt samples. Ruthenium 

contents of the Vaara sample chromites are all below the limit of detection.  

 

 

processes of formation whereas chromite rims yield important information related to 

metamorphism and possibly fluid composition. 
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Future aims of this study will be to expand the current sample set to cover localities 

worldwide, including additional chromites from Finnish mineralizations and samples from the 

Macquarie Island (Southwestern Pacific) and the Troodos ophiolites (Cyprus). The aim is to 

establish a consistent mineral chemical database of chromites, which will help in identifying 

potential mineralization and provide information on the magmatic, metamorphic, and 

hydrothermal evolution involved in Ni-Cu-PGE ore-forming processes. The fundamental 

application of our project will be to evaluate to which extent chromite can be used as a 

lithochemical tracer and what influences the compositional variability of chromites on a mineral 

scale. 
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Frost quakes in northern Finland:  

Possible source mechanisms and formation process 
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In our study, we describe results of investigation of source mechanisms and formation process of frost quakes in 

upper soils. We consider records of frost quake that occurred in Oulu on 06.01.2016 and conclude that the most 

possible source mechanism of this type of events is vertical fracture opening.  Artificial neural network was used 

to analyse continuous seismic data of OUL station and detect numerous events with the same characteristics during 

winter, 2015-2016. The number of events per day strongly depends on variations of air temperature. Hydrological 

model and time series of temperature and snow thickness were used to simulate snow accumulation, melt and soil 

temperature at different depths beneath the snow pack and to calculate temporal variations in thermal stress in soil. 

The study shows that frost quakes occur when thermal stress caused by a rapid decrease in temperature exceeds 
fracture toughness and strength of the soil‐ice mixture. 

 

Keywords: frost quakes, upper soils, thermal stress, northern Finland 

 

1. Introduction 

Weather extremes such as rapid temperature decrease in combination with thin snow cover can 

result in cracking of water-saturated soil and rock when water has suddenly frozen and 

expanded. Such frost quakes (cryoseisms) can be hazardous for industrial and civil objects 

located in the near-field zone.  Monitoring of frost quakes and analysis of weather conditions 

during which they occur is necessary to access hazard caused by them. 

 

2. Source mechanism and magnitude of frost quake, occurred on 06.01.2016 in Oulu  

As a ground-truth frost quake, we consider seismic event in Talvikangas district of Oulu on 

06.06.2016 and caused damage to road surface and basements of buildings. Local citizens 

reported hearing a loud noise and feeling the ground shake prior to observing the ruptures 

(Laine, 2016). On the same day, the permanent seismic station (OUL) operated by Sodankylä 

Geophysical Observatory of the University of Oulu and located 14 km from Talvikangas 

recorded a number of unusual local seismic events, depleted in body wave energy but having 

large‐amplitude Rayleigh waves. Large‐amplitude of Rayleigh waves suggest that the seismic 

source was close to the surface (Aki and Richards, 2002). In the same day, a rapid decrease in 

air temperature was recorded (FMI, 2020), suggesting that the frost quake activity was initiated 

by specific weather conditions that potentially can be repeated in the future. The waveform 

analysis suggests that the most possible source mechanism of the event was vertical fracture 

opening. The local magnitude ML = 0.705 was evaluated using equation by Uski and 

Tuppurainen (1996).  

 

3.  Analysis of number of frost quakes using artificial neural network detector  

To access characteristics and number of cryoseisms during winter 2015-2016, we used 3-

component recordings of a swarm of strong cryoseismic events with similar waveforms that 

was registered on 06.06.2016 by seismic station OUL. Assuming that all events in the swarm 
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were caused by the same mechanism (freezing of water-saturated soil), we used them as a 

learning sample for the neural network. Analysis of these events has shown that most of them 

have many similarities in selected records characteristics (central frequencies, duration etc.) 

with the strongest event and with each other. Application of this algorithm to the continuous 

seismic data recorded since the end of November, 2015 to the end of February, 2016, showed 

that the number of cryoseisms per day strongly correlates with variations of air temperature 

(Figure 1).    

 
 

Figure 1. Dependence between air temperature and number of impulses per day 

 

4. Formation of frost quakes by thermal stress  

Thermal stresses of frozen soil were calculated for Talvikangas at depths of 5 cm, 15 cm and 

30 cm using the technique described in Okkonen et al. (2020). The modelling proved that the 

frost quake recorded on 6 January 2016 occurred during the period of high calculated thermal 

stress, when the air and soil surface temperatures were below −20°C. 

The air temperature dropped by as much as 9°C in the day of the frost quake (6 January 2016), 

and the calculated thermal stresses on the soil at a depth of 5 cm were up to 22 MPa, which was 

above the threshold thermal stress calculated with the critical stress intensity factor. 

 

5. Conclusions 

In our study, we show that the most probable source mechanism of frost quakes are vertical 

fracture opening. The magnitudes of damaging frost quakes can be as large as those of tectonic 

earthquakes. Using of artificial neural network detector allowed us to detect numerous seismic 

event with the same characteristics as the frost quake on 06.01.2016 near Oulu. Number of 

these events per day is modulated by air temperature.  

Frost quake crack formation by a large temperature drop in air and soil is a natural phenomenon 

that is not well understood. Although formation of a single fracture cannot result in a seismic 

event comparable in magnitude with tectonic earthquakes, the ground shaking produced by frost 

quakes in the near-field zone can be hazardous in urban areas, as the example of Talvikangas 

frost quake shows. The thermal stresses in water-saturated soils due to rapid decrease of 

temperature, freezing and absence of thick insulating snow cover were greater than the stresses 

that are necessary to initiate cracking of ice and frozen soil.  
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The subject of the study is the White Sea basin and adjacent territories. Located at the   junction 

of two large tectonic elements of the East European Craton, the Fennoscandian Shield and the 

Russian Plate, this region is constantly experiencing dynamic loads caused by the continuing 

uplift of the Fennoscandian Shield. Its original crustal structures formed in the Archean were 

partially transformed in the processes of Proterozoic rifting and subsequent tectonomagmatic 

activation. Studies of geodynamics, tectonics, and the evolution of the material composition of 

the lithosphere are relevant in the region. Its characteristic feature is the manifestation of 

kimberlite magmatism, deposits of diamonds and other minerals. It is believed that the 

Arkhangelsk province, which ranks second in Russia in diamond mining after Yakutia, is far 

from exhausting its diamond potential. The geological research recently conducted here is 

aimed at finding hydrocarbons. The formulation and solution of theoretical and applied 

problems are facilitated by the study of the deep structure of the region. 

Interpretation of geological and geophysical data is usually carried out together with with  

the construction of 2D and 3D models using the petrological characteristics of rocks, such as 

density and magnetization. The many known geophysical models of the earth’s crust of the 

White Sea are characterized by detail loss, incomplete information, uneven coverage of areas, 

differences in local volumes of data used. Some of them represented geophysical environment 

in cylindrical blocks. 

The modern modeling tool is the Integro software package developed by VNIIgeosystem 

for solving predictive and diagnostic problems and problems of thematic regionalization of 

territories. This complex automates the solution of direct and inverse problems of geophysics, 

allowing to draw up digital maps, carry out cartographic references, process, visualize and store 

3D data.  

The goal of our work is to model the velocity structure of the region's earth crust based 

on instrumental observation data using the Integro software complex (Cheremisina et al. 2018). 

The objectives of the research are the construction of the velocity layers of the earth's crust, the 

study of their connections with density heterogeneities and geophysical fields.  

The modeling of the region’s lithosphere is based on the results of geophysical studies 

conducted along 3-АР, 1-ЕВ, QUARTZ, AGATE and other traverses as well as geologo-

geophysical summary maps and schemes (Sharov and Zhuravlev, 2019). We also used a digital 

map of the anomalous gravitational field in the Bouguer reduction and a topographical map on 

a scale 1:1,000,000. The longitudinal seismic waves velocities we recalculated in the densities 

of rocks by the reference velocity model (Sharov, 2017).  

The method of modeling included the selection of an environmental model and its 

geometric framework, construction of 2D density models from seismic profiles and the 

transition to a 3D density model of the region's earth crust. The geometric framework and the 

environmental model were selected based on the block structure of the seismic profile. The 
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values of the block densities calculated from the reference velocity model as initial 

approximations. Direct problem was solved using 2D models. The values of the selected 

structure blocks’ density varied within the specified limits, achieving a minimum difference in 

the values of the calculated and the profile Bouger anomaly. If it was necessary to improve the 

optimization, the blocks were further divided, new heterogeneities were introduced, and the 

block boundaries were shifted. The 3D density model was built by solving the inverse problem 

of gravity prospecting. The material of the mantle was considered homogeneous, and the 

density heterogeneities inherent in the earth's crust.  

The 3D model allowed to determine the spatial position and visualized the boundaries of 

the velocity layers of the earth's crust of the White Sea region (Figure 1). 

 

Figure 1. a: 3D model showing the density distribution of the White Sea Region’s earth crust; 

b: the spatial representation of the boundary surfaces К1, К2, К3 and М of the velocity layers 

of the region’s earth crust. 

 

The proposed interpretation of the simulation results explains the absence of a sedimentary 

cover on part of the water area and its large capacities in the deep sea parts by raising the 

Fennoscandian shield, connection within the framework of the granite-metamorphic layer of 

the Winter Bank Uplift and the Onega Peninsula with the structures of the Terek Coast and the 

Karelian Megablock, respectively, large capacities of granulite-basite layer in the area of Winter 

Bank lifting by the intensity  of it's formation, the depression of the M boundary by the existence 

of a subvertical structure associated with manifestations of kimberlite magmatism.  

The study was conducted under the Research Project AAAA-A18-118020290086-1 

funded by the Russian Foundation for Basic Research under the Research Projects 20-05-00481 

«Lithospheric structure and dynamics of the White Sea Region» and 20-35-90034 «Complexing 

geophysical methods for 2D and 3D modelling of the earth crust of the White Sea and adjacent 

territories». 
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The article presents the technology for constructing detailed three-dimensional density models of the upper crust 

of the Voronezh Crystalline Massif (VCM). Such technology is based on the inversion of the gravity field and 

complex interpretation of geological, petrophysical and geophysical information. The use of the proposed 

technology makes it possible to obtain a 3D density model that reflects the structural features of the site.  

 

Keywords: gravity field, density modeling, petro-density model 

 

Voronezh Crystalline Massif (Figure 1) is located in the central part of the East European 

platform (Gorbatschev and Bogdanova, 1993; Chernyshov et al. 1997; Mints et al. 2010; Mints, 

2011; Mints et al. 2014; Savko et al. 2017). The massif stretches in the northwest direction, in 

the southwest and southeast it borders to the Neoproterozoic-Phanerozoic depressions, in the 

west, northwest and northeast, the massif is framed by the Paleoproterozoic depressions. (Mints 

et al. 2014; Savko et al. 2017). The Voronezh Crystalline Massif has a linear size of about 450 

by 300 km and an asymmetric elongated shape. 

 

 
Figure 1. The main tectonic elements of the EEP (the area of density modeling of the 

lithosphere is shown): 1 - Scythian platform; 2 - Black Sea depression; 3 - Neoproterozoic-

Phanerozoic structures; 4 - Paleoproterozoic structures; 5 - Archean structures; 6; -Voronezh 

Crystalline Massif; 7 - boundaries of large tectonic elements; 8 - state borders 
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Due to the fact that the consolidated foundation is covered by a platform cover, the thickness 

of which varies from several meters to hundreds of meters, and on the outskirts can reach 

several kilometers. The study of the deep structure of the region is based on geophysical data. 

The geological significance of the interpretation of geophysical fields is provided by 

petrophysical information. About 9000 wells were drilled within the VСM, more than half of 

which penetrated the crystalline basement and provided coring. The total number of core 

samples from sedimentary and crystalline rocks reaches 150,000. Based on the results of 

petrophysical determinations, a digital spatial petrophysical database was formed and a petro-

density map of the Precambrian foundation was constructed (Glaznev et al. 2020). Information 

on the density distribution of Precambrian sediments, as well as seismic and thermal models of 

the Earth's crust, became the initial data for calculating a 3D regional density model (Muravina 

et al. 2018).  

The next stage in the study of the structure of the region was a detailed density modeling 

of the upper crust based on the inversion of the gravity field and a comprehensive interpretation 

of geological, petrophysical and geophysical information, presented in this article (Figure 2). 

One of the important aspects of building three-dimensional density models is the formation of 

a starting model, which plays an important role in ensuring the geological content of the 

solution. This model is built on the basis of prior information, and summarizes the petrophysical 

and geological data related to the study area. The initial data for modeling in VСM conditions 

are: geological and topographic base; the values of the thickness of the «gravitational» layer 

obtained from the results of the statistical analysis of the anomalous field (Glaznev et al., 2014); 

a regional density model of the lithosphere covering the territory of the VСM (Glaznev et al. 

2016; Muravina, 2016; Mints et al. 2017) and the regional gravitational field corresponding to 

this model; petro-density model of sedimentary cover and crystalline rocks (Muravina et al. 

2013, 2019).  

 

 
 

Figure 2. Block diagram of detailed density modeling technology 

 

When constructing detailed density models of the upper part of the crystalline crust, it is also 

necessary to take into account the gravitational effect of the sedimentary cover, which is 

calculated based on the petrodensity model of sedimentary rocks (Muravina et al. 2013; 

Glaznev et al. 2013).  
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A three-dimensional model of the regional density of the central part of the East European 

Platform establishes the density distribution on the roof and bottom of the upper, middle and 

lower layers of the Earth's crust, in the transition layer and the upper mantle to a depth of 80 

km. The solution of the direct problem of gravimetry for the model makes it possible to establish 

the regional component of the field for any territory within the region.  

When creating a starting model, the features of the structure and location of each specific 

site are taken into account. The position of the upper edge corresponds to the depth of the 

crystalline surface foundation, and the lower edge corresponds to the position of the bottom of 

the «active gravitational» layer for the given territory. The structure of the model is set by a set 

of layers, at the boundaries of which, in accordance with the petrophysical data of the region, 

the absolute values of the density are set. The transition to excess density values is carried out 

by subtracting the density values of the regional model. Also, at each point of the detailed 3D 

model, the minimum and maximum density restrictions and the values of the weight function 

are set.  

The solution of the inverse problem of gravimetry is a multi-stage iterative process of 

inverting the field residuals at each point of the surface into the density values of the equivalent 

horizontal layer of a given thickness, and redistributing the obtained density values to the lower 

layers of the medium in accordance with the weight function. The inversion of the gravitational 

field into density is carried out on the basis of an algorithm for the quasinormal solution of the 

inverse problem in a three-dimensional formulation in Cartesian coordinates. An approximation 

representation of the inverse operator is used in the form of a sum of transformations: 

calculating the vertical derivative and analytic continuation to the upper half-space to some 

optimal height (Glaznev et al. 2002). The effectiveness of this approach was shown on a number 

of simple theoretical and real examples of detailed density modeling of the structure of the 

upper crust (Glaznev et al. 2008, 2015; Mints et al. 2018). The results of solving the inverse 

problem should minimize the discrepancy between the model field and the observed field, and 

also satisfy the specified criteria of all the initial geological information. It is obvious that the 

quality of modeling based on gravity inversion depends on the quantity and quality of a priori 

data, which, as a rule, are probabilistic in nature with varying degrees of uncertainty. 

Consequently, in conditions of a complex geological structure, it is possible to improve the 

quality of modeling due to multistage field inversion, with the implementation of a point 

correction of the original model at each stage in a given range of changes in model parameters.  

The proposed detailed modeling technology was tested in a number of areas located within 

the Voronezh Crystalline Massif (Glaznev et al. 2015; Muravina et al. 2017; Voronova et al. 

2019). 

The research was supported by the RFBR, grants No20-05-00190 and 19-05-00336.  
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In this paper, we present briefly a tectonic model for the evolution of the Vaasa migmatitic complex (Finland) and 

how we believe it could be integrated into the formation of an oroclin during the Svecofennian orogeny. We finally 

show some results on the metamorphic gradient affecting the supracrustal rocks.   
 

Keywords: Svecofennian orogen, Vaasa migmatitic complex, orocline, LP-HT metamorphism, 

pseudosection 

 

1. Introduction 

The Vaasa migmatitic complex (Finland) offer a mid-crustal horizontal section of a partially 

molten crust, formed by the accretion of various supra-crustal rocks within an accretionary 

wedge during the growth of the Svecofennian Paleoproterozoic orogen. Review and/or new sets 

of geophysical, structural, geochronological and petrological data have been used to propose a 

coherent tectonic scenario for this large magmatic complex. It includes a magmatic core made 

of S-Type granitoids passing to diatexite, migmatites, gneiss and schists towards its border. 

 

2. Tectonic scenario 

The model has been recently published by Chopin et al. (2020). It proposes a 3 steps tectonic 

scenario: accretion followed by channel flow (D1), oroclinal buckling (D2), magmatic core 

exhumation by mechanical instabilities within the hinge of the orocline (D3). Geophysical data, 

in particular seismic reflection (FIRE 3a) and new magnetotelluric profiles (MT-PE and MT-

B2) are compared to geological field data. The good continuity between reflections in the 

seismic profiles, conductivity in the magnetotelluric profile, lithology and field schistosity 

permit to propose that early primary structures are prominent in most of the complex. It reflects 

westwards D1 stacking of the supracrsutal rock until anataxis in its core. Inverted metamorphic 

gradient along these structures is interpreted as a channel flow exhuming the deep-seated 

partially molten rocks over the mica schists in a LP-HT gradient. 

D2 structures corresponds to W-E striking folds visible at all scale in the border of the 

complex, whereas only faint orientation of Kfs phenocryst is visible within the core. N-S 

shortening developing a regional orocline could be responsible for the formation of those 

structures, similar to what have been proposed by Lahtinen et al. (2015). 
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Vertical shear zones, in particular within and around the magmatic core may correspond to 

crustal scale vertical mass transfert of the weak and low density magma within the hinge of the 

orocline (D3). 

 

3. Quantification of the metamorphism 

Our work is now focused on the precise quantification of the metamorphism affecting the 

supracrustal rocks together with detailed microstructural observations. The results will be 

confronted to the above described scenario. A set of 5 mica schists and migmatites have been 

used to develop pseudosections in order to better understand the HP-LT metamorphic gradient 

in the Vaasa migmatitic complex. Preliminary results show that a slightly prograde 

metamorphism is preserved in the staurolite mica schists (from 5 kbar at 550 °C to 6.5 kbars at 

600 °C, 550 to 600 °C) whereas small grains of kyanite, frequent in the metatexites, may reflect 

stacking up to 8 kars and 700 °C. These results should be compared to new U/Pb ages monazites 

obtained from the same metamorphic gradient. 
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Partial melting of rocks that have been affected by external fluids (water-fluxed partial melting) usually lack 

peritectic minerals common in response to dehydration melting. Dehydration melting in upper amphibolite to 
granulite facies usually produce peritectic minerals like garnet, cordierite and orthopyroxene in the paleosome as 

well as in the leucosome from biotite bearing protoliths. In the case of water-fluxed melting of a biotite bearing 

protolith, the most common mineral in the leucosome is also biotite (amphiboles may appear). In migmatite areas, 

formed by water-fluxed melting, the biotite chemistry may contain important information about the composition 

of the protolith and the evolution of leucosomes and granites.  
 

Keywords: lithosphere, migmatite, biotite, Svecofennian orogeny 

 

General 

The southernmost part of Finland extending from Bengtskär via Hanko peninsula to Jussarö is 

a migmatite area comprising principally a K-feldspar rich granitic metatexite with granitic 

leucosomes and areas of leucogranite. The granitic metatexite contains partially melted and 

deformed xenoliths of various compositions (igneous, volcanic, sedimentary) indicating that 

the chemically homogenous granitic metatexite may have formed from different protoliths. 

This heterogenous appearance was reported by Saukko et al. (2018) as a felsic MASH zone. A 

felsic MASH zone is an area in the middle crust that has been at the protolith solidus 

temperature for a long period resulting in areas containing melts from different crustal sources 

that interact with each other, crystal mushes and restites and signs of fluid interaction with the 

melt as an inducing agent of anataxis are often present. (Schwindinger and Weinberg, 2017). 

Although partial melting of the granitic metatexite is recognised in field, no peritectic 

minerals are found in response to the melting process. The major mafic mineral in all granitic 

rocks are biotite, indicating water induced melting.  

 To gain information about possible protoliths and the physical environment during the 

the migmatization event, biotites from granitic metatexites, leucosomes and leucogranites were 

analysed.  

 

Geochemical classification of the studied rocks 

The rocks on focus here are geochemically peraluminous granodiorites, monzogranites and 

granites (the granitic metatexite) and peraluminous leucogranite (granitic leucosome and 

leucogranites). See Saukko et al. (2021) (this volume). 

 

Analytical methods 

Biotites from granitic metatexites and leucosomes therein and leucogranites were analysed with 

a Phenom XL low vacuum SEM instrument at the Geohouse in Turku. The results (reported as 

100 wt% oxides) were calculated to 95% assuming that 5% of the analyses was crystal water 

or other fluids not determined with the instrument. The results was recalculated to atoms per 

formula units using 24 O. For classifications, only biotites with K2O > 6 wt% was used. In total, 

104 of 272 spot analyses were used in this study. The rest were disqualified because of 
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chloritisation. We are aware of the quantitative limitations of the instrument. However, since 

we analysed hundreds of spots from different micas in different samples, we are able to identify 

important trends without 100% quantitatively reliable analyses. 

 

Results 

The general composition of all biotites is annite in the Fe/(Fe+Mg) vs. tot.Al diagram  (Figure 

1a). In the diagram it is seen that biotite from leucosomes (open triangels and circles) has lower 

Fe-index compared to granitic metatexites (filled triangles and circles). Leucogranites from two 

different areas (crosses and tilted crosses) have distinct compositions. The Morgonlandet area 

(tilted crosses) comprise of biotites with high total aluminium whereas Bengtskär (crosses) has 

lower total aluminium but higher Fe-index. In the FeO-10xTiO2-MgO diagram, separating 

primary biotites from primary re-equilibrated and secondary biotites, the majority of the micas 

plot in the field of primary micas except those that are deficient in Ti and plot in the field of 

recrystallized biotites (Figure 1b). Majority of these biotites are from Bengtskär even-grained 

granite.  

 

 
Figure 1. a).  (Left). Biotites classified as primary annites according to the Fe/(Fe+Mg) vs. total 

Al. b) (Right) diagram separating primary biotite from reequilibrated primary biotite and 

secondary biotite. 

 

It is known that the titanium content and Mg# are indicators for crystallization temperature of 

biotite. The higher Ti content and higher Mg#, the higher is the crystallization temperature. By 

using the Ti-in-biotite geothermometer by Henry et al. (2005) the majority of analysed biotites 

gave temperatures between 600 and 700 °C close to 650 °C (except recrystallized biotites 

deficient in Ti)   

 Several authors have developed diagrams based on the Al, Mg and Fe contents of 

biotites to indicate from what kind of rock series the rocks on focus stem from (Natchet et al. 

1985; Abdel-Rahman, 1994; Natchet et al. 2005; Bucholz et al. 2018). Bucholz et al. (2018) 

constructed a diagram based on the cations Al, Mg and Fe per formula unit to separate suites 

for calc-alkaline, alkaline and peraluminous biotites (Figure 2). The granitic metatexites and 

leucosome biotites from one area (Stenskär) plot in the field of calk-alkaline (metaluminous) 

suites while the rest of biotites plot in the field of peraluminous suites.  
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Figure 2. Diagram separating different rock suites based on cations per formula unit. Biotites 

from the study area plot in the fields of calc-alkaline (metaluminous) and peraluminous suites. 

 

  

Discussion 

Biotites are sensitive to adapt their compositions to be in equilibrium with the surrounding 

physiochemical environment references. For example, Bell et al. (2017) used the chemistry of 

biotite inclusions in zircons from Black Hills in Western Australia and Nuvvuagittuq 

supracrustal belt on Greenland (areas with the oldest zircons on Earth), to state that these 

protoarchean zircons from different areas were growing in a more reduced metaluminous melt 

and an oxidised peraluminous melt, respectively. Bell et al. (2017) classified their micas in a 

diagram taking into account fO2 and aluminosity (Figure 3). 

 The relative fO2 of the environment biotite are growing in is reflected by the FeO/MgO 

ratio. The higher ratio the more reduced is the environment. Bell et al. (2017) used the value 

3.5 to distinguish between reduced, i.e. the ilmenite series granites by Ishihara (1977) and 

oxidised, i.e. the magnetite series granites by Ishihara (1977) (Figure 3). As an index for 

aluminosity Bell et al. (2017) used Al2O3/(FeO+MgO) index. They used the values > 0.55 for 

peraluminous rocks and < 0.45 for metaluminous rocks. 

 Biotites from even-grained granites in southernmost Finland plot in different parts of 

the diagram. Biotites from Morgonlandet has a high Fe/Mg index and an aluminosity index 

close to 0.55. This indicate that the granite crystallised from a metaluminous to peraluminous 

magma in a reduced environment. Biotites from the granite of Bengtskär has a lower Fe/Mg 

index, but high aluminosity index indicating crystallisation from a peraluminous magma in 

higher fO2 conditions. The strong peraluminosity is supported by muscovite in the analysed 

rock. 

 The biotites from leucosomes within two metatexites form a trend with decreasing fO2 

and increasing aluminosity. This reflect access to aluminium in the leucosome melts and that 

the fO2 was different in the formation of metatexite biotites and leucosome biotites. 

 The two metatexites are separated at a Fe/Mg index about 3.5. This indicate that micas 

from Klovaskär metatexit (filled triangels) grew in a more reduced environment compared to 

metatexite micas from Stenskär (open triangles) that grew in a more oxidising environment 

outside the ilmenite series.  

 

Conclusions 

Our study indicate that biotite may give additional information to bulk geochemical data about 

protoliths and partial melting processes in migmatites. 
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We have recognised two protoliths, one calk-alkaline source formed in slightly higher fO2 

compared to a peraluminous source formed in a more reduced environment. Biotites from 

leucosomes indicate a higher aluminosity with decreasing fO2 compared to the metatexites. The 

crystallization temperature given by Ti in biotite, about 650°C, fits well with the idea of a long-

lived MASH zone at wet solidus temperature for the protolith. 

Our study also indicate that the term peraluminous is not strictly source related, but also 

process related, since the environment in our migmatite areas drives the leucosomes to form 

more reduced and more peraluminous melts compared to their host rocks. This can lead to 

serious misinterpretations for geologists that search for proper protoliths for peraluminous 

granites, since metaluminous calc-alkaline rocks may produce peraluminous melts. 
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Figure 3. Diagram illustrating 

variations in fO2 and 

aluminosity. Ellipses indicate 

leucogranites, arrows indicate 

trends from metatexites to 

leucosomes. See text for 

further explanations. 

Crosses = leucogranite from 

Bengtskär 

Tilted crosses = leucogranite 

from Morgonlandet 

Filled triangles = metatexite 

from Klovakär 

Filled circles = leucosomes 

from Klovaskär 

Open triangles = metatexite 

from Stenskär 

Open circles= leucosomes 

from Stenskär. 
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We present new insights into the stratigraphy of the volcanosedimentary Matojärvi formation, which hosts the Per 

Geijer IOA mineralizations in Kiruna, Norrbotten, Sweden.  
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1. Introduction 

The Per Geijer (PG) area is located on the northern side of the Kiruna town in Norrbotten, 

Sweden (Figure 1). The area comprises five iron oxide-apatite (IOA) deposits that form a four-

km-long semi-continuous zone on the surface. Four of these deposits (Rektorn, Haukivaara, 

Henry and Nukutus) have been in production by open pit mining with a total production of ~11 

Mt of iron-phosphorus ore between 1925 and 1987. The Lappmalmen orebody, which is located 

~500−1200 m under the surface, has not been mined.  

 

 
Figure. 1. Geological map of the Per Geijer area. Modified from Martinsson and Erlandsson 

(2009). Drill holes marked on the map are shown in detail in Figure 2. 
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The PG IOA deposits are emplaced at distinct levels in the volcanosedimentary 

stratigraphy of the upper Kiirunavaara Group: they are present in the upper part of the 

Luossavaara formation, at the contact of the Luossavaara formation and the overlying Matojärvi 

formation and within the latter (see Martinsson, 2004). Several iron oxide-rich zones are 

recognized, with magnetite dominating in the lower units and the amount of hematite increasing 

towards the upper units. Apatite is present both within the iron oxide units and as crosscutting 

veins.  

The internal stratigraphy of the Matojärvi formation is not very well known due to 

limited outcrop and extensive alteration associated with the iron mineralization processes. The 

recent investigations by LKAB in the Per Geijer area allow us to work on a revised 

interpretation of the geology of the Matojärvi formation and the IOA mineralization within it 

based on new drillings.  

  

2. Geology of the Matojärvi formation 

The Matojärvi formation forms the uppermost part of the Kiirunavaara group, which is a 

Svecofennian age (~1.89-1.87 Ga) volcanosedimentary sequence that hosts the world-class 

Kiirunavaara deposit and several other IOA ore bodies. The stratigraphy of the Kiirunavaara 

group is quite well established, starting with a volcanic phase comprising the trachyandesitic 

Hopukka formation and the Luossavaara formation composed of porphyritic rhyodacite and 

rhyolite. The Kiirunavaara IOA orebody is emplaced at the contact between the 

abovementioned formations. The Matojärvi formation, which is the main host for the PG IOA 

deposits, is overlying the Luossavaara formation, and its upper contact is towards the Hauki 

quartzite formation that belongs to the younger Snavva-Sjöfallet group (Martinsson, 2004). The 

presence of iron mineralization and strong hydrothermal alteration at the contact zones makes 

the exact placing of particularly the lower contact of the Matojärvi formation difficult in many 

cases.  

 Overall, the Matojärvi formation is a heterogenous succession of volcanosedimentary 

lithologies that are commonly interbedded and may also show repetitions due to faulting. A 

major part of the formation is composed of tuffs and tuffites, previously considered to represent 

greywackes and mudstones, but basaltic lavas and sedimentary rocks such as polymictic 

conglomerates are also present. On the surface the thickness of the Matojärvi formation is 

between 250 m and 400 m. The top directions are consistently towards the east, and the whole 

package dips eastwards below the Hauki quartzite formation with approximately 50º dip angle. 

There is a lateral variation in the rock types, with basaltic lavas and agglomerates being more 

common in the northern part of the area and the southern parts being richer in tuffs (Figure 2). 

The Matojärvi formation also seems to thin out in the deeper parts under the Hauki quartzite. 

The tuffs and tuffites of the Matojärvi formation are fine-grained, grey to green rocks that 

may appear as massive or laminated. Lithic tuffs with flattened, angular fragments are also 

present. The rocks can be tainted in pink probably due to hematite alteration, but they are mostly 

affected by calcite alteration that fills the porosity or acts as a gangue mineral in cross-cutting 

veins. Higher in the stratigraphy there are dark, very fine-grained, laminar phyllite 

intercalations that are enriched in chlorite and sericite; these are most probably ash layers that 

may show soft sediment deformation. 

The Matojärvi formation hosts several units of polymictic conglomerate or breccia that 

consist of fine-grained, sandy to clayey groundmass and deformed sub-rounded clasts of 

redbrick altered porphyritic rhyodacite, dark to reddish fine-grained mafic rocks and phyllite-

mudstone. Iron ore clasts are also occasionally found in the conglomerate. In the central and 

northern parts of the Matojärvi formation there are thin conglomerate units where most of the 

clasts consist of hematite. Units with tuff or lava clasts within a hematite matrix are also found. 
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The conglomerate clasts are elongated along a foliation dipping 50-60° towards the S-SE. 

Strong calcite alteration is commonly seen as pore filling and cross-cutting veins within the 

conglomeratic layers.  

 

 
 

Figure 2. Schematic comparison of the thickness and stratigraphic sequence of the Matojärvi 

formation in some recent drill holes in the southern (PYK20001, PYK20008) and northern 

(PYK20006, PYK20010) parts of the Per Geijer area. The drill holes are marked in Figure 1. 

 

The iron oxides are present as layers and lenses, located at different levels in the formation. The 

classical PG mineralizations are found at the contact of the Luossavaara and Matojärvi 

formations and higher up within the Matojärvi formation, with gradation from magnetite-

dominant ore at depth to hematite dominant ore towards the top of the formation. The 

Lappmalmen orebody is found within the upper part of Luossavaara formation and is most 

probably intrusive. A difference in gangue mineralogy is visible between the two types of 

mineralizations: in the deep magnetite-dominated parts there are apatite veins and 

disseminations with minor calcite veining, whereas the hematite-dominated parts higher up in 

the stratigraphy are intersected by a high amount of calcite veins and specularite veinlets in 

addition to apatite. Sulfides are commonly seen in the calcite veins.  

The dominant alteration type throughout the Matojärvi formation is the strong redbrick 

alteration that is associated with all types of iron oxides. This alteration type was first described 

in the hanging wall of the Rektorn IOA deposit, resulting in the name Rektorn Porphyry that 

was originally described as an altered rhyolitic unit. However, based on new logging and 
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geochemical data we consider the Rektorn Porphyry to be an alteration zone, which affects the 

wall rocks of the mineralized zones and it thus does not represent a single rock unit. The 

redbrick alteration is in many places so intense that it prevents visually distinguishing the 

lithologies that the alteration is overprinting. In the most altered zones, the textures and 

structures in the rocks are barely visible or unrecognizable. Trace element geochemical data is 

needed to ascertain the precursor of the alteration. 

The whole Matojärvi formation was affected by high strain deformation that was mostly 

brittle (with associated slickenside faults/microfaults); the upper contact with the Hauki 

quartzite is generally strongly sheared, brecciated and faulted. Directly underneath the sheared 

contact, folds, soft sediments structures and foliations with varying orientations can also be 

found. More data is needed for a comprehensive structural geological interpretation of the Per 

Geijer area. 

 

3. Conclusions 

Considering the ore forming processes related to the PG IOA ores, understanding the building 

of the Matojärvi formation and the magmatic and hydrothermal alteration processes involved 

is crucial. We consider most of the formation to have been formed by volcanic processes and 

prolonged hydrothermal activity associated with them. New drilling, geochemical data and 

structural interpretation allow us to more precisely define lateral variations within the formation 

and work towards an updated stratigraphic interpretation of the Matojärvi formation, which 

represents the final volcanic phase in the Kiirunavaara group. 
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Our study describes different crystallization processes responsible for observed compositional evolution and Mg-

poor mafic mineral compositions of the monzodioritic rocks related to massif-type anorthosites in the Ahvenisto 

complex. We suggest that the Mg-poor mafic mineral compositions were produced in equilibrium crystallization 

of individual monzodioritic magma batches and that the compositional evolution of the monzodioritic rocks was 
controlled by fractional crystallization of the anorthositic cumulates. 
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Massif-type anorthosites (Ashwal and Bybee 2017) are igneous cumulate rocks often found in 

AMCG (anorthosite-magnerite-charnokite-granite) complexes with three main lithological 

groups: 1) anorthosites and mafic rocks, 2) monzodioritic rocks (also referred to as jotunites, 

ferrodiorites, ferrogabbros, and monzonorites), and 3) granitoids (Emslie et al. 1994). The 

source for the anorthosite parental magmas is presumed to be either the mantle (e.g., Mitchell 

et al. 1995, Frost and Frost 1997) or the lower crust (Duchesne et al. 1999). Regardless of the 

source, the anorthosite parental magmas have undergone polybaric fractional crystallization at 

different crustal levels until final emplacement at 5–10 km depth in the upper crust (e.g., 

Duchesne et al. 1999, Charlier et al. 2010, Heinonen et al. 2020). Several studies agree that the 

magmas have undergone significant crustal assimilation based on their isotopic signatures 

(Mitchell et al 1995). 

Fe-Ti-P-enriched mafic to intermediate rocks (monzodiorites and oxide-apatite-

gabbronorites, OAGNs) are found as small intrusions associated with the anorthositic 

cumulates in most AMCG suites. The OAGNs contain significant amounts of Fe-Ti-oxides, 

apatite, and mafic phases (pyroxenes + olivine) and are often presumed to represent fractionates 

of highly differentiated magmas in the evolution of the suites (McLelland 1994). The origin of 

the anorthosite-associated monzodioritic rocks is still debated, and several options for their 

origin have been proposed. Most likely they represent either anorthosite parental magmas or 

residual magmas left after anorthosite fractionation (Bybee et al. 2015 and references therein). 

Regardless of the origin of the monzodiorites, they are usually fine-grained, contain more mafic 

minerals compared to the anorthositic cumulates, and thus, are often presumed to represent near 

melt compositions (Emslie et al. 1990). 

The 1.64 Ga Ahvenisto anorthosite complex, SE Finland, comprises a granitic intrusion 

surrounded by an anorthositic arc (Alviola et al. 1999). In the Ahvenisto complex, the 

monzodioritic rocks occur as minor dike-like lenses closely associated with the anorthositic 

rocks (e.g. Alviola et al. 1999; Fred et al. 2019). New field, petrographic, and geochemical 

(XRF, ICP-MS, EMPA) data for the monzodioritic rocks, apatite-oxide-gabbronorite (similar 
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to OAGN but referred to as apatite-oxide-gabbronorite in this study, see Fred et al. 2020), and 

olivine-bearing anorthositic rocks complemented with crystallization modelling [rhyolite-

MELTS (Gualda et al. 2012), MAGFRAC (Morris, 1984)] provided new insight into the 

complicated crystallization history of the Ahvenisto complex (Fred et al. 2020). Our study 

suggests that the monzodioritic rocks closely represent melt compositions while the apatite-

oxide-gabbronorite and olivine-bearing anorthositic rocks are cumulates (Fred et al. 2020). As 

presumed in previous studies (Fred et al. 2019), the monzodioritic rocks seem to form a liquid 

line of descent (LLD) from primitive olivine monzodiorites to more evolved monzodiorites 

(Figure 1; Fred et al. 2020, see also Fred et al. 2019). The mafic minerals (pyroxenes and 

olivine), however show remarkably low Mg/Fe (En48–63, Mg#(cpx)60–69, Fo25–45) compared to 

the corresponding whole-rock compositions (Mg# 42–52), although they seem to form a 

compositional evolution trend parallel to the LLD (Figure 2; Fred et al. 2020). 

