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ABSTRACT 

Definitive endoderm (DE) is the first stage of human pluripotent stem cell (hPSC) differentiation 

into hepatocyte-like cells. Developing human liver cell models for pharmaceutical applications is 

highly demanding. Due to the vast number of existing protocols to generate DE cells from hPSCs, 

we aimed to compare the specificity and efficiency of selected published differentiation conditions. 

We differentiated two hPSC lines (induced PSC and embryonic stem cell) to DE cells on Matrigel 

matrix using growth factors (Activin A and Wnt-3a) and small molecules (sodium butyrate and IDE 

1) in different combinations. By studying dynamic changes during six days in cell morphology and 

the expression of markers for pluripotency, DE, and other germ layer lineages, we found that 

Activin A is essential for DE differentiation, while Wnt-3a and sodium butyrate are dispensable. 

Although sodium butyrate exerted rapid DE differentiation kinetics, it caused massive cell death 

and could not generate sufficient cells for further differentiation and applications. We further 

discover that IDE 1 could not induce DE as reported previously. Hereby, we compared different 

conditions for DE induction and found an effective six day-protocol to obtain DE cells for the 

further differentiation and applications. 

KEYWORDS 
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1 INTRODUCTION 

Differentiation of human pluripotent stem cells (hPSCs), including human embryonic stem cells 

(hESCs) and human induced pluripotent stem cells (hiPSCs), into hepatocyte-like cells in vitro is a 

promising approach to creating a human cell model for drug toxicity screening. Considering the fact 

that obtaining mature hepatocytes remains challenging (Schwartz et al., 2014), there is a necessity 

for detailed study of each step of hPSC differentiation. The purity, maturity, and functionality of 

hepatocyte-like cells highly depend on the efficacy of every step of the differentiation process. The 

first defined cell stage of differentiation is the formation of definitive endoderm (DE) characterized 

by the expression of transcription factors such as SRY-box 17 (SOX17), mix paired-like homeobox 

(MIXL1), hepatocyte nuclear factor 3β (HNF3B, also known as FOXA2) and receptors such as 

chemokine receptor type 4 (CXCR4). The DE contributes cell precursors to many organs including 

the liver, pancreas, thyroid, thymus, digestive tracts, to epithelial lining of the respiratory tracts and 

lungs. The DE stage defines further cell fate, depending, in part, on extracellular conditions. 

Controlled formation of DE in vitro and further hepatic lineage differentiation holds an enormous 

potential for therapeutic and pharmaceutical applications.  

In vertebrates the Nodal (transforming growth factor β (TGFβ)-related ligand) signaling, 

mediated by Mixer homeoproteins, is required for the DE development in a dose-dependent manner 

(Shen, 2007). In this study, we examined the influence of different growth factors and small 

molecules, including Activin A (AA), Wnt-3a, Sodium Butyrate salt (NaB), IDE 1 and their 

combinations during the induction of DE differentiation. AA, similar to Nodal, is a member of the 

TGFβ superfamily which participates in regulation of several biological processes, including cell 

differentiation and proliferation. During normal embryonic development, AA plays an important 

role in endoderm/mesoderm formation and patterning in a concentration dependent manner and has 

been used at high concentration in generation of DE cells from hPSCs (D'Amour et al., 2005). Wnt-

3a is a cysteine-rich glycoprotein and a ligand of Wnt-signaling, which participates in primitive 
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streak cell type formation from ESC (Gadue et al., 2006; Lindsley et al., 2006) and in human 

hepatic endoderm development (Hay et al., 2008a). NaB is a histone deacetylase inhibitor which 

has an anti-proliferative and differentiation-inducing activity in various normal cells (Boffa et al., 

1978; Kruh, 1982) and has been used in differentiation of ESCs to DE cells (Hay et al., 2008b; 

Jiang et al., 2007) and early pancreatic progenitors (Goicoa et al., 2006). IDE 1 is a synthetic small 

cell-permeable molecule that can activate TGFβ signaling. It was shown to promote direct 

differentiation of ESCs into the endodermal lineage and was more potent than AA or Nodal in 

promoting DE induction (Borowiak et al., 2009).  

In the present study, we identified an efficient and robust method for DE cell differentiation from 

hESCs and hiPSCs among four most frequently used protocols.      