 

 

 

 
 

Figure 1. Major element variation diagrams of Mg# [Mg2+/(Mg2++Fe2+)*100] vs. a) Al2O3, b) 

CaO, c) FeOtot, and d) MgO for the Ahvenisto complex monzodioritic rocks, olivine-bearing 

anorthositic rocks, and apatite-oxide-gabbronorite showing the compositional evolutionary 

trend (liquid line of descent, LLD) of the monzodioritic rocks. The accumulation of plagioclase 

in anorthositic rocks is indicated with black solid arrows, and accumulation of   oxide, apatite, 

and olivine (in 1:1:5, respectively) in apatite-oxide-gabbronorite is indicated with black dashed 

arrows. The other anorthositic rocks refer to anorthositic rocks without any olivine. Modified 

after Fred et al. (2020). 
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Figure 2. Mafic mineral compositions of olivine monzodiorites, olivine-bearing anorthositic 

rocks, and apatite-oxide gabbronorites shown in a) olivine-melt, b) orthopyroxene-melt, and c) 

clinopyroxene-melt Fe-Mg equilibrium diagrams (Roeder and Emslie 1970). The figures 

illustrate the low Fe/Mg of the minerals compared to corresponding measured whole-rock 

compositions. The range of evolving mineral compositions of modelled olivine-monzodiorites 

resulting from equilibrium crystallization models conducted with rhyolite-MELTS version 

1.2.0 (Gualda et al. 2012) is indicated with black arrows. The red line indicates the calculated 

mineral-melt equilibrium trend. Modified after Fred et al. (2020). 

 

 

Petrological modelling of the Ahvenisto complex rocks suggests that the interpreted 

monzodiorite LLD corresponds to a residual melt trend left after fractional crystallization (FC) 

and formation of the cumulate anorthositic rocks and apatite-oxide-gabbronorite in shallow 

magma chambers (Fred et al. 2020). Equilibrium crystallization (EC) of separate monzodioritic 

residual magma batches can produce the observed mineral assemblages of the observed rocks 

and the low Mg-numbers measured from the mafic minerals (Fred et al. 2020). The 

monzodioritic and anorthositic rocks and apatite-oxide-gabbronorites of the Ahvenisto complex 

show similar petrological and geochemical characteristics to corresponding rock types in other 

AMCG suites suggesting that they formed by similar crystallization processes and that the 

model described here could be applicable to them as well (Fred et al. 2020). 
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Meteorite impact structures can provide important information on long-term denudation on the Earth’s cratons. 

Impact structures in the Fennoscandian Shield contain rocks (i.e., impactites), that have developed during the 

collision, and, possibly, remnants of the pre-impact sedimentary rocks. The crater depressions may also be filled 

with post-impact sediments. Sedimentary deposits in impact structures have not been much utilized before in 

studying the erosion-burial history of the Fennoscandian craton. Here, we use published data on meteorite impact 

structures to reconstruct the depth of erosion in southern Finland and neighboring platform areas. Post-impact 

erosion depths were estimated using an empirical relationship derived from well-preserved impact structures. 
Results support ultra-slow erosion of the basement and sedimentary cover continuing over hundreds of millions 

of years. 

 

Keywords: Fennoscandian Shield, unconformity, meteorite impact structure, erosion, 

sedimentary rocks, denudation. 
 

1. Introduction 

Terrestrial meteorite impact cratering is an important geological process. Around ~200 impact 

structures (IMPs) are proven globally (Schmieder and Kring, 2020). The Fennoscandian Shield 

hosts ~17% of them whereas in Finland 12 structures are proven. The remarkable concentration 

of IMPs in Finland is mainly a result of the re-exposure of an extensive bedrock denudation 

surface, the Cambrian unconformity, and temporary burial of IMPs under the protective cover 

of sedimentary rocks. 

Meteorite impact structures always contain breccias, but some of the structures include 

sedimentary rocks as well. Several small craters in Fennoscandia (Sääksjärvi, Lumparn, 

Karikkoselkä, Söderfjärden, Iso-Naakkima, Saarijärvi, Suvasvesi N, Neugrund, Kärdla, 

Lockne, Mishina Gora, and Jänisjärvi) hold remnants of post-impact sedimentary rocks or 

traces of pre-impact sedimentary cover. Most of the IMPs in Fennoscandia are <10 kilometers 

in diameter with Neoproterozoic to Upper Palaeozoic ages. In many cases, the inner structure 

has been studied by drilling and/or geophysical studies. Impact craters have suffered erosion of 

various intensity depending much on their size and age. We use this dataset to estimate erosion 

depths across southern Finland and its surroundings through the Neoproterozoic and 

Phanerozoic.  
 

2. Study methods 

We calculated erosion depths based on geometries and ages of proven IMPs in the region. 

Altogether, we used data on 21 simple and complex IMPs in Finland, Sweden, Estonia, and 

Russia (Figure 1). We applied the method of Degeai and Peulvast (2006) that is based on the 

empirical relationship between the original diameter (D) and original depth (dt) derived from 
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well-preserved IMPs on Earth (Figure 2). Original depth is derived from values of maximum 

and minimum depth, taking into account the uncertainties (>30%) that exist in estimating depth 

in the global dataset due to differences between terrestrial and marine target settings, target 

material, and impact trajectories. The total post-impact erosion depth (ed) since the impact is 

derived by subtraction of breccia base elevation below present (dp) from dt. If dp is unknown, 

the maximum depth of the rock sequence lost to erosion is constrained by dt only (Figure 2). 

The rate of erosion is averaged for the time since impact.  

 

3. Results 

The large Keurusselkä IMP in south-central Finland has a 40Ar/39Ar date of 1150 ± 10 Ma 

(Schmieder et al. 2016). The original diameter has been between 14 and 36 km (Hietala and 

Moilanen, 2007; Osinski and Ferriére, 2016; Raiskila et al. 2011). Today, the crater is eroded 

close to the base of its former breccia layer (Raiskila et al. 2013), indicating a post-impact 

erosion depth of 0.80–1.23 km. Thus, the long-time erosion rate is, considering the age, very 

low (<1 m/Ma). 

The absence of small Mesoproterozoic IMPs likely reflects the protection of the basement 

beneath the sedimentary cover. Iso-Naakkima, only 130 km E of Keurusselkä (Figure 1), has a 

palaeomagnetic age of 1200–900 Ma (Pesonen et al. 1996). Considering the above erosion rate, 

the survival of this small (D = 2.5 km) crater is incompatible with erosion and the 

palaeomagnetic age is most likely overestimated. Microfossil evidence from the sediment 

sequence prefers rather the early Ediacaran age (Elo et al., 1993), and erosion depth can be 

explained if the youngest sediment is of post-impact age. Existence of this small crater can be 

accounted for by slow erosion in the Ediacaran and later burial. Also, the survival of the small 

(D = 3.8 km) IMP at Suvasvesi North dated to >710 Ma (Schmieder et al. 2016b) implies limited 

basement erosion during or since the Neoproterozoic. 

Jänisjärvi is dated to 687 ± 5 Ma and it retains fragments of Neoproterozoic siltstone in 

breccias (Jourdan et al. 2012). Its dp is uncertain, but dt provides a maximum depth of erosion 

of 650 m. Söderfjärden (550–520 Ma) and Kärdla (455 Ma) have been buried since the 

formation and preserve original crater forms (Puura and Plado, 2005). Söderfjärden (D = 6.6 

km) provides an estimate for dt of 390 m that compares to a drilled depth of 320 m (Lehtovaara, 

1982; Öhman and Preeden, 2013) and recent seismic studies between 330–410 m of depth 

(Fennvik, 2018). At Kärdla (D = 4 km), the estimated dt is 290 m and the drilled depth of impact 

breccias is 220 m (Suuroja et al., 2002). At Söderfjärden the fine state of preservation of the 

crater rim indicates that this crater has been exhumed recently. 

Two IMPs of the Triassic age, Karikkoselkä (Schmieder et al. 2010; Schwarz et al. 2015) 

and Paasselkä (Schwarz et al. 2015), show that the original depths of these structures constrain 

the maximum remaining depths of Palaeozoic sedimentary rock at the time of impact to 170–

490 m. Lappajärvi 170 m of the sedimentary cover has been removed since 78 Ma, providing 

an average erosion rate of 2.2 m/Ma since impact. Results show also that Cenozoic erosion rates 

remained low. 

 

4. Discussion and conclusions 

Meteorite impact structures provide important evidence of burial and post-impact erosional 

histories (e.g., Masaitis, 2005; Puura and Plado, 2005) potentially spanning a prolonged period 

of time since they are not an immediate consequence of plate tectonic movements and 

subsequent thickening or thinning of the crust. In Finland, the sedimentary rocks preserved in 

IMPs indicate that (i) W and S Finland retained Early Palaeozoic cover through the Mesozoic, 

whereas (ii) in E Finland, Early Palaeozoic cover persisted in the Triassic, but the basement was 

re-exposed by the Late Cretaceous. 
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The absence of IMPs dated between 1150 and 710 Ma supports the former existence of 

protective sedimentary cover(s); perhaps including transient sedimentary cover derived from 

the Sveconorwegian orogenic belt. However, this cover may not have been thick: thickness of 

≥640 m has been sufficient to protect the basement from any crater with D ≥ 10 km. We note 

that the survival of small IMPs (D  5 km) permits only limited depths of erosion (dt  300 m). 

Altogether, the IMPs show that the Fennoscandian Shield has suffered ultra-slow erosion in the 

basement and sedimentary cover with rates to <2.5 m/Ma. This value is one of the lowest 

reported on Earth (see Hall et al. 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Bedrock map of the Fennoscandian Shield and proven impact structures. The studied 

impact structures are surrounded by red circles. Modified after Koistinen et al. (2001) and Plado 

& Pesonen (2002). 

 
 

 

 

Figure 2. Models for 

simple and complex 

impact structures used to 

estimate post-impact 

erosion depths. Adapted 

from Degeai & Peulvast 

(2006), Osinski et al. 

(2018), Peulvast et al. 

(2009), and Turtle et al. 

(2005). 
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Crustal-scale faults deserve more attention as potential deep low-enthalpy geothermal energy sources in Finland. 

As well known, major structures may behave as favourable permeability channels for meteoric waters. They may 

also be characterised by elevated geothermal gradients, although the opposite is also possible. For Enhanced 

Geothermal System (EGS) exploration projects, major faults may offer an alternative target potentially requiring 

much less hydraulic stimulation than conventional EGS projects.  
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1. Introduction 

The advantages of geothermal energy compared to many other renewable energy sources (e.g., 

wind and solar) are numerous and support attempts to decarbonate the world’s energy 

production. This natural energy source has a great and yet only marginally developed potential. 

In addition, it is available around the clock ubiquitously and in an environmentally friendly 

manner. It is also economically rewarding energy. There are three types of deep geothermal 

systems: (1) hydrothermal convective systems; (2) enhanced geothermal systems (also referred 

to as ‘hot dry rock’ systems); and (3) hot aquifers. Furthermore, geothermal systems are 

classified as high (above 150°C) or low (less than 150°C) enthalpy. The thermal energy 

extracted from the high-enthalpy systems allows direct production of electricity, but the low-

enthalpy systems are inefficient in this conversion and that is why they are mainly used for 

direct heating. 

Conventional geothermal systems are hydrothermal convective systems characterised by 

surface geothermal features such as fumaroles, hot springs, steaming ground, mud pools, and 

geysers, or just known thermal anomalies. Unfortunately, the Precambrian crystalline cratonic 

lithosphere of Finland is cold and hence totally unattractive from the viewpoint of conventional 

high-enthalpy geothermal exploration. Instead, bedrock of Finland is far from active volcanoes, 

tectonic plate boundaries, and other regions of high crustal heat flow. The metamorphically 

recrystallised bedrock is also dry, hard and has a low porosity (i.e., rocks are characterised by 

low fluid permeability, which is unfavourable for geothermal systems). 

 The current solution in Finland is to go deeper. Several deep geothermal projects are in 

the planning phase in Finland. For example, the St1 Deep Heat project has achieved to drill two 

boreholes over 6 km depth and managed to perform successful enhanced (or engineer) 

geothermal system (EGS) stimulation test (Kwiatek et al. 2019). In an EGS (Olasolo et al. 2016) 

project at crystalline bedrock, natural fracture network is stimulated to increase the 

permeability. However, the attempt is not to create new fractures to crystalline basement rock. 

In this contribution, the focus is on the crustal-scale faults in Finland and their potential 

to host deep low-enthalpy geothermal resources. In the literature, these are often referred as hot 
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aquifer geothermal systems. Sadly, bedrock in Finland is cold and topography of the typical 

Finnish landscape is subdued and thus advective geothermal cells where groundwater can 

circulate and become heated are hard to come by (Kukkonen, 2000). Nevertheless, geothermal 

heat is available even in these conditions if one only knows where to look for and has the 

technical capabilities (and a budget) to reach for it. We propose that faults as potential aquifers 

deserve more attention in Finland. 

 

2. Conventional methods used in geothermal exploration 

Like in mineral exploration, oil & gas exploration and water exploration, exploration of active 

geothermal systems essentially involves applications from of a number of geological, 

geochemical, and geophysical techniques. Geological studies may include, for example, surface 

geological mapping, structural geological modelling, stress field analysis, geomechanical 

studies, and test drilling. Different geochemical and geophysical methods are reviewed, for 

example, in the “Best practices guide for geothermal exploration” (IGA Service GmbH, 2014). 

Holma et al. (2021) introduces a new technique called muography to the geothermal community 

in Finland. In certain circumstances, this novel density-variation sensitive method has potential 

in this field of research, as already demonstrated by Tanaka et al. (2011) and Tanaka and 

Sannomiya (2013). It is noteworthy, however, that many of these methods are not necessarily 

suitable for areas having similar ‘cold’ geology as Finland. 

 

3. Structural controls on underground flow of meteoric water 

Favourable geothermal reservoirs are often characterised by interactions of fluids moving along 

fractures in bedrock like, for example, in Menderes Graben in Western Turkey (Faulds et al. 

2009). Wherever the faults intersect, thermally heated meteoric water can migrate either 

vertically or laterally, or both. At locations of increased permeability, hot springs occur as a 

manifestation of the underlying high-enthalpy geothermal field (the famous Pamukkale is one 

of these). However, in most places there is no evidence of the underlying geothermal deposit 

on the surface. In Finland, all geothermal resources are blind and of low enthalpy (i.e., they 

lack surface expression) due to low contemporaneous heat flow. 

Concerning crustal-scale fault zones, evidence from other parts of the world indicates that 

major structures are often favourable for high-enthalpy geothermal heat energy (e.g., Bächler 

et al. 2003; Garibaldi et al. 2010). There are many reasons for this. First, faults and fracture 

zones crosscutting crystalline bedrock have an enhanced permeability comparing to their less 

deformed surrounding lithologies. Indeed, faults and fractures accelerate introduction of 

surficial waters to depth, as well known by underground miners that have to pump water 

constantly to prevent flooding of their tunnels. Hence, major fault zones favour development 

of the deep (bedrock) aquifers. Second, the water is heated to the temperature of the surrounding 

heat gradient. This happens regardless how the water is introduced to its site of residence in the 

crust (i.e., actively by industrial-scale pump station or passively by natural drainage of surface 

water along structural failures in rocks). In the Rhine Graben, for example, contemporaneous 

water temperatures at the depths of 500 m and 1000 m are 20-40C higher than expected, 

suggesting that the given fault zone reaches at least 3 km depth and controls a major convective 

vertical fluid flow system (Bächler et al. 2003). Younger et al. (2012) report a nearly 1 km deep 

geothermal energy exploration borehole drilled in the UK in 2004 deliberately to a large fault 

zone. This new approach was in a drastic contrast with the earlier investigations based on the 

EGS concept. However, the result was a success as the borehole discovered permeability levels 

Younger et al. (2012) believed to be the highest natural permeabilities ever found in granite 

anywhere in the world. The bottom-hole water temperature at 995 m was 46.2C yielding a 
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geothermal gradient estimate of around 3.88C per 100 m. The heat flux (heat-flow density) 

from the granite was calculated to be 115 mW/m2. In Finland, the measured heat flux in the 

uppermost 1 km of bedrock range from very low values of <15 mW/m2 to 69 mW/m2, while 

temperatures vary between 14 to 22C at 1 km depth (Kukkonen, 2000). Based on extrapolated 

data and thermal modelling, temperatures exceeding 40ºC should be encountered at 1-1.5 km 

depth in Finland. Due to the fact that these numbers are far from those encountered at 1 km 

depth in the project area described by Younger et al. (2012), we propose that the best project 

areas are likely there where the targeted fault zone is covered by a sequence of rocks of poor 

thermal conductivity forming an elevated geothermal gradient below. The Muhos Graben, 

delineated by fracture and fault zones (Kohonen and Rämö, 2005), is an example of such 

geological domains in Finland. 

 

4. Concluding remarks 

Finland is located in an ancient cratonic shield area where geothermal energy is not as readily 

available as it is in countries like Iceland, Italy, Turkey, and New Zealand, where high-enthalpy 

geothermal systems are a well-known source of energy, including electricity production. 

Geothermal energy can nevertheless be harnessed in various ways and one of them is to tap into 

an enormous low-enthalpy heat source of the shallow crust. This is done in projects following 

the EGS concept. Some of the typical problems of EGS projects include microseismic events 

triggered by active hydraulic stimulation, which some people consider disturbing, especially if 

they occur during nights. Induced seismicity has been the cause of delays and threatened 

cancellation of several EGS projects worldwide (Majer et al. 2007). Normally, in EGS projects, 

the exploration and production heat wells are directed towards structurally relatively simple 

bedrock volumes in an effort to avoid technical problems in drilling. We propose, as 

summarised below, a tweak to this standard project outline. 

Geothermal energy is not suffering from the intermittency issues associated with variable 

renewables like wind and solar energy. Hence it is an ideal renewable resource for power 

production and especially for heating. We believe that there is a need in Finland for conceptual 

modelling, numeric simulations, and field testing of a geothermal EGS project in which the 

target for deep low-enthalpy geothermal energy is deliberately chosen to be a major structurally 

broken zone, instead the currently favoured model in which the target is relatively non-

fractured. This concept mixes warm aquifer (or, ideally, hot aquifers) and EGS concepts in an 

attempt to generate district heat (and possibly to provide heat storage opportunities) and to 

diminish the need for prolonged hydraulic stimulation. The first step in testing this concept 

could be done by investigating the concept with a small-scale pilot. On a larger scale, the target 

could be a known major structure that crosscuts nearby a settlement interested in geothermal 

energy and potentially also in heat storage. The directional drilling method could be used at the 

test drilling stage to locate the targeted structure(s) at depth. This way, theoretically speaking, 

the problem relating to low permeability could be lessened, and the time and resources put to 

stimulation of pre-existing fractures (potentially) cut. 

We naturally recognise many inherited problems in the above-described concept. These 

include higher risk for induced seismicity than those in the areas of solid rock and that there 

may be too much of the heat-transferring water lost to a major fault zone due to uncontrolled 

dimensions of the natural fracture network. In Finland, however, this may not be as significant 

a problem as in some other, less water-blessed countries. There are also other challenges, such 

as technical problems with drilling itself and potential unwanted impurities in water that 

interacts with faulted rocks at depth. In addition, resource cooling due to cool meteoric water 

may also result in problems for long-term heating energy production. This risk may be notable 
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where active hydrothermal systems do not occur (like in Finland). Owing to these problems and 

challenges, more conceptual work with multidisciplinary approach is needed (e.g., numeric 

simulations). In practical tests, geophysical methods are useful in selecting fault zones that are 

mid-sized (to lessen likelihood of severe water loss) and also otherwise favourable (e.g., located 

far from intersections of major structures to avoid uncontrollable fluid loss, and well oriented 

with respect to stress field). If possible, attention must also be paid for structural geological, 

microfabric, and seismic analysis to find out if any of the faults in a given region of interest 

contain evidence of geologically young activity. This may be important as the fault reactivation 

(Sibson, 1989) may have increased the permeability by re-opening ancient, sealed fractures 

(Laubach et al. 2014). Bense et al. (2013) discuss in detail about fault zone hydrogeology and 

fault zone processes that either increase or reduce permeability. We further propose that the 

novel geophysical method called muography could be used in geothermal resource assessment 

and aiding drilling to the most desirable structures in depth (for details, see Holma et al. 2021). 
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Muography is a novel geophysical imaging method for large solid objects and it maps relative density variations 

in 2D, 3D or 4D (density data + time analysis). In geothermal exploration, muography can be used, for example, 

for remote detection of faults and estimation of associated permeabilities. In the best-case scenarios, muography 

can be used to direct further geothermal exploration drilling and mitigating exploration risks associated with 

permeability models. The method is feasible for the 1-2 km in the vertical direction or, if applied at the ground 

surface level, up to 2-3 km in horizontal and near-horizontal directions. 
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1. Introduction 

Even in countries with active high-enthalpy geothermal systems, like Iceland, Italy, New 

Zealand and Turkey, discovery and characterisation of a geothermal resource is often 

challenging. This is particularly true if the resource lacks obvious surface expressions like hot 

springs or geysers. In those cases, the geothermal resource may be hiding, for example, under 

a blanket of impermeable rocks preventing transportation of fluids and gases from deep-seated 

thermally heated sources to the surface (Hanson et al. 2014). These types of geothermal 

resources are often called as blind or hidden geothermal systems (Hanson et al. 2014). In 

contrast, heat flows in ancient cratonic shield areas are low and classical surface expressions 

associated with convective hydrothermal systems simply do not occur as there are no 

convective hydrothermal systems. In brief, exploration of economically feasible geothermal 

resources is often challenging, and the challenges are not the same everywhere. Developments 

in methods and techniques in geothermal exploration are thus important. We introduce herein a 

new technique that may be useful in geothermal energy exploration in the future. This technique 

is called muography. 

 

2. Principles of muography 

Muography is based on the utilisation of cosmic-ray induced atmospheric muon particles as 

probes to image density variations in solid (and liquid) materials. In geology, this novel 

geophysical imaging method can be used for density characterisation and monitoring of soil 

and rock formations of any kind, as long as there are adequately large density variations present 

(e.g., lithological boundaries, ore bodies, major alteration zones, and major damage zones). So 

far, density imaging of interiors of volcanoes is the most widespread application. Muographic 

imaging in geology and engineering (Zhang et al. 2020) is based on variable attenuation of 

muon flux in different directions (less muons are detected from the direction of denser 

materials). It can be performed as 2D muon radiography (e.g., Lesparre et al. 2012), 3D muon 

tomography (e.g., Guardincerri et al. 2017), and time-lapse (time-sequential) muography (e.g., 

Tanaka, 2020). Furthermore, depending on the need and availability of muon detectors, the 
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latter can be performed in 2D or 3D. Time-sequential muography has been used, for example, 

to visualise and analyse magma movements in a volcano (Lesparre et al. 2012) or groundwater 

movements in faults (Tanaka et al. 2011). Densities are visualised as variations in the mean 

density of a soil or rock volume (i.e., as pixels in 2D, voxels in 3D, and time-referenced pixels 

or voxels in time-lapse muography). 

Muography surveys can be conducted by a variety of detector types. Without going into 

technical details, the detectors can be divided into two classes based on the mobility and place 

of emplacement: cylindrical borehole probes and ‘telescopes’ (a common term used in the 

literature for these kinds of instruments, but rather vague in content as a telescope can be 

actualised with a number of different techniques). In general, telescopes are small enough to be 

mobile (e.g., 1 m3) but still way too large to fit into the borehole. Telescopes are the best option 

for density imaging wherever there is a need for particularly high resolution and enough room 

for this detector type (e.g., underground tunnels, caves, or mountainous areas where a telescope 

can be positioned directly on the ground to image a mountain or volcano). However, as is well 

known, such underground spaces are not in abundance in most landscapes and many terrains 

are relatively flat. Boreholes, on the other hand, are more numerous. In Finland alone, way 

more than 37 000 deep boreholes have been drilled so far, as based on the database of the 

National Drill Core Archive in Finland (GTK, 2020a,b). These boreholes equal to over 3500 

km of drill core. As a comparison, Sweden’s National Drill Core collection consists of more 

than 3000 km of drill core from more than 18 000 boreholes (SGU, 2020). Norway’s National 

Drill Core and Sample Centre contains 750 km drill core in total (NGU, 2019). It is worth noting 

that the actual total number of boreholes in these three countries is considerably larger than 

those inferred from the official sources as many companies have also their own drill core storage 

facilities. It can nevertheless be estimated that only a fraction of boreholes is truly available for 

borehole muography due to decrease in numbers owing to borehole collapse, destruction of 

rock sequences (e.g., due to mining), and a lack of access licence. Yet, borehole muography 

offers more possible locations for muography than telescope-based muography. 

The lowest density variations that may be observed by muography with a significance 

level of 3 are around 2% at 150 m of depth, 4% at 300 m, and 10% at 700 m (Hivert et al. 

2017). The 1% difference in a mean rock density translates into approximately 3% difference 

in the measured muon flux. Moreover, if a rock having a porosity of 10% is saturated with 

water, measured muon flux is reduced by 10% (Tanaka and Sannomiya, 2013). Due to these 

reasons muography has potential as a tool for detection and monitoring of natural bedrock 

aquifers, or at least those associated with high-porosity faults and fracture zones. 

As a geophysical method, muography can be combined with other geophysical methods. 

In these regards, Pasquet et al. (2019) discusses about pairing of muography with seismics and 

electrical resistivities, and Holma et al. (2019) with microseismic monitoring. Muography data 

has also been jointly inverted with gravity data (e.g., Barnoud et al. 2019), while Lesparre et al. 

(2012) compares muography data with electrical resistivity and gravity data. 

 

3. Applications of muography in geothermal exploration 

Deep geothermal systems can be classified into: (1) hydrothermal (convective) systems; (2) 

enhanced geothermal systems (EGS) (also called as hot dry rock systems); and hot aquifers. 

Classification can also be based on temperature; in which case the geothermal systems fall 

either to high enthalpy (above 150°C) or low enthalpy (less than 150°C) systems. In some cases, 

the terms ‘medium enthalpy’ and ‘ultra-high enthalpy’ have been found to be more appropriate. 

As an example of the latter, the Japan Beyond-Brittle Project targets supercritical geothermal 

resources in an EGS reservoir in 400-500°C rocks (Asanuma et al. 2019). Borehole 
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muography is not applicable in high-temperatures due to detector-related technical limits (we 

estimate Tmax to be close to 50°C). 

Favourable geothermal reservoir settings are often characterised by interactions of fluids 

flowing along fractures in the bedrock. As (1) muon detectors reveal density changes with a 

reasonably high resolution (at least at depths above 1 km) and (2) fractures typically have lower 

bulk densities than non-fractured rocks, major faults are visible by both muon telescopes and 

borehole muon probes as low-density features. While muography can be used in exploration of 

geothermal deposits that are related to fractures, it may not be effective in exploration of non-

fracture related geothermal deposits, unless there occur associated density contrasts. Other 

constraints include telescopes that can be used only if there are tunnels or caves where they can 

be installed, or there is enough topography so that telescopes can be installed on the side of the 

object of interest, such as a mountain or similar steep landform. Telescopes set up on the ground 

can be applied for the detection of density contrasts in solid materials up to 2-3 km thick in a 

horizontal or near-horizontal direction (e.g., Tanaka et al., 2014). This enables telescopes for 

geothermal exploration in mountainous areas. Borehole probes, in contrary, can be used 

anywhere there are available boreholes. However, as the muon flux diminishes substantially 

with increasing depth, the maximum depth borehole detectors can be used effectively is likely 

somewhere between 1-2 km. The gradually increasing geothermal gradient is another constrain 

for borehole muon detectors. Hence, the method works best in detection and monitoring of 

permeable fault zones in the uppermost 1-2 km. Nevertheless, as sub-vertical fault zones are 

typically rooted to much greater depths, sub-vertical structures inferred from muographic data 

may, at least in some instances, be extrapolated to continue with reasonable reliability to greater 

depths. 

Major changes in water table levels in permeable beds and fractures in bedrock are 

typically related to seasonal recharge and discharge events, or occasional storms or droughts. If 

the water level of a bedrock aquifer changes, the bulk density of the affected rock volume 

changes and, if the change is strong enough, is hence observable by muography. Indeed, Tanaka 

et al. (2011) have demonstrated that muography can detect time-dependent density changes in 

rock volumes caused by fluctuation of water levels in major structures. Hence, long-term 

muography measurements can be used in the detection and monitoring of natural bedrock 

aquifers associated with faults and fracture zones.  

Major fault zones have a capacity to be hydraulic conduits connecting shallow and deep 

geological environments, even though some segments of these structures may form effective 

barriers for fluid flow (Bense et al. 2013). In the areas of high heat flow, large faults may 

enhance permeability anisotropy and control the fluid velocities and hydrothermal convection. 

In such cases the regional heat flux distribution can change, as shown by Bächler et al. (2003) 

in their study of the Rhine Graben, Germany. The authors report temperature undulations along 

one of the studied faults reaching ±8C at 500 m depth and ±12C at 1 km depth. Moreover, the 

temperatures were 2040C higher than expected in both depths. The highest measured 

temperature at 1 km depth (98C) was interpreted as a clear evidence that the fluid source must 

be at least at the depth of 3 km and possibly deeper. Bächler et al. (2003) also conclude that as 

the minimum horizontal stress is typically perpendicular to the strike of a graben, fracturing 

along graben-parallel structures stimulates fluid flow. In brief, the graben-controlling master 

faults are important as permeability structures and temperature anomalies. Muography can be 

used to map these faults in detail and for collecting time-dependent density change data of the 

hydraulic behaviour of the fault over time. 

 



LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  38 

___________________________________________________________________________ 

4. Concluding remarks 

Temperature, permeability, and volume are the three subsurface parameters that are most critical 

to constrain a geothermal resource (Witter et al. 2019). Muography can be used to increase 

knowledge of permeability by remote detection of faults and determination of their direction 

and widths. Muography may also proof useful for improving geological working models in 

geothermal exploration and, by doing so, it may guide drilling and mitigate exploration risks. 
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In the present study, the novel geophysical imaging method of muography is introduced for the studies of rocks 

around scientific boreholes drilled into continental crust (or oceanic crust thrust over continental crust). In this 

application, the method can be used for detecting density variations in rocks intersected by the borehole. The 

present study also explains what are the lowest density variations observable by muography, what are the principles 

governing the volume the density data is extracted from, and what are the likely practical limits for borehole 

muography. 
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1. Introduction 

Scientific boreholes are drilled to sample, characterise, and understand rocks, deep fluids, and 

even microbial life in the shallow crust for a variety of purposes. While they can be drilled both 

into the continental and oceanic crust, we focus herein into scientific boreholes drilled on dry 

land. Boreholes drilled into the present seafloor are hence excluded, while boreholes drilled 

into obducted oceanic crust are included. As continental scientific drill holes are typically far 

deeper than most technical and mineral exploration boreholes, it is a common practise to 

examine both the drill core and its borehole with as many different techniques as possible to 

gain as much information of the subsurface structure, stratigraphy, chemistry and physical 

mechanisms and processes of the deep realm as possible. In some cases, the scientific boreholes 

are maintained long after the actual drilling in order to support further studies in the upcoming 

years. These types of boreholes are practically laboratories where new techniques and methods 

can be tested not only to collect new data, but to develop these new techniques/methods to the 

needs of the future. The present work introduces what one can learn from the rocks surrounding 

scientific boreholes by measuring cosmic-ray induced atmospheric muon particles employing 

one or more borehole probes designed for this purpose. In addition, we discuss the practical 

limits for this method. 

 

2. Muography: a method to detect density variations in large solid objects 

Underground muography is based on measurements of atmospheric muon particles by detectors 

positioned in caves, tunnels, or boreholes (Holma and Kuusiniemi, 2018). In this work our 

emphasis is on the latter and how they could be used in geophysical probing through continental 

scientific drill holes. However, the technical details of the probes are beyond the scope of the 

present work.  

Borehole muography provides information on mean density variations in large objects in 

2D, 3D or 4D (2D or 3D + time series analyses). Imaging in 2D and 3D generates two- to three-

dimensional density images in which individual pixels and voxels have different density values, 
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respectively. The 4D imaging can be based either on 2D or 3D imaging, but in this case the 

images also contain time stamps allowing monitoring of time-dependent density-changing 

processes. Densities are typically visualised as variations in the mean density of a rock volume 

(representative examples are shown, for example, in Tanaka, 2020). According to the numeric 

simulations of Hivert et al. (2017), the lowest density variations observable by muography with 

a significance level of 3 are around 2% at 150 m of depth, 4% at 300 m, and 10% at 700 m. 

Interestingly, the 1% difference in a mean rock density results approximately in 3% difference 

in the muon flux.  

 

3. Muon simulations 

The initial cosmic-ray induced muon distributions are often obtained using particle 

transportation codes such as CORSIKA (Heck et al. 1998). They are designed for simulations 

of the development of extensive air showers, including processes resulting in cosmic-ray 

muons. Interactions and transport of muons through the rock overburden are usually simulated 

utilising toolkits such as Geant4 (Allison et al. 2016) or FLUKA (Ferrari et al. 2005). Often this 

includes the response of the foreseen detector setup which is simulated in subsequent steps. The 

full simulation chain from the primary cosmic-ray particle to the detection of a muon in the 

detector is typically a very computing-intensive task. However, in simple rate estimates or 

illustrations, simplifications based on the parametrisation of sea-level muon flux distributions 

or muon losses in overburdens are reasonably reliable and can be used to speed up the 

simulation procedure. 

In the present work the muon angular distributions were simulated using the approach by 

Chirkin and Rhode (2016). The simulation takes into account the muon energy and angular 

distributions of atmospheric muons and those passing through rock at different depths. This is 

important because it has effects on the detected muon distributions at the given depth. 

Furthermore, we adjusted the simulations for the average chemical composition of 2.5-1.8 Ga 

juvenile upper continental crust of Condie (1993).  

Figure 1 illustrates the volumetric coverage of the muography measurement conducted at 

different depths. For clarity, these are placed at three different positions in the horizontal plane. 

Similar distributions are obviously produced even if the three positions are vertically aligned, 

like they were if the measurements are conducted in a vertical borehole at three depths. 

However, that is not the case if muons are detected in an inclined borehole as in this case the 

'data cones' (this is an informal reference to the volume from where density data can be extracted 

at the given underground position) become only partially overlapped. This is an important 

feature while planning muographic surveys as it allows the mapping of the overburden in 

different ways if boreholes of different inclinations are available. It must be emphasised, 

however, that many scientific boreholes are drilled with steep to vertical angles to reach the 

maximum depth with the minimised drill metres. The muon rate (flux) and angular distributions 

change according to the depth of observation. In brief, a detector at 200 m depth collects less 

muons than that at 100 m within the same period of time, but more than any similar-size detector 

positioned deeper (assuming that the material is homogeneous). Furthermore, the data cones 

are of approximately similar shape down to several hundred meters after which they are tapering 

rapidly. Note also that the deeper the detector is, the larger volume of rocks it ‘sees’, i.e., its 

data cone is larger. A simple approximation is that the diameter of the data cone at the ground 

surface is about twice the depth of the detector. 

 

4. Maximum depth of muography in a borehole 

The intensity of muon flux exponentially diminishes the deeper in rocks one goes, until even 

the most energetic atmospheric muons are attenuated, and none (or very few) remains to be 
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detected. How deep this happens depends on the mean density of the rocks the muons have to 

pass through before reaching the detector, the size of the detector (or the total volume of the 

available detectors) and the time available for muon detection. As muography is a statistical 

imaging method, one parameter affecting the image sharpness is the total measuring time (just 

like in the early years of photography, images get “better” with longer exposure times) as more 

time yields more detected muons. However, given the limited space available even in the widest 

of boreholes, it is likely that borehole muography is not viable vertically from the ground 

surface deeper than 1-2 km. Technically atmospheric muons can be detected even deeper, but 

their flux is so diminished that muographic surveys are likely taking years rather than months. 

In any depth, the duration of the measurement can be reduced using larger detectors or increase 

their number. In a borehole, this can be accomplished by a downhole passive muographic array 

containing more than one probe, each detecting muons independently and simultaneously. 

 

 
Figure 1. Simulated muons observed using three borehole muon detectors at 300 m (blue), 200 

m (green) and 100 m (red) underground. Each line represents a flight path of a single muon. In 

all three simulations the number of muons is one million. The upper images represent a top 

view. The middle image pair represents the ‘data cones’ as a side view of the respective images 

above. The lower image pair represents 3D visualisation of the images above. Note that on the 

right side the detectors are vertically aligned, while those on the left are 500 m apart. In both 

cases the data cones partially overlap, but this is greater in the right-hand arrangement of 

detectors. 
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5. Concluding remarks 
Deep scientific boreholes provide a unique opportunity to learn more about the physical 

properties of the upper crust and hence are favoured targets for implementation of downhole 

geophysical surveys. Borehole muon detectors utilised in these boreholes would deliver density 

contrast maps of the surrounding volume of rocks. As there commonly is only one borehole in 

any given continental deep scientific borehole site, muon collection and data analysis differ 

from some other applications of borehole muography where there often are multiple boreholes 

available. Muon detection in a scientific borehole will likely provide better results if utilised in 

multiple depths. Furthermore, as collecting statistically meaningful numbers of muons takes 

significantly more time (e.g., months) than conventional borehole geophysical surveys (e.g., 

few hours), muography is best suited for boreholes from which other data sets have already 

been collected. We believe that borehole muography is not viable deeper than 1-2 km from the 

ground surface. This, alas, limits the usability of muography for the relatively shallow parts of 

continental scientific boreholes.  

In summary, muography is a suited method to investigate rock density variations around 

continental scientific boreholes if there are reasonable density variations in the uppermost 1-2 

km of drill core. These density inhomogeneities can be either between rock types or in the form 

of major structural breaks (e.g., a major zone of core loss would probably be detectable as a 

low-density fault in muography data). Inversion of geophysical data is inherently non-unique 

and benefits from additional information. Both hold true also for muography data. Hence, if 

other geophysical data are already available, those and the muography data can be jointly 

inversed to reach the best combined results. 
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The Precambrian mafic-ultramafic Näränkävaara intrusion contains a 1.5-2 km thick basal dunite, mostly 

composed of low-porosity olivine adcumulates, and a ~1.3 km thick peridotitic-pyroxenitic-gabbronoritic layered 

series. The basal dunite exhibits lithological features typically found in high-volume open-system komatiite flows, 
and its location between two Archean komatiite-hosting greenstone belts has led to the hypothesis that it may 

represent an Archean komatiitic wall-rock to the Paleoproterozoic layered intrusion magmatism. Results from six 

new whole-rock Sm-Nd isotope analyses show similar isotopic ratios for both the layered series and basal dunite, 

with ɛNd from −3.5 to −1.5 at 2440 Ma, which supports a cogenetic relationship instead. The open-system 

lithological features suggest that the basal dunite may have formed (at least partly) as a magmatic feeder channel, 

possibly connected to the geophysical Koillismaa “hidden dyke”. 
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1. Introduction and geological setting 

Several mafic layered intrusions were emplaced in northern Fennoscandia at 2.5−2.4 Ga during 

a long-lived (~80 Ma) Large Igneous Province (LIP) related mantle plume event. The mafic-

ultramafic Näränkävaara intrusion is the easternmost member of the Finnish Tornio-

Näränkävaara belt (Fig. 1), and belongs to the younger ~2.44 Ga age group of the plume 

magmatism (Alapieti 1982). The Fennoscandian intrusions were mostly intruded between the 

Archean granitoid basement complex and plume-induced continental rifting related volcanic-

sedimentary supracrustal rocks; however, the Näränkävaara and Burakovsky intrusions are 

completely surrounded by granitoid basement (e.g. Amelin & Semenov 1996). The parental 

magmas of these intrusions can be classified as komatiitic or High-Mg basalts contaminated 

with Archean crust (average εNd approximately −2, 9−18 wt% MgO, 0.5−1.0 wt% TiO2; 

Kulikov et al. 2010). 

The ~3 km thick Näränkävaara intrusion (Fig. 1) contains a 1.5-2 km thick ‘basal dunite’ 

series, primarily composed of olivine adcumulates with minor meso- and orthocumulates, and 

a ~1.2 km thick layered series, composed of pyroxenites-gabbronorites and lesser peridotites. 

The intrusion has two structural blocks with opposing dip-directions (~10-25°), divided by a 

major NE-trending fault. The SE-block contains a marginal series gabbronorite along the 

(tectonized) basal dunite−layered series contact, with the marginal series grading into the 

layered series, suggesting an age gap between the two series; contact along the NE-block is an 

ambiguous strongly altered olivine to olivine-bronzite cumulate (Järvinen et al. 2020a). 

The Näränkävaara intrusion belongs to the Koillismaa Layered Intrusion Complex (KLIC), 

partly because of a prominent linear geophysical anomaly that connects the Näränkävaara 

intrusion to the Western Intrusions of the KLIC – this anomaly has been hypothesized to be 

related to a concealed dyke that fed the KLIC (Alapieti 1982). The small Takanen greenstone 

belt (GSB) also overlaps with this anomaly just NE of Näränkävaara (Fig. 1) and the 

Suomussalmi GSB also terminates ~10 km to the south, with both hosting komatiitic olivine 

accumulate units. As the basal dunite exhibits lithological features typical of fast-flowing 
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komatiite systems – abundant ‘extreme’ olivine accumulates with back-and-forth variations in 

olivine compositions with depth (Fo87.5-90), bi-modal olivine, and poikilitic chromite (Järvinen 

et al. 2020b) – this led to the hypothesis that the Näränkävaara basal dunite could represent an 

Archean komatiite wall-rock to the Proterozoic layered intrusion magmatism. 

 

Figure 1. Simplified geological map of the Näränkävaara intrusion overlain on a digital 

elevation model. Stars show locations of numbered whole-rock Sm-Nd isotope samples. Inset 

shows locations of the 2.5−2.4 Ga mafic intrusions in Fennoscandia (black) with Näränkävaara 

and Koillismaa intrusions pointed out in red (white = Archean; gray = Proterozoic; hatched = 

Phanerozoic). Full version of the map with stratigraphy and cross-sections available from 

corresponding author. 

 

We present six new Sm-Nd isotope analyses, and argue for a comagmatic 

Paleoproterozoic plume-related origin for both the Näränkävaara basal dunite and the layered 

series. The results agree with the idea that the Näränkävaara intrusion may (at least partly) 

represent a magmatic feeder-channel system related to the 2440 Ga event, as originally 

suggested by Alapieti (1982). 

 

2. New whole-rock Sm-Nd results 

Nd isotope composition of six whole-rock samples were analysed by TIMS at the University of 

Texas (Table 1). Initial εNd-values calculated at the age of the Näränkävaara intrusion (2436 

Ma; Alapieti 1982) decrease from the basal dunite (-1.7 – -1.8) to the layered series (-2.1 – -

2.4) with the marginal series being the most unradiogenic (-3.5). Figure 2A shows that the basal 

dunite εNd values also overlap with Archean komatiites and komatiitic basalts from the Kuhmo 
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GSB at depleted mantle (DM) values (+1.2 – +1.6) with initial ratios calculated back to 2800 

Ma. An Archean origin for the basal dunite is unlikely, however, as the  

Table 1. Results of Sm-Nd isotope analyses from the Näränkävaara intrusion (see Fig. 1 for 

sample locations). All errors are 2σ. 

Sample # Series
a
 

Sm 

ppm 

Nd 

ppm 

147
Sm/

144
Nd 

±0.00007 
143

Nd/
144

Nd
b
 

εNd 

(2436Ma) 

1 basal dunite 0.66 3.20 0.1255 0.511408 ± 5 −1.73 

2 basal dunite 0.46 2.14 0.1295 0.511468 ± 9 −1.82 

3 

marginal 

series 1.98 9.77 0.1227 0.511271 ± 7 −3.53 

4 layered series 0.61 2.99 0.1226 0.511328 ± 11 −2.39 

5 layered series 0.42 1.99 0.1274 0.511421 ± 8 −2.07 

6 layered series 0.66 3.22 0.1231 0.511352 ± 6 −2.07 
a) Marginal series is a melt-representative gabbronorite in contact with the basal dunite and layered series. Sample 

#4 is an olivine-bronzite cumulate, rest are olivine ortho-/mesocumulates. b) Errors in isotope ratios based on 

within-run statistics; external uncertainty was 0.000013 based on repeated standard measurements. 

 

 

 
Figure 2. New isotope results from the Näränkävaara intrusion on whole-rock compositional 

plots; legend in lower right; other data from Hölttä et al. (2012). A εNd vs. Age plot with two 

possible interpretations for the new results (sample #3 excluded) - 2440 Ma mafic intrusion or 

2800 Ma komatiite. B REE-diagram comparing Näränkävaara rocks to Kuhmo samples from 

2A C Results of AFC modelling, tick mark is cumulative 5% assimilation+fractionation. D εNd 

vs. 1/Nd plot at 2440 Ma, with trend line through new samples interpreted as a mixing line 

between parental (primary?) magma and Archean crustal contaminants. 
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Näränkävaara rocks (and parental magmas, see Fig. 2B) are strongly LREE-enriched with 

Sm/Nd of ~0.2, as compared to the LREE-depleted Archean komatiites with Sm/Nd of 

~0.3−0.4. To maintain an Archean origin for the basal dunite, a process would be required that 

simultaneously produced both the low Sm/Nd, high ɛNd at 2800 Ma, and the low measured 
143Nd/144Nd at present. This would require either 1) extremely low-degree partial melting of the 

DM source (~1%, i.e. kimberlitic magma); 2) a DM source that was enriched in LREE by some 

metasomatic mantle processes just before production of the primary melt (i.e. not affecting εNd 

but enriching LREE); or 3) a relatively highly depleted DM source having assimilated 

unradiogenic enriched crust. While option 2 is theoretically possible, constrained modelling 

parameters to investigate it further are not available, and therefore only option 3 has been 

investigated in more detail with simple AFC modelling (DePaolo 1981). Using the most 

depleted Kuhmo komatiite composition (εNd = +4.6, Sm/Nd = 0.30) and the most LREE-

enriched unradiogenic granitoids from the Koillismaa block (εNd from −3.5 to −2.0, Sm/Nd = 

0.10–0.19; Hölttä et al. 2012), an addition of 15−60% of local crust would roughly reproduce 

the basal dunite compositions at 2800 Ma (Fig. 2C). The prohibitively high amounts of 

assimilation indicated (>30-40 %) could be lessened by the presence of more unradiogenic 

Mesoarchean crust at a deeper level (εNd ~-10) and by more in-depth modelling taking into 

account wall-rock partial melting. 

Model in Fig. 2C is a rough estimate highlighting the problems related to producing 

both the observed initial isotope and trace element ratios by contamination. In addition, options 

2 and 3 above are unsatisfactory in that no similar Sm/Nd and Nd-isotope systematics are found 

in 2800 Ma rocks elsewhere in the KLIC or nearby GSB’s. A simpler interpretation is presented 

in Fig. 2D with the Näränkävaara basal dunite being a part of the same Proterozoic plume 

magmatism as the layered series, having assimilated the local Neoarchean crust. 

 

4. Conclusions and implications 

The Näränkävaara intrusion, including the basal dunite series, is part of the Fennoscandian 

plume magmatism. While the layered series is dated at 2436 Ma, the basal dunite may be 

somewhat older. The high-volume open-system features found in the basal dunite suggest it 

may have (at some point) acted as a magmatic feeder channel, and may well be connected to 

the concealed geophysical anomaly extending through Näränkävaara. 
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Posiva Oy is constructing an underground repository for spent nuclear fuel in Olkiluoto island in south-western 

Finland. Posiva has been monitoring seismicity at the site since 2002, and altogether 412 microearthquakes were 

observed in 2002 - 2018. An updated spectral source model and the associated source parameters were computed 

for the earthquakes in 2014 – 2018, and reliable moment tensor solutions were derived for 51 of them (Kaisko and 

Malm, 2019). The majority of the moment tensor solutions with subvertical pressure axes indicate that the 

microearthquakes are mostly adjusting the perturbed stress field caused by the excavated openings. However, the 

moment tensor solutions of three microearthquakes induced by pre-grouting within otherwise undisturbed bedrock 

are concluded to reflect natural stress field, yet not being of natural origin. The events occurred on the brittle fault 

zone OL-BFZ020a, with nodal planes corresponding to the fault plane in the geological structural model. Also, 
several other microearthquakes can be associated with the modelled brittle fault zones but based on the results of 

the study it can be stated that these structures have not been reactivated in the sense of releasing continuously 

stresses through natural mechanisms. Some of the zones have hosted microearthquakes not only beside the tunnels 

but also within the bedrock, which could indicate their ability for future reactivation. 
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1. Introduction 

Posiva Oy is constructing an underground disposal facility for spent nuclear fuel in Olkiluoto 

island, Eurajoki municipality, in the south-western coast of Finland (Figure 1A). Posiva has 

been monitoring the natural background seismicity in order to characterize the baseline 

conditions at the site since 2002 (Saari, 2003). In addition, the monitoring has focused on 

changes in stability of the bedrock and safeguarding the facility during the excavation since 

2004 (Saari, 2005). In the end of 2018, the repository area with its surroundings was monitored 

with 18 permanent seismic stations equipped with accelerometers and/or geophones (Figure 

1B). 

The Olkiluoto area has distinctly low seismicity with no observations of natural 

earthquakes within 5 km radius from the site (Figure 1A; Ahjos and Uski, 1992; ISUH, 2018). 

Also, induced microearthquakes were only rarely recorded during the years 2003 – 2016 

(Haapalehto et al. 2017). Seismicity related to the final disposal facility construction became 

more intense in 2017, when the excavation was conducted simultaneously in several locations 

at the repository level (Haapalehto et al. 2018). Since that, the number of probable 

microearthquakes has shown correlation with excavation intensity by decreasing significantly 

together with ceased blasting in the end of 2018 (Haapalehto et al. 2019).  

In the following sections the microearthquake observations at the Olkiluoto site during 

the years 2002-2018 are presented after Kaisko and Malm (2019). Altogether 412 probable 

microearthquakes were detected and analysed with Posiva Oy’s local microseismic network 

during this period. The earthquakes and rockfalls occurring in 2002-2016 were reidentified and 

the reported microearthquakes lacking location were reanalysed. An improved spectral source 

model with an ω3-fit with the associated source parameters were computed for the 400 
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microearthquakes occurring after the network renewal in 2014 – 2018, and reliable moment 

tensor solutions could be derived for 51 of them (cf. Kaisko and Malm, 2019 for more details). 

 

 

Figure 1. A: Earthquakes observed within 100 km from the Olkiluoto site (ISUH, 2018) on a 

map of generalized lithology (Nironen et al., 2016). On the locator map, the site is denoted with 

a black triangle and earthquakes with red (Ahjos and Uski, 1992). B: The extent of the 2 km x 

2 km (blue) and 14 km x 14 km (amber) seismic monitoring areas and the locations of the 

seismic stations (black symbols). The final disposal facility is denoted with a red triangle 

(Background map: MML, 2019). (Figures: Kaisko and Malm, 2019) 

 

2. Earthquake source parameters 

Based on the adjusted spectral source model with the ω3-fit, the 400 microearthquakes (ML 

= -3.2 - ML = -0.5) were estimated to have average source radii from 2 to 69 m, and 

displacements from 0.1 to 123 μm. The static and dynamic stress drops were from 3.7·10-4 to 

8.4·10-1 MPa and 2.4·10-4 to 9.6·10-1 MPa. Energy released as seismic waves during an event 

was estimated to be from 3.7·10-4 to 1.5·102 J and seismic potency and moment from 4.9·10-6 

to 4.1·10-2 m3 and from 1.6·105 to 1.4·109 Nm, respectively.  

The events occurring within the bedrock further away from the excavated volumes had 

generally smaller source radii, relatively larger displacements on the source, larger stress drops 

and higher radiated energy especially on the P-wave than the events close to free surfaces at 

tunnel and shaft openings. 

 

3. Moment tensor solutions and stress field 

Seismic moment tensor solutions were computed for all the 400 events identified as probable 

microearthquakes in 2014 - 2018 using P- and S-wave polarities and amplitudes with the IMS 

Trace software (IMS, 2019). The quality of the solutions was analysed, and finally 51 of the 

derived solutions satisfied the predefined criteria and were accepted for further analysis (Figure 

2A).  

Most of the moment tensors had subvertical pressure axes, which indicates that the 

microearthquakes occurred mainly close to or at the tunnel walls and were adjusting the 

perturbed stress field caused by the bedrock openings (Figures 2B & 3A1-A3). On the other 
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hand, also some earthquakes within undisturbed bedrock were induced by pre-grouting. 

Moment tensor solutions could be derived for three of them (Figures 2C & 3B1-B3). The 

derived fault planes are aligned with the brittle fault zone OL-BFZ020a, and the source 

mechanisms are explained by the combination of the mechanism expected under natural stress 

field within the uppermost crust (reverse) affected by increased pore pressure (explosive). 

Based on the analysis of these three events, the natural pressure, tension and intermediate stress 

axes have trend/plunge values of 294º/16º, 56º/63º and 198º/23º at the site (Kaisko & Malm, 

2019) and the stress field approximately corresponds to the direction of natural stress field at 

the site (Posiva Oy, 2021). 

 

 

Figure 2. A: The derived 51 moment tensor solutions presented as beach balls on lower 

hemisphere projection. Blue indicates dilatational and red compressive according to 1% best 

solutions in Monte Carlo simulations. Beach balls processed with IMS Trace (IMS, 2019). B & 

C: The maximum (P, red), minimum (T, blue) and intermediate (B, green) principal axes 

defining the stress field orientation estimated with the moment tensor solutions are plotted with 

spheres. The stress field for the events in tunnel vicinity are presented in B, and the pre-grouting 

induced events within undisturbed bedrock in C. Computed maximum eigenvectors for the axes 

are presented with triangles. (Figures: Kaisko & Malm, 2019) 

 

4. Fault reactivation 

Majority of the events occurred when the excavation passed a known brittle fault zone but based 

on the results of the study it can be stated that these structures have not been reactivated in the 

sense of releasing continuously stresses through natural mechanisms. Some of the zones have 

hosted sporadic microearthquakes not only beside the tunnels but also within the bedrock, 

which could indicate their ability for future reactivation. 
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Figure 3. Examples of moment tensor solutions derived for microearthquakes occurring at the 

canister receiving station opening (A) and on the brittle fault zone OL-BFZ020a (B). The 

solutions are presented as beach balls (A1 & B1), pressure (red) and tension (blue) axes (A2 & 

B2), and nodal plane pairs (A3 & B3) for each event. (Figures: Kaisko & Malm, 2019) 
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The evolution of the Svecofennia-Karelia boundary zone is usually interpreted in terms of continental break-up at 

ca. 2.05 Ga and subsequent oblique protocontinent (Svecofennia)–continent (Karelia) collision at ca. 1.90 Ga. 

However, only scarce rock formations occure in the rock record of the boundary zone that can potentially be linked 
to the break-up event(s). We are currently studying four occurrences of conglomeratic rocks at the northern and 

western edges of the Archean Iisalmi block in central Finland. These conglomerates contain phenoclasts, which 

can give information on the nature of their provenance and depositional environments and processes and could be 

linked to the assumed 2.05 Ga break-up. For example, our first U-Pb zircon dating results show that the phenoclasts 

record a previously unrecognised 2.03–2.05 Ga felsic volcanic-sedimentary event. 
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1. Introduction  

The evolution of the Svecofennia–Karelia boundary zone is usually interpreted in terms 

of continental break-up at ca. 2.05 Ga and subsequent oblique protocontinent (Svecofennia)–

continent (Karelia) collision at ca. 1.90 Ga. Some of the proposed models of the 2.05–1.90 Ga 

evolution are complex, including not only the ca. 2.05 Ga break-up, but also a later break-up-

scale within margin extensional event at ca. 1.95 Ga (Lahtinen et al. 2015). A problem in this 

model is that only scarce rock formations occur in the rock record of the boundary zone that 

can potentially be linked to the break-up event(s).  

We are currently studying four occurrences of conglomeratic rocks (Figure 1), which can 

potentially be linked to the above-above mentioned break-up event and include: 1) the 

conglomerates in association with the ca. 2.05 Ga Otanmäki suite A-type granites in the 

Otanmäki–Kuluntalahti nappe (Kärenlampi et al. 2019); 2) the conglomerates in the Itämäki 

schist belt located 10 km to the west from Otanmäki (Luukas, 1991); 3) the Haajainen 

conglomerates along the eastern margin of the Salahmi belt (Korkiakoski and Laajoki, 1988); 

and 4) the conglomerates fringing the Archaean Pirttimäki complex at Kukkomäki (Savolahti, 

1964). In addition to obviously locally derived phenoclasts, the conglomerates also contain 

exotic phenoclasts that lack obvious source in the surrounding bedrock. Many of the 

phenoclasts are such that they can be deemed to carry significant information on the timing and 

geological processes related to the break-up of the Karelia craton. The conglomerate 

occurrences will be studied with respect to their geological setting, phenoclast rock types, 

chemical composition and age (zircon U-Pb dating) in order to obtain insights to their formative 

setting and provenance.  
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Figure 1. (a) Location of the study area (red rectangle) close to the SW margin of the Archean 

Karelia craton. b) Map showing the geological setting of the conglomerate occurrences at the 

northern and western edges of the Archaean Iisalmi block in central Finland (modified after 

Bedrock of Finland – DigiKP and Kärenlampi et al., 2019). 

 

2. Geological descriptions of the conglomerate occurrences 

The conglomerates from the Otanmäki-Kuluntalahti nappe constitute three formations Lotvola, 

Umpilampi and Matojoki (Figure 1b). The first two occur as inliers enclosed by the Otanmäki 

suite A-type granite in the nappe (Kärenlampi et al., 2019), whereas the last mentioned one  is 

located in a tectonic lens lining the nappe. At Lotvola and Umpilampi, the pebble- to boulder-

sized phenoclasts are of mainly composed of intermediate and felsic plutonic and volcanic rocks 

and occur in an intraclast matrix metamorphosed of materials formed by mafic volcanic and 

sedimentary carbonate materials (Figure 2a–b). The 1x2-km-sized Matojoki lens contains clast 

supported, mostly rock fall avalanche conglomerates mostly with gabbroic boulders but locally 

felsic subvolcanic-volcanic rock and mica schist boulders as well (Figure 2c–d).  

The conglomerates in the Itämäki belt occur as intercalations in <100-m-thick quartz 

wacke formation within metagreywacke (Figure 2e–f). They contain mainly cobble-sized clasts 

of mature feldspar quartzite and orthoquartzite, but also boulders–cobbles of gabbro and other 

mafic rocks, felsic volcanic rocks and mica and black schist.  

The strongly deformed Haajainen conglomerates fringing the southeastern margin of the 

Salahmi belt as a 100- to 1000-m-wide sheet, contain phenoclasts of mainly granodioritic to 

trondhjemitic plutonic and heavily altered mafic volcanic rocks, but also pebbles–cobbles of 

intermediate and felsic alkaline plutonic and volcanic rocks (Figure 2g–h). The Kukkomäki 

conglomerates are also strongly deformed and mainly comprise leucogranite–granodiorite 

pebbles–cobbles, but usually also some mica schist clasts. 
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Figure 2. Outcrop photographs. Conglomerate composed mostly of boulders–cobbles of felsic 

volcanic rocks (light-grey) and calc-silicate matrix (dark-green) at (a) Umpilampi and (b) 

Lotvola. Psephitic slump/debris avalanche deposits composed mainly of metagabbroic-basaltic 

boulders (c) and metagabbroic, felsic volcanic rock and mica schist boulders and cobbles at 

Matojoki. (e–f) Quartz wacke intercalated conglomerates composed of mainly quartzite and 

felsic volcanic rock cobbles at Itämäki. (g) Heavily altered mafic volcanic rock phenoclasts and 

(h) pebbles–cobbles of intermediate and felsic alkaline plutonic and volcanic rocks at 

Haajainen. 

 

3. First U-Pb zircon dating results 

The emphasis in the study will be in geochemistry and geochronology of the 

phenoclasts. In the present early stage of the study, we mainly have semi-quantitative major and 

trace element data generated by portable X-ray fluorescence spectrometry (pXRF), which we 

have used in classification and selection of samples for future quantitative chemical analysis 

and age determination. We have already obtained U-Pb zircon age data for felsic volcanic 

phenoclasts from the Umpilampi, Lotvola, and Matojoki conglomerates (Figs. 1 and 3). Mineral 

separation yielded abundant euhedral zircon grains from all three samples. After standard 

sample preparation procedures, in-situ spot analysis were performed at the Geological Survey 

of Finland in Espoo using a Nu Plasma AttoM single collector ICPMS connected to a Photon 

Machine Excite laser ablation system (Huhma et al. 2018). 

Obviously magmatic zircon grains from the Umpilampi sample plot on the concordia, 

giving an age of 2038±9 Ma (Figure 3a). The isotope compositions from the Lotvola sample 

are slightly discordant and yield a somewhat imprecise upper intercept age of 2053±31 Ma 

(Figure 3b). Still this age is interpreted to represent the timing of magmatic crystallization. The 

obtained ages are within the age limits of the Otanmäki suite A-type magmatism (ca. 2.04–2.06 

Ga), indicating that in addition to felsic plutonism, this magmatic stage also included previously 

unrecognized volcanic activity. Analyses of zircon grains from the Matojoki sample produce 

slightly younger results, a concordia age of 2026±11 Ma (Figure 3c) and a similar upper 

intercept age of 2031±12 Ma, indicating that the age of the volcanic source of the dated 

phenoclasts and the maximum depositional age of the host conglomerate is approximately 2.03 

Ga. 
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Figure 3. Concordia plots of U–Pb zircon data obtained for the felsic volcanic phenoclasts from 

(a) Umpilampi (b) Lotvola and (c) Matojoki conglomerate occurrences. The age calculations 

and concordia diagrams were made using IsoplotR (Vermeesch, 2018).  

 

4. Discussion and closing remarks 

The research we have already conducted has revealed that the craton margin 

conglomerates display a surprisingly large variation in the rock types of their phenoclasts, 

which include alkaline felsic volcanic rocks, gabbroic rocks, and black schists, providing much 

new information on the nature of their source and depositional environment and processes.  

Our first geochronological results show that the Otanmäki stage of magmatism, which 

generated the Otanmäki suite evolved plutonic rocks, also includes previously unrecognized, 

2.03–2.05 Ga felsic volcanic-sedimentary activity, for which there is, similarly as for the 

concurrent plutonism, no obvious manifestation in the regional rock record outside the 

Otanmäki-Kuluntalahti nappe. This finding further supports the idea that the Otanmäki-

Kuluntalahti nappe is an exotic allochtonous unit (Kärenlampi et al., 2019), which was thrust 

on the Karelia craton from a root located west of the present craton margin, similarly to the 

Jormua ophiolite-bearing allochton, which was obducted possibly from even further from “the 

lost or hidden west”.  

Our observations clearly demonstrate that valuable information of the evolution of the 

western margin of the Karelia craton can be obtained by studying craton-fringing conglomerate 

occurrences, though it is possible that some of these conglomerates are not related to the 

assumed 2.05 Ga break-up. Especially the Haajainen conglomerate may be significantly 

younger. 
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Geological Survey of Finland is drilling a 3000 m long hole into the geophysically anomalous zone in the 

Koillismaa area. Drilling has been preceded by gravity and magnetic measurement, seismic reflection soundings 

and AMT measurements showing anomalous feature in depth. The aim of drilling is to find out the source of the 

anomaly.  
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1. Introduction 

Koillismaa area in Finland has been a geological mystery for several decades. Magnetic and 

gravimetric measurements show anomalous values caused by a deep unknown geological 

origin. In LITHOSPHERE 2018 Symposium, Gislason et al. (2018) presented preliminary 

results from Koillismaa Seismic Exploration Survey (KOSE) project. The KOSE seismic 

reflection profile revealed prominent reflectivity of the subsurface and provided new 

information about the deep gravimetric and magnetic anomaly zone known at the Koillismaa 

area. These geophysical data have motivated the ongoing ambitious drilling project that 

attempts to solve a mystery which has been struggling the curious minds of geoscientists already 

for many decades. GTK started to drill a 3000 m long drill hole in the heart of the anomaly in 

September 2020, to finally collect rock samples from the source of the anomalous zone. In this 

abstract we briefly describe the background, geophysical studies, modelling and present stage 

of the ongoing drilling. We also describe the specific drilling technique used in order to reach 

the intended target inside the Archean basement of Koillismaa area. 

 

2. Geological framework 

The Koillismaa deep anomaly is ca. 50 km long zone which connects the distant parts of the 

2.45 Ga layered intrusion blocks of the Koillismaa (Alapieti 1982; Karinen 2010) and mafic-

ultramafic Näränkävaara intrusion (Alapieti 1982; Järvinen et al. 2020) (Figure 1). The zone is 

also partly traceable by a zone of breccia outcrops (Figure 2), but the relationship of the 

gravimetric anomaly and the breccia is unclear, although it is known that the breccia is not the 

source of the anomaly and no other possible causes are noticeable on the surface either. For this 

reason, the anomaly has been interpreted to reflect the location of a chonolith-like feeder zone 

for the magmas of the exposed mafic-ultramafic intrusions in the Koillismaa. Alternatively, the 

anomaly could reflect the presence of mafic-ultramafic rocks representing some other magmatic 

episode than the 2.45 Ga intrusions, for example, the Archaean greenstone belts near the 

Koillismaa area. This kind of voluminous mafic-ultramafic systems are globally rare, and 

therefore, the target is very likely an interesting example of plume derived magmatism of 

Fennoscandian shield. Mafic-ultramafic rocks are very potential for several commodities such 

as orthomagmatic Ni-Cu-Co-PGE and Cr-V-Ti-Fe. 
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Figure 1. Drilling site on the regional gravity map. Locations of seismic profile 2018 and AMT 

surveys 2019 are plotted also. 

 

 
 

Figure 2. Geological framework of the Koillismaa area shown as exploded blocks. Photo shows 

outcrop containing breccia and paragneissic basement rock from Poroperä area near Lake 

Kostonjärvi. 
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3. Geophysical studies 

The anomaly zone is most clearly observed by gravity and magnetic measurements, which were 

performed already as early as 1950s. Last geophysical surveys carried out by GTK were a 

seismic survey in 2018 and an audiomagnetotelluric survey (AMT) 2019.  

All previous interpretation of the gravity anomaly indicate that the unexposed source is 

about 2.5-5 km wide and that the depth of the upper surface is between 1 and 2 km below the 

present erosion level depending on the location along the anomaly (Piirainen et al. 1978; 

Saviaro 1976). Interpretation of earliest AMT-surveys in 1970s brought up a weak conductivity 

anomaly located in the same area than gravity anomaly (Saviaro, 1976). The AMT surveys 

made in 2019 confirmed the existence of this conductivity contrast.  

The KOSE seismic reflection data was acquired along the road close to the drilling site 

with 90 wireless geophones and explosive sources (Gislason et al. 2019). The resulting seismic 

reflection cross-sections show prominent reflectors that will be penetrated by the drill hole 

(Figure 3). These reflectors are expected to be lithological contacts or fracture zones that cause 

abrupt change of acoustic impedance within the subsurface. The upper boundary of the source 

of the gravity anomaly is expected to be at approximately 1.5 km depth based on changes in 

reflectivity. 

  

 
 

Figure 3. Planned drill hole projected to the KOSE seismic reflection profile. Red arrows are 

pointing to the most prominent reflectors drill hole will penetrate. Gravity (RGD_Bouguer) and 

airborne magnetic (AM_TMI) profiles are plotted above the seismic section. 

 

4. Drilling technique 

According to the original plan, the drilling is conducted within 5 months. The contractor to 

perform the drilling is Arctic Drilling Company Ltd (ADC) from Rovaniemi, who uses diamond 

drill rigs of their own design and manufacturing. The contractor uses best available techniques 

designated to these rock types based on their previous experiences in deep hole (>1500m) 

drilling projects. The rig has been anchored to the bedrock with a 30 m cemented anchoring 



LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  58 

___________________________________________________________________________ 

hole (diameter 96 mm). This anchoring is to prevent resonation of the rig once the core reaches 

a certain depth. At the beginning of the drilling campaign, a fractured bedrock down to 300 m 

caused serious technical challenges, which showed up mostly as continuous losses of water 

pressure. Therefore, a decision was eventually made to use 96 mm rods as a casing for the first 

300 m. If these poor rock conditions were known beforehand, the drilling could have been 

started with this rod size already at the beginning of the drilling campaign. The rig was changed 

to a more efficient version when the first half, i.e., 1500 m of the planned 3000 m length was 

reached in early December 2020. The change to a more powerful drill rig, to ADC’s K10, 

ensures that project reaches the targeted 3000 m depth. The K10 is the flagship of ADC´s fleet, 

and in theory, with this diamond drill rig it is possible to reach depths of 3500 m. Towards the 

end of drilling campaign, the rods themself will eventually weigh over 20 tonnes at the depth 

of 3000 m. At this length of drilling, the strength of the rod will be put to a test in which their 

breaking strength is the limit of drilling. 

 

5. Discussion 

In addition to increased geological understanding and unique rock samples from depth, this 

research has impact on providing scientific platform and testing environments for future studies. 

These are, for example, development of survey technology, 3D modelling, studies of 

geothermal energy, deep groundwater and bedrock stability. 

 

6. Conclusions and future work 

Koillismaa Deep Hole is expected to shed light into the mystery of geophysical anomaly by 

proving rock samples from the core of the anomaly. In addition to the study of age and 

composition of these samples, the future work will include several different geophysical 

surveys, including (1) semi-passive seismic experiment where drilling noise is utilized for 

retrieving a model of seismic velocity in the drill hole vicinity, (2) crossing seismic reflection 

profile to the KOSE profile, (3) densification of AMT measurements and testing different drill 

hole geophysics methods. 
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This project focuses on the trace element composition of apatite minerals in a variety of magmatic systems: 

carbonatites, mafic-ultramafic intrusions, and rapakivi granites. The main aim is to study the trace element 

characteristics of apatite in these magmatic systems and to gain a better understanding on how apatite affects their 
magmatic trace element budget. The chemical compositions of the apatite are studied with in situ analytical 

techniques and the results will form a consistent chemical database of igneous apatite in various rock types in 

Finland. 
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1. Introduction 

Apatite minerals form a supergroup of structurally similar but chemically diverse minerals 

(Pasero et al. 2010). Calcium phosphate apatite [Ca-P apatite group i.e. Ca10(PO4)6(Cl,F,OH)2] 

is a common accessory mineral in a variety of rock types in igneous, metamorphic, and 

sedimentary rocks (e.g. Piccoli and Candela, 2002, Hughes and Rakovan, 2015). Although only 

an accessory phase, apatite fundamentally controls the P budget of crustal rocks as it is usually 

the main phase that incorporates phosphorus (e.g., Filippelli, 2008). Apatite also accommodates 

a wide variety of other elements, e.g. rare earth elements (REE), actinides (Th, U), and volatiles 

(H2O, C, halogens, S; e.g., Pan and Fleet, 2002; Hughes and Rakovan, 2015). The composition 

and structure of apatite can thus be used to trace a variety of petrogenetic processes (e.g. Mao 

et al. 2016, Bruand et al. 2017). Apatite is also a valuable industrial mineral as different kinds 

of exploitable phosphate rock deposits are composed of apatite minerals (Filippelli 2008). Some 

of these deposits can possibly be mined for REE as well (Emsbo et al. 2015). This project will 

concentrate on the geochemical control on coupled trace element substitution mechanisms of 

apatite (e.g. Pan and Fleet, 2002) especially in CO3, Cl-, and F-enriched magmatic systems. 

 

2. Research methods 

The quantitative in situ analytical methods utilized in the project are electron microprobe 

(EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). 

Imaging techniques such as back-scattering electron (BSE) and cathodoluminescence (CL) 

scanning electron microscopy (SEM) will be used to document mineral zoning patterns. Using 

these techniques prior to quantitative analysis methods aids in the planning of analysis spots 

and avoiding inclusions, and permits the distinction of possible zoning patterns. The combined 

use of EPMA and LA-ICP-MS analyses allows full quantification of mineral chemistry from 

major elements and halogens to trace elements. 
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3. Study areas 

The main study area of the carbonatite sub-project is the Archean Siilinjärvi glimmerite-

carbonatite complex in Eastern Finland, which is one of the oldest carbonatites (2610±4 Ma; 

O’Brien et al. 2015) in the world. All of the glimmerite-carbonatite rock types typically contain 

around 10 vol%, but up to 30 vol% apatite. The rocks are very heterogenous and are basically 

a mix between the two primary rock types. 

The Siilinjärvi apatite is commonly a few millimetres up to several centimeters in 

length, subhedral to euhedral and may contain multiphase inclusions. The few published 

analyses of the trace element concentrations of Siilinjärvi apatites are all made of bulk chemical 

analyses of mineral separates and thus do not represent the composition of just the apatites, but 

also of the possible inclusion phases (e.g., monazite, zircon, pyrochlore, or carbonates; Al-Ani, 

2013). The possible chemical zoning characteristics of the apatites is also not known. 

In the other two sub-projects apatite in massif-type anorthosites, layered intrusions, and 

rapakivi granites will be studied. Oxide- and apatite-enriched rock types (nelsonites and oxide-

apatite gabbronorites), often associated with massif-type anorthosites (McLelland, 1994; 

Dymek and Owens, 2001) have recently been reported from the Ahvenisto Complex in 

Southeastern Finland (Fred et al. 2020). Rapakivi granites are enriched in fluorine and 

commonly contain apatite as an accessory phase but also other phosphate and fluorine-bearing 

phases (e.g., monazite, fluorite; e.g., Rämö and Haapala 2005).  

The study of apatite in these compositionally different magmatic environments allows 

us to establish a model of trace element substitution mechanisms and to gain an understanding 

of the geological and mineralogical controls that influence them. 
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In the SEISMIC RISK - Mitigation of induced seismic risk in urban environments - project, the research 

consortium consisting of University of Helsinki, VTT Technical Research Centre of Finland and Geological 

Survey of Finland is studying how to mitigate induced seismic risk associated with deep geothermal power stations 

in Finland. Small-magnitude earthquakes pose a risk to critical sensitive infrastructure such as hospitals, data 

centres and underground construction. Risk can be mitigated with transparent permitting, seismic monitoring and 

regional planning. The project will publish a set of seismic hazard maps of Finland and especially of the Helsinki 

Capital Region and assess the potential impact of seismic waves on different parts of the capital area via 3D 

models: shear wave tomography, conceptual soil and bedrock model. The project will study the different roles the 

national, regional and municipal governance in the “wicked” permitting processes. It will assess what information 

on induced seismicity and associated risks and at what level of detail the authorities need it.  
 

Keywords: seismicity, induced seismicity, risk, hazard, geothermal power plant, GMPE, 3D 

structural model, tomography, soil properties, urban areas, regulators 

 

1. Introduction 

Deep geothermal energy has huge potential as environmentally friendly CO2-free district heat 

source in urban centres. A drawback is that geothermal systems can induce earthquakes that 

pose seismic risk to critical sensitive infrastructure such as hospitals, data centres and 

underground construction. Risk can be mitigated with implementing transparent regulatory 

processes, defining adequate seismic monitoring plans and regional planning. The SEISMIC 

RISK project focuses on how to evaluate, mitigate and communicate seismic hazard and risk in 

an urban environment. One of the associated challenges is the unclear regulatory process and 

unclear roles of the different actors in Finland. It is also necessary to clarify what sort of 

information and at what level of detail the authorities need information on induced seismicity 

and associated risks. 

A research consortium consisting of the University of Helsinki, VTT Technical Research 

Centre and the Geological Survey of Finland, initiated a project centred around the Otaniemi 

deep geothermal system, using and creating high quality datasets on induced seismicity as well 

as geological background data. As both scientific and societal impact is targeted, the work is 

organized into nine work packages each focusing on different but interrelated challenges. The 

work packages are 1) Intra-plate hazard, 2) Induced seismicity and its effect on urban hazard, 

3) Tomography model of the Helsinki capital region, 4) Regional geological 3D model for the 

Helsinki capital region, 5) Vulnerabilities and risks of building infrastructure, 6) Controlling 

factors of disturbing sound patterns for induced earthquakes, 7) Data management, 8) Managing 

wicked problems in governance of geothermal energy, and 9) Dissemination and outreach. 
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2. Project research question and objectives 

The project targets the potential of Enhanced Geothermal Systems (EGSs) to induce 

earthquakes and the associated risks to urban environments. The research hypotheses are that 

1) induced earthquakes represent a previously non-existing seismic hazard in the Helsinki 

capital region, the level of which may exceed that posed by natural seismicity there, and 2) 

future induced earthquakes have the potential to severely impact today’s sensitive societal 

infrastructures and operations. The key to understanding the consequences of induced 

earthquake events lies in the combination of field data from the Otaniemi EGS and buildings, 

exploring the subsurface and surface conditions of the target region, and analysis of available 

seismicity data, as well as how risk management is understood and governed. The project 

applies an interdisciplinary approach to the problem, with different expert groups collaborating 

closely to fully exploit their expertise. The research questions are addressed through the 

following steps, which are associated with the nine work packages: 

1) Preparing the best possible seismic hazard map for the national needs. This is a 

prerequisite for an analysis of seismic risk. Natural seismicity is addressed at this point. 

2) Developing a general scheme for separating the seismic hazard related to induced 

seismicity and natural seismicity 

3) Constructing a 3D tomography image of the subsurface structures of the target region 

4) Preparing a 3D geological model of the target region 

5) Collecting data to assess the vulnerabilities of the building stock 

6) Investigating the factors that control disturbing earthquake-related sound patterns 

during stimulations 

7) Managing the various datasets created during the project  

8) Highlighting the gaps in governing geothermal energy processes and how this 

phenomenon should be governed to foster sustainable and societally acceptable 

development.   

 

3. Expected Project Results  

The expected scientific project results are Open Access seismic hazard maps of Finland and 

ground-motion prediction equations (GMPE) for magnitude levels >M2 tailored for the Finnish 

bedrock conditions. The hazard values will be useful for evaluating risks to shaking-sensitive 

systems or constructions, helping in risk informed decision of planning by supervising 

authorities. Moreover, they can be used for defining new guidelines on construction of critical 

infrastructure. It will produce induced seismic risk assessment and 3D tomographic velocity 

and geological models of the capital region. The 3D sub-surface model of the city area can be 

used to evaluate soil and bedrock properties for urban planning and construction, outline tremor 

and noise sensitive areas, and identify areas where deep geothermal plants are possibly less 

risky.  

The surveys and interviews on the planning and regulating processes will give us 

information on 1) the extent to which different actors have a common understanding of the 

current situation and potential risks, 2) who should be responsible for coordinating risk 

management, and 3) how citizens should be informed of potential risks and whether they should 

also be able to participate in location decisions. The project will produce education material for 

the governmental and municipal decision makers, politicians and the general public on the 

concepts of seismic hazard and risk and induced seismicity and its hazard and risk to the urban 

societies.  
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Nordic EPOS - A FAIR Nordic EPOS Data Hub – is a consortium of the Nordic geophysical observatories 
delivering on-line data to EPOS Thematic Core Services. It will promote common Nordic interests in EPOS, and 

promote and build data services beneficial for the Nordic community.  It will offer joint workshops and training in 

FAIR data collection, usage and management in monitoring of seismicity and induced seismicity, ash and gas 

eruptions, geomagnetic hazards. It will also disseminate related tutorials, demos and actual and virtual training 

sessions. 
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1. Overview 

Many of the grand challenges such as global change and sustainable use of Earth’s resources in 

urbanizing societies strongly involve the solid Earth. This includes assessing and mitigating 

risks from various natural and anthropogenic hazards, natural and induced seismicity, volcanic 

activity, and geomagnetic storms. EPOS-ERIC (European Plate Observing System – European 

Research Infrastructure Consortium) builds an e-platform providing access to large quantities 

of European georeferenced data relating to the solid Earth. Nordic EPOS enhances and 

stimulates the ongoing active Nordic interactions related to Solid Earth RI in general and EPOS 

in particular. Together we can address global challenges in Norden and with Nordic data. We 

develop expertise and tools designed to integrate Nordic RI data and to enhance their 

accessibility and usefulness to the Nordic research community. 

Nordic EPOS - A FAIR Nordic EPOS Data Hub – is a consortium of the Nordic 

geophysical observatories delivering on-line data to EPOS Thematic Core Services. Nordic 

EPOS consortium comprises the Universities of Helsinki (UH), Bergen (UiB), Uppsala (UU), 

Oulu (UOULU) and Geological Survey of Denmark and Greenland (GEUS) and Icelandic 

Meteorological Office (IMO). The hubs’ main tasks are to advance the usage of multi-

disciplinary Solid Earth data sets on scientific and societal problem solving (Figure 2), increase 

the amount of open, shared homogenized data sets, and increase the scientific expertise in 

creating sustainable societies in Nordic countries and especially in the Arctic region. In addition 

to developing services better suited for Nordic interest for EPOS, it will also try to bring forward 

                                                

 
2 Nordic EPOS working group: Barsotti S., Dahl-Jensen T., Funck T., Hillers G., Indrøy H.K.S., Keiding M., 

Kukkonen I., Larsen T.B., Lund B., Michalek J., Oladottir B., Pfeffer M.A., Rinds N., Rønnevik C., Tellefsen K., 
Vuorinen T., etc. 
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Nordic research interest, such as research of Arctic areas in TCS and EPOS-ERIC governance 

and scientific boards. 

 

2. Nordic EPOS Objectives 

The hub has three main objectives. First is to increase awareness and usage of multi-disciplinary 

Nordic EPOS data, data products, software and service for scientific and societal problem 

solving. Second is to increase the amount of, and access to, Nordic FAIR data, and third to 

support data management of new data types and scientific expertise needed for safe and 

sustainable societies in Nordic countries and especially in the Arctic region. For the 

comprehensive list of objectives, see Figure 1.  

 

 
Figure 1. Mission and goals of Nordic EPOS. 

 

3. Nordic EPOS TASKs and Activities 

To reach the objectives, the Nordic EPOS is organized into Tasks and Activities. The project 

has six main infrastructure TASKs I-VI and one transversal TASK VII on communication and 

dissemination. Many of the tasks are addressing several objectives. The TASKs are I - Training 

in usage of EPOS-RI data and services; II - Nordic data integration and FAIRness; III - Nordic 

station management of seismological networks, IV - Induced seismicity, safe society; V - Ash 

and gas monitoring; VI- Geomagnetic hazards; VII - Communication and dissemination. Each 

of the main partners is responsible for several Activities in one or several TASKs. The activities 

within the TASKs are workshops, tutorials, demos and actual and virtual training sessions, 

website and communication and dissemination of EPOS data and metadata information at local, 

national and international workshops, meetings, conferences. For the comprehensive list of 

upcoming events, see the Nordic EPOS webpages 

(https://www.helsinki.fi/en/infrastructures/nordic-epos).  
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FIN-EPOS is a Finnish national node of the European Plate Observing System (EPOS). The consortium consists 

of Universities of Helsinki (host organization), Oulu, and Aalto, National Land Survey of Finland, Finnish 

Meteorological Institute, Geological Survey of Finland, VTT and CSC. These organization own and operate 

geophysical observatories and laboratories in Finland and deliver metadata and data to Thematic Core Services 

(TCS) of EPOS either through national nodes or though international data centres and global scientific programs, 

where they are members. FIN-EPOS RI has been accepted on the FIRI roadmap 2021-2024. 
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1. General 

The European Plate Observing System - EPOS-ERIC (http://www.epos-eu.org/; Figure 1) is 

distributed research infrastructure (RI) providing an integrated e-science platform for Solid 

Earth geoscience national networks, observatories and laboratories as well as for international 

science organizations in Europe. It aims to be the principal source of geoscientific data, 

metadata and tools in Europe. National governments, funding agencies and institutes are 

responsible for the funding and operation of instrumentation and data management in each 

country. EPOS-ERIC integrates the National Research Infrastructures (NRIs) into Thematic 

Core Services (TCS), which represent dedicated services (data archiving and mining, access to 

data products, etc.) for each special discipline. The TCS are further joined through a 

compatibility layer to the Integrated Core Services (ICS), consisting of a variety of multi-

disciplinary services. ICS enables access to data, data products, processing and visualization 

tools and computational codes and resources for different stakeholders. EPOS-ERIC also holds 

workshops, summer and winter schools and in-house training courses, and operates a mobile 

instrumentation pool and transnational access program. 

 

2. FIN-EPOS – Finnish national node of EPOS 

FIN-EPOS (https://www.helsinki.fi/en/infrastructures/fin-epos) is a coordination consortium 

and the Finnish national node of EPOS. FIN-EPOS consists of Universities of Helsinki (host 

organization), Oulu, and Aalto, National Land Survey of Finland, Finnish Meteorological 

Institute, Geological Survey of Finland, VTT Technical Research Center for Finland Ltd. and 

CSC – IT Center for Science Ltd. The FIN-EPOS partners own and operate the geophysical and 

http://www.epos-eu.org/
https://www.helsinki.fi/en/infrastructures/fin-epos
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geodetic national research infrastructures (NRIs) including permanent databases and data 

services in Finland. NRIs consist of the physical measurement instrumentation, associated data 

centers and personnel. The permanent seismic, geodetic and magnetic observatory networks are 

distributed around Finland, whereas the geodynamic and rock physical laboratories are located 

at host institutions. FIN-EPOS partners deliver metadata and data to Thematic Core Services 

(TCS) of EPOS either through national nodes or though international data centers and global 

scientific programs, where they are members (Figure 2). FIN-EPOS is building a national portal 

for finding national data sets, for brokerage of the joint mobile instrument pool and for 

distributing information of EPOS activities interesting for the Finnish scientific community and 

society. In addition, FIN-EPOS gives scientific advice to government representatives in the 

EPOS-ERIC General Assembly. 

 
Figure 1. EPOS functional architecture. EPOS-ERIC comprises the e-infrastructure called 

Integrated Core Services (ICS) and EPOS Central Office (ECO). FIN-EPOS partners are 

examples of National Research Infrastructures (NRI) that serve as Nodes or Service Providers 

for individual Thematic Core Services (TCS), which represent dedicated services (data 

archiving and mining, access to data products, etc.) for each special discipline. NRI) deliver 

data to the TCSs. The ICS enables access to data, data products, software, and services (DDSS), 

processing and visualization tools, and computational codes and resources for different 

stakeholders. 

 

The FIN-EPOS partners own and operate the geophysical and geodetic RIs and data in Finland. 

NRIs consist of the physical measurement instrumentation as well as associated data centers 

and personnel. Each NRI is financed by their host organizations that in turn are government 

research organizations financed by five ministries: Ministries of Education and Culture, 

Agriculture and Forestry, Employment and the Economy, Transport and Communications, and 

Foreign Affairs. In addition, FIN-EPOS has had competitive AoF FIRI funding for upgrading 

of the measurement stations of the NRIs. The projects (Figure 2) are FIN-EPOS-Seismology 



LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  67 

___________________________________________________________________________ 

upgrading Finnish national seismological network FNSN; G-EPOS upgrading geophysical 

infrastructure of geomagnetic observatories, geothermal laboratory facilities and time transfer 

in geodetic infrastructure; and FLEX-EPOS creating a national pool of geophysical instruments 

and multi-disciplinary geophysical superstations to solve fundamental research questions in 

seismology, geomagnetism and geodesy. OpenFIRE project gathering metadata on national 

legacy data and for developing open e-infrastructure and permanent IDA storage services at 

CSC has had funding through OpenScience and Research campaign of the Ministry of 

Education and Culture. The data are included in EPOS initiated SERA project developing a 

module for TCS - Geological information and modelling. Two of the FIN-EPOS partners 

participate in Nordic EPOS - A FAIR Nordic EPOS Data Hub that is a consortium of the Nordic 

geophysical observatories delivering on-line data to EPOS ERIC. Nordic EPOS is funded 

through NordForsk's Nordic Research Infrastructure Hubs (2020-2022). Three of the FIN-

EPOS partners have been partners in H2020 Infra-dev funding for EPOS-IP project. The current 

national FIN-EPOS collaboration is funded through FIRI2019 and partner organizations. The 

FIN-EPOS consortium has proposed that Finland will apply for the full membership in the 

EPOS ERIC from the beginning of 2022.  

 

 
Figure 2. FIN-EPOS organization, projects and data transfer to EPOS TCSs (i.e., national and 

international data centers). 

 

3. FIN-EPOS on the FIRI roadmap 2021-2024 

The Finnish Research Infrastructure Committee (FIRI Committee) granted in December 2020 

roadmap status to 29 research infrastructures including FIN-EPOS RI. The selected 

infrastructures will be included in the national roadmap for research infrastructures covering 

the years 2021–2024. The roadmap for national research infrastructures in Finland is a list of 

strategically significant research infrastructure services needed over the next 10–15 years in the 

Finnish research, development and innovation system. 
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FIN-EPOS scientific goals are aligned with EPOS’s main scientific goals. The goals are 

1) to boost our understanding of the complex physical and chemical processes at play in the 

geosphere through data-driven science; 2) to increase the resilience of Europe in the face of 

disaster threats posed by geologic hazards; and 3) to support a leading role of Europe in the 

sustainable, safe and equitable provision of geo-resources, which are critical to human well-

being. FIN-EPOS emphasizes the understanding of processes in the geosphere as well as their 

complex interaction with hydrosphere-biosphere-atmosphere processes, provision of safe and 

sustainable raw materials and clean energy, and mitigation of natural and anthropogenic 

hazards.  

FIN-EPOS is planning to enhance internal FIN-EPOS station site collaboration. Sharing 

station infrastructure and deploying several independent measurement instruments on a single 

site enables not only new studies on the interdependencies of the seismic, geomagnetic and 

geodetic processes but also usage as reference stations, ground truth stations for mobile 

instruments and airborne measurements. These so-called superstations will be developed 

around already existing geophysical observatories and their station networks and biological 

stations hosted by the FIN-EPOS partners (Figure 3; Metsähovi, Sodankylä, Kilpisjärvi). 

Metsähovi Geodetic Research Station is a Core Station in the network of Global Geodetic 

Observing System (GGOS), and it will be further developed as a FIN-EPOS superstation. To 

further facilitate studies of the mutual dependencies of the biosphere, atmosphere and geosphere 

processes, FIN-EPOS will collaborate with INAR-RI by diversifying the SMEAR (Station for 

Measuring Ecosystem Atmosphere relations) –station network with solid earth geophysical 

measurements in Värriö, Hyytiälä and Tvärminne stations. Sodankylä observatory is already a 

globally important geophysical observatory, with tight connections to atmosphere and 

biosphere studies through Sodankylä-Pallas Global Atmosphere Watch (GAW) status, SMEAR 

and Radar Receiving Site of EISCAT stations.  

National laboratory collaboration is enhanced at Otaniemi campus, where Aalto, VTT and 

GTK have pooled laboratories under the Circular Raw Materials Hub. The cooperation enables 

mutual usage of the equipment, strengthens the scientific and societal impacts of the results and 

promotes new ideas and information for the latest technology. The hub provides also 

measurement services for FINMARI. 

 

 
 

Figure 3. Geophysical observatories and station network in Finland and a preliminary plan for 

geophysical superstation locations. 
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St1 Deep Heat Project with its two deep wells extending to 6.2 - 6.4 km depth is the world’s deepest industrial 

geothermal energy project. The aim is to build an EGS (enhanced geothermal system) at the depth of about 5 - 6 

km. The project is a pilot aiming at exploring the technical and economic feasibility of geothermal energy in the 

crystalline rock conditions of Finland for production of thermal power to a district heating network. In the 

presentation we provide an insight to the project and its major achievements with a focus on hydraulic properties 

of the crystalline rock. 

 

Keywords: geothermal, temperature, hydraulic stimulation, hydraulic conductivity, crust, 

Precambrian 

 

1. Introduction 

St1 Deep Heat Project started in 2014. With its two deep wells extending to 6.2 - 6.4 km depth, 

located in Espoo, southern Finland, it is the world’s deepest industrial geothermal energy 

project. The aim is to build an EGS (enhanced geothermal system) at the depth of about 5 - 6 

km. The project is a pilot aiming at exploring the technical and economic feasibility of 

geothermal energy in the crystalline rock conditions of Finland for production of thermal power 

to a district heating network. Due to the demands of the district heating, the aim is to produce 

hot fluid at about 100°C and re-inject it to the formation at 50°C. The 100°C temperature goal 

requires drilling to about 6 km depth. The extreme depth level sets significant challenges for 

drilling and hydraulic stimulation, as well as controlling of induced seismicity. So far (2021) 

the project has drilled a 2 km deep completely cored pilot hole (OTN-1), and two deep wells, 

OTN-2 to 6.2 km and OTN-3 to 6.4 km.  

The extreme depth of the planned EGS is due to low geothermal gradient in the study 

area (ancient Precambrian bedrock) and the technical requirements of the district heating 

system. The reservoir temperature should be at least 100°C, and the re-injected fluid should be 

about 40 – 50 °C. The project aims in production of space heating energy only, and no power 

(electricity) production is planned. With a typical geothermal gradient of about 15-17 °C/km, 

the 100°C temperatures require drilling to about 6 km depth. 

In EGS heat is ‘mined’ by circulating water as a heat transfer fluid in the formation 

between two deep boreholes. Natural level of hydraulic conductivity is very low at depths of 

several km, and provided by natural fractures of the rock. In most cases, the natural hydraulic 

conductivity is too low for EGS production and must be improved. It is done by hydraulic 

stimulation. 

 

2. Drill site geology and geothermal conditions  

The drill site geology is typical for southern Finland. A thin layer (0-20 m) of Quaternary 

sediments overlies the Precambrian bedrock. The bedrock comprises about 1.8 – 1.9 Ga age 

migmatitic rocks, i.e. mixtures of veined gneiss, mica and hornblende gneiss, amphibolite and 
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granitic intrusions. The lithological boundaries are mostly steep and subvertical (Figure 1). Due 

to thorough deformation and migmatization during the geological history of the area, the target 

formation structure is complex. Intact crystalline rock has very low porosity, less than 0.5 vol-

%. Therefore, the fluid flow is constrained to brittle deformation structures, i.e., fracture and 

shear zones. At the surface level, such structures are revealed by several km long linear 

structures on topographic, geophysical and geological maps.  
Geothermal gradient (rate of temperature increase with depth) is about 17 mK/m in the 2 

km deep OTN-1 well, and corresponding heat flow is about 52 mWm-2. It implies drill holes 

should be about 6 km deep to meet the 100°C temperature level. 
 

 
Figure 1. Location map of the St1 Deep Heat drill site (left panel), and a 3D diagram of the 

deep wells and simplified geology in the uppermost 6 km (right panel). Pink represents granitic 

rocks whereas green represents gneisses and amphibolites, respectively. Modified from 

Kwiatek et al. (2019). 

 

 

3. Hydraulic stimulation, traffic light system and seismic reflectors 

Hydraulic stimulation was carried out in the deep wells in 2018 and 2020 to improve hydraulic 

conductivity. In 2018 about 18,000 m3 of fresh (tap) water was injected into OTN-3 in five 100-

200 m long stimulation stages at 5.8 – 6.4 km depth (vertical depth 5.7 – 6.1 km). During 

stimulation, wellhead pressures, flow rates and induced seismicity were continuously 

monitored and recorded. 

Regulating authorities required that a traffic light (TLS) system had to be applied in 

controlling the stimulation and seismicity. The TLS red light limit was set at magnitude ML 2.1, 

meaning that occurrence of events bigger than this would imply stopping the stimulation. The 

injection induced seismicity, which comprised more than 50,000 microearthquakes with 

magnitudes below ML 1.9, most of them below ML 0.0 (Kwiatek et al., 2019, Leonhardt et al., 

2020). Ground velocities were monitored in eastern Espoo and western Helsinki with up to 17 

peak ground velocity (PGV) instruments installed in the terrain and some in the basements of 

buildings. The highest recorded PGV value was only 0.7 m/s. The stimulation produced three 

earthquake hypocenter swarms above the stimulated part of OTN-3.  

Geological structures, i.e. hydraulically conductive fracture zones and lithological contacts 

of the reservoir were mapped with drill bit seismic (DSB) during hammer drilling of the deep 

wells and a VSP survey (vertical seismic profiling) in OTN-3 as well as downhole geophysical 



LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  71 

___________________________________________________________________________ 

logging of the wells. These studies revealed a major natural fracture/shear zone (‘VSP 

reflector’) dipping about 44° to ENE. The structure was then utilized in the design of the 

reservoir when OTN-2 was deepened to final depth of 6.2 km. The deepest part of OTN-2 was 

deviated to run along the fracture zone for about 1 km length. Finally, OTN-2 was stimulated 

in 2020 by injecting about 7000 m3 of fresh water to the 1.3 km long open hole section of the 

well. 

 

4. Hydraulic conductivity of the reservoir 

 Hydraulic conductivity of the reservoir was estimated from stimulation pressure and flow 

rate data. A major observation is that conductivity is pressure dependent due to elastic response 

of the fractured medium on increased pore pressure. At the highest applied wellhead pressures 

of 700 – 900 bar conductivity increased to about 10-9 … 10-8 m/s. Leak-off pressure of fractures 

is about 520 bar at 6 km. However, when the wellhead pressure was relaxed by about 200-300 

bar, conductivity decreased by about one magnitude according to the stimulation pressure data. 

Pre-stimulation leak-off test data and post-stimulation long-term monitoring of shut-in 

pressures in OTN-3 allowed estimation of the low-pressure conductivity, which appears to be 

of the order of 5·10-11 m/s. It is considered to represent the natural level of hydraulic 

conductivity in the reservoir. 

The achieved EGS reservoir consists of the volumes stimulated from OTN-3 and the 

natural fracture zone intersected by OTN-3 and OTN-2. At present, the project proceeds with 

the installation of above ground heat plant equipment and instrumentation, followed by first 

test pumping to start in the first half of 2021. 

 
Figure 2. Hydraulic conductivity in OTN-3 well estimated from injection tests, stimulations 

and shut-in pressure data at 5.8 – 6.4 km depth (vertical depth 5.7 – 6.1 km). Net pressure 

indicates the difference between the applied overpressure and opening pressure of fractures (52 

MPa). Data courtesy St1 Oy. 

 

 

5. Discussion and conclusions 

The St1 Deep Heat project has successfully drilled deep wells to 6 km depth level in crystalline 

rock. The project demonstrated that rock temperatures high enough for district heating purposes 

can be attained at the depth of 6 km. Further, the project achieved hydraulically stimulating 
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natural fractures at depth with considerable volumes of injection fluid. Stimulation was carried 

out without seismic events exceeding the earthquake magnitude limits set by regulating 

authorities. This is an encouraging signal for developing EGS methods and technologies for 

sustainable thermal power production, also in other areas of normal continental crust. The 

project generated extensive experience and data sets of the continental crust, deep drilling, 

hydrogeological properties and seismic response of the crystalline rock to stimulation.  
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Some portions of the Bushveld Igneous Complex in South Africa show circular depressions in the chamber floor 

(potholes) up to 100 m deep in which the overlying recharge melts seems to have devoured the pre-existing 

cumulate layers. Using thermodynamic modeling of phase equilibria (Magma Chamber Simulator, MCS), we 

examined the possibility of erosion of the floor cumulates – anorthosite and orthopyroxenite – by superheated (~15 
°C above liquidus) basaltic-andesitic replenishing melts. Our preliminary modeling shows that the melts can 

completely absorb up to 4.5−8.5 wt.% of the floor cumulates without inducing crystallization in the melt, despite 

the melts having initial temperatures 110−260 °C lower than the liquidus temperatures of the cumulates. The 

assimilation process that formed the potholes appears to have been controlled by chemical dissolution rather than 

partial melting of the floor cumulates.  
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1. Introduction 

Assimilation is “an end-member mode of magmatic interaction in which an initial state (t0) that 

includes a system of melt and solid wallrock evolves to a later state (tn) where the two entities 

have been homogenized” (Heinonen et al., in press). Assimilation generally takes place via 

partial melting, when the difference in the liquidus temperature of the magma and the solidus 

temperature of the wall rock is large (>400 °C). There are, however, cases (e.g., layered 

intrusions) where inflowing magmas have assimilated the pre-existing floor cumulates, which 

have liquidus and solidus temperatures substantially higher than that of the magmas themselves. 

At issue is thus how does this process of assimilation take place? 

 The Bushveld Igneous Complex in South Africa contains extensive exposures of the 

cumulate layers formed by crystallization of basaltic to andesitic melts in a dynamic magma 

system (Fig. 1, insert). Some of the exposures show field evidence of the cumulate sequences 

formed by the crystallization of earlier magma pulses having been devoured (eroded and 

dissipated) by subsequent magmatic activity (Fig. 1). Since this process is not purely 

mechanical and cannot be triggered by the residual magma left after the formation of the 

cumulates – such magma should be saturated in the cumulate phases – recharge magmas of 

distinct composition must have been involved. The actual process is nevertheless poorly known 

and remains unconstrained. 

 

2. Geological setting and background 

The Bushveld Complex is the largest exposed mafic–ultramafic layered intrusion in the Earth’s 

crust: it encompasses about a million km3 of igneous rocks formed dominantly from primitive 

mantle-derived magmas that intruded the upper crust within an intracontinental rift about 2.05 

billion years ago. The world’s largest reserves of platinum-group elements are found in the 

complex, along with some notable Fe, Sn, Cr, Ti, and V deposits. The enormous size of the 
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complex is attributed to its formation from numerous magma pulses that successively 

replenished a large and long-lived magmatic system (e.g. Kruger, 2005). 

 

 
 

Figure 1. A photograph (a) and a schematic interpretation (b) of a cross-section through the part 

of the Upper Critical Zone in the wall of the open pit of the Pilanesberg Platinum Mine of the 

Bushveld Complex (case study 1). Note one large and two smaller potholes protruding into the 

mottled anorthosite underlying the mineralized Merensky Reef. Locations of the mine (case 

study 1) and case study 2 are shown in the inserted schematic map of Bushveld Complex in (a).  

Modified after Latypov et al. (2019). 

 

All the major replenishment events are marked by regionally extensive unconformities, 

significant isotopic shifts and notable changes in whole-rock and mineral compositions. 
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Traditionally, such unconformities are attributed to erosion of the temporary floor of the 

chamber by new magma pulses (e.g. Campbell, 1986, Kruger, 2005, Latypov et al., 2015). It 

has been estimated that the total thickness of pre-existing cumulates that have been removed on 

a regional scale at the level of some replenishment events was in the range of 10 to 20 m 

(Latypov et al., 2015). One of the most spectacular manifestation of the erosive processes is 

potholes − roughly circular depressions in which some of the footwall rocks are lacking (Fig. 

1).  

In this study, we concentrate on two occurrences related to the Upper Critical Zone of 

the complex: 1) the erosion of anorthosites observed in the open pit of the Pilanesberg Platinum 

Mine, North-Western Bushveld Complex (Fig. 1; Latypov et al., 2019), and 2) the erosion of 

orthopyroxenites observed at Smokey Hills mine, Eastern Bushveld (Latypov et al., 2020).  

 

3. MCS modeling – background and input 

MCS is a thermodynamic model that can be used to compute the phase, thermal, and 

compositional evolution of a multiphase–multicomponent system of a fractionally crystallizing 

resident body of magma, linked wall rock, and recharge reservoirs (Bohrson et al., 2020). For 

the MCS models of this study (selected input and output given in Table 1), we used published 

and spatially relevant basaltic-andesitic melt compositions of Latypov et al. (2018 and 2020) as 

the parental melts that come into contact with the previously formed floor cumulates (average 

compositions of data published in Chistyakova et al., 2019). The floor cumulates were not 

considered as wall rock in the model but were rather homogenized with the magma as “stoped 

blocks”. This approach reveals whether the bulk assimilation of stoped blocks induces 

crystallization or whether the magma remains undersaturated (i.e. is able to fully assimilate) the 

cumulate block. By iteration, we searched for a maximum mass of the stoped material that does 

not induce imminent crystallization in the melt. Based on earlier modeling (see Latypov et al., 

2020), the initial temperatures of the melts were set to ~15 °C above liquidus. Two sets of 

models with the temperatures of the stoped cumulate blocks being either 1100 °C or 1200 °C 

were ran for both settings. The pressure was set to be 200 MPa (2 kbar). 

 

Table 1. Results of the MCS modeling. See footnote for explanations. 

Case 1      
PM liquidus / 
initial T (°C) 

Cumulate liquidus 
/ initial T (°C) 

Cumulate 
initial F (wt.%) 

PM MgO & 
SiO2 (wt.%) 

Cumulate MgO & 
SiO2 (wt.%) 

A MAX 
(wt.%) 

1256 / 1271 1390 / 1200 7.5 6.7 & 55 1.5 & 49 4.5 

1256 / 1271 1390 / 1100 0.4 6.7 & 55 1.5 & 49 3.5 
      
Case 2      
PM liquidus / 
initial T (°C) 

Cumulate liquidus 
/ initial T (°C) 

Cumulate 
initial F (wt.%) 

PM MgO & 
SiO2 (wt.%) 

Cumulate MgO & 
SiO2 (wt.%) 

A MAX 
(wt.%) 

1224 / 1239 1485 / 1200 18 7.0 & 54 20 & 53 8.5 

1224 / 1239 1485 / 1100 2.5 7.0 & 54 20 & 53 7.0 
Column explanations from left to right: 1) Parental melt liquidus and initial temperature (~15 °C above liquidus 

T); 2) Floor cumulate liquidus and initial temperature; 3) Melt content of floor cumulate at the initial temperature; 

4) Parental melt MgO and SiO2 contents; 5) Floor cumulate MgO and SiO2 contents; 6) Maximum amount of 

assimilation of floor cumulate by parental melt without inducing crystallization.  
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4. MCS modeling – results 

The amounts of assimilation predicted by our MCS modeling are presented in Table 1. In case 

study 1, the basaltic-andesitic melt can absorb 3.5−4.5 wt.% (relative to the mass of the parental 

melt) of anorthositic cumulate without inducing crystallization. In case study 2, the basaltic-

andesitic melt can absorb 7.0−8.5 wt.% of orthopyroxenitic cumulate without inducing 

crystallization. Such masses are more than enough to explain the estimated relative masses of 

the magma and eroded cumulates based on field observations.  

It is important to note that the amount of interstitial melt in the cumulates at the modelled 

temperatures is very small: 0.4−7.5 wt.% in case 1 and 2.5−18 wt.% in case 2. Even if heated 

to the initial temperatures of the respective recharge magmas, the cumulates would be 

dominated by solid instead of melt (26 wt.% in case 1 and 45 wt.% in case 2). This strongly 

suggests that, in case of pothole formation by bulk assimilation, the dominant process of 

assimilation was chemical dissolution rather than partial melting of the cumulates. 

 

5. Implications and conclusions 

Our MCS models show that it is thermodynamically feasible for the evolved melts to erode 

cumulates crystallized from earlier magma pulses by chemical dissolution. This has important 

implications for studies of layered intrusions: for example, if the described assimilation process 

is common, interpretations of magmatic evolution based on intrusion stratigraphy may be 

flawed due to gaps caused by recharge magma cannibalization of the cumulate layers. Effective 

cannibalization may also act as a homogenizer of magmatic signatures of different intrusive 

units. The limiting factor in the assimilation processes is probably not thermodynamic, but 

kinetic and/or mechanical. In order for the modeled dissolution to take place, the crystal-

undersaturated (i.e. superheated) magma must have continuous access to fresh floor cumulate, 

which would likely require effective convection in the magma body. Future studies should 

concentrate on these aspects of the assimilation process.  
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On the seismic division map of Russia (ОSR-97) Karelia is shown as a zone of possible seismic intensity 5–7 with 
a recurrence period of 5000 years. Seismic activity is confined to the Kandalaksha-Dvina-paleorift and the Ladoga-

Bothnian suture zone. The location of earthquake epicenters is demonstrated during monitoring of natural 

seismicity in 2017-2019. 

 

Keywords: natural seismicity, seismic monitoring, Karelia, Fennoscandian Shield 

 

1. General 
Available seismostatistical data on the eastern Fennoscandian Shield are very limited. 

Therefore, when assessing the seismicity of the region, paleoseismological monitoring is also 

needed. Such a monitoring has been conducted in Russian Karelia. 

On a map of Russia’s seismic division, OSR-97 (Ulomov et al. 2000), Karelia is shown 

as a probable seismic intensity 5–7 earthquake zone with a recurrence period of 5000 years. 

Several earthquakes with a seismic intensity 4 occur in Northwest Russia during one decade, 

and earthquakes with a seismic intensity 5 take place every 30–50 years.  

Before the 20th century, seismic events with earthquakes with a seismic intensity 7 were 

reported from the region. A summary catalog of historical and instrumental data on earthquakes 

in the Karelian region, compiled by B.А. Assinovskaya and А.А. Nikonov, contains evidence 

for 135 earthquakes that took place in 1542–2003 (Sharov, 2004). Fifty-two of them are based 

on macroseismic data and eighty three events were recorded instrumentally. The spatial 

distribution of earthquake epicenters in the region is irregular: Central Karelia is completely 

aseismic, but there are some seismic activity zones in Northern and Southern Karelia. The main 

zone, called the Kandalaksha zone, is confined to Kandalaksha Bay and its southwestern shore. 

This earthquake concentration zone is intersected by the NE-trending Kuusamo-Kandalaksha 

zone and other minor lineaments. The Kalevala and Topozero seismic activity zones were 

detected further south, and the Ladoga-Bothnian zone was revealed at the border with the 

St.Petersburg region. 

The current tectonic movements of Fennoscandia’s earth crust are controlled by three 

major factors: 1) horizontal compression from the diverging Mid-Atlantic Rift; 2) the inherited 

vertical arcuate isostatic uplift of the shield in general; 3) residual postglacioisostatic uplift 

(Sharov, 2017). The seismicity of Southeastern Fennoscandia in the area discussed with the 

coordinates
60 N

30 E– '567 
N

42 E is considered low and is, therefore, of little interest for 

scientists. Maps of earthquakes in Fennoscandia show scarce low-magnitude events in Karelia 

during an instrumental monitoring and historical time period (Uski et al., 2003; Sharov, 2004). 

 

2. Monitoring network 
The development of seismic networks and designing highly sensitive instruments in the past 

decade have enabled scientists to record low-magnitude events. To study the deep structure and 

seismic regime of Karelia, Institute of Geology scientists constructed a regional seismic 
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network in 1999. Quarry blasts were the main events recorded, the network was constantly 

updated, so that in 2015 the Karelian seismic network consisted of four wide-range seismic 

stations manufactured by Güralp Systems. KOS6 station is located 15 km from Kostamus, PITK 

station is located in Leppäsilta (Pitkäranta District) and PTRZ station is located in 

Petrozavodsk. PAAN station, located in Piäjärvi (Louhi District), began operating in 2016. 

 

 
 

Figure 1. Location of earthquake epicenters during 2017-2019 registered by Karelian seismic 

network. 

 

Karelian seismic network stations register mainly local blasts and local events near the border, 

in the Murmansk, Arkhangelsk, Leningrad and Vologda regions as well as in Finland and 

Sweden. In addition to local events, the Karelian seismic network register teleseismic events. 

Low-magnitude earthquakes occur in Karelia 1-2 times a year. During the continuous 

monitoring all of the events were registered in the north part of Karelia with magnitudes ML 

1.5-2.3. The distribution of local earthquakes is shown in Figure 1, their characteristics are 

presented in Table 1. 

 

Table 1. Bulletin of local earthquakes during 2017-2019. 

 

YEAR MONTH DAY H:M:S LAT (N) LON (E) ML CODE 

2017 1 3 10:40:31.6 66.17 30.86 2.3 KOS6 PAAN AP0 

2017 3 8 01:41:34.5 65.59 32.10 1.9 KOS6 PAAN AP0 

2018 12 21 10:09:20.9 66.40 32.12 2.0 PAAN KOS6 AP0 
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2018 12 29 01:53:45.3 65.34 30.18 1.5 PAAN KOS6 PITK 

PTRZ 

2019 1 27 02:35:13.8 65.36 30.43 1.6 KOS6 PAAN AP0 

2019 5 21 16:50:39.3 65.97 30.64 1.6 PAAN KOS6 AP0 

 

3. Conclusions 

The region’s seismic potential is much greater than that estimated earlier on the basis of short-

term instrumental monitoring. Major seismogenerating zones and elevated seismic activity 

zones in the region are related to the newest large-scale structures, mainly the Kandalaksha 

graben and the Onega and Ladoga graben structures with signs of young tectonic activity. 

Available information for a period of no more than 400–500 years, a time too short for long-

term estimates, the seismic potential of the main zones discussed above is estimated as follows: 

the Kandalaksha zone М = 6.5, the Onega zone about М ≥ 5.5 and the North Ladoga zone M ≥ 

5.5. 
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Technogenic seismicity dominates in the territory of Russian Karelia, which mainly includes active blasting 
operations. At the open pits of the Karelsky Okatysh 1-2 explosions are made per week. Seismic stations in Karelia 

permanently register events with magnitudes 1.5-2.5 in this area. The seismic data for the first half of 2018 were 

analyzed. The dependence of local magnitude (ML) on the total weight of explosives is plotted. 
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1. Summary 

The territory of Russian Karelia is located in the northwest part of the East European Platform, 

in the southeastern part of the Fennoscandian shield. Seismicity in Fennoscandia, the highest in 

Northern Europe, is concentrated in several zones (Fjeldskaar et al., 2000). In Karelia three 

structural regions are distinguished (Sharov, 2004; Slabunov, 2008). Kostomuksha ore region 

is located on the border of eastern Finland and western Karelia. 

Seismic monitoring of the southeastern part of the Fennoscandian shield is carried out by 

a network of four seismic stations: Petrozavodsk (PTRZ), Pitkyaranta (PITK), Kostomuksha 

(KOS6), Paanajarvi (PAAN). The largest quarries in Russian Karelia have been developed in 

the Kostomuksha ore region (Figure 1).  

 

 
 

Figure. 1. Location of seismic stations in the territory of Russian Karelia and open pits of 

Karelsky Okatysh. 
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The marketable products of the company Karelsky Okatysh are non-fluxed iron ore 

pellets with an iron content of 65.5 % (Eilu et al. 2012; Gorkovets et al. 2015). The total weight 

of explosives reaches 100-1.250 tons. The dependence of the magnitudes on the total charges 

of short-delayed explosions at the open pits of the Karelsky Okatysh (the first half of 2018) is 

shown in Figure 2. 

 

 
 

Figure. 2. Dependence of magnitude on the total weight of explosives of open pits of Karelsky 

Okatysh 

 

The magnitude increases on average with an increase in the total charge at equal charges in the 

series. A scatter of points from the averaging curve is observed. Most blasting operations in the 

Kostomuksha ore region are carried out from 9:00-11:00 (UTC). More than 90 seismic events 

are recorded by Karelian seismic network in this area every year. The strongest and most 

frequent technogenic events with local magnitudes up to 2.5 are still observed. 

This information will give an approach to a proper separation and identification of local 

earthquakes from industrial explosions in the study region. 
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The Helsinki Term Bank for the Arts and Sciences (HTB, Tieteen termipankki in Finnish) is a multidisciplinary 

project, which aims to gather a permanent terminological database for all fields of research in Finland. Geology 

has been part of the HTB since 2018, but work is still unfinished and evolving. The geology field welcomes 

researchers from wide array of geology and geosciences who would like to contribute to term work. 
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1. Introduction 

The Helsinki Term Bank for the Arts and Sciences (HTB, Tieteen Termipankki in Finnish) 

is a research infrastructure project that was launched in 2012 (Enqvist et al. 2020). It is a 

multidisciplinary project, which aims to gather a permanent terminological database for all 

fields of research in Finland. Approximately a third of the scientific fields have so far joined 

(Enqvist et al. 2020). The project has created wiki-based website (http://tieteentermipankki.fi), 

which offers a collaborative and open environment for terminological work. All registered users 

can participate in the discussion about terms. 

The data available for all users includes for example the term and its synonyms in Finnish, 

definition(s), pictures and term equivalents in other languages. The working method is a type 

of limited crowdsourcing, called niche-sourcing, in which the research community takes 

responsibility for the terminology work. The working method therefore supports open 

discussion of the terminology and democratic way to do term work. The goals of the project 

serve language policy and sociology of science as well.  

An extensive Finnish research terminology database will help those researchers, 

translators, journalists and others who write about research and its results in the arts and 

sciences in Finnish. By gathering the scientific terminology in one place, the bank also improves 

the possibilities for multidisciplinary discussion and research. With periodical status and ISSN 

number, work in the HTB can be included in a list of publications and research data systems.  

 

2. Background of the geology field 

Geology field in the HTB started in August 2018 with the grant from the Kordelin Foundation 

as a part of Major cultural projects. Prior to this, the geophysics field had already been 

established, but it was not very active at the time geology field started.  

The terminological work related to the geology field has included checking and updating 

some existing terms and producing new content based on already existing term databases, 

scientific articles and other suitable references. Researchers have also suggested some new 

definitions to some traditionally used terms and translation equivalents to terms that have not 

yet existed. 

http://tieteentermipankki.fi/
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Currently there are a few active researchers who are doing terminological work in geology 

field, and at the moment E. Lehtonen is concentrating on terms related to the economic geology 

and environmental geology with the grant from the K. H. Renlund’s foundation.   

 

3. Case example 

In 2020 Heinonen et al. (2020) wrote an article related to the solid layers of the Earth and their 

definitions. The article was written in co-operation between geologists and geophysicists, and 

the work showed that even very common concepts are not self-evident and such a debate is 

necessary as science and research progress. One outcome of the article was a suggestion that 

term “kivikehä” (rocksphere) should be used for the whole solid and silicate-dominated outer 

layer of the Earth instead of using it as a synonym for a lithosphere. This definition was also 

updated in the HTB with an attribute “suggested” and the discussion page of the concept page 

contains more information about the subject (Figure 1). This allows the discussion on the 

definition and use of the term to continue.   

 

 
Figure 1. Example of a concept page representing the concept of “rock sphere” (kivikehä).  

Määritelmä = definition, lisätiedot = additional information.  

 

4. What next? 

Geological term work in the HTB has many potential uses. Updating and creating established 

terms in Finnish serves for example scientists, teachers from university levels to elementary 

schools, and journalists. In addition, the HTB offers interface and a possibility for discussion 

between different branches of sciences: for example the geology field has already collaborated 

with the art history field. 

As geosciences are socially significant fields, term work in domestic languages should 

not be underestimated. Even though there are international definitions for many terms used in 

geosciences, the understanding and use of the terms can be unclear and variable even within 

the scientific community. With active and ongoing discussions related to terms, we can facilitate 

communication and prevent misunderstanding both within our academic community and 

between the geoscientists and other members of the scientific community and the society.  

The geology field in the HTB welcomes researchers from wide array of geology and 

geosciences who would like to contribute to term work. If you are interested to know more, 

please contact the author.  
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Introduction 

In eastern Taiwan, the Longitudinal Valley between the Coastal and Central Ranges hosts a 

seismically active fault system. Many past catastrophic earthquakes highlight the need for an 

improved understanding of fault characteristics and mechanical properties in this tectonically 

active environment. However, identification of the main fault interfaces for detailed earthquake 

studies and hazard assessment is challenging. Here we apply a semi-automatic method to detect 

head waves, an emergent seismic wave in small-earthquake data collected by the Taiwanese 

seismic network in the northern part of the Longitudinal Valley fault system. Since FZHWs 

spend almost their entire path between source and receiver along the fault interface, imaging 

methods based on these phases should be able to provide high-resolution information on fault 

structure at seismogenic depths.  

 

2. Data and Method 

Seismic data from 87 stations of three Taiwanese seismic networks are used for this study, 

including the Taiwan Strong Motion Instrumentation Program (TSMIP), the Broadband Array 

in Taiwan for Seismology (BATS), and the Central Weather Bureau Seismic Network 

(CWBSN) (Figure 1). These stations are located along the 70 km long northern segment of the 

Longitudinal Valley Fault within some few kilometers on both sides of the fault. We focus on 

~13,000 small-to-moderate earthquake seismograms recorded between 2012 to 2018. To this 

typical modern seismic “big” data set we apply a set of algorithms (Ross and Ben-Zion, 2014) 

to automatically detect and pick direct P and S waves, as well as potential head waves generated 

by earthquakes.  

 

3. Picking FZHW and P phase 

Earthquake phase detection and picking depends on a number of algorithmic tuning parameters 

that we could not easily transfer from previous studies along other major predominantly strike-

slip faults. In a trial-and-error process we adapted the settings through tedious visual inspection 

of the automatically detected waveforms, adhering to the original algorithm philosophy of 

minimizing false detections. We converged to a set of robustly detected head waves and 

confirmed that the approach thus also works in this tectonically challenging environment 

(Figure 2). The events that excite these head waves are located along the west-dipping Central 

Range fault, which now suggests, for the first time, the existence of a considerable velocity 

contrast across that fault segment.  
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Figure 1. Map of the Longitudinal Valley fault zone study region. Triangles are seismic stations 

used for this study, including stations from the Taiwan Strong Motion Instrumentation Program 

(TSMIP, blue triangles), the Broadband Array in Taiwan for Seismology (BATS, red triangles), 

and the Central Weather Bureau Seismic Network (CWBSN, black triangles). Grey dots 

indicate the seismicity for ML > 3 from 1990 to 2018. White stars represent ML > 6 events from 

1990 to 2019. Active faults in the Longitudinal Valley region are shown with red lines. The blue 

box indicates the area of the stations used in this study. 

 

 
 

Figure 2. Summary of automatic [fault zone] head waves detections using data from stations 

in the vicinity of the Longitudinal Valley fault line. Coloured dots indicate events for which 

head waves have been detected. (a) Results in map view. The colored beach balls are 2012-

2018 focal mechanisms from BATS CMT Catalog. (b) Results in a 3D perspective view from 

above the southwest corner, looking towards the northeast. (c) Similar to (b), but looking 

towards the southwest. 
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Figure 3. First motion polarity of fault zone head waves (FZHWs) and P waves generated by 

different focal mechanism. (a) Snapshots of the seismic wavefield at the surface with a strike-

slip fault source at lapse times of t = 3.0 to 7.0 s. (b) Vertical component of synthetic velocity 

seismograms recorded by receivers at x = -13, -11, -9, -7, -5, -3, -1, 0, 1, 3, 5, 7, 9, 11, 13 km, 

y = 0.0 km, z = 0.0 km, shown as blue triangles in (a). Red and blue arrows indicate the first 

motion of FZHW and direct P wave, respectively. (c) Similar to (b) for receivers at x = -2, -1, 

0, 1, 2 km, y = 0.0 km, z = 0.0 km. (d)-(f) Similar to (a)-(c), but with a high-angle thrust faulting 

mechanism (strike = 90°, dip = 90°, rake = 90°). 
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4. FZHW and direct P arrivals on synthetic seismograms  

Ross and Ben-Zion (2014) built the algorithm to identify the direct P and FZHW phase by 

testing if P and FZHW picks have reversed polarity. It is directly applicable to detect head wave 

excited by a strike-slip source. However, the structure of the Longitudinal Valley fault system 

is complex, and the numerous small events exhibit a wide range of different source mechanisms. 

To understand the effect of a range of focal mechanism to the first motion polarity 

characteristics of the P wave and head wave, we use finite-difference simulations (Zhang and 

Chen, 2006; Zhang et al., 2012) to study P wave and head wave polarity relations for a set of 

systematically varying source mechanisms.  

Figure 3 shows velocity record sections of the vertical component of motion for the 

numerical simulation with (a)-(c) a strike-slip source mechanism as a reference case; (d)-(e) a 

high-angle thrust faulting mechanism (strike = 90°, dip = 90°, rake = 90°). In both cases, as 

expected, stations on the faster side generally feature only simple P and S phase arrivals. In the 

strike-slip reference case stations near the fault on the slow side exhibit a first arrival that is an 

emergent phase with the polarity of the opposite side P wave, followed by a normally polarized 

P wave. This emergent phase is the head wave which propagates with the velocity of the faster 

medium and arrives before the direct P wave. However, for the high-angle thrust faulting and 

similar mechanism, the first motion of the head wave refracted along the interface has the same 

polarity of the direct P wave. The algorithmic choice of polarity reversal therefore rejects 

possible detections associated with a range of event mechanisms that result in same-polarity 

first motions, and that should therefore be adjusted for a more complete head wave detection 

set. 

 

5. Summary 

Conservative detection parameters adapted from previous studies performed in strike-slip 

environments yield a robustly detected set of head waves excited by events that are located 

within a thin volume along the west-dipping Central Range fault, which now suggests—for the 

first time—the existence of a consistent velocity contrast across that fault segment. A set of 

synthetic seismograms using a range of end-member fault mechanisms show head wave and P 

wave polarity relations that extend the typical first motion reversal associated with strike-slip 

events. 
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Over the past decades it has been shown that the Earth’s brittle upper layers are in a constant state of mechanical 

failure. This paper summaries how this state has led to the observed characteristics of rock pores and fractures – 

the complex, variously connected void spaces in rock.  The outcomes of this realization are two-fold:  first is a 

new approach to understanding how fluid flow in rock can become channelized on all scales, resulting in a 

geocritical permeability field; second is the development of the Fracture Seismic method for mapping this field.  

FS uses the 3-D data collection method of Reflection Seismic, but in passive listening without sources.  Such data 

has been found to contain episodic emissions from fluid filled voids, allowing the permeability field to be mapped.   
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1. Introduction 

The movement of unbound fluids in the lithosphere has long been a prime example of a problem 

in complex-and-non-linear systems: difficult to observe and account for at depths beyond a few 

km.  Beyond that point it is a fusion of multiphase chemistry and continuum-and-discontinuum 

mechanics, with a mix of pressures, temperatures, and deviatoric stresses.  Commonly viewed 

either as a couple mechanical system or a structureless random process.  The aim of this 

presentation is to bring something of a work-around past such deterministic and statistical 

approaches. It provides a third, more stochastic, perspective, and showing how this approach is 

grounded in observations and opens a way forward for further insights and practical 

applications.  The Fracture Seismic (FS) method provides the way forward for the latter use. 

Unbound fluids reside in pore spaces, the connections of which form the permeability field 

– the structures along which fluid-flow in rock takes place.  Here the pores and their open 

connections are termed together as void space – be they gaps between grains, channels along 

grain boundaries, grain crossing cracks, veins, separations in bedding, fractures and fracture 

zones, or faults.  Any place an unbound fluid can collect.  In the lithosphere, such voids appear 

to conduct fluids in 3 different, overlapping, and heterogeneous regimes (Fig 1).   

The insights that allow for this characterization come from studies of systems near 

transitions in their properties – in this case the way fluids flow through effectively solid rock.  

Generally known as critical state physics, here termed geocritical-rock physics, this approach 

is emerging in the description of lithospheric permeability - with original work done by Leary 

(1997, 1998, 2002), and others referenced in Bonnet et al. (2001).  The models presented here 

are based on Leary and Malin (2021). An end-to-end description of FS is given by (Sicking and 

Malin 2019). 

 

2. Geocritical Permeability 

The right place to start describing the geocritical model is at the outcrop – in the case here, one 

that shows that there are places in the lithosphere where this description of permeability has not 

yet been investigated (Fig 2).  As seen in 1-D images, it reveals the spatial attributes of 



LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  89 

___________________________________________________________________________ 

geocritical permeability: (i) channel with self-similar scaling, (ii) progression from numerous, 

small-scale, weak channels to large-scale, robust ones, and (iii) at least one channel that spans 

the full length of any sample.  The largest, multiply connected channels naturally carry the bulk 

of the flow.  Quantitatively, these attributes are described by the power law, P(k)~1/k, where 

k can be thought of as the number of channels per unit length, and  ranges from 0 to 2, the 

value observed for rocks in the brittle crust being 1 (e.g. Leary, 2002). 

A further critical state permeability attribute, which relates void space and permeability 

populations, is found in long rock cores (Fig 3a).  To a significant degree of correlation, void 

space is directly related to the logarithm of permeability,  ~ ln().  Alternatively stated, the 

permeability field is an exponential function of void space:  ~exp(), where  is a coupling 

constant.  Thus, if  > 1 and  has a normal population distribution, the resulting permeability 

field is lognormally distributed, with a few large channels dominating the flow structure. 

 

 

 

Figure 1. For the purposes of this discussion, permeability in the lithosphere is divided into 3 

regimes, each of which have large lateral variation in depths, thicknesses, and internal 

heterogeneity.  As explained in the text, the middle, critical, division is characterized primarily 

by flow in permeable channels.  Flow in the overlying and underlying post-critical and pre-

critical regimes appears more diffuse.  The possible existence of critical-type flows at mantle 

depths in the lithosphere is also suggested by the channels shown in Fig 2.      
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Figure 2. Erro-Tobbio meta-serpentinites in the Ligurian Alps of Italy.  The mineral phases in 

connected void spaces indicate that these were formed at pressures of 2-2.5 GPa, essentially 

near the bottom of the lithosphere.  Note the proliferation of short, closely spaced channels and 

the presence of at least one through-going channel. (Figure modified from Plumber et al., 

2016.). 

An equivalent, and perhaps more physically insightful, spatial characteristic of critical-state 

rock is its long-range correlation of fluid-flow related properties and mechanical behavior 

(Leary and Malin., 2020).  In particular, the spatial correlation of natural and induced 

microearthquakes with magnitudes less than M~1 or so has been found to fall off as Γmeq(r) ~ 

1/r1/2, r being the 1-D distance between events.  This finding immediately links 

microearthquake seismicity back to the power law observed for critical-state rock, P(k)~1/k, 

and to the poroperm relation,  ~exp(). The hypothesis being that M<1 seismicity is more 

controlled by the local permeability field, and not by the mechanics of faulting.  It thus provides 

a physical basis for the Guttenberg-Richter law, N~exp(a-bM), N being the number of events 

of magnitude greater than M, and a and b are constants.  In essence, a-bM is determined by . 

                          

 
 

Figure 3. a. Plots of well-core void-space  and the logarithm of permeability  for 4 randomly 

chosen wells from a catalog of several hundred cores (Leary, 2002).  The data are plotted with 

zero mean and normalized to unit variance.  The correlation percentage between  and ln()is 

shown above each well.  b. The empirical relations that describe geocritical permeability and 

an outcrop illustration of them. (Photo by P. Leary) 

b a 
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The 3 relationships in Fig 3b work together to form the geocritical description of lithospheric 

permeability.  The condition  > 1 for lognormal flow can be seen from Rule III: k ~exp(a) 

can be expanded to 1+()/1!+ ()2/2!+()3/3!+…, which for<1 reduces to  ~ 1+(), 

implying that if  is normally distributed so is  , with no dominating channels.  So what are 

the actual values of a that corresponds to the rock shown in Fig 3b, and perhaps in some part, 

to the one in Fig 2?  While the value for the latter is unknown, based on readily available 

borehole logs and cores,  appears to maintain a value of 3< <5 for at least the upper 

quarter of the critical zone in Fig 1: roughly the top 6 km (Leary et al., 2017).  To this depth, 

the quantitative relationships in Fig 3b can be used to calculate models that help reveal how 

they account for the observed physics of fluid flow (Fig 4).    The modeling process helps to 

point out how the geocritical approach is different from that of, for example, an equivalent 

porous media (Lie and Mallison, 2015).  It also shows why the FS mapping method described 

later in this abstract is essential for making practical use of the 3 relations in Fig 3b.  (For a 

more complete discussion on that topic, see Malin et al., 2020.)       

The initial modeling step is to the fill the model space with a normally distributed 

population of voids.   The next step is the filtering of this population distribution so that it has 

a power law spatial distribution corresponding to P(k)~1/k, 0<<2, the choice of  determining 

the degree of channelization (Fig 4).  These two steps point out that, without some way of 

anchoring the model to actual observations, the results will reflect the initial choice of void 

location and (random) starting value, with the possible number of model configuration equal to 

the number of model nodes for any one  value. The final step is selection of the value of . 

 

 

 

Figure 4.  Geocritical flow modeling for different values of  and .  Cool fluid begins 

flowing in from the lower sides of the model, heated by a source on the lower boundary, and 

flows upward.  The flows shown are snap shots taken some time after the heated fluid begins 

rising.  a. Represents the intermediate mixture of channelized, >0, and diffusive, a<1, flow 

hypothesized here for the pre-critical regime in Fig 1.  b. Illustrates ~1 and a ~4, the 

channelized power-law and lognormal flow seen in brittle rock.  c. For ~0 and a<1, this end 

member being equivalent to flow in a homogeneous porous medium.  (Fig curtesy of P. Leary).        

Application of this modeling approach to a specific site requires a calibration map consistent 

with the empirical rules in Fig 3b and that locates at least the main flow channels.  In principle, 

a b c 
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once shown to have the appropriate spatial and population characteristics, a geocritical- 

consistent permeability field can be built around the latter channels.  While not resolving the 

actual locations of tributary channels, the model provides a stochastically robust forecast of its 

flow field.  This is where Fracture Seismic Imaging enters the discussion.      

 

3. Fracture Seismic Imaging 

Fracture Seismic is an emerging void-mapping technology that has been demonstrated in Oil 

and Gas applications (e.g. Sicking and Malin 2019). More than a score of FS projects have been 

completed in both green and brown O&G fields.  FS signals have been shown to be stress-and-

fluid-pressure-change initiated elastic vibrations of fluid filled voids (Tary et al., 2013 a&b; 

Liang et al., 2017).  Given the earth’s constant tectonic, tidal, and fluid flow activity, episodes 

of these vibrations appear to be natural daily occurrences.  They are also seen in much more 

powerful form in hydraulic stimulations. Recorded by passive monitoring with large 3-D 

seismic reflection layouts, but no controlled sources, these signals can be focused onto their 

sources with 1-way travel time signal processing (Fig 5).  Like current 3-D Reflection Seismic, 

FS methods typically resolve feature with scale lengths >20-30 m.    

Fig 6a illustrates how FS can be used to site successful wells at a O&G prospect with 

several pre-FS mapping dry wells. Based on FS data a test well was drilled, and a heavily 

fractured reservoir was found in the zone of high FS activity.  From when this well was put on 

production and until April of 2019 it has produced 1.7 BCF gas. 

Fig 6b shows two FS images of the progress of a hydraulic fracture stimulation in a shale 

gas field.  Given the high amplitude and duration of the FS signals generated by the treatment 

it was possible to observe both the evolution and lateral extent of its apparent effectiveness.  

Initially the stimulation response rapidly progressed to one side of the treatment point, evidently 

coming to a stop before extending to the opposite side.  Despite this difference, the FS signal 

intensity appears symmetrically distributed around the treatment well. 

  

 
 

Figure 5.  The processing scheme for mapping multi-receiver-and-time window ambient 

seismic data to their FS-source points.  Numerous receiver-location versus observation-time 

sections are adjusted so that the travel time from a selected voxel is accounted for.  The 

semblance for each is found, voxels emitting FS signals producing the highest values.  Multiple 

time windows are added to produce the Fracture Seismic Image.  (Fig from Sicking and Malin, 

2019.)  

 

 

a b 
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Figure 6. a. An O&G field FS map showing the natural permeability channels (the blue lines 

lie on the maximum semblance values).   These channels may extend above and below the map.  

Red spots are dry or limited wells drilled before FS targeting, red star well using FSI.  b. FS 

signals from a hydraulic stimulation stage.  Upper shows the FS signal amplitude distribution.  

Lower the time evolution, the fractures to the left opening earlier than the fractures to the right 

side of the well.  (a from Lacazette et al., 2013; b. from Sicking et.al., 2015). 

 

FS observations show the kind of spatial and population distributions described by the 

geocritical approach to fluid flow (Fig 7a).  They also locate flow channels with lengths greater 

than the minimum resolution of the collection method.  Hence, an FSI map provides the large-

scale framework on which a geocritical-permeability field model can be constructed to forecast 

fluid flow (Fig 7b) - the calibration points for the P(k)~1/kand lognormal distributions. 

The FS method has important implications for subsurface hazard mapping and monitoring.  

Two instances are in the evaluation of cap rock integrity (Fig 8a) and the potential for induced 

seismicity (Fig 8b).  In the former case, the possible and actual creation of flow channels from 

an energy reservoir stimulation to an aquafer could be forecast and detected.  Likewise, 

permeable zones that can conduct both high fluid-pressures and fluids to potentially active 

faults can be mapped ahead of time, avoiding inducing, or triggering a damaging earthquake.   
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Figure 7.  a. Population distributions of FSI image features.  Left 4 panels show the results for 

main channel feature lengths for different O&G basins. Right 4 panels show results for relative 

FS signal amplitude during hydraulic stimulations. (Data are from Lacazette et al., 2013).   b. 

Forecasting O&G well production before drilling. Left: Pre-drill, FSI intensity forecast of near-

well production. Center: Map of the active FS voxels 2.5 years after drilling and production. 

Right: Overlay of the forecast map and the observed active FS voxels, showing that the 

production is coming from zones that were permeable before the well was drilled. Compare this 

to Figure 4b. (Figure modified from Sicking and Malin 2019 and Malin et al, 2020). 

 

 

 

Figure 8. a. Block diagram view of FS signals from the hydraulic stimulation of four stacked 

2000 m long lateral wells in a shale gas reservoir.  The amber colored permeability field 

activated by the stimulation stops at the cap rock seal, indicating little communication with 

overlying strata. b. Seismicity induced on an underlying thrust fault by hydraulic stimulation 

of a permeable tear fault.  (Fig a and b modified from Geiser et al., 2012 and Sicking and Malin 

2010.) 

 

In summary, geocritical-rock physics bring an observation-consistent approach to the 

mechanics of lithospheric permeability - in at least the limited range of environments studied 

so far.  Much work remains to be done for a fuller accounting of current and other ones.  Fracture 

Seismic methods hold a similar position, having been applied primarily to O&G fields.  Efforts 

are underway to evaluate it for mapping geothermal resources and waste disposal, including 

a b 
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carbon sequestration.  It remains to be seen how these seemingly promising development can 

be matured into a comprehensive description of the lithosphere’s permeability field.      
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In this work, we present the selected results from the Innovative, Non-invasive and Fully Acceptable Exploration 

Technologies (INFACT) project, funded by Horizon 2020 research and innovation programme. We evaluated 

different geophysical data against the known geological and infrastructural challenges in two reference sites of 

INFACT, Sakatti (Finland) and Geyer (Germany). In addition, we evaluate how the technologies are performing 

to detect known exploration targets.  
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1. General 

The Innovative, Non-invasive and Fully Acceptable Exploration Technologies (INFACT) 

project unites stakeholders of Europe’s future raw materials security in its consortium and 

activities. INFACT is comprised of three main components: 1) Development and test of 

innovative, non-invasive exploration technologies, 2) Foundation of three reference sites for 

exploration technologies in the south-, central- and north Europe, 3) stakeholder engagement, 

education and policy reform. These actions are combined to reach each of the main areas in 

which the EU has the power to influence changes in its raw materials security. 

Oulu Mining School is especially part in the technical and geological aspects of the project. 

This has included both technical work as well producing an out-reach material to increase the 

knowledge of exploration technologies for stakeholders and public. 

Focusing on the technical aspect, our role in the INFACT has been further processing and 

evaluating the obtained data from the reference sites, mainly focusing on the north and central 

reference sites. In this work, we present selection of result to technical questions and how they 

have been answered at this stage. In addition, we discuss the differences between the state-of-

art data and the data obtained by new technologies, evaluating the possibilities they bring.  

 

2. The reference test sites and used exploration technologies 

Here, we focus on the main exploration technologies used at the central and northern reference 

sites of INFACT. Both reference sites vary significantly from each other in terms of geology. 

The northern site is comprised of massive sulphide type Ni-Cu-PGE deposit (Sakatti), located 

in deep subsurface. It is currently under feasibility study. In addition to the deep massive 

sulphide, the quaternary deposits on top of the bedrock is highly conductive (Viiankiaapa mire 

area). 

The central reference area is located near the city of Geyer, Germany. The area has a long 

mining history and the region is known for its deposits of tin, zinc, tungsten, molybdenum, 

copper, iron, silver and indium. The population is dense and the built infrastructure produces 

EM noise. Typical challenges for measurements in urban environment are fenced areas, 

buildings and other no-access areas in both for ground based and airborne measurements. 
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In 2018, at the northern and the central reference sites, magnetic data was obtained during 

airborne Electromagnetic survey (Geotech Ltd. VTEM-ET system) and airborne Full Tensor 

Magnetic Gradiometry (FTMG) data using Supracon® AG Ltd. Jessy Star system. (Supracon® 

AG, 2020). The latter data set is considered as a part of innovative technologies within INFACT. 

In addition, legacy datasets exist including AEM VTEM dataset (2009) from the northern 

reference site. Both geological and petrophysical information are available for verification of 

the technique with ground-truth data. 

 

2.1 Magnetic method 

The Total Magnetic field Intensity (TMI) measurements are routinely used in ground, airborne 

and borehole surveys. With a typical TMI instrumentation, the presence of magnetized rock can 

be detected within equipment detection limits. However, its modelling can be difficult due to 

the ambiguity problem associated with potential field methods. In addition, presence of a strong 

remanent magnetization component can make accurate modelling challenging, especially if no 

a-priori information about magnetization is available. Moreover, if the host rock is magnetic it 

may be an obstacle to the sharp lineation of the exploration target. Due to these obstacles, 

magnetic method is commonly used as an auxiliary method to support other geophysical 

exploration technique such as gravity and electro-magnetic surveys. 

More information about magnetic properties of the subsurface can be obtained from 

measurements of all components of the magnetic field. In Full Tensor Magnetic Gradiometry 

(FTMG) measurements, all magnetic field gradients are obtained. They contain more 

information about the size, shape and particularly about magnetization direction of the magnetic 

rock mass. This full description of the magnetic field constrains the number of possible 

magnetic models, as the response of magnetic models need to satisfy all components of FTMG 

whereas in traditional TMI interpretation the magnetic model needs only to satisfy the general 

TMI  field (Clark, 2014; Queitsch et al. 2019). In addition, FTMG can be used to extract 

information about possible presence of significant remanent magnetization (Clark, 2014). 

After the millennia, SQUID (Superconducting QUantum Interference Devices) 

technology in highly sensitive magnetometers has been successfully adopted. With multiple 

SQUID sensors, it is possible to measure a full tensor of magnetic field gradient with excellent 

resolution. During last decade the FTMG have been successfully adopted in airborne 

measurements. This achievement has given magnetic method new opportunities for detailed 

subsurface modelling and hence new applications in exploration projects. 

In the INFACT project, we evaluated the magnetic data in northern and central reference 

sites by comparing the differences between traditional magnetic TMI data and FTMG data 

obtained with Supracon® AG Ltd. Jessy Star systems SQUID sensors. 

To demonstrate the increase of information with FTMG data we present a synthetic 

example of calculated TMI field and magnetic field gradients for four differently shaped and 

sized magnetic objects (Figure 1A). The shapes are a rectangle shaped prism (at NW), a sphere 

(NE), an L-shaped object (SW) and a triangle shaped object (SE). The objects are clearly visible 

in the TMI response. Note the different responses in the plots of magnetic gradient response 

presented below the TMI plot. In the Figure 1B, the same magnetic objects are  present but with 

an added contact of two differently magnetized domains underneath them. Here, the shaped 

objects are not as visible as they were in Figure 1A but the gradient components immediately 

indicate the presence of anomalous objects in same locations than that in Figure 1A.  
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Figure 1. A: Calculated Total Magnetic field Intensity (TMI) and magnetic field gradients 

tensor components (Bxx, Byy, Bzz & Bxy) for magnetic bodies of different shape. The bodies 

are magnetized in the geomagnetic field similar to that in the Northern Finland. B: The same 

synthetic model elements than those in A but with a contact of two magnetic domains beneath 

the bodies. Note that coordinates are in NED system. 

 

2.2 Modelling Airborne Electromagnetic data 

As one of the most popular geophysical methods in mineral exploration, airborne 

electromagnetic survey was selected to be a part of the INFACT methods. AEM is very good 

for detecting buried electric conductors, both in large and small scales. The Geotech Ltd. 

VTEM-ET system represents a state-of-art technology. 

The INFACT reference sites at Sakatti and Geyer are very different in terms of geology. 

The known conductive targets at Geyer are at shallower depth compared to the Sakatti, and the 

targets are smaller in size at Geyer. At Sakatti, the area is covered with conductive sedimentary 

layer due to the Viiankiaapa mire. There is also significant difference in EM noise between the 

areas. At Sakatti, the EM noise level is low for the whole site while in Geyer the EM noise is 

considerably higher and varies throughout the region. 

In our work, we evaluated how the obtained data could be used to solve the problems 

mentioned above. In addition, we evaluated the obtained conductivity models from both the 

sites. 

 

Conclusions & future development 

The FTMG data gives detailed information about magnetic field at the INFACT reference sites 

and especially the magnetic fields behaviour between flight lines compared to TMI 

measurements. This allows a detailed delineation of interesting areas in mineral exploration. In 

addition, the generally increased resolution improves the mapping of the large-scale structures 

in more detail. In near future, we are to make a joint inversion of the five independent 

components of FTMG using Bayesian inversion as a general frame. 
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The electromagnetic data and models from north and central sites were analysed and 

evaluated against the site geological and EM-noise challenges. The research is in progress to 

increase the resolution and reliability of EM modelling by joint modelling of two different 

datasets. 
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Southern Finland consist of belts of migmatitic infra- and supracrustal rocks. The southernmost migmatitic belt 

and Uusimaa belt have coeval and presumably similar tectonic histories, although it is proposed that they are 

separated by a terrane boundary. In this study, we investigated leucosomes, granitic intrusions and deformation 

history in the southernmost archipelago of Finland to clarify the relationship between the formation of the anatectic 

melts and deformation in the southernmost migmatitic belt. Further, we use this understanding to compare the 

southernmost migmatitic belt with the better-known Uusimaa belt. Results of our structural analysis indicate that 

the last migmatization events (at 1.84-1.81 Ga) affected all the rock types, and subvertical leucosome 

transportation took place during subhorizontal compression as in the Uusimaa belt. However, geochemistry 
(Saukko et al, 2021) and regional structural patterns show contrasting signatures between the belts.  

 

Keywords: Southern Finland, migmatitic belt, granitic metatexite, deformation, shear zone, 

partial melts 

 

1. Introduction 

The Paleoproterozoic Svecofennian orogenic domain of Southern Finland consists of belts with 

strongly migmatized infra- and supracrustal rocks in upper amphibolite to granulite facies, with 

areas of less migmatized rocks in-between. The supracrustal rocks are approximately 1.90-1.88 

Ga (e.g. Hopgood et al. 1983; Väisänen and Mänttäri, 2002; Skyttä et al. 2005), and the 

infracrustal rocks, here called granitic metatexites, are slightly younger ca.1.88 Ga (Hopgood 

et al. 1983; Saukko et al., 2021). Two tectonothermal events associated with migmatization are 

recognized: the older at 1.88-1.87 Ga (Skyttä et al., 2006) and the younger at 1.83–1.81 Ga, 

synchronous with regional folding and thrusting (e.g. Väisänen et al. 2002). NW-SE and NE-

SW oriented shear zones are common in Southern Finland (e.g. Väisänen and Skyttä, 2007; 

Väisänen et al. 2002) and they were presumably active at 1.83–1.79 Ga (Väisänen and Skyttä, 

2007), i.e. synchronous with and after the younger metamorphic peak.   

 The southernmost migmatitic belt is a 100 km long, E–W trending belt outcropping on 

the mainland and within the archipelago of the Gulf of Finland, south of the Uusimaa belt 

(Figure 1). The proportions of granitic and migmatitic supracrustal rocks vary in the 

southernmost belt so that the amount of granitic rocks increases southwards. Deformation zones 

crosscut the area in E-W and NE-SW orientations. The migmatization, melt transport, granites, 

and deformation zones are presumably related to each other. In previous publications, 

southernmost Finland is often included in the rest of the Southern Finland (e.g. Väisänen and 

Skyttä, 2007), although Jaanus-Järkkälä and Edelman (1983) discussed that a subduction zone 

may separate the southernmost migmatitic belt from Uusimaa belt. Regardless of several studies 

(e.g. Hopgood et al. 1983, Kurhila et al. 2011) the relationship between the southernmost belt 

and areas around it is ambiguous. Further, the relationship between the formations of anatectic 

melts, granites, and deformation in the southernmost migmatitic belt remains unclear. Bearing 

this in mind, the aim of this study is to understand the relationship between the formations of 
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anatectic melts, granitic magmatism, and structural evolution of the southernmost migmatitic 

belt, and further to look into the connection between the Uusimaa and the southernmost 

migmatitic belts. We place specific focus on understanding the role of major shear zones which 

may have acted both as melt pathways and as boundaries between geological domains. 

 

 
 

Figure 1. Simplified lithological map of the study area. The black dashed line indicate the 

location of the Barösund shear zone. 

 

2. Materials and methods 

This study is part of a larger project addressing the relationship between deformation, 

leucosomes and granitic magmatism. The utilized methods include field observations, 

geochemistry, geochronology of the granitic rocks, and structural analysis. In this study, we 

focus on the structural interpretations of the study area, arising from analysis of existing 

regional-scale datasets (geological and geophysical maps), complemented by detailed field 

investigations in selected key localities. 

 

3. Results 

The dominant structural trend, including foliation, within the southern migmatitic belt is E-W. 

Bedding (S0) is rarely visible, but if present, it is subparallel to first generation foliation (S1). 

Mafic layers, parallel to S1, have often been boudinaged and they may have melts in boudin 

necks, whereas felsic layers – probably metapsammitic rocks – were recrystallized in a ductile 

manner when S1 foliation was formed. It is likely that F1 folds and L1 formed during D1, but 

direct observations have not been made. 

The second deformation event (D2) caused refolding of S1, and is associated with the 

development of a weak S2 foliation along F2 axial planes (Figure 2). However, S2 is not always 

present in the studied rocks. The (F2) folds are approximally upright, and have subhorizontal 

fold axes, with predominantly south-dipping axial surfaces. In some areas, mineral lineation 
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(L2) is parallel to the fold axes. Fold tightness varies regionally: folds are usually gentle to open 

and mineral lineations are parallel with the fold axes in the west. By contrast, folds are close to 

tight, similar or flexural slip –type folds, and the mineral lineations (L2) are moderately 

plunging in the east and centre of the study area (Raseborg/Jussarö). In mafic supracrustal 

formations, the lineation is strong and moderately plunging. The trend can vary in outcrop scale; 

thus, we propose that this is an earlier lineation (L1/L2) that was transposed during the folding.  

  NE-SW and E-W striking shear zones transect the study area and caused localised 

deflection of the main foliation and first and second generation folds, and likely caused the 

development of the third generation folds (F3). The E-W striking shear zones are 10-50 cm 

wide ultramylonitic to mylonitic zones with often dextral kinematics. The shear zones are 

common in the centre of the study area, where supracrustal rocks are present, often spatially 

associated with metalimestones. The NE-SW striking deformation zones are large-scale shear 

zones. In the study area, there are only a few in this direction but those shear zones can be tens 

to hundreds of meters wide. The largest shear zone is the Barösund shear zone, which is 500 m 

wide (Vehkamäki, 2019), oblique-slip shear zone with sinistral lateral component of 

deformation.   

 

 

Figure 2. Structures in the migmatitic rocks. A) and B) Schistosity S1 has folded and partial 

melts has accommodated along axial planes (S2). C) The mineral lineation in the mafic layer 

(L2) plunge moderately to NE and mineral lineation in the leucosome (L3) plunge subvertically.   

 

4. Infracrustal formations and two partial melting events  

The infracrustal formations, granitic metatexites, intruded foliation-parallel (S1) in the 

supracrustal rocks between D1 and D2 around 1.88 Ga. The amount of granitic metatexites 

increases toward south, and they seem to locate stratigraphically below the volcano-

sedimentary rocks. The first migmatization took place before F2 folding, thus the granitic 

metatexites can have caused the formation of the first partial melts at 1.88 Ga. The granitic 

metatexites have strong mineral lineation (L2), which varies locally, being subhorizontal in the 

west and subvertical in the east. The metatexites are mylonitic, especially close to the main 

deformation zones and in the eastern part of the study area, and they may be folded. 
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 The granitic metatexites contain crystallised in situ melts that are proposed to represent 

the younger, 1.84-1.81 Ga migmatization event (Saukko et al. 2021). The leucosomes cross cut 

all formations, but some of these leucosomes were folded or boudinaged depending on their 

orientation with respect to the foliation in the surrounding bedrock. The texture of the 

leucosomes is massive and they do not have foliation; however, strong subvertical mineral 

lineation (L3) occurs in leucosomes parallel to the host-rock foliation. The character of L3 

differs from lineations in the supracrustal formations suggesting later stage deformation. The 

leucosomes have also been emplaced along F2 axial planes in several rock types: 

metapsammitic, metavolcanosedimentary rocks and infracrustal rocks (metatexites), and in 

mafic rocks or dykes if present; regardless whether schistosity is present or not (Figure 2). We 

propose that the transportation of the leucosomes was active during the D3 at 1.84-1.81 Ga. 

 

5. Conclusions/Summary 

The preliminary results show that the granitic metatexites intruded parallel to the foliation of 

the supracrustal units between D1 and D2. The mylonitic granitic metatexites are located near 

NE-SW striking shear zones and they may have intruded coevally with the shearing, suggesting 

that the shear zones may have been active already around 1.88 Ga. Both rock types have been 

folded and deformed during D3, the last compression and melt transportation at around 1.84-

1.81 Ga.  

The last migmatization at 1.84-1.81 Ga was extensive and both supracrustal and 

infracrustal formations were migmatized. The accumulation of partial melts in the F2 axial 

planes, their deformation (folds or boudins) and the subvertical attitude of L3 indicate that melt 

transportation has been coeval with flattening and subhorizontal compression. It is also likely 

that transposition of the L1/L2 lineation took place simultaneously with the compression. 

Because the youngest melts, at 1.83-1.81 Ga, crosscut the mylonitic granitic metatexites in the 

south, we propose that the NE-SW striking shear zones were not active during the last melt 

transportation event, in the end of D3. Similar kind of crosscut relationship with the E-W 

striking shear zones and latest melts have not been found.  
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The deep crustal structure of the White Sea region and the surrounding areas has been well described in the 

framework of individual case studies. There are also a number of models for the geological structure available. We 
propose a uniform assessment of magnetic sourcies responsible for the long wavelength magnetic features. Within 

the considered area, the Precambrian formations of the Fennoscandian Shield and the Russian Plate overlain by a 

sedimentary cover are represented. Large geological domains are separated by regional faults and suture zones. 

The study is based on a 1: 1,000,000 scale aeromagnetic field map. 
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1. General 

The subject of the study is the White Sea basin and adjacent territories. Located at the junction 

of two large tectonic elements of the East European Craton, the Fennoscandian Shield and the 

Russian Plate, this region is constantly experiencing dynamic loads caused by the continuing 

uplift of the Fennoscandian Shield. Its original crustal structures formed in the Archean were 

partially transformed in the processes of Proterozoic rifting and subsequent tectonomagmatic 

activation. Studies of geodynamics, tectonics, and the evolution of the material composition of 

the lithosphere are relevant in the region. Its characteristic feature is the manifestation of 

kimberlitic magmatism, deposits of diamonds and other minerals. It is believed that the 

Arkhangelsk province, which ranks second in Russia in diamond mining after Yakutia, is far 

from exhausting its diamond potential. The geological research recently conducted here is 

aimed at finding hydrocarbons. The formulation and solution of theoretical and applied 

problems are facilitated by the study of the deep structure of the region (Sharov and Zhuravlev, 

2019). 

Long-term practice of studying the anomalous magnetic field has shown the presence of 

a regional component in its composition, which makes it possible to use it to study the deep 

structure of the earth's crust (Orliuk and Pashkevich, 2012; Pashkevich et al. 2014; Baluev et 

al. 2018). At present, there is enough complete data to construct a more detailed magnetic model 

of the earth's crust: a summary map of the total magnetic intensity (TMI) in digital form (Figure 

1) with a sample of field values over a 1x1 km network. 

 

2. Data processing 

The modeling was carried out using the GIS "INTEGRO" software package containing the 

procedures necessary for calculating magnetic models based on 2D and 3D inversion 

(Cheremisina et. al. 2018). General data processing of the TMI data is made by using most 

common mathematical procedures. The basic procedure for extracting the contour of deep 

magnetic sources is the upward continuation procedure, which is a special form of wavelength 

filtering. In the Fourier domain, upward continuation is achieved using a simple exponential 

transform (Blakely, 1995), which reduces the high wavenumber content in the dataset and also 

reduces spatial resolution. Basically, it is a special form of low-pass filtering operation that 

allows for clean filtering with almost no unwanted effects. 
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Also we use the tilt derivative (TDR) procedure to define structural edge information for 

subsurface objects (Miller, H.G., Singh, V., 1994.). 

 

3. The heat flow and the depth of the magnetic modelling 

The possible depth of crustal magnetic modelling is always a discussion question. It has direct 

correlation to the intensity of the heat flow in the region. The area under consideration has a 

strong consistent Precambrian basement and available data indicate low values of heat flow no 

more than 50 mW*m-2 (Kukkonen et al. 1998; Tsibulua et al. 1992; Veikkolainen et al. 2017). 

Such low values make it possible to speak with confidence that minerals retain their magnetic 

properties up to the mantle cover, and give as an opportunity to iterpret magnetic susceptibility 

assignment throughout the all crust thickness. 

 

 
Figure 1. Colour image of the TMI data, with domain boundaries (see indexes in Table 1) and 

main regional profiles lines. 

 

Table 1. Main geological domains of the White Sea region. 

Label Domain Age 

CKa Central Karelian domain Late Archaean 

NKa North Karelian domain Late Archaean 

WS White Sea domain Archaean 

Kol Kolvitskiy domain Archaean 

SoK South Kola domain Archaean 

TeZ Tersko-Zolotitskiy domain Archaean 

ImV Imandra-Varzugskiy domain Archaean 

CKo Central Kola domain Early Archaean 

EKo East Kola domain Early Archaean 

Mur Murmansk domain Early Archaean 

WMe West Mezen’ domain Palaeozoic 

EMe East Mezen’ domain Palaeozoic 

TiK Timano-Kaninskiy domain Palaeozoic 
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4. Conclusions 

As a result, the models obtained make it possible to clarify the picture of the earth's crust, get 

new information about the deep structure of the region and the patterns of its evolution. The 

correctness of the results obtained was assessed by comparing it with the available geological 

and geophysical data and the complex models built on their basis. The spectral characteristics 

of regional anomalies made it possible to group them and make assumptions about the most 

probable source of the magnetic field disturbance. We assume that the sources of regional 

anomalies are confined to the "granite-metamorphic" and "granulite-basic" layers at depths 

from 10 km to the crust-mantle interface. A number of anomalies are confined not to individual 

bodies of a specific mineral and material composition, but to extensive permeable zones 

extending with root parts into the mantle. 

 

The study was conducted under the Research Project AAAA-A18-118020290086-1 funded by 

the Russian Foundation for Basic Research under the Research Projects 20-05-00481 

«Lithospheric structure and dynamics of the White Sea Region» and the scientific research of 

the Institute of Geology KRC RAS. 
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1. Introduction 
Iron-oxide-apatite (IOA) or Kiruna-type deposits are one of the main sources for iron worldwide. IOA 
deposits with economic importance exist in the Norrbotten region of northern Sweden. Kiruna is a world-
class IOA deposit that is located, along with other orebodies, around the town of Kiruna and it has been 
mined by Luossavaara-Kiirunavaara Aktiebolag (LKAB) for over 120 years. The massive magnetite orebody, 
with more than 2,500 million metric tons, grading at 55-65% Fe and 0.05 to 5 wt % P, is hosted between 
Paleoproterozoic meta-volcanic rocks (ca. 1880 Ma, Bergman et al. 2001), also known as the Porphyry 
Group, of Svecokarelian age. The suggested age of the ore emplacement varies between 1874 ± 7 Ma and 
1877 ± 4 Ma (Westhues et al. 2016). The mineralization occurs as a steeply dipping, NE striking, tabular 
body of about 5 km length and up to more than 100 meters thickness, between the lower andesite-
trachyandesite footwall and the upper rhyolite-rhyodacite hanging wall (see also e.g. Westhues et al., 2016), 
with the contacts between the ore and the host rocks varying from sharp to ore veins to brecciation. 

The ore formation of Kiruna-type IOA deposits in the Norrbotten region is still controversial, with 
different authors suggesting a magmatic (e.g. Troll et al. 2019), a sedimentary-exhalative (e.g. Parák, 1975), 
a hydrothermal origin (e.g. Hitzman et al. 1992) or magmatic-hydrothermal origin (e.g. Westhues et al. 
2017). The description, classification, and spatial distribution of alterations around the Kiruna ore body 
might not only contribute to a better comprehension of its genesis and the evolution of the associated 
hydrothermal fluids but may also facilitate exploration around the deposit and in the wider region. 
 
2. Methodology  
Observations of alteration minerals, assemblages, textures, and styles are based on extensive core logging. 
XRF and ICP-MS whole rock geochemical data, as well as optical microscopy and microprobe data (e.g. 
Nordstrand, 2012) from internal reports, were used in order to corroborate the nature of mineral phases.  

 

3. Results 

Hydrothermal alteration is ubiquitous around the massive Kiruna magnetite orebody. Although, 

alterations are variable in extent and intensity along the orebody, consistent patterns can be 

observed in the hanging wall rocks.  

Closest to the orebody a strong and pervasive albitization is common and can lead to an 

almost complete replacement of the host rock, giving it a whitish colour. This massive albite is 

generally cut by actinolite veins and/or overprinted by actinolite disseminations and  
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Figure 1. A. Strongly albitized rock cut by later actinolite (Act) veins. B. Almost completely 

albitized rock overprinted by a Na-Ca alteration consisting of actinolite ± albite (Ab). The Na 

and Na-Ca alteration have finally been overprinted by a Ca (± Fe) alteration visible here as 

anhydrite (Anh) veins (contain also garnet but not visible on picture). C. Na-Ca alteration 

consisting of actinolite veins with albite halos and locally epidote (Ep), replacing plagioclase 

phenocrysts. D) Magnetite (Mag) vein with albite halo (largely reddish due to hematite 

inclusions). Note how the albite halo dissolves the disseminated actinolite of the previous Na-

Ca alteration. E. Ca (± Fe) alteration expressed by anhydrite-garnet-epidote veins cutting Na-

Ca alteration dominated by actinolite and albite. F. Hematite (Hem)-amphibole (Amp)-epidote 

dominated veinlets of Ca-Fe alteration cutting massive magnetite vein related to the main 

magnetite orebody. G. Magnetite-actinolite ± biotite (Bt) vein in transitional environment 

between Na-Ca-Fe and K-Fe environment. H. Magnetite-biotite veins (± titanite (Ttn) traces) 

and disseminated biotite in matrix in K-Fe alteration environment. I. Biotite-actinolite patches 

disseminations in transitional environment from Na-Ca-Fe to K-Fe. J. Biotite disseminations in 

K (± Fe) alteration zone. K. Anhydrite patches ± magnetite disseminations in strong brick-red 

coloured rock in distal region from the ore body (half wet sample). L. Typical least altered 

hanging wall rock. 
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patches (Figure 1A and B). Further away from the ore, the actinolite veins become magnetite 

bearing and disseminated titanite can be found in the host rock. Incipient epidote replacement 

of plagioclase cores can be associated with this assemblage as well as disseminations of epidote 

in the groundmass. Locally, actinolite ± titanite ± epidote replacement of the host rock can be 

near total, resulting in a completely green colouration of the rock. Actinolite ± magnetite veins 

commonly display albite halos (Figure 1C). Distally from the ore, these veins evolve from 

actinolite dominant (Figure 1C) to magnetite dominant (Figure 1D) and eventually actinolite 

disappears at the expanse of biotite (Figure 1G). Albite halos, along these veins, decrease in 

intensity and extent within this evolution. Also, the disseminated actinolite gradually disappears 

at the expanse of biotite in more distal parts (Figure 1I). Proximally to massive magnetite, 

biotite commonly occurs together with magnetite in veins (Figure 1H), patches and/or 

disseminations. Further away from the orebody, magnetite veins completely disappear, but 

magnetite can be locally found as volumetrically minor disseminations. Generally, abundant 

disseminated biotite (Figure 1J) also faints out within several meters after the disappearance of 

significant magnetite occurrences. In these outer regions, biotite and actinolite are commonly 

at least partially affected by a weak, late chlorite alteration. 

In proximal regions to the main orebody, it is common to observe anhydrite veins with 

red-brownish to yellowish garnets (Figure 1E) cutting the actinolite ± albite alteration 

assemblage (Figure 1B). These veinlets commonly contain minor amounts of epidote, specular 

hematite and sometimes traces of acicular, dark green amphibole (Figure 1F). Abundant 

anhydrite disseminations seem to be linked to the occurrence of these anhydrite dominated 

veinlets (Figure 1B). Also, the above-mentioned epidote disseminations appear to be the most 

pronounced in assemblages containing these veinlets. 

Beyond the biotite altered zone, hydrothermal alteration assemblages can still be 

significant but appear to be less systematic. The rocks are largely characterized by a variably 

strong brick-red coloration due to Fe-oxide (hematite) inclusions in feldspars. In this area, it is 

also common to find anhydrite patches and disseminations, often associated with magnetite 

(Figure 1K) ± biotite ± pyrite and chalcopyrite. In rare occasions, biotite can be affected by 

sericite. The presence of hydrothermal K-feldspar has not been univocally proven so far.  

 

4. Discussion 

Alteration mineral assemblages associated with the Kiruna orebody suggest an evolution from 

a proximal Na-alteration (albite) to a Na-Ca (actinolite ± albite ± epidote ± titanite) to a Na-Ca-

Fe (actinolite – magnetite ± albite) to a K-Fe (biotite ± magnetite) alteration in more distal 

regions from the ore body (Figure 2). A Ca ± Fe alteration consisting of abundant anhydrite 

with garnet ± epidote ± specular hematite and rare dark green amphibole can be observed 

mainly cutting/overprinting the Na-Ca alteration (probably retrograde alteration). A Ca-Fe-K 

(actinolite-magnetite ± biotite) alteration might be distinguished as a transition between the Na-

Ca-Fe and K-Fe alteration zones, but further investigation is needed in order to determine 

whether it is a separate alteration (actinolite – biotite paragenesis) or rather a replacement of 

actinolite by biotite. All alterations show a rather continuous transition between each other and 

are, regarding the mineralogy and spatial distribution, in good agreement with alterations 

observed in other IOA-IOCG deposits world-wide (e.g. Barton 2013 and references therein, 

Corriveau et al. 2016; Warren et al. 2016). The extent and intensity of alterations in Kiruna can 

vary and locally more distal alterations can directly overprint more proximal alterations (e.g. 

biotite ± magnetite overprinting massive albite). Apart from hematite inclusions giving a brick-

red colour to the rock in more distal regions, lower temperature and slightly more acidic 

alterations (e.g. Barton, 2013; Corriveau et al. 2016) seem to be poorly developed in Kiruna. 

Hydrothermal alterations in the footwall of the Kiruna orebody are generally more pervasive 



LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  110 

___________________________________________________________________________ 

and less clear spatial distributions can be observed in comparison with the hanging wall. Future 

work will, among other things, focus on getting a better understanding of the alterations in the 

footwall. 

 

 
 

Figure 2. Simplified alteration model for the hanging wall rocks of the Kiruna IOA deposit. 

 

5. Conclusion 
Hydrothermal alterations in the hanging wall rocks of the Kiruna Fe deposit display a systematic 

zonation in mineral assemblages. The most proximal regions to the ore are typically dominated 

by a strong Na alteration, grading into a Na-Ca, Na-Ca-Fe and K-Fe alteration with increasing 

distance from the ore. A Ca ± Fe alteration frequently overprints the Na-Ca alteration. These 

observations are in good agreement with findings from other studies on alterations in IOA-

IOCG systems throughout the world. 
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1. General 

The Group Method of Data Handling (GMDH) is a method of data analysis based on inductive 

modelling. It allows to explore multicomponent systems and is able to reveal hidden 

relationships between elements, including non-linear ones. Algorithms GMDH allow to create 

and test many variants of mathematical models and determine the model equation of optimal 

complexity. Generation of models is performed combinatorically based on the support function. 

The best model is selected according to the minimum values of external criteria. External 

criteria are calculated based on data that is not involved in the procedure for determining the 

structure and parameters of the model (Ivakhnenko (1988)). The nature of the GMDH 

algorithms allows us to consider it as an alternative to multilevel neural networks (Fernández 

et al. 2010). 

In the last decade, the Department of Geophysics of Voronezh State University has been 

actively conducting research aimed at studying the possibility of MGDH for analyzing 

geological and geophysical information. Below are some examples of the method application 

(Muravina et al. 2018). 

 

2. Complex analysis of petrophysical data 

Petrophysical information is an important part of knowledge in the course of geological and 

geophysical interpretation, on the basis of which the transition from physical to geological 

model of the environment is carried out. To perform the identification analysis of the MGDH, 

a sample of data on density, electrical resistivity, and magnetic susceptibility of rocks 

representing magmatic, volcanogenic-sedimentary, and metamorphic formations widespread 

within the Voronezh Crystalline Massif (VCM) was formed. The sample size was 224 samples. 

For each group, mean values and standard deviations of density(σ) and logarithms of electrical 

resistivity (log ρ) and magnetic susceptibility (log ϰ) were calculated. In Figure1,,a shows the 

summary point diagrams of the distribution of the averaged values of these parameters. As can 

be seen from the figure, for most rocks, rather significant differences were revealed in the 

aggregate statistical characteristics of petrophysical parameters, which was a prerequisite for 

the subsequent analysis by the Group Method of Data Handling (Muravina et al. 2019a). 
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As a result, complex quasilinear model equations were obtained connecting the average 

density values with the logarithm of resistivity and the logarithm of magnetic susceptibility:  

 

�̅� = 𝒂𝟎 +𝒂𝟏 𝐥𝐨𝐠𝝆̅̅ ̅̅ ̅̅ ̅+ 𝒂𝟐 𝐥𝐨𝐠𝝒̅̅ ̅̅ ̅̅ ̅+𝒂𝟑 𝐥𝐨𝐠𝝆̅̅ ̅̅ ̅̅ ̅ ⋅ 𝐥𝐨𝐠𝝒̅̅ ̅̅ ̅̅ ̅,    (1) 

 

The correspondence between the experimental and model values of the average density 

values is shown in Figure 1,b. The results obtained will be used in the procedure of complex 

inversion of geophysical fields when studying the structure of the upper part of the earth's 

crust. 

 
Figure 1. The results of the complex аnalysis of petrophysical data: a – summary point 

diagrams of distribution of averaged values of petrophysical parameters of crystalline rocks 

of VKM; b – the results of identification modelling. Coloured circles - experimental data, 

off-coloured - model data. 

 

 

3. Estimation of the porosity coefficient from logging data 

Here is an example that demonstrates the capabilities of GMDH for estimating the porosity 

coefficient of a productive formation from logging data. As the initial data, the results of 
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laboratory analysis of the core on 14 samples were used. For the formation of the training 

sequence, the averaged values of the porosity of the reservoir core were used (Muravina et al. 

2019b). 

As a result, a polynomial dependence was obtained, which makes it possible to calculate 

the porosity coefficient (Kp) according to the data of four gradient probes of different lengths 

(GZ1, GZ2, GZ3, GZ4) and gamma-ray logging (GK): Kp = f (GZ1, GZ2 , GZ3, GZ4, GK) 

The correspondence of the experimental values of the porosity coefficient is shown in Figure 

2. 

 
Figure 2. Correspondence of the experimental and model values of the porosity coefficient. 

 

 

4. Assessment of the relief influence during aeromagnetic studies over volcanogenic 

formations 

In conditions of a highly dissected relief, with a high degree of lateral heterogeneity of the 

magnetic properties of the rocks in the upper part of the section, it is practically impossible to 

obtain acceptable estimates of the topographic correction within the framework of simplified 

model concepts. The reasons for this are: a lack of reliable petrophysical information, 

inaccuracy in setting the relief near the point of calculation, the use of a “flat” Earth model, 

etc.The traditional statistical method for assessing the anomalous relief effect is based on 

identifying the relationship between the ∆T field and the elevations of the relief H. However, 

in difficult physical and geological conditions, the closeness of the linear correlation directly 

between ∆T and H can be very low. The solution can be more effective when using the 

Empirical Mode Decomposition (EMD) (Huang et al. 1998) method in combination with 

GMDH (Dolgal et al. 2017). At the first stage, the discrete values of ∆T and H are decomposed 

into empirical mode functions (IMF). Then GMDH is used to determine the total component of 

the magnetic field (δTrf ), that is most closely related to the IMF of the relief (Hiassat et al. 

(2004)). Let us give an example of using the proposed method when taking into account the 

influence of the relief on the results of aeromagnetic survey carried out in difficult physical and 

geological conditions of the Norilsk region (Dolgal et al. 2020). As a result of identification 

modeling, the low-frequency components of the magnetic field were established, due to the 

influence of the relief, and then the model of the relationship between the total magnetic 

component δTrf and the components of the relief of heights H4, H3, H1 was calculated. The 

quality of the correlation dependence is shown in Figure 3. 

Calculations based on practical examples have shown that the proposed method for 

determining δTrf is consistent with the results of calculating the topographic correction by 
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solving the direct problem (Dolgal et al. 2020), but it is less laborious, does not require a priori 

information about the magnetic properties of rocks and heights of survey flights, and 

automatically takes into account the spheroidism of the Earth. 

 

 
Figure 3. Results of identification modelling of low-frequency components of the magnetic 

field: b - experimental (1) and model (2) values of the total component δTrf. 

 

 

5. Conclusions 

The presented materials indicate that the modern technology of statistical analysis of 

geophysical data developed by the authors is applicable to the widest range of geophysical and 

petrophysical studies. Practical implementation of the proposed approaches makes it possible 

to increase the reliability of interpretation of geophysical data and their geological information 

content. 

The research was supported by the RFBR, grants No 19-05-00336; 19-05-00654 and 20-

05-00190. 
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In this article we describe the development of a globally-coordinated approach to establish geodesy as a permanent 

component within the United Nations. During last five years, since the 2015 UN General Assembly adoption of 
the resolution on a Global Geodetic Reference Frame for Sustainable Development (A/RES/69/266), a permanent 

Subcommittee has been established, and finally leading in 2020 establishment a Global Geodetic Centre of 

Excellence. Considering the importance of geodesy in geosciences, current development is very welcome, in which 

Member States will commit themselves to maintain the global geodetic infrastructure. Education, outreach and 

supporting developing countries are as well goals of this effort. Current roadmap shows the way to reach the goal, 

but there is still a long way to go. 
 

Keywords: geodesy, United Nations, reference frames, sustainable development 

 

1. Introduction 

In 2013, the United Nations Committee of Experts on Global Geospatial Information 

Management (UN-GGIM) requested the formulation of a resolution to strengthen the Global 

Geodetic Reference Frame GGRF. This lead very quickly to a proposal, supported almost 50 

UN Member States, Finland among them. In February 2015 the United Nations General 

Assembly adopted the resolution on a Global Geodetic Reference Frame for Sustainable 

Development (A/RES/69/266, 2015), recognizing the importance of a globally coordinated 

approach to geodesy. 

The UN-GGIM decided to formulate and facilitate a resolution for a global geodetic 

reference frame and established a working group on the Global Geodetic Reference Frame 

(GGRF). The task of the working group was to formulate the resolution and prepare a roadmap 

for GGRF for sustainable development according to the UN GA resolution. Without 

commitment by Member States, the Global Geodetic infrastructure will be in danger of 

degradation over time and consequently gradually lose its required accuracy and fundamental 

role in societal and scientific applications. This can happen due to aging infrastructure, 

insufficient coordination and financing, and diminishing human capacity. 

At the UN-GGIM sixth session in New York in August 2016, the UN-GGIM endorsed the 

GGRF Roadmap and decided to elevate the GGRF working group to a permanent sub-

committee on geodesy (UN GGRF, 2020).  

The GGRF roadmap addresses each of the key areas of action described in the UN 

General Assembly resolution: 

Data sharing: Development of geodetic standards and open geodetic data sharing are required 

to enhance and develop the GGRF. 

Education and capacity building: Appropriate geodetic skills and educational programs are 

essential for the development, sustainability and utilization of the GGRF. 

Geodetic infrastructure: A more homogeneous distribution of geodetic infrastructure is needed 

to develop and utilize an accurate GGRF. 

Communication and outreach: It is imperative to develop communication and outreach 

programmes that enable the GGRF to be more visible and understandable to society. 
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2. Roadmap to the future 

At its seventh session in 2017, UN-GGIM adopted decision 7/103, in which it endorsed the 

formal establishment and composition of the Subcommittee on Geodesy. The vision for the 

Subcommittee is to provide “an accurate, accessible and sustainable global geodetic reference 

frame to support science and society” (UN GGRF, 2020). On August 9 2019, Member States of 

the UN-GGIM commended the Subcommittee on Geodesy on the revised proposal to establish 

a Global Geodetic Centre of Excellence (GGCE) under the auspices of the United Nations. 

German’s proposal to host the Centre of Excellence at the UN Campus in Bonn was 

accepted by the UN-GGIM Committee of Experts in 2020 (UN GGRF, 2020). The role of the 

Centre is to assist in sustaining the GGRF by implementing operational paragraphs of UN 

General Assembly resolution 69/266. The Centre will 

 Enhance global cooperation and coordination across Member States and relevant 

geodetic stakeholders to maximise the benefit of ongoing geodetic efforts, ensure 

coherence, and avoid duplication of effort. 

 Strengthen geodetic infrastructure 

 Assist Member States in making their geodetic data Findable, Accessible, Interoperable 

and Reusable in line with standards, policies and conventions. 

 Support education, training and capacity building 

 Improve communication and raise awareness 

Currently, detailed planning of structure, governance and implementation of the GGCE 

is going on. Aim is to get plans ready for endorsement in the next UN-GGIM meeting in 2021.  

One important link will be current geodetic infrastructure and services provided by the 

International Association of geodesy (IAG) services (Poutanen and Rozsa, 2020). The purpose 

of GGCE and SCoG is to sustain already existing geodetic infrastructure, not duplicate it. It 

means that the role of the IAG must be strong and visible in these plans. Considering the 

importance of geodetic observations and infrastructure in all Earth-exploring disciplines, it is 

very welcomed to have the globally coordinated structure where the Nations are committed.  

Modern society is more and more dependent on accurate and up-to-date reference frames, 

reliable geodetic observations and geodesy-related applications. Development within the UN 

will be beneficial for whole field of geosciences. Sustainability, education, knowledge transfer 

and improving geodetic infrastructure in developing countries will also have substantial global 

consequences. Current situation with institute or organization level funding with arbitrary 

changes will not be sufficient and secure anymore in the future.  

 

References: 
A/RES/69/266, 201.5 https://undocs.org/en/A/RES/69/266 

Poutanen, M., Rózsa, S., 2020. The Geodesist’s Handbook 2020. Journal of Geodesy, 94(11), 109. 

https://doi.org/10.1007/s00190-020-01434-z  

UN GGRF, 2020. https://www.unggrf.org/ 

 

 

 

 

 

 

 

 

https://undocs.org/en/A/RES/69/266
https://doi.org/10.1007/s00190-020-01434-z
https://www.unggrf.org/


LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  117 

___________________________________________________________________________ 

 

 

Influence of Pulsed Magmatic Activity, Latent Heat, and Partial 

Melting on the Strength of the Continental Crust 
 

A.M. Rantanen1, D.M. Whipp1, J.S. Heinonen2, L. Kaislaniemi1 and M. Putz1 

 

1Institute of Seismology, Department of Geosciences and Geography, University of Helsinki 
2Geology and Geophysics Research Programme, Department of Geosciences and Geography, University of 

Helsinki 

E-mail: aleksi.m.rantanen@helsinki.fi 

 

Magmatism causes changes in crustal strength which may influence tectonics and how the continental crust 

deforms. We present a model for estimating the reduction in crustal strength caused by magmatic intrusions. The 

model uses a finite difference solution to a 2D heat conduction equation. Increased temperatures and melting of 

the surrounding rock reduce the integrated crustal strength, which is evaluated by calculating the changes in the 

crustal strength envelopes as a function of time. The purpose of the model is to study how different intrusion and 

crustal compositions, such as changes in rheology, melting temperatures, and other material properties, effect the 

integrated crustal strength. In general, we find that the initial strength reduction is significant when the intruding 
magma has much higher temperature than the solidus temperature of the surrounding rock. However, it is also 

possible that the crustal strength can increase after the magma cools down and solidifies for intrusions that are 

more mafic than the host rock. 
 

Keywords: Arc magmatism, Partial melting, Latent heat, Crustal strength, Rock rheology, 
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1. Introduction 

In subduction zones, the strength of the crust can be affected by plutonism in the volcanically 

active areas. The intruding magma heats and melts the surrounding crustal rock, which 

decreases the effective viscosity of the rock and the integrated crustal strength while the crust 

cools. The strength of the rock is determined by the deformation mechanism that requires the 

smallest differential stress, and increased heat decreases the viscous strength of the rock. When 

the rock is partially molten its shear strength is reduced to almost zero. However, when the rock 

cools and solidifies, its rheology and other material properties will play a larger role in the total 

crustal strength. These changes in strength will affect how the crust deforms and where faults 

and shear zones are formed. 

 

2. Model Design 

The effect of plutonism on integrated crustal strength are calculated using a finite difference 

solution to the 2D thermal heat transfer equation coupled to a series of 1D crustal (visco-plastic) 

strength envelopes (Figure 1). The rhyolite-MELTS software (Gualda et al. 2012) is used to 

calculate melt fractions for felsic, intermediate, and mafic compositions at different 

temperatures and pressures. The reduction in viscosity (strength reduction from melting) from 

partial melting is calculated using a viscosity model for a solid with fluid-filled pores 

(Schmeling et al., 2012). 

Different example scenarios run for this paper are shown in Table 1. The cool case and 

hot case scenarios were run with and without including latent heat, and the effect of different 

intrusion compositions/rheologies was studied. Also, a scenario with the same rheologies 

between the hot and the cool case, and a scenario where the rheologies for the intrusions are 

appropriate for the chemistry of the intruding material, were considered. The total simulation 



LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  118 

___________________________________________________________________________ 

time was 50 Ma, and the period of pulsed magmatic activity lasted for 10 Ma. The total input 

volume during this time was approximately 12,000 km3. 

 
Figure 1. Thermal and strength envelope model design. (a) The scale of the profile is 150 km 

by 400 km, and temperatures reach from 0 °C to 1300 °C from the surface of the model to the 

base of the model. The small rectangles are the approximate positions of the magma chambers 

that are placed periodically in the model. (b) The initial geotherm is the red curve and the initial 

strength envelope is the blue curve. The strength of the crust is determined by the smallest 

amount of differential stress the rock can withstand, and the deformation mechanism by which 

this deformation happens is either frictional plastic (brittle behaviour) or viscous (ductile 

behaviour). Crust deforms in the linear portions of the strength envelope by frictional plastic 

deformation mechanism and curved portions deform by viscous deformation mechanism. The 

rheologies used in the flow law for viscous deformation are wet quartzite, wet granulite, and 

wet olivine, for the upper crust, the lower crust, and the mantle respectively. 

 

 

Table 1. Parameters for the intrusions for different magmatic scenarios. Cool case intrusions 

have compositions with lower melting temperatures, initial temperatures, and melt fractions 

compared to the Hot case intrusions. Both Cool case and the Hot case are run with and without 

latent heat. 

Group Depth [km] Composition T [°C] Melt [%] 

Cool Case 

10 Wet Felsic 750 30 

25 Wet Intermediate 772 35 

45 Dry Basalt 1250 40 

Hot Case 

10 Wet Basalt 960 40 

20 Wet Basalt 1035 50 

45 Dry Basalt 1278 60 

a 

b 
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3. Results 

The temperature development during the first 10 Ma increases rapidly, after which the crust 

starts to cool (Figure 3, c). The largest strength reduction corresponds to the peak mean crustal 

temperatures (Figure 3, d). At the time of peak crustal strength decrease, the region within 15–

20 km of the magma reservoirs can have strength decreases up to 50–100 %. 

The pulsed magmatism in the first 10 Ma of the simulations reduces crustal strength by 

30–40%, followed by a gradual increase in strength as the intrusions cool (Figure 2, c). The 

rheologies in these runs between the hot and the cool cases were kept the same. The peak 

strength reduction in the cool case runs with and without latent heat are almost the same, 

because the intrusions are not hot enough to melt the country rock. The latent heat run for the 

hot cases show a larger difference in strength reduction, since the intruding material can melt 

the surrounding rock. This melting and crystallization keep the crustal temperatures higher for 

a longer time. The peak strength decrease for the cold case runs are approximately 33% and for 

the hot case runs 37–40%. 

The increase in crustal temperatures and the corresponding integrated strength reduction 

is initially much higher when hot mafic material intrudes a more felsic crust, but crustal strength 

may actually increase once the intrusions cool (Figure 2, b). Because mafic magmas are 

rheologically stronger than the country rock when cooled to the same temperature, the 

integrated crustal strength can increase once the intrusions cool. Conversely, in cases where 

felsic magma, with high heat production and a weak rheology, intrudes a rheologically stronger 

crust, the long-term crustal strength decrease can be larger after the magmatic activity has 

ceased, compared to the case with hotter basaltic intrusions. 

 

4. Conclusions 

Based on our experiments, we draw the following conclusions: 

 The reduction in integrated strength at the peak of crustal temperatures can be even 30–

40 % depending on the composition and temperature of the intrusions. The strength 

reduction around the intrusions (15–20 km) can be 50–100 % 

 Mafic intrusions can decrease crustal strength significantly because of their higher 

intruding temperatures. It is possible however that these intrusions will ultimately 

increase crustal strength due to changes in the crustal bulk composition when the 

materials have cooled down. 

 If intrusion temperatures are much higher than the solidus temperatures of the 

surrounding rocks, latent heat can keep crustal temperatures high for a long time. This 

effect is negligible however, if the intrusion temperatures are low or if the country rock 

solidus temperatures are high. 
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Figure 2. (a) Change in average crustal temperature as a function of time for the hot and cool 

magmatic scenarios. (b) Crustal strength reduction at the time of the peak crustal temperatures, 

which corresponds to 10 Ma. The strength reduction at 15–20 km distance is over 50 %. Close 

to the intrusions the strength decrease is close to 100 %. (c) Integrated crustal strength decreases 

as a function of time using same rheologies for cool and hot intrusions. Crustal melting is not 

significant for the cooler intrusions, but the latent heat and no latent heat cases for the hot 

intrusions show a difference. As the country rock melts, the temperatures remain higher for a 

longer time, which causes a larger drop in integrated crustal strength. (d) Integrated crustal 

strength decrease using different rock strengths depending on the compositions of the 

intrusions. Felsic and intermediate intrusions are weaker than mafic intrusions. Here the cooler 

intrusions cause a larger drop in integrated crustal strength compared to the mafic intrusions, 

after the magma reservoirs start to cool down.  
 

 

References: 
Gualda, G.A.R., Ghiorso, M.S., Lemons R.V., Carley T.L., 2012. Rhyolite-MELTS: A modified calibration of 

MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53, 875-890.  
Schmeling, H., Kruse, J.P., Richard, G., 2012. Effective shear and bulk viscosity of partially molten rock based on 

elastic moduli theory of a fluid filled poroelastic medium. Geophysical Journal International, 190, 1571-

1578. 

 

 

d 

a 

c 

b 



LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  121 

___________________________________________________________________________ 

 

 

A network to study the induced seismicity related to the Otaniemi 

deep geothermal power plant 

 
A.E. Rintamäki1, G. Hillers1, T.A.T. Vuorinen1, K. Galvin1, J. Keskinen1, T.-C. Lin1, T. 

Luhta1, T. Oksanen1, J. Pownall1, P. Seipäjärvi1, G. Taylor1, C. Tsarsitalidou1, A. Voutilainen1 

and D. Whipp1 
 

1Institute of Seismology, University of Helsinki, PL 68 (Pietari Kalmin katu 5), 00014 Helsingin yliopisto 
E-mail: annukka.rintamaki@helsinki.fi 

 
The development of a geothermal power plant at the border between Espoo and Helsinki resulted in  high levels 

of induced seismicity in 2018 and 2020. The induced seismicity associated with the two stimulations were 

monitored by seismic networks of more than 100 permanent and short-term instruments. The measurements 

yielded two two high quality data sets that are suitable for a wide range of analysis techniques and allow detailed 

characterization of subsurface processes related to geothermal operations. 

 

Keywords: induced seismicity, deep geothermal energy, seismology, structural geology, 
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1. Introduction 

The risk of induced seismicity is an integral part of deep geothermal heat extraction. Pore 

pressure changes, thermal contraction and chemical reactions can induce earthquakes when 

fluids are circulated trough fractures or pipes at depth of several kilometers in the Earth’s crust 

(e.g. Majer et al. 2007). The most apparent risk is related to geothermal power plants using the 

enhanced geothermal system (EGS) technology, where the permeability of a hot rock volume 

is increased in a reservoir stimulation by injecting pressurised fluids to open a fracture network. 

This increases the efficiency of heat extraction. 

A deep geothermal power plant in Otaniemi can be considered a pilot project in many 

ways. It is the first geothermal power plant in Fennoscandia to use the EGS technology, and  

the geothermal wells are the deepest in the world (Ader at al. 2019). Production at the Otaniemi 

power plant is scheduled to start in 2021. Earlier stages of the power plant development include 

two reservoir stimulations in 2018 and 2020. The two stimulation induced tens of thousands of 

small earthquakes combined (Kwiatek et al. 2019, Hillers et al. 2020, Veikkolainen et al. 2020). 

Both stimulations were monitored by the Institute of Seismology (ISUH) and the operating 

company St1 Deep Heat Oy in parallel, and there are two high-resolution seismic data sets. 

EGS stimulations are scientific natural earthquake laboratories on the intermediate scale 

between rock laboratories and in-situ tectonic deformation regions. The Otaniemi data sets 

allow us to study how the pressure, rate and volume of injected fluid and the ambient geological 

conditions of the Fennoscandian shield affect the properties of induced seismicity. In-depth 

understanding of the physical processes that induce earthquakes can help improve monitoring 

of the seismic risk related to deep geothermal power plants. The significance of induced 

seismicity may increase in the near future as several geothermal systems are currently being 

planned throughout the Fennoscandian shield, e.g. in Tampere and Turku, and the Otaniemi 

geothermal power plant will probably keep producing small earthquakes during its anticipated 

30 to 40 year run time.  
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2. Stimulations, monitoring 

networks and induced seismicity 

data sets 

The first stimulation of the Otaniemi 

power plant in June–July 2018 lasted 

49 days and entailed the injection of 

over 18 million litres of tap water into 

an open section at the bottom of the 

first ~6 km well (Kwiatek et al. 2019). 

The seismic response was monitored 

by the operator with 24 borehole 

seismometers and in parallel by the 

ISUH with eight permanent and 100 

short-period instruments (Figure 1a). 

The short-period network was arranged 

as six 4–25 seismometer arrays and 10 

single stations mostly within a 6 km 

radius of the power plant. 

Using near-real-time data of the 

seismic response the operator was able 

to adapt the pumping parameters to 

allow energy stored in the reservoir to 

dissipate. This approach helped limit 

the magnitude of induced earthquakes 

below local magnitude (ML) 2.1 set as 

an upper limit in the environmental 

permit (Ader et al. 2019, Kwiatek et al. 

2019). However, thousands of 

earthquakes up to ML 1.8 were induced 

(Kwiatek et al. 2019, Hillers et al. 

2020). 

The second geothermal well was 

finished during the spring of 2020 and 

the second stimulation was conducted 

6–24 May 2020 (Veikkolainen et al. 

2020). The second stimulation was 

monitored with a dense network of 23 

permanent and semi-permanent 

seismometers operated by the ISUH 

and St1, and 116 short-period seismometers deployed by the ISUH (Figure 1b). Our aim was 

to build on and improve the design of the 2018 short-period network. The network aperture was 

increased to ~23 km to increase the resolution of seismic source inversion. The seismometers 

were arranged as 19 arrays with 3–17 seismometers each to increase the signal-to-noise ratio 

around the edges of the network. 83 induced earthquakes up to ML 1.2 were detected in January–

September 2020 in ISUH routine analysis using data from 10 of the operator’s borehole 

seismometers and 11 ISUH permanent stations (Veikkolainen et al. 2020). 

 

Figure 1. Comparison of the 2018 (a) and 2020 (b) 

seismic networks around the Otaniemi power plant. 

The network aperture and the number of arrays was 

increased significantly from 2018 to 2020. The 

circles with 5 km, 10 km and 20 km radii are centred 

around the Otaniemi power plant. Projections of the 

geothermal wells are plotted as a dark grey and 

lighter grey line originating in Otaniemi. 
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3. Initial results 

The 2018 and 2020 measurements produced high-quality data sets that are suitable for 

various types of analyses techniques. First results of the Otaniemi 2018 induced seismicity 

distribution display three separate, dense clusters that are elongated parallel to the maximum 

principal stress axis (Kwiatek et al. 2019, Hillers et al. 2020). A deviation from the Gutenberg-

Richter distribution was observed above ML 1.5 indicating an absence of large enough 

structures in the stimulated volume to facilitate a larger earthquake (Ader et al. 2019, Kwiatek 

et al. 2020). Further analysis of the ISUH data sets is expected to reveal more details about the 

spatial, temporal and magnitude distribution of the seismicity and the distribution of seismic 

risk in Otaniemi. 

Our goal is to use the Otaniemi induced seismicity data and surface geological 

background knowledge to investigate the applicability of the available knowledge to 

understanding geothermal reservoirs in the Fennoscandian shield at 6–8 km depth. To 

investigate seismic wave interactions with local scale structures, we conducted  detailed field 

mapping of brittle and brittle-ductile structures in Elfvik, ~2 km north of the injection site, 

where an array of seismometers was located in both 2018 and 2020. 

Seismic waveforms excited by a MW 4.1 mining induced earthquake in Kiruna in ~1000 

km distance on 18 May 2020 recorded at some of the 2019–2020 short term stations are shown 

in Figure 2. High signal-to-noise ratio (SNR) waveforms result from quality seismometer 

installations on outcropping bedrock. Installations in loose sediments or insufficient coupling 

result in noisy waveforms. The data 

management of the 2019–2020 measurement 

campaign led to overall very few acquisition 

gaps during the simulation. The data set is 

also quite complete some months before and 

after the stimulation, as indicated  by the data 

availability plot of the 70 short term 

instruments (Figure 3).  

Hillers et al. (2020) inverted 

earthquake source mechanisms of fourteen 

large events from the 2018 data set using the 

software package Focmec (Snoke, 2003) that  

finds double-couple focal mechanisms based 

on observed P- and S-wave velocities and 

amplitude ratios. This first analysis revealed 

dominant thrust faulting mechanisms.  

Further analysis of ~150 events with Grond, 

a probabilistic moment tensor inversion tool 

(Heimann et al., 2018) yields compatible 

results and confirms an overwhelming 

dominance of the reverse mechanisms with a 

few exceptions of strike-slip events (Figure 

4). 

 

7. Conclusions 

Two highlight quality and versatile data sets 

of induced seismicity have been collected in 

2018 and 2019–2020. These data sets can be 

used to analyse features of induced seismicity 

Figure 2. Vertical component waveforms of the 

Kiruna MW 4.1 mining induced earthquake on 

selected short-period seismometers. Waveforms 

demonstrate excellent data quality in most of 

the stations. Installations in loose sediments 

(e.g. EV52) produce noisy waveforms. 
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in the Fennoscandian shield. The versatility of the data 

sets allows the use of several different kinds of analysis 

techniques for a comprehensive description of subsurface 

processes and detailed features of the seismicity. 
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Figure 4. Source mechanisms of three selected ML 

induced events from the 2018 dataset. Double-

couple solutions inverted using polarity picking and 

Focmec (Hillers et al., 2020) are shown on the left  

and full moment tensor solutions and their 

decompositions of the same selected events inverted 

using Grond  are shown on the right. 

Figure 3. Data availability of 70 

DATACUBE3  seismometers of the 

2019-2020 network deployment. 
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Migmatitic granites are common in the Svecofennian bedrock of southern Finland. We have studied the 
southernmost granite-migmatite belt in Finland and found that the granites there differ from the other Svecofennian 

granites. This is important for a better understanding of the processes that took place during the Svecofennian 

orogeny. 
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1. Geological overview of the southern Svecofennian domain 

The bedrock in southern Finland consist of east-west trending zones that formed in varying 

metamorphic conditions during the 1900-1800 Ma Svecofennian orogeny. Partial melting 

during the orogeny resulted in belts of migmatite and leucogranite. Studies of leucogranite 

plutons in the Uusimaa belt (e.g., Kurhila et al. 2011) and the link between granites and 

migmatites in the Turku area (Väisänen et al. 2002; Johannes et al. 2003) have improved our 

understanding of partial melting during the ca 1830-1810 Ma metamorphic peak. 

The southernmost Svecofennian granite-migmatite belt only outcrops in the southern 

archipelago of Ingå, Raseborg, Hanko and Kimitoön municipalities. Its connection to the rest 

of the Svecofennian domain has not been extensively investigated, although Edelman and 

Jaanus-Järkkälä (1983) proposed that a former subduction zone separates the southern 

archipelago of Finland from the rest of the Svecofennian domain. The presence of E-W and 

NE-SW shear zones, including the large Barösund shear zone (Vehkamäki, 2019) and many 

smaller shear zones (Nikkilä et al. 2021) shows that large crustal movements have taken place, 

and may indicate that the area is a distinct unit. As the southernmost directly observable part of 

the Svecofennian domain, the granite-migmatite belt may contain evidence of processes that 

occurred closer to the plate margin and, thus, contribute to a more detailed picture of the 

Svecofennian orogeny. 

In this study, we describe the mineralogical and geochemical composition and radiometric 

age data of the different granitoid rocks that occur in the southernmost Svecofennian granite-

migmatite belt. We also present geochemical and geochronological data from some leucosomes 

in the area to compare them to the granites, but do not focus on partial melting or migmatites 

in this study. 

 

2. Rock types in the southernmost Svecofennian granite-migmatite belt 

On the mainland and in the inner archipelago of southernmost Finland, the bedrock is 

dominated by migmatised supracrustal rocks of volcanogenic and sedimentary origins, now 

appearing as amphibolites and metapsammites. In addition to partial melting, the supracrustal 

rocks have also been affected by fluids, and K-feldspar megacrysts crystallised in different 

supracrustal layers after the rocks were formed. Some even-grained granodiorites also occur as 

large dikes and small plutons on the Hanko peninsula. In the outer archipelago, migmatised 
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supracrustal rocks and even-grained granodiorites are less common but deformed and 

migmatised feldspar megacryst-bearing granites and leucogranites are abundant. 

 
Figure 1. a) Geochemical rock type classification of the different granitoids in southernmost 

Finland. b) In the B-A plot (Villaseca et al. 1998), the even-grained granodiorites and deformed 

megacryst-bearing granites are low to moderately peraluminous, indicating they may have 

formed through partial melting of metaigneous rocks and possibly greywackes. The position of 

leucosomes and leucogranites suggests that they are partial melting products of the megacryst-

bearing granites. As no rocks plot into the h-P or upper parts of the f-P field, metapelitic rocks 

were not a major contributing source. 

 

3. Deformed and partially melted megacryst-bearing granites 

Among the supracrustal rocks in the archipelago, migmatised feldspar megacryst-bearing 

granites occur as approximately layer-parallel intrusions. To the south, the granite appears to 

form a more extensive area, constituting the main rock type of the southernmost islets, but their 

true extent remains undetermined due to the scarcity of islands. The megacryst-bearing granites 

are deformed, appearing mylonitic close to shear zones. Leucosomes are common, showing that 

the granites were partially melted. We classify the migmatite as a granitic metatexite, because 

the proportion of leucosome is generally low and the megacryst-bearing granite still displays 

some original textures. 

Petrographically, the feldspar megacrysts are the most distinctive feature of the deformed 

granites. The megacrysts are perthitic orthoclase crystals, which have undergone some 

microclinitisation. The matrix consists of quartz, strongly sericitized plagioclase, perthitic 

orthoclase, and some microcline. Biotite is present as a minor phase and appears in two distinct 

types: an unaltered euhedral type, and an altered Ti-rich type that has broken down into ilmenite, 

K-feldspar, and quartz.  

Geochemically, the rocks are granites and granodiorites (Figure 1a), but whether their 

current composition is similar to the original composition is unknown. Partial melting likely 

affected the composition at the melting sites, but we do not know how pervasive the changes 

were in less-melted areas. Fluid activity may also have altered the chemical composition after 

crystallisation, similarly to the fluid-induced changes to the supracrustal rocks in the area.  

U-Pb isotope analyses of zircon from megacryst-bearing granites reveal that most zircons 

crystallised at around 1880 Ma (Figure 2), although a few zircons show a younger age at around 

1825 Ma. We assume that the older age represents the intrusion age and note that it is coeval 
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with or slightly younger than leucosomes in inner archipelago amphibolites, which Bredenberg 

(2019) dated to around 1890 Ma. The younger age corresponds to the partial melting event that 

occurred in the granites during the late stages of the Svecofennian orogeny. 

 

4. Even-grained granodiorites 

Even-grained granodiorites occur as grey-coloured plutons and large dikes cross-cutting the 

supracrustal metatexites on the Hanko peninsula. Apart from the absence of feldspar 

megacrysts, the mineral composition is similar to the megacryst-bearing granites. Geochemical 

similarities are notable as well: the granodiorites are less peraluminous than the megacryst-

bearing granites, but have a similar spread in silica content, so that some of them are more 

accurately granites (Figure 1 a). The low peraluminosity suggests they formed through partial 

melting of metaigneous rocks (Figure 1 b), which is in accordance with the field observation 

that they appear similar to leucosomes in amphibolites. Our even-grained granodiorite sample 

yielded and intercept age of 1875±9 Ma. Thus, the even-grained granodiorites are 

approximately coeval with the megacryst-bearing granites. 

 

5. Leucogranites 

Leucogranites are mainly located offshore to the south and west of Hanko peninsula. They 

commonly contain partly assimilated rafts of the megacryst-bearing granites and supracrustal 

rocks, indicating formation through anatexis of those rocks. Leucogranites located close to 

deformed megacryst-bearing granites are red in colour and contain fewer dark minerals than 

supracrustal-associated leucogranites, which tend to be greyer in colour. Thus, the red 

leucogranites likely formed through anatexis of megacryst-bearing granites, whereas the grey 

leucogranites are a product of partial melting of old supracrustal rocks.  

The leucogranites primarily consist of K-feldspar, plagioclase, and quartz. As in the 

megacryst-bearing granites, microcline has partly replaced orthoclase and plagioclase, and the 

minor phase biotite appears in the same two types. Some of the grey leucogranites contain 

magnetite flecks surrounded by light haloes of quartz and feldspar. As similar flecks are found 

in supracrustal metatexites in the area, they were likely inherited from the supracrustal 

protoliths. Protolith composition also affected the accessory mineral composition: zircon is 

scarce in the red leucogranites, but more common in the grey leucogranites. 

Geochemically, the leucogranites are very similar to the leucosomes we analysed. The 

leucogranite and leucosome peraluminosities in comparison to the granitic metatexite 

(Figure 1 b) support the argument that both leucosomes and leucogranites were partially formed 

through partial melting of the older granite.  

Radiometric dating shows that the leucogranites crystallised during a relatively long time 

between 1850 and 1820 Ma. Ages of leucocratic in-source dikes from granitic and supracrustal 

metatexites overlap with the youngest ages in leucogranites, indicating that the partial melting 

and granite accumulation event was long-lived.  

 

6. Conclusions 

Three distinct granitoids formed in southernmost Finland during the Svecofennian orogeny. The 

oldest granites intruded supracrustal rocks at around 1880 Ma and are now seen as deformed 

potassium feldspar megacryst-bearing granites, or granitic metatexites. An anatectic event in 

the supracrustal rocks occurred at approximately the same time. Plutons and dikes of 

homogeneous even-grained granodiorite that may be a partial melting product of amphibolites 

also crystallised at the same time. 

Another episode of partial melting occurred in the same area later, at around 1850-

1810 Ma. Before this second partial melting event took place, potassium feldspar megacrysts 
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crystallized in the supracrustal rocks that had already produced melt in the earlier partial melting 

event, rendering them more susceptible to melting. The intrusive megacryst-bearing granites 

also partially melted, producing granitic leucosomes poor in mafic minerals. Partial melts from 

all source lithologies accumulated into leucogranites containing varying amounts of the parent 

rocks as partially assimilated remnants. 

 

 
Figure 2. SIMS-analysed U-Pb in zircon ages of leucogranites (1,2,3,7 and 9), in-source 

granitoid dikes (4 and 5.3), granitic metatexite (5.2 and 8), supracrustal metatexite (5.1), and 

even-grained granodiorite (6) in the Hanko-Ekenäs area. The shaded areas represent the 

different phases of Svecofennian magmatism that we have identified in the area. 
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Earth-Space Research Ecosystem (E2S) is a new infrastructure on national infrastructure road map aiming to 

improve space situational awareness. E2S forms on Tähtelä and Metsähovi sites covering measurements from 

ground and atmosphere to near-Earth and deep space. The infrastructure includes continuous observatory-quality 

data for over 100 years as well as cutting-edge instruments and analysis methods for monitoring environmental 

patterns and trends. Basic functions of our high-tech society need to be protected against natural hazards from 

extraterrestrial and terrestrial origins. Improved know-how on GPS disturbances is needed for better guaranteeing 
the safety of our society. This presentation will give details of the infrastructure and propose how FIN-EPOS and 

E2S infrastructures best complement each other and can work together towards safer society. 
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A proportional relationship exists between the translational acceleration and the vertical rotation 

rate induced by horizontally-polarised S-waves. In an homogeneous elastic medium, the 

waveform of SH-waves recorded perpendicular to the propagation direction will differ from 

that of the rotation rate by a factor of 2c, where c is the local phase speed. The propagation 

direction will usually, though not always perfectly, align with the back-azimuth of the seismic 

source. 

 In this study, we apply wavefield gradiometry at several arrays of translational 

seismometers to estimate vertical rotation rates for 204 induced earthquakes that occurred 

during the 2018 stimulation of the Espoo/Helsinki geothermal reservoir (Figure 1). The three 

25- and three 4-station arrays are located at hypocentral distances of 6-9 km, with the events 

varying in magnitude from M0.0 to M1.8, at depths betweeen 4.8 and 6.3 km. Our estimates of 

vertical rotation rates are supported by the very high data quality that provide clean records of 

horizontal displacement variations. The rotation rates vary between 10-7 – 10-9 rad/s, indicating 

that array-derived rotation (ADR) estimates have a similar sensitivity as more specialised 

instruments, such as portable rotational sensors. Compared to horizontal component S-wave 

delay-and-sum beamforming our ADR estimates of earthquake back-azimuth are more 

consistent with the direction of the grat-circle back-azimuth. 

 However, both approaches show site-specific consistent deviations from great-circle 

propagation, indicating heterogeneous velocity structure (Figure 2), with the array-derived 

measurements able to resolve velocity variations over the 100 m aperture of the seismic arrays. 

We hightlight the results at the Elfvik array site that show a remarkable agreement of the ADR 

derived propagation direction pattern and the location and trend of geologically mapped shear 

bands. We measure apparent S-wave speeds of ~6 km/s, consistent with steep incidence angles 

and high propagation velocities in the crystalline rocks of the Fenno-Scandian Shield. The 

reliable measurement of rotation rates as small as 10-9 rad/s obtained from small and micro-

earthquakes suggests that arrays of translational sensors can play an integral role in providing 

observations of rotational motion in weak-motion seismology. Although bespoke six-

component rotational sensors are required to resolve rotational motion around the vertical and 

horizontal axes, the robust estimates of vertical rotational motion demonstrated in this study are 

capable of contributing to better inversions of moment tensors and thus improved source 

mechanism estimates of natural and induced earthquakes. 
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Figure 1. (a) Location of the study area in southern Finland. The coordinates indicate the 

wellhead. (b) Map of the study area. The central black circle marks the wellhead, the attached 

line shows the borehole trajectory between 4.8 and 6.1 km depth, and the white circles are 

epicenters of the analyzed earthquakes. The red flag marks the largest event. Solid black 

rectangles indicate array locations (not to scale). The corresponding station distributions are 

shown in the insets, and the arrows visualize an example rotational motion pattern obtained for 

the largest event. The red circles show the reference station, and the open circles indicate 

missing data for this event. EV, PM, SS, PK, TL, and RS abbreviate the locations Elfvik, 

Pajamäki, Seurasaari, Poliisin kesäkoti, Toppelund, and Rudolf-Steiner school Espoo, 

respectively. (c) Depth cross-section of the borehole trajectory and seismicity. 

 

 

 

Figure 2. The rose diagrams show the station-by-station misfit between the observed 

propagation direction estimated by the rotational method and the event back-azimuth. The black 

line in the rose diagram indicates the mean event back-azimuth of all 204 events at that station. 
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The present study explores a seismic surface wave imaging method based on the correlation of seismic ambient 
noise data recorded by dense seismic arrays. Its resolution power in the case of an elastic multi-layered half-space 

medium is studied using numerical simulations based on the Green’s function solver AXITRA. We show results 

of the first application of the method to data provided by the US Transportable Array (TA).   
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1. Introduction 

Converging surface wave fields create a large-amplitude feature at the origin referred to as focal 

spot. Its properties are governed by local medium properties and have long been used in medical 

imaging approaches such as passive elastography (Catheline et al., 2013). Modern dense 

seismic arrays consisting of many hundreds of sensors now allow the application of noise 

correlation-based focal spot imaging in seismology (Hillers et al., 2016). The high- and low-

frequency resolution limit of the method is governed by the array inter-station distance and the  

aperture of the array, respectively. Since the maximum surface-wave sensitivity depth  is  related 

to the wavelength (0.5λ), in the case of the TA and for periods between 80-300s, the method 

can extend the imaging to the depth range of 150-700 km. Here, we present numerical 

experiments, which investigate the resolution properties of the focal spot method and the 

potential limits of data applications, together with  initial results of the method applied  to the 

TA, a large-N seismic array, for the period of 100s. 

 

2. Numerical Studies 

Focal spot imaging is based on the correlation of diffuse isotropic wavefields.  We perform 

numerical experiments using an equivalent time-reversal approach (Derode et al. 2002) to 

synthesize Rayleigh waves focal spots in an elastic half-space from Green’s functions computed 

with the AXITRA solver (Cotton and Coutant, 1997). This study explores different cases such 

as multi-layered elastic media.  Simulations are performed using a 85x85 grid with an inter-

station spacing of 8m. The Rayleigh wave speed is set as 2 km/s near the surface and increases  

with depth. Time-reversal mirrors are set at the surface at 12 km distance from the origin. 

Example focal spots of the nine vertical (Z), radial (R), and transversal (T) component 

combinations are shown  in Figure 1, left. Results are  fitted for frequencies between 2 and 15 

Hz  to theoretical expressions describing the near-field surface wave Green’s tensor developed 

by Haney et al. (2012) using a non-linear least square methods. An example of this fitting 

process is presented for the components ZZ and ZR in Figure 1, right, which are parametrized 

by the Bessel functions of order zero and one, 
 

φzz∝J0(ωr

cR
) and φZR∝− J 1(ωrcR

), respectively. The distance of the first zero crossing as a 

proxy for the spot size is equal to (3/8)λ and (3/5)λ for the J0 and J1 functions (Abramowitz 
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and Stegun, 1965) and thus allow estimates of the local wavelength  for a specific frequency. 

This allows to reconstruct the dispersion curves for the studied medium. Systematic departures 

from perfect conditions are implemented to test the fidelity of the obtained estimates for 

anisotropic wave field energy and interfering body waves. 

 

 
 

Figure 1. Left: Nine component simulated focal spots obtained in a multi-layered elastic 

medium at 10Hz. Axis are normalized using the theoretical wavelength λ for Rayleigh waves 

in the upper layer. Right: Upper and lower figures show the simulated amplitude distribution 

(blue crosses) for the ZZ and ZR components, respectively, and the perfect match with the 

Bessel-function parametrization (orange crosses). 

 

 

3. Application to seismic data 

Our initial analysis of data from 600 stations located at the west part of the US with inter-station 

distance of 60 km suggests that we can reconstruct experimental Rayleigh-wave focal spots 

between 80 s and 300 s period. The first step in obtaining empirical focal spots is the pre-

processing of the three-component daily noise records for one year (BHZ, BHE, BHN). 

Decimation at 1Hz and deconvolution is applied to single-station data, followed by a bandpass 

filter in the range of (2-330s).  Normalization techniques are applied to 4-h segments, first  

spectral whitening in the range of (2.85-340s)  followed by  time-domain standard-deviation 

clipping and tapering. For each station pair, we compute the cross-correlations between the 

three components (Z, E, N) and then rotate the ZEN to the ZRT system (Lin et al. 2008).  In 

Figure 2, the zero-lag amplitude distribution or focal spot   is plotted for a reference station at 

the origin that acts as the virtual source and all other array stations  are receivers. The near 

circular shape with the center located on the reference station is maintained for the ZZ, ZR and 

RZ components. A first interpretation of these results imply that we can obtain Rayleigh-wave 

phase velocity values to a depth of  200 km. 
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Figure 2. Focal spots at 100s for a reference station. 
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In this article we compare the geochemical characteristics of two different types of orogenic mineralization: the 

Hirvilavanmaa (Au-only) and the Naakenavaara (Cu-Co-Ni-Au) deposits from the Central Lapland Greenstone 

Belt. We use in situ multi- and single collector LA-ICP-MS analytical techniques to study the trace element and 

sulfur isotope characteristics of sulfides and boron isotope composition of tourmaline from these two deposits. 

The trace element and sulfur isotope characteristics of sulfides together with the boron isotope composition of 

tourmaline prove to be effective in discriminating between these two different types of mineralization in the CLGB. 
Trace element contents of pyrite also record multiple mineralizing events in the base metal-rich Naakenavaara 

deposit. 
 

Keywords: orogenic gold, pyrite, trace elements, sulfur isotopes, tourmaline 

 

1. Introduction 

The Paleoproterozoic Central Lapland Greenstone Belt (CLGB) is the largest mafic-volcanic 

dominated province in Finland and one of the most important metallogenic belts in the 

Fennoscandian shield. More than 60 orogenic Au deposits and occurrences have been 

discovered in the CLGB, with most of them being spatially associated with the east-west 

trending Sirkka Shear Zone (SiSZ; Eilu et al. 2007). The SiSZ is a complex shear zone involving 

several parallel faults and fault segments and reaching up to 2 km in width (Patison, 2007). 

Among the orogenic deposits found along the SiSZ, several are also enriched in base metals 

(Cu, Co, Ni) in addition to Au. A second major structure of significance in the CLGB is the 

NNE-trending Kiistala Shear Zone (KiSZ). The KiSZ hosts several Au-only deposits, including 

the Suurikuusikko Au deposit, which is currently the largest Au producer in Europe. In this 

study, we investigate the mineralogical and geochemical characteristics of the Hirvilavanmaa 

and Naakenavaara deposits that are spatially associated with these two major structures and 

represent the two main types of Au mineralization in the CLGB: orogenic Au-only 

mineralization and base metal-rich orogenic Au mineralization. The Hirvilavanmaa Au-only 

deposit is the closest discovered deposit to the intersection of the SiSZ and the KiSZ (Figure 

1). Naakenavaara is situated just 5 km south of the Hirvilavanmaa deposit (Figure 1) and is an 

example of atypical base metal-rich orogenic mineralization.   

In order to understand the hydrothermal processes that led to the different metal 

associations in the Hirvilavanmaa and Naakenavaara deposits we applied in situ multi- and 

single collector LA-ICP-MS analytical techniques to study sulfur isotope and trace element 

characteristics of sulfide minerals and boron isotope characteristics of tourmaline from these 

deposits.  

 

 

 



LITHOSPHERE 2021 Symposium, January 19-20, Virtual meeting  136 

___________________________________________________________________________ 

2. Geological setting 

The CLGB is part of the larger Karasjok-Kuusamo-Lake Onega belt that extends from northern 

Norway to the Russian Karelia (Hanski and Huhma 2005). The CLGB comprises several 

supracrustal formations of volcanic and sedimentary origin that were deposited between 2.44 

Ga and 1.92 Ga (Lahtinen et al. 2005; Köykkä et al. 2019). The supracrustal rocks of the CLGB 

were intruded by 2.44-2.05 Ga mafic-ultramafic intrusive rocks, 1.92-1.88 Ga felsic porphyritic 

rocks, and 1.88-1.80 Ga syn- to post orogenic granitoids (Köykkä et al. 2019). The 

Paleoproterozoic development of the CLGB started with the eruption of intermediate-

composition to felsic volcanic rocks of the Salla Group. The volcanic formations 

 

 
 

Figure 1. Location Map of the CLGB showing the position of the Hirvilavanmaa and 

Naakenavaara deposits. The continuous red line represents the Sirkka Shear Zone (SiSZ), 

whereas the dashed red line represents the Kiistala Shear Zone (KiSZ). Modified after Molnár 

et al. (2018). 

 

of the Salla Group were followed by crustally contaminated komatiites and mafic lavas of the 

Kuusamo Group and by siliciclastic sediments, flood basalts, carbonate rocks, and pelitic 

sediments of the Sodankylä Group. These sedimentary formations were succeeded by fine-

grained sediments, phyllites and black schists of the Savukoski Group. Basaltic volcanic rocks, 

chemical sediments and ophiolitic mantle rocks of the allochtonous Kittilä Suite are in tecnonic 

contact with the volcanosedimentary formations of the previously mentioned groups. 

Uppermost in the stratigraphy are quartzites and conglomerates of the Kumpu Group that lie 

unconformably on top of earlier rocks.  

The CLGB underwent deformation and metamorphism in several stages during the 1.92-

1.77 Ga Svecofennian orogeny (Patison, 2007). The central part of the CLGB that hosts most 

of the discovered Au deposits, was metamorphosed in greenschist facies conditions. 

 

3. Geology and mineralogy of the Hirvilavanmaa and Naakenavaara deposits 

The Hirvilavanmaa Au-only deposit is hosted by altered metakomatiites and mafic 

metavolcanic rocks. Hulkki and Keinänen (2007) recognized a sequence of alteration including 

four major stages: (1) regional hydration that formed talc and chlorite, (2) albitization, (3) 

silicification together with pyritization and (4) carbonatization. The latter two alteration stages 

were closely related to Au mineralization, which is associated with several generations of 

quartz-carbonate-albite veins (Figure 2). Pyrite is the most dominant sulfide with minor 

chalcopyrite also being present.  Accessory minerals include hematite, magnetite, rutile and 
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pyrrhotite. Native gold is present mostly as inclusions and fracture fillings in pyrite (Figure 2) 

and locally in vein quartz and carbonate. The resource estimate for Hirvilavanmaa is 0.11 Mt 

of ore grading at 2.9 ppm Au (Scan Mining 2002). 

The mineralization at Naakenavaara is hosted by altered phyllite, graphite phyllite and 

sericite schists and is characterized by zones with different metal enrichments. Host rocks are 

brecciated by quartz-carbonate-albite veins. Albitization of the host rocks precedes the 

mineralizing events. The most abundant sulfides are chalcopyrite and pyrrhotite followed by 

pyrite; in the Co-rich zones pyrite and pyrrhotite are typically more abundant than chalcopyrite 

(Figure 2). Gersdorfite is present in Ni-rich parts of the deposit. There is no observable 

microscopic gold in the studied samples. No resource estimates have been calculated for 

Naakenavaara. 

 

 
 

Figure 2. Photographs and photomicrographs from mineralized parts of the Hirvilavanmaa and 

Naakenavaara deposits. A) Mineralized drill core sample from Hirvilavanmaa. B) Mineralized 

drill core samples from Naakenavaara. C) Photomicrograph showing a gold inclusion in pyrite 

in a mineralized sample from the Hirvilavanmaa deposit. D) Photomicrograph from a cobalt-

rich part of the Naakenavaara deposit showing pyrite with pyrrhotite and chalcopyrite 

inclusions. 

 

4. Analytical results 

Sulfides from the Hirvilavanmaa deposit show light δ34S values with a median of +1.2 ‰. On 

the other hand, sulfides from Naakenavaara show a significantly heavier δ34S signature with a 

median value of +9.9 ‰ (Figure 3).  
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Figure 3. Results of sulfur isotope analyses from pyrite, pyrrhotite and chalcopyrite from the 

Hirvilavanmaa (A) and Naakenavaara (B) deposits. 

 
At Hirvilavanmaa, tourmaline associated with sulfides in mineralized zones has higher 

δ11B ‰ (median -5.8) compared to tourmaline from barren zones (median -8.5). Tourmaline 

from Naakenavaara shows even lower δ11B ‰ values with a median of -9.4. 

Pyrite trace element characteristics from the two occurrences show notable differences. 

Pyrite from the Au-only Hirvilavanmaa deposit has higher Ni, Cu, Au, V, Te, and Hg 

concentrations whereas pyrite from the polymetallic Naakenavaara occurence is significantly 

more enriched in Co, As, and Se. Furthermore, pyrite from zones with different metal 

enrichments at Naakenavaara have different trace element signatures. Pyrite generations 

distinguished by their Co/Ni ratios also show systematic variation in other trace element 

contents such as Cu, V, Mn, Ag, Te. Bi, Sb, W, and As.  

 
5. Conclusions 

Trace element and sulfur isotope characteristics of sulfides together with boron isotope 

composition of tourmaline prove to be effective in discriminating between these two different 

types of mineralization in the CLGB. Results indicate that fluids of different origins and 

characteristics were responsible for the Au-only and Au-base metal mineralization in the studied 

deposits. Strongly contrasting δ34S ‰ values of sulfides from Hirvilavanmaa and Naakenavaara 

indicate different sources of S. Multiple mineralizing events in the base metal-rich 

Naakenavaara deposit are recorded in trace element characteristics of pyrite, showing similar 

trends to other base metal-rich Au deposits from northern Finland such as the Juomasuo and 

Hangaslampi Au-Co deposits from the Paleoproterozoic Kuusamo belt (Vasilopoulos et al. 

2019).  
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The Central Svecofennian Arc Complex (CSAC) and the Southern Svecofennian Arc Complex (SSAC) show 

different ages of peak metamorphism: ~1.88 Ga in the CSAC and ~1.83 Ga in the SSAC. In the present project we 

study the age of the metamorphism in SW Finland. We have collected two samples. Of these the Eurajoki 
leucosome zircons were > 1.92 Ga, i.e.,inherited, but monazites show two populations: ~1.83 Ga and ~1.7 Ga. The 

zircons from the Rauma leucosome yielded two populations: ~1.86 Ga and ~1.83 Ga. The monazites show ages of 

~1.83 Ga and ~1.7 Ga. We interpret that the ~1.86 Ga zircons represent the older metamorphism and the 1.83 Ga 

zircon and monazite group to represent the younger metamorphism. The 1.7 Ga group is unusual and needs further 

investigation. 
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1. Introduction 

At 1.92-1.77 Ga, the present day central and southern Finland was affected by the Svecofennian 

orogeny (Gorbatschev & Bogdanova, 1993; Lahtinen et al., 2005). In Finland, the orogen is 

divided in two inferred terranes: The Central Svecofennian Arc Complex (CSAC) and the 

Southern Svecofennian Arc Complex (SSAC). These are shown in Figure 1. 

 A key difference between these is the age of the peak metamorphism. In the 

southernmost part of the CSAC, the Pirkanmaa belt, the metamorphism peaked at c. 1.88 Ga, 

while in the SSAC the highest metamorphic temperatures were reached at c. 1.83 Ga. This 

difference is shown in Figure 1.  

    It is not known whether the age of peak metamorphism changes sharply or gradually 

across the terrane boundary.  

 We have started a project to determine the age of metamorphism in the CSAC and 

SSAC. We will perform U-Pb zircon and monazite geochronology from leucosomes in 

paragneisses sampled from the Pirkanmaa belt in the north to the Åland archipelago in the south. 

Here we present some of our preliminary results from the Rauma region where we have 

gathered two samples denoted as the Eurajoki leucosome and the Rauma leucosome.   

 

2. Methods 

Zircons and monazites were separated by crushing, panning, heavy liquid, magnetic separating 

and hand picking. Grains were BSE-imaged with the SEM at the Department of Physics and 

Astronomy at the University of Turku. The U-Pb dating was carried out with the TM AttoM 

High Resolution ICP-MS in the Finnish Geosciences Research Laboratory at the Geological 

Survey of Finland, Espoo.  
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Figure 1. A: Simplified geological division of Fennoscandia. B: Simplified geological map of South 

Finland with selected previous U-Pb age determinations indicated by red stars. Sample locations of this 

study are indicated by red circles. Modified from Nironen et al., (2016). CSAC= Central Svecofennian 
Arc Complex, SSAC= Southern Svecofennian Arc Complex, Mz= monazite, Zr= zircon. 

 

 

3. Results 

Eurajoki Leucosome 

 The zircons of the sample show only Archean 2.7-2.6 Ga and Paleoproterozoic 2.1-1.92 

Ga ages. These are therefore interpreted to be inherited.    

 The monazites show two concordant populations. The older one contains six analyses 

and has a concordia and 207Pb/206Pb ages of ~1.83 Ga. The younger population of 13 analyses 

yields a concordia age of ~1.7 Ga with a similar weighted average 207Pb/206Pb age. 

 

Rauma Leucosome  

The zircons yield two distinct populations. The older concordant population consist of 

four grains and has a U-Pb concordia age of ~1.86 Ga with a similar weighted average 
207Pb/206Pb age. The younger age comprises only one analysis and yields a concordia age of 

~1.83 Ga and a similar 207Pb/206Pb age. 

 The monazite ages show two populations. The older one contains 14 analyses and has 

concordia and weighted average 207Pb/206Pb ages of ~1.83 Ga. The younger population 

comprises 11 analyses and yields a concordia age of ~1.7 G with a similar weighted average 
207Pb/206Pb age.  
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4. Discussion 

We have analysed both monazites and zircons from the leucosomes in the migmatitic 

paragneisses. It is assumed that the anatectic melting of water- and aluminium-rich 

metasediments and their subsequent crystallisations occur during the peak temperature.  

Therefore, leucosomes are the best rock type for dating ancient high-T metamorphic events.   

 Zircon is a very robust mineral and has a high closure temperature (Corfu et al., 2003). 

It crystallises readily from the magma but may retain its U-Pb composition during the later 

metamorphism. Not even melting completely destroy zircon and their U-Pb system. This is 

proven by abundant inherited zircon populations that are often present in the Svecofennian 

rocks, including this study. Monazite has a lower closure temperature and recrystallises more 

readily in subsequent metamorphism (Kohn, 2017). This can be seen in the behaviour of the 

two minerals in Manninen (2020), where zircon yielded an age of 1885 Ma and monazite 1800 

Ma. In that case the zircon was inferred to represent the melt formation and the monazite the 

later hydrothermal metamorphic event.   

The oldest age group of ~1.86 Ga was found in zircon from the Rauma leucosome but 

the same age was not found from monazite of the either sample. This age represents the oldest 

metamorphism so far found in S-Finland and it is older than the previous findings (Hölttä et al., 

2020). The ~1.86 Ga. period contains magmatism in the SSAC (Mänttäri et al. 2006; Väisänen 

et al., 2012; Nevalainen et al., 2014). The absence of ~1.86 Ga ages in monazites is most likely 

due to its readiness to recrystallise: the ~1.86 Ga monazites, if they ever existed, have been 

reset by later thermal events. 

 The ~1.83 Ga age is present in zircon from the Rauma leucosome and the Rauma and 

Eurajoki monazites. This age group represents the well-documented 1.83 Ga peak 

metamorphism in the SSAC, which resulted in formation of large volumes of anatectic melts 

(Väisänen & Hölttä 1999; Mouri et al., 2005; Kurhila et al., 2010). The later high T- low P-

metamorphism was not able to destroy all the evidence from an earlier thermal event in the 

zircons, but no older monazites are present in the samples.  

 The ~1.7 Ga concordant age group, present in both Eurajoki and Rauma monazites is 

the most surprising result and the previously published youngest monazite ages from southern 

Finland are much older (Hölttä et al., 2020). The reason for these young monazites remains to 

be solved. 

 The preliminary data does not give a clear answer to the variation of the peak 

metamorphic ages between the CSAC and the SSAC: The ~1.83 Ga age group fits perfectly 

with the known c. 1.83 Ga age for the late-orogenic event in the SSAC and would therefore 

indicate a sharp change in the age of the peak metamorphism. The presence of the ~1.86 Ga 

ages, however, complicates the matter. The nature of the age difference between the two terranes 

depends whether the ~1.86 Ga age group represents the oldest metamorphism in the SSAC or 

the onset of the younger 1.83 Ga metamorphism.            
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This article analyzes the thermal and seismic properties of crust in the Wiborg rapakivi batholith. The area is also 

crossed by BALTIC, KOKKY, and SOFIC seismic profiles. Surface outcrops reveal a high radiogenic heat 

production (3.6 ± 1.2 μWm-3) yet thermal modelling implies that this is limited to the upper crust (0...10 km) which 

is used in our three-layer model to approximate the depth extent of the batholith. The mantle heat flow constraint 

12 ± 3 mWm-2 derived for the entire shield from xenolith data requires that heat production in the middle crust is 

0.5 μWm-3 and in the lower crust (30...41 km) 0.3 μWm-3. Seismicity takes place in distinct near-surface swarms 
within the batholith, mostly in its western part and along the coast of Gulf of Finland. Seismic cutoff depth is likely 

to represent a rheological transition towards a lithology with a higher gabbro-anorthosite concentration. 

 

Keywords: heat flow, heat production, seismicity, rapakivi, crust 

 

1. Introduction 

The 1.65-1.63 Ga Wiborg rapakivi batholith (WRB) is the largest rapakivi area within the 

Fennoscandian shield. It is a product of intraplate anorogenic magmas, which intruded into the 

deeply eroded 1.8-1.95 Ga Svecofennian crust (Rämö and Haapala, 1995). The exceptionally 

strong crustal differentiation in the area is related to the bimodal magmatism, with felsic rocks 

originating from the lower crust and mafic rocks from the mantle. 

The original tectonic interpretation of WRB derives from the BALTIC seismic profile 

crossing the area. It suggests that the rapakivi massif is a plate, about 10 km thick (Janik, 2010). 

The KOKKY (Kokkola-Kymi) profile based on quarry blasts of years 2012-2013 terminates at 

the eastern part of the batholith, although this part is too short to allow an in-depth geological 

interpretation including the determination of Moho depth (Tiira et al. 2020). New information 

of the structure of rapakivi area is being obtained from the SOFIC profile, which runs parallel 

to the south coast of Finland from Turku archipelago to Ylämaa. More than one third of the line, 

120 km, is located on the rapakivi area. 

 

2. Heat production and thermal models 

Altogether 93 outcrop samples of Finnish lithogeochemical data show that WRB has a high 

heat production (3.6 ± 1.2 μWm-3). No data from Russian side are available. Internal variation 

of heat production is little but contrasts to other nearby Finnish areas are sharp (Veikkolainen 

and Kukkonen, 2019). 

Upper crustal heat production is an important parameter in thermal modelling, and 

various techniques have been applied in the calculation of geotherms. In WRB, it is not 

desirable to assume an exponential decrease of heat production by depth (Rybach and Cermák, 

1987) because heat production is more or less dependent on rock type. A layered model with 

each layer representing a mixture of rock types is more useful, as layer boundaries are often 

visible in seismic cross-sections, and the mean heat production within a layer can be adjusted 
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by varying the proportions of different rocks. For thermal conductivity λ, a temperature 

dependence can be assumed from Equation 1: 

 

     (1) 

 

 

Here T is temperature [°C], λ0 (2.9 Wm−1K−1) is thermal conductivity [Wm−1K−1] at the 

reference temperature of 25 °C and b (0.0008 K−1) is a pre-selected empirical parameter, which 

depends on the lithology but is generally considered to be near the value 0.001 in crust. The 

factor c, representing radiative heat transfer, can be considered zero in typical crustal 

temperatures which do not exceed 800 °C (Kukkonen and Peltonen, 1999). Using constant heat 

production H within each layer, but temperature-dependent λ (Equation 1), steady-state 

temperature T at a depth of z can be solved using Equation 2: 

 

    (2) 

 

 
 

Figure 1. Geotherms corresponding to the three-layered model of crust of the rapakivi area. 

Red curve represents the situation with Q0 = 60.3 μWm-3, green curve that with Q0 = 57.3 

μWm-3 and cyan curve that with Q0 = 63.3 μWm-3. Temperature-dependent thermal 

conductivity (Equation 2) and fixed heat production constraints are used for all layers. Dashed 

lines show the depth and temperature range of seismic cutoff depth in Fennoscandia 

(Veikkolainen et al. 2017). 

 

We assume here T0 = 5 °C and q0 ~60 mWm-2. For our purpose, a one-dimensional model in a 

three-layered crust is sufficient. For the upper layer (0...10 km) we can assume a mixture of 

rapakivi granites and gabbro-anorthosites with a very strong granitic dominance. Using H = 3.5 

μWm-3 means that 3.3% of upper crust is gabbro-anorthosites and the rest is rapakivi granites. 

For the middle crust (10...30 km), we use H = 0.5 μWm-3 and for lower crust (30...41 km) H = 

0.3 μWm-3 in line with the increasing content of mafic rocks. 

Variation of surface heat flow between our models is produced to meet the fixed heat 

production constraints and the Moho heat flow, which is bound to be in the xenolith-derived 
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range 9...15 mWm-2 (Kukkonen and Peltonen, 1999). Using these constraints, three models with 

different surface heat flow values are generated (Figure 1). 

The uncertainty over the Moho temperature in our models is ~70 °C, even though the 

surface heat flow variation is only ±3 mWm-2 between models. Although the uncertainty over 

λ0 is also large, fortuitously it only affects the shape of geotherms, rather than heat flow, which 

is controlled by layer thicknesses and heat production within each layer. 

 

3. Seismicity 

Earthquake data in this study originates from the FENCAT catalogue (Ahjos and Uski, 1992; 

updates online), maintained by the Institute of Seismology of the University of Helsinki. 

FENCAT data can be fetched using the online search tool (https://www.seismo.helsinki.fi/EQ-

search/query.php). To find out FENCAT data limited to the Finnish side of WRB, we used the 

1 : 1 000 000 bedrock map of Finland, available for download at the Hakku service of the 

Geological Survey of Finland (https://hakku.gtk.fi). Earthquakes on the Russian side were not 

abundant, and could be assigned to the rapakivi area by using geological maps in literature (e.g. 

Rämö and Haapala, 1995; Karell et al. 2014). 

Earthquakes within WRB are typically very shallow, with depths of 5 km or less. All of 

them have depths within the upper crust in our thermal models. In the last year, they have taken 

place in coastal towns of Kotka (4 events) and Hamina (4 events), but also in Kouvola (2 events) 

and Pyhtää (1 event). Seismicity is swarm-type and the best-studied examples of it derive from 

Anjalankoski (Uski et al. 2006) and Kuusaanlampi (Smedberg et al. 2012) areas of Kouvola. 

Nearly 200 events can be assigned to the same swarm in Kuusaanlampi area in December 2011 

– January 2012. The majority of them was only detected by a temporary local network, not by 

the national network. The strongest earthquakes detected in WRB are related to the 

Kuusaanlampi swarm and they have magnitudes M=3.0 (December 1, 2011) and M=2.9 

(December 22, 2011). On the Russian side of the batholith, a notable swarm has been located 

east of Wyborg. The middle part of the batholith is almost devoid of earthquakes. 

In the first half of June 2019, five earthquakes (0.9 ≤ M ≤ 1.8) took place in Kouvola. 

Thereafter, an array of semi-permanent and temporary seismic stations has been operating in 

the area. Its data are expected to shed further light on active faults in the northwestern part of 

the batholith, in particular the Kuusaanlampi fault. For a map of earthquakes and heat 

production in WRB, see Figure 2. 

 

4. Conclusions 

Our thermal models favor the hypothesis of strong concentration of rapakivi granites in the 

upper crust. The estimated thickness of this layer is in agreement with results from forward ray 

tracing of BALTIC (Janik, 2010), KOKKY (Tiira et al. 2020) and SOFIC (analysis underway) 

profiles. Seismicity takes place where rapakivi granites dominate over rigid intermediate and 

mafic rocks, which are more prominent beneath.  

In WRB, new seismic events often take place in same swarms where previous events have 

been found, because the rapakivi structure is already fractured and less resistant to stress. 

Geotherms suggest that in WRB, seismic cutoff takes place where crustal temperature is less 

than 200 °C. The range of 300-400 °C typically assigned for brittle-ductile transition in granitic 

lithology (Blanpied et al. 1991) does not apply, probably because the interface of granitic and 

gabbro-anorthositic rocks is closer to the surface. 

The Wiborg rapakivi batholith, due to its sufficiently large size and internal homogeneity 

within its seismogenic zone, turns out to be a good natural test environment for swarm-type 

seismicity in Finland and beyond. However, due to the general rarity of seismic events there, a 

longer observation period and the deployment of temporary research networks will be required 

https://www.seismo.helsinki.fi/EQ-search/query.php
https://www.seismo.helsinki.fi/EQ-search/query.php
https://hakku.gtk.fi/
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to understand some features such as the apparent absence of seismicity in the middle part of the 

batholith and the extent of active faults. 

 

 

 
Figure 2. Earthquakes and heat production in the Wiborg rapakivi batholith. Data from the 

Ahvenisto, Onäs and Suomenniemi satellite intrusions are included. Locations of seismic 

stations within the batholith and adjacent areas are also visible. 
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In this contribution, we use thermodynamically constrained geochemical models to study how black shale 

assimilation affected sulfide saturation and norite-hosted Cu-Ni deposit formation in the Duluth Complex (DC), 

Minnesota. These models show in unprecedented detail how progressive assimilation changes the chemical 

composition of the magma leading to earlier and increased sulfide saturation compared to pure fractional 

crystallization. The models indicate that at least half of the S in the wall-rock black shale must partition to the 

assimilated partial melt to form the norite-hosted Cu-Ni deposits. Against the general consensus, sulfide saturation 

seems to occur at temperatures too low for FeS sulfide melt formation, which explains the dominantly low-grade 
disseminated sulfide deposits in the DC. 
 

Keywords: Sulfide saturation, Duluth Complex, Cu-Ni deposit, Magma Chamber Simulator 

 

1. Introduction 

Sulfide saturation is a process which occurs when the sulfur (S) content in a melt exceeds the 

amount that can be dissolved, and as a result, a liquid or solid sulfide phase forms. In addition 

to the absolute S content of the melt, composition and temperature (T) of the silicate melt affect 

the timing and degree of sulfide saturation (Smythe et al. 2017), and hence control the formation 

and grade of base metal (e.g., Cu and Ni) sulfide deposits.  

 In continental settings, mantle-derived magmas are typically sulfide undersaturated at 

the time of intrusion or extrusion. As these magmas cool and crystallize, they eventually reach 

sulfide saturation, and sulfides start to form in cotectic proportions. Such cotectic proportions 

are rarely high enough to form economical sulfide deposits. Accordingly, with few exceptions, 

all the economically important magmatic Cu-Ni deposits worldwide formed as magmas 

assimilated wall-rocks (Lesher, 2019).  

 Assimilation of S-bearing wall-rocks can directly increase the S content of the melt, but 

sulfide saturation can be further intensified by changes in the major element composition of the 

assimilating melt. Until recently, only the compositional effects of assimilating bulk wall-rocks 

or putative partial melts could be tested by simplified chemical mixing models. Consequently, 

the detailed effects of assimilation on sulfide saturation are largely unknown. 

 The Magma Chamber Simulator (MCS) is a thermodynamically constrained modelling 

tool designed especially for fractionally crystallizing (FC) magmas experiencing open system 

processes such as assimilation and/or magmatic recharge (Bohrson et al. 2014, Bohrson et al. 

2020). Heat and mass balance between the magma, wall-rock, and possible recharge magmas 

are accounted for and phase equilibria are modelled accordingly. This provides a sophisticated 

approach for assimilation, where its continuous effect on compositional evolution of the magma 

can be monitored. Both major and trace elements (and isotopes) can be tracked within the 

different reservoirs in the model (Bohrson et al. 2020, Heinonen et al. 2020). Hence, the MCS 
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can provide new detailed insight into how assimilation-fractional crystallization (AFC) lead to 

formation of sulfide deposits.  

 We studied the differences in the silicate melt’s ability to dissolve S during FC and AFC 

using the MCS and the sulfide saturation model of Smythe et al. (2017). Due to the lack of 

thermodynamic data on sulfides, S was modelled with the MCS trace element protocol 

(Heinonen et al. 2020). These models show in detail how assimilation of a progressively melting 

wall-rock effectively reduces the amount of S required for sulfide saturation. This together with 

excess S assimilated from the wall-rock leads to early sulfide saturation and an increased 

amount of sulfide precipitation in the magma.  

 

2. Geological settings 

The Duluth Complex (DC), Minnesota, is a 1.1 Ga composite mafic layered intrusion hosting 

some of the largest known Cu-Ni deposits in the world (Miller et al. 2002, Figure 1). All of the 

deposits are situated at the proximity of the footwall contact of the intrusions (Figure 1). 

Troctolitic cumulates host some 70% of the deposits consisting mostly of disseminated sulfides. 

The remaining 30% of the deposits consist of semi-massive to disseminated sulfides and are 

hosted by noritic rocks as well as footwall rocks and xenoliths. Based on S isotopes, it has been 

estimated that approximately 75% of the S in some of the deposits derived from the adjacent 

Paleoproterozoic Virginia Formation (VF) black shale, which contains 6000 ppm S on average 

(Ripley 1981, Rao and Ripley 1983, Figure 1).  

 

 

  

Figure 1. The geological map showing the Duluth Complex and the adjacent rocks. 

 

3. The MCS and sulfide saturation model results 

In the MCS models, we used composition of a cogenetic basalt from the North Shore Volcanic 

Group (Figure 1) as the parental magma for the DC intrusions. We set the initial oxygen fugacity 

to FMQ -2 and tested different H2O contents (dry to 2.25 H2O) for the parental magma. The 
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modelled cumulate stratigraphies show that the amount of troctolitic cumulates (sensu lato) 

positively correlates with the H2O content of the magma (Figure 2). Comparison with the 

natural cumulate from a DC intrusion (Severson et al. 1996) reveals that the magma must have 

been hydrous (≥ 1 wt.% H2O) to produce the dominantly troctolitic cumulates (Figure 2). 

 The parental melt with 1 wt.% H2O was used for the AFC models. The VF black shale 

(Figure 1) wall-rock was preheated to 600 C and the initial wall-rock magma mass ratio was 

0.5. In this model, norites replace troctolites after assimilation of 20 wt.% (relative to parental 

melt) of wall-rock partial melts (Figure 2). The magma assimilates 38 wt.% of wall-rock partial 

melts in total until the T of the magma is too low for further assimilation. The subsequent FC 

produces first noritic (sensu lato) cumulates before the formation of anorthositic troctolite 

(Figure 2). 

 

 

Figure 2. Natural cumulate stratigraphy (Severson et al. 1996) from the Duluth Complex 

compared with the cumulate stratigraphies produced after 80 wt.% of fractional crystallization 

(FC) in the models with different initial parental melt H2O contents. The cumulate sequence 

(95 wt.% relative to the parental melt) formed in the assimilation fractional crystallization 

(AFC) model for the parental melt with 1 wt.% H2O is shown on the right. 

 

 Sulfide saturation models for the parental melt with 1 wt.% H2O and 800 ppm S 

experiencing FC and AFC are compared to show the effect of assimilation on S content at 

sulfide saturation (SCSS) in the magma. The initial S content in the wall-rock is 6000 ppm. The 

FC model reaches SCSS when 27 wt.% of the melt has crystallized and T is 1145 C. When 

assimilation begins in the AFC model, the SCSS decreases rapidly relative to FC due to 

decreasing FeO and increasing H2O content in the magma (Figure 3). In the model, where S is 

compatible (DS = 100) to the residual wall-rock, the magma reaches SCSS at 13 wt.% solids 

and T of 1140 C (Figure 3). When S is equally compatible to wall-rock residual and 

assimilated partial melt, the SCSS of the magma is reached at 8 wt.% solids and T of 1150 

C (Figure 3). If S is completely incompatible to the residual wall-rock (DS = 0.001), the magma 

reaches SCSS when 5 wt.% of the system has solidified and the T is 1150 C (Figure 3). In 

all cases, the T at SCSS is lower than the solidus of an FeS sulfide melt (1190 C). The 

maximum proportion of black-shale derived S in the magma is 6 wt.% with DS = 100, 74 

wt.% with DS = 1, and 78 wt.% with DS = 0.001.  
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Figure 3. On the left, fractional crystallization (FC) and assimilation fractional crystallization 

(AFC) models for FeO and H2O contents of the Duluth Complex parental magmas with 1 wt.% 

H2O. On the right, S content at sulfide saturation (SCSS) are shown for the same models. The 

partition coefficients for S (DS) are relative to wall-rock residual. 

 

4. Conclusions 

Our models show that the troctolitic cumulates of the DC likely formed by FC of a hydrous 

magma, whereas the formation of the noritic rocks requires >20 wt.% assimilation of partial 

melts from the VF black shale. To meet the isotopic criteria of 75 wt.% black-shale derived S 

in the norite-hosted DC Cu-Ni deposits, at least half (wall-rock DS ≤ 1) of the VF S must 

partition to the assimilated partial melt. In all the models, SCSS is reached at T lower than FeS 

solidus indicating that only minor Cu-rich residual sulfide melt could have formed in the DC 

magmas. Coalescence of solid sulphides is ineffective, which is compatible with the dominantly 

low-grade Cu-Ni deposits. 
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The bedrock of the Salo area in SW Finland is mainly occupied by granitoids. We dated five granitoids and two 

mafic volcanic rocks with single zircon method. The granitoids fall in two age groups, 1.86–1.85 and 1.83–1.82 

Ga. Mafic plutonic rocks occur in both age groups. The volcanic rocks are 1.90 and 1.89 Ga in age. Further, the 

samples display two periods of metamorphic zircon growth at 1.86 and 1.83 Ga, synchronous with   the granitoid 

magmatism. 
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1. Introduction 

The Svecofennian bedrock in the Salo area in SW Finland defines a 30x40 km wide rhomboidal-

shaped map area dominated mainly by plutonic rocks intercalated by minor migmatitic 

paragneisses, mafic volcanic rocks and calcareous gneisses. In the northern part, the granitoids 

are granites, granodiorites and minor quartz diorites, while the southern part is occupied by the 

porphyric Perniö granite (Figure 2). 

 Opposing to the surrounding areas, the Salo area is characterised by gently-dipping 

structures, including common isoclinal recumbent folds within paragneisses and volcanic rocks. 

These folds are intruded by subhorisontal sheets of granitoids (Figure 1; Aho et al. 2014).  

 

 
 

Figure 1. Subhorisontal supracrustal rocks and granitoids along the E18 motor way road cut in 

the Salo area.  

 

  In this project we performed age determinations on different igneous rocks across the 

study area. Some previous zircon results are presented in Penttinen et al. (2016) and Penttinen 

(2019), which are shown in Figure 2. In this contribution we present additional seven zircon 

age determinations. The analyses were performed in the Finnish Geosciences Research 

Laboratory at the Geological Survey of Finland, Espoo, using the LA-MC-ICP-MS method, 

except for the Paimio gabbro and granodiorite samples which were analysed with the LA-SC-

ICP-MS method.  
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Figure 2. Geological map of the Salo area, modified after Bedrock map of Finland, DigiKP and 

Penttinen (2019). Sampling locations indicated: 1) Perniö granite, Pungböle (c. 1.84 Ga; 

Kurhila et al. 2005), 2) Perniö granite, Kistola (c. 1.85 Ga; Kurhila et al. 2010), 3) Muurla 

granite (1.82 Ga; Penttinen 2019) and Muurla gabbro (c. 1.83; Väisänen et al. 2014), 4) 

Hiittenmäki granite (c. 1.86 Ga; Penttinen et al. 2016, Penttinen 2019), 5) Hurtinmäki granite 

(c. 1.85 Ga; Penttinen et al. 2016, Penttinen 2019), 6) Paimio granodiorite and gabbro (this 

study), 7) Ilttula granite (this study) 8) Hurtinmäki mafic volcanic rock (this study), 9) Kruusila 

mafic volcanic rock, Kruusila granite and Kruusila pegmatite (this study). 

 

 

2. Results 

Seven U-Pb zircon age determinations are presented. The sampling locations are shown in 

Figure 2 and the results are summarized in Table 1.  

 

3. Discussion    

The oldest igneous rocks in the Salo area are the two dated volcanic rocks from Hurtinmäki and 

Kruusila, 1.89 and 1.90 Ga, respectively. The latter is the oldest volcanic rock so far discovered 

in Southern Svecofennia (cf. Kara et al. 2018). The plutonic rocks are of two ages, 1.86–1.85 

and 1.83-1.82 Ga. The 1.83-1.82 Ga granites resemble the common migmatising granites in 

southern Finland (e.g. Ehlers et al. 1993, Skyttä & Mänttäri 2008, Kurhila et al. 2010). 

However, the Perniö granite in the southern part of the area seems to be slightly older (Figure 

2). Previously found 1.86–1.85 Ga magmatism in southern Finland has occurred as minor dykes 
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and sills (Väisänen et al. 2012; Nevalainen et al. 2014; Kara et al. 2020). Therefore, the Salo 

area rather resembles the Ljusdal batholith in central Sweden where 1.86 Ga granitoids are 

common (Högdahl et al. 2008).  

 

 

 

Table 1. Overview of the age results of this study. 

 
Sample 
name  

ID/Figure 
2 

Rock type Setting Age (Ga) 

Paimio  
 
 
Paimio 

6 
 
 
6 

Granodiorite 
 
 
Gabbro 
 

Plutonic 
 
Rounded enclaves 
in granodiorite 
 

1.86 Ga 
 
1.86 (core),   
1.83 (rim) 
 

Ilttula 7 Granite Dyke along fold 
axial surface 

1.81  

Hurtinmäki 8 Intermed.-mafic 
volcano-sedim. 
rock 

banded from 2.1 to 1.91 (inherited) 
1.89 major cluster 
1.86 & 1.83 younger 
populations 

Kruusila 9 Mafic volcanic rock layered 1.92 (inherited); 1.90 major 
group  
1.86 & 1.83 younger 
populations 

Kruusila 9 Granite Subhorisontal 
sheet 

1.82 

Kruusila 9 Pegmatite Steeply 
crosscutting dyke 

1.82 

 

 

 A conspicuous feature is the lack of evidence for the 1.88 Ma magmatism in the area, 

which is after all the main crustal growth period in the Svecofennian orogen (e.g. Korsman et 

al. 1999). The rhomboidal shape of the Salo area resembles a pull-apart basin evoking a question 

whether the area originally formed by extension of older Svecofennian orogeny (see the 

orogenic collapse model of Lahtinen et al. 2005 and the retreating subduction zone model of 

Hermansson et al. 2008). 

 Two younger ages (1.86 and 1.83 Ga) found in the older rocks are interpreted to be 

metamorphic. The 1.86 Ga metamorphic age has not previously been found but it is very logical 

regarding the amount of 1.86 Ga granitoids in the area. The 1.83-1.82 Ga metamorphic age is 

comparable to other lateorogenic ages elsewhere in southern Finland (Väisänen et al. 2002, 

Mouri et al. 2005). Both 1.86 and 1.82 Ga metamorphic events also have corresponding 

magmatic events. Both thermal pulses also contain mafic magmatism, exemplified by the 

Paimio gabbro (this study) and the Muurla gabbro (Väisänen et al. 2014). The connection of 

mafic magmatism and metamorphism suggests that the mafic magmatism together with 

radioactive decay (Kukkonen and Lauri 2009) is a possible heat source for high heat flow 

needed for melting.  
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The Southern Andes has been an ideal region to study strain partitioning behavior due to the variable nature of its 

subduction geometry and variations in the structural and mechanical properties of the continental crust. The 

Liquine-Ofqui Fault Zone, located in the central Southern Andes, is characterized by the presence of a set of 

margin-parallel and margin-oblique faults that accommodate oblique plate convergence, and is a region where 

previous analog models have captured this faulting behavior. Here, we use numerical geodynamic models to 

reproduce the results of these analog experiments and expand on them using equivalent models scaled to natural 

dimensions. Our experiments reproduce results similar of the earlier analog models (at both scales) and confirm 

that the displacement field in the LOFZ can be related to a southward decrease in crustal strength. 
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1. Background 
Along the plate margin between the 

subducting Nazca plate and the South 

American plate (Figure 1), the strain 

partitioning behavior varies from north to 

south, while the plate convergence vector 

shows little change. The study area for this 

work, the Liquine-Ofqui Fault Zone (LOFZ) 

(Figure 1), lies between 38⁰S to 46⁰S in the 

Southern Andes around 100 km inland from 

the trench. This region has been characterized 

as an area bounded by margin-parallel strike-

slip faults that creates a forearc sliver, the 

Chiloe block (Herve, 1976). It is also located 

on top of an active volcanic zone, the Southern 

Volcanic Zone (SVZ) (Lopez Escobar et al., 

1995). This area is notably different from the 

Pampean flat-slab segment directly to the 

north of it (between latitude 28⁰ S and 33⁰ S), 

where volcanic activity is absent, and slip 

seems to be accommodated completely by 

oblique subduction (Siame et al., 2005).  

 Seismicity in central LOFZ is spatially 

correlated with NE trending margin-oblique 

faults that are similar to the structure of SC-like 

kinematics described by Hippertt (1999). This 

network of faults encloses sigmoid-shaped 

domains that are less deformed and rotated, which could accommodate regional simple shear 

Figure 4. Plate convergence geometries and 

other key structures including the study area 

Liquine-Ofqui Fault Zone (LOFZ). Adapted 

from Rosenau et al., (2006). 
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(Melnick et al. 2006a; Rosenau et al. 2006; Hernandez-Moreno et al., 2014). The margin-

oblique faults and rhomb-shaped domains have also been captured in analog experiments by 

Cembrano et al. (2005) and Eisermann et al. (2018) and Eisermann et al. (2018) relates the 

change in GPS velocity at the northern end of LOFZ to a decrease in crustal strength southward 

possibly caused by the change in subduction dip angle. 

 

2. Numerical modeling 

This project uses DOUAR (Braun et al. 2008), a numerical geodynamic modelling program, to 

explore the formation of the complex fault system in the LOFZ in relation to strain partitioning 

in the Southern Andes. To test the possibility to reproduce analog modelling results with 

numerical models, we implement the numerical versions of the analog models from Eisermann 

et al. (2018), which we refer to as the MultiBox experiments and equivalent models at the scale 

of the natural system, which we refer to as the NatureBox models. We also create simplified 

models of the LOFZ, the Natural System models, to compare the model displacement field with 

deformation pattern in the area. 

 

3. Results and Conclusions 

Our numerical model results replicate the general findings from MultiBox experiments of 

Eisermann et al. (2018). We observe the formation of NW trending margin-oblique faulting in 

the central deformation zone, which creates rhomb-shaped blocks together with the margin-

parallel faults (Figure 2). More strain is accommodated in the stronger part of the model, where 

the strain prefers to settle on a few larger shear zones, whereas in the weaker part of the model, 

the strain is more distributed and tends to localize on smaller faults. 

In contrast to the MultiBox or NatureBox models, the margin-oblique faults and rhomb-

shaped domains accommodating strain are not present in the Natural System models 

irrespective of a difference in crustal strength along strike. This raises the question about the 

formation of the complex fault system in both the analog models and our MultiBox/NatureBox 

numerical models and suggests factors other than an along-strike strength gradient should be 

tested in the future. 
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In this article we describe the method of generalizing the data of terrestrial gravity survey and satellite gravimetric 

measurements in order to create a generalized digital model of the field for the territory of Republic of the Niger. 

The resulting composite gravity anomalies map was used to estimate the thickness of the Earth's crust based on 

stochastic field models with random sources in the horizontal layer. The resulting map of the Moho border depth 

is compared with the data of the CRUST1 model. 
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1. Introduction 

In the territory of Republic of the Niger and the surrounding countries of West Africa, there 

were virtually no deep seismic soundings aimed at studying the structure of the crust and the 

depth position of the crust-mantle boundary. Generalized data on the structure of the 

lithosphere, obtained from the results of seismological tomography and receiver function 

analysis, for example Begg et al. (2009), Globig et al. (2016), Jessell et al. (2016), Laske et al. 

(2013), Pasyanos et al. (2014), allowed making very approximate models of the structure of the 

earth's crust for the study area. The available data of gravimetric interpretation of satellite 

gravity data are also not highly accurate in determining the depth of the Moho boundary 

Bagherbandi and Sjoberg (2012), Reguzzoni et al. (2013), Tedla et al. (2011). The proposed 

work examines the methods and results of estimates the model thickness of the Earth's crust for 

the territory of the Republic of the Niger in the absence of detail data from deep seismic 

soundings of the crust and weak land gravimetric study. 

The purpose of this article is to compile ground and satellite data of the gravity field 

intended to study the Earth's crust in the conditions of incomplete original geological and 

geophysical information. The task of the subsequent interpretation of the detected gravity 

anomalies is to create an updated pattern of thickness of the Earth's crust of the territory of 

Republic of the Niger, for which to date several significantly different variants of the crust 

structure are known. Gravity data will form the basis for a detailed study of the geological 

structure of the upper crust, as shows in Glaznev et al. (2015), Mints et al. (2020), and the 

identification of the links of its geological features with the location of the main minerals that 

play an important role in the economy of Republic of the Niger. 

 

2. Data 

The regional survey of the gravitational field in the Territory of Republic of the Niger was 

carried out in the mid-sixties by French geophysicists Rechenmann and Louis (1966). The 

survey was carried out on a system of profiles with a link to the system of reference geodesic 

and gravimetric points. In total, more than 14,500 observations were made with the accuracy 

of the field approximately 0.1 mGal. The total error of the survey was no more than 0.5 mGal, 
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which allowed to build a map of gravitational anomalies in the Bouguer reduction for the 

studied territory in a scale of 1000,000. These mapping materials were used by us to create a 

digital model of the anomalous gravitational field of the territory. The data of observations were 

digitized in the ArcGIS system, which allowed to compile a consolidated catalog of 

gravitational field observation points in geographical coordinates. 

Because the main focus of our research is the territory of Republic of the Niger, the most 

reasonable is the use land gravity data and data from gravity model EGM2008, Pavlis et al. 

(2012), for the surrounding territories. This composite synthetic model of the gravity field in 

the Bouguer reduction served as the basis for the tasks of regional gravimetric modelling. The 

digital gravity model was built from a composite synthetic model for a regular network with a 

spatial resolution of 5 km. At the interpolation stage of the consolidated materials of the survey, 

the harmonic averaging of the data was used in the relatively narrow buffer zone of the surveys, 

so that there were no sharp-gradient field jumps at the boundaries of areas with different data 

representation. The gravity field scheme is shown in Figure 1. 

 

 
Figure 1. Scheme of the gravity field in the Bouguer reduction for study area. 

 

3. Method 

The thickness of the Earth's crust was assessed using the autocorrelation functions of the gravity 

field. In a three-dimensional case, for the arbitrary random isotropic distribution of singular 

sources in a horizontal layer with some symmetrical uncorrelated density distribution, the 

expression of the normalized autocorrelation function of the random gravitational field 

generated by such a model is known Glaznev (2003), Glaznev et al. (2014). This expression 

has the form of: 

𝑩𝑵(𝝉, 𝒉,𝑯) =
𝟐𝒉𝑯

𝑯−𝒉
(

𝟏

√𝟒𝒉𝟐+𝝉𝟐
−

𝟏

√𝟒𝑯𝟐+𝝉𝟐
) 

Here h and H are the depth to the upper and lower boundary of the layer, and the τ is the 

correlational function argument for the average circumference of the gravity field. 

To estimate the thickness of the Earth's crust in a sliding window (300 by 300 km), a two-

dimensional autocorrelation function of the gravity field was calculated and compared with the 

theoretical model of the correlation function. An example of this interpretation for one site of 
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the map is presented in Figure 2, which shows the calculated two-dimensional normalized 

autocorrelation function of the field and the actual estimate of the thickness of the earth's crust 

on the criterion of the minimal differences between calculated and theoretical correlation 

functions. Of course, the results of the stochastic interpretation should be considered as an 

appropriate assessment of the depths of the upper and lower boundaries within the accepted 

model. 

 
Figure 2. An example of a stochastic estimates of the thicknesses of the Earth's crust: (a) a two-

dimensional normalized autocorrelation function of the gravity field, calculated in a sliding 

window; (b) a type of cross-section function δ (H) to estimate the depth of the bottom boundary 

of the H layer, at a given size of its upper limit h. 

 

4. Results and discussion 

According to the proposed method, the gravitational field of the research area (with partial exit 

outside the allocated site) for 130 provisions of the sliding window of calculations was 

processed. The shifting position of the sliding window was half its width - 150 km. With the 

relatively isotropic distribution of the field, the calculation of the circumference of the auto-

correlation function, or one-dimensional projection of this function in the direction with a 

minimum correlation radius, allows to obtain meaningful estimates of the depth of the Moho 

boundary within the accepted model. However, in some cases, the calculated two-dimensional 

autocorrelation function demonstrated significant anisotropy of the original gravity field in the 

current window, which does not allow to reliably estimate the depth of the model layer.  

The constructed scheme of the thicknesses of the Earth's crust, compared with the results 

of previous work to determine the thickness of the earth's crust, demonstrates significant 

differences in the models of the crust, especially in the eastern part of the region. The statistical 

analysis of the received estimates of the Earth's crust thickness and the averages elevations 

shows some trend of communication between these parameters, which allows us to conclude a 

partial isostatic compensation for large blocks of the region's crust. The analysis of data on the 

crust thickness and the scheme of surface geological and tectonic elements of the study territory 

allowed to map out the connection between the geodynamic evolution of the crust with the 

position of the Moho boundary. 

 

5. Conclusions 

The synthetic model of the gravitational field in the Bouguer reduction serves as a reliable basis 

for solving the problems of regional gravimetric modeling. The results of the stochastic 

interpretation of the gravity field of the region allowed to obtain estimates of the Earth's crust 

thicknesses of the studied territory within the accepted model of the layer with the random 

distribution of density heterogeneities. Comparison of the received estimates of the crust 

thickness with the data of the model CRUST1 (Figure 3) demonstrates a significant discrepancy 
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of the latters for the study area. The analysis of new data on the Earth's crust thickness allowed 

us to identify the features of the deep structures of the lithosphere blocks identified with large 

elements of the geological and tectonic scheme of the territory of Republic of the Niger. 

 

 
Figure 3. Estimates of the thickness of the earth's crust: (a) the CRUST1 model, Laske et al. 

(2013); (b) our results of the stochastic interpretation of the gravity field. Schemes are given in 

a single color scale. 
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Terrestrial cosmogenic nuclides can be used date to exposed surfaces. The concentration of the nuclides increases 

with exposure time and decreases with depth. In theory, samples from a depth profile can be used to detect also 

earlier exposure and coverage periods such as during and between previous glaciations. We tested this theory using 

artificial samples whose concentrations were calculated with a forward model, and then used an inverse model to 

attempt to detect past glaciation histories. Our results show that it is possible to detect past glaciations if the 

constraints set for the inverse solutions are strict enough (i.e. limited duration of glaciation and small dating 

uncertainty) or when sampling with a depth profile is used. 
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1. Introduction 

Glaciations have shaped landscapes through the history of Earth. Glacial periods have occurred 

frequently, however, from a geological point of view, we often have information only from the 

latest glaciation. The reason is that the glaciers erode the bedrock and can remove the traces left 

by the earlier glaciations (Benn and Evans, 2014). Terrestrial cosmogenic nuclide (TCN) dating 

can be a key to find out more about the past glacial history. The conditions of the past can be 

used to predict events in the future, and that can be beneficial for example in storage of nuclear 

waste. Therefore, we need to know what has happened before.  

 

2. Background 

TCN dating is based on the number of reaction products in minerals caused by the bombardment 

of cosmic rays. Thus, the number of formed isotopes is proportional to the duration of the 

exposure (Dunai, 2010). The most important nuclides in terrestrial applications are 3He, 21Ne, 
22Ne, 10Be, 26Al and 36Cl because of their low occurrence in geological materials and their 

abundance in accessible minerals and rocks (Dunai, 2010). The number of atoms produced also 

depends on other things than the production path such as altitude, magnetic field, vegetation 

and snow coverage (Gosse and Phillips, 2001). The production rate also decreases with depth 

because the cosmic rays are attenuated by the bedrock. The attenuation is caused when the rays 

interact with atoms in rocks and lose their energy (Dunai, 2010). The flux of cosmic rays is not 

constant; it varies both spatially and temporally (Beer et al., 2002). The age determination with 

cosmogenic nuclides usually refers to the dating of either exposure or burial age. To find both 

the exact exposure age and the erosion rate, the measurements must be done at least with two 

nuclides (Dunai, 2010). 

          During the Pleistocene, Finland experienced many glaciation cycles. Johansson et al. 

(2011) presents the most important ones. During the Saalian stage glaciation in the Middle 

Pleistocene (ca. 130 ka) whole Finland had was covered with ice. Later, during the several 

Weichselian glaciations in the Late Pleistocene, the glacial coverage was not as extensive, and 
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as a result Lapland has experienced more glaciations than southern Finland. The most important 

ones in southern Finland are First Mid-Weichselian (ca. 75-60 ka), Second Mid-Weichselian 

(ca. 50-35 ka) and Late Weichselian (ca. 25-10 ka). Southernmost Finland did not experience 

the Second Mid-Weichselian. Although Finland has experienced several glaciations, the 

landscape was shaped particularly by the Late Weichselian glaciation (Ehlers and Gibbard, 

1996). 

 

3. Modelling 

A forward model is used to predict the nuclide concentrations of a depth profile after certain 

exposure history (Figure 1). During an exposure period, the concentration is increasing, but 

production rate attenuates with depth. During the glaciation the glacier prevents the reaction 

between rays and bedrock, so new nuclides are not produced, but there is decay of existing 

nuclides. The forward model is designed to be used with exposure histories that can contain 

several glaciation periods. 

          The inverse model predicts an exposure history based on the nuclide concentrations of a 

sample. It tests which the range of exposure histories that could produce similar concentrations 

within certain limits. If the concentrations are similar to the sample concentrations, the tested 

glaciation history is accepted as one of the possible solutions. 

          A simplified glaciation history (inset in Figure 1) used as a reference has one glaciation 

25 to 10 ka ago and two exposure periods from 35 to 25 ka ago and 10 to 0 ka ago. If the 

reference scenario includes erosion, it is implemented as a removal of surface concentrations at 

the end of the glaciation. We consider several possible glaciation histories, which were selected 

randomly. Each had to contain at least one glaciation and one exposure period, and the 

maximum of exposure periods was set to four. It was also required that the minimum duration 

of a glaciation-exposure period is at least 500 years.  

 

 
Figure 1. 10Be and 26Al concentrations as a function of depth with the glaciation history of 

two exposure periods (inset figure). Total exposure time is 20 ka. The concentration of 26Al is 
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higher than 10Be concentrations, and they both decrease rapidly with depth.  

4. Results 

The simplest tested case was one infinite glaciation. The reference model had the deglaciation 

at 10 ka. The inverse model found the best fit at 10.0 ka. The sampling depth did not affect to 

the best fit.  

          With more complicated cases there does not appear to be a clear pattern. When erosion 

is included, the total exposure time was recovered by the inversion, but the deglaciation could 

not be dated. This applies for samples from the surface as well as below surface. Overall, better 

solutions were found when there were more constraints for the inverse model.  

          The model results show more promise if there were more samples from multiple depths 

(Figure 2). Depth profiling improved the estimation of the amount of erosion and the total 

exposure duration compared a case with only one surface sample. However, the number of 

accepted solutions was low, so the result is a bit uncertain. 

  

 
 

Figure 2. Erosion and total exposure time when there is A. one sample from the surface, B. 

two samples from surface and 2.0 m depth and C. five samples from surface to 4.0 m depth. 

Blue dashed lines are expected values of the parameter. Fewer models are accepted when 

sampling depth is increased. 

 

 

5. Conclusions 

This study aimed to determine whether if terrestrial cosmogenic nuclides could be used to study 

past glacial histories based on the nuclide concentrations. The concentrations were modelled 

with a forward model that took into account the exposure history of the rock and the erosion 
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during the glaciation. Then an inverse model was used to find out possible glaciation histories 

that fit in the artificial samples, which were based on the forward model. The past histories were 

detected if the constraints for the inverse model were strict enough, for example if the ending 

time of the last glaciation was tied. If there were no constraints, the past glaciations could not 

be detected. However, we found that when a depth profile was used in sampling, we were able 

to limit the possible range of accepted models and provide more accurate results than using just 

one sample. In the future the models should be tested together with real samples. 
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