 

2 RESULTS 

2.1 Cell morphological changes during differentiation 

We earlier used the two hPSC lines WA07 and iPS(IMR90)-4 in hepatic differentiation studies by 

using M1 media for six days in generation of DE (Kanninen et al., 2016a; Kanninen et al., 2016b). 

We had also tested M5, but due to massive cell death we could not obtain enough DE cells for 

hepatic specification. To find a more effective DE induction method preferably shorter than six 

days and based on small molecules, we performed DE induction in both cell lines with six different 

compositions of differentiation media (Table 1). We purchased NaB from three manufactures to 

find a less toxic one if cell death was caused by chemical impurity. The concentrations of growth 

factors and small molecules used in the present study were chosen from the literature (Borowiak et 

al., 2009; D'Amour et al., 2005; Hay et al., 2008b; Tahamtani et al., 2013; Toivonen et al., 2013). 

Both WA07 and iPS(IMR90)-4 cells displayed typical stem cell morphology during culturing 

before differentiation procedure (Figures 1 and 2). We monitored cell morphology during 

differentiation experiments and observed gradual change of cell shape and reorganization of stem 
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cell colonies to single cells. The speed of morphological changes varied in both cell lines, 

depending on the differentiation media. Figures 1 and 2 show differences at three time points – days 

1, 4, and 6. Treatment of WA07 cells with M1 and M2 led to gradual morphological changes 

starting after day 1 checkpoint: cells in colonies became loose and some cells acquired 

mesenchymal-like morphology (Figure 1). By day 6 the cells not only acquired DE morphology, 

but also grew and proliferated into a monolayer. We noticed that the fastest differentiation started 

upon the treatment with NaB-containing media; however, those cells had very low survival rate. 

After 24 hours of NaB treatment, cell number was decreased at least in half, and on day 6 of 

differentiation an extremely low number of cells survived. Additionally we tested NaB at lower 

concentrations: a) 0.8 mM for priming stage (first 24 hours), followed with 0.4 mM for induction 

(days 1-5); b) 0.5 mM for both priming and induction; c) 0.5 mM at priming stage followed with 

0.1 mM for induction. We did not observe an improved cell survival with lower concentrations of 

NaB (data not shown). Among three studied NaB-containing media, NaB from Millipore showed 

the highest toxicity. After day 4 checkpoint there was the smallest number of attached cells in M3-

treated wells that were not enough for the analysis of gene expression profile. Since WA07 cell line 

showed extremely low survival with this condition, we excluded M3 in the subsequent experiments. 

M6 media based on IDE 1 most likely did not affect cell morphology because no cells with DE 

morphology were observed during the differentiation and cells overgrew and their morphology 

became unclear by the end of the differentiation experiments. To know if IDE 1 at higher 

concentrations can induce DE differentiation, we tested IDE 1 at 250, 500, and 1000 nM but did not 

observe any morphological changes. We treated iPS(IMR90)-4 cells with five different media: M1, 

M2, M4, M5, and M6. Cells exhibited similar morphological changes as seen in WA07 culture with 

the only distinction that more cells survived after treatments with NaB-containing media (Figure 2).  

2.2 Characterization of gene expression profiles in stem cells and their derivatives 
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To understand how treatments with different media conditions affect the DE differentiation, we 

studied gene expression profiles of the hPSCs and their derivatives during differentiation process at 

three time points (same as we observed morphology transformation) by qPCR. We compared gene 

expression levels of specific markers for pluripotency, DE, mesoderm, and ectoderm with those in 

undifferentiated stem cells to show the kinetics of up and downregulations. In WA07-derived DE 

cells, the mRNA expression levels of the pluripotency marker OCT4 (encoding octamer-binding 

protein 4) significantly decreased by day 6 of differentiation in cells treated with all conditions 

comparing with undifferentiated cells (Figure 3a). The cells in M4 did not survive for 6 days. The 

loss of OCT4 indicates the differentiation induced by soluble factors. The expression level of the 

second pluripotency marker we measured, NANOG (encoding Nanog homeobox transcription 

factor), did not significantly decrease in most cases except in the cells in M6 beginning from day 4 

(Figure 3b). Comparing with undifferentiated cells, the mRNA expression level of DE marker 

CER1 (Cerberus 1) increased significantly in most cases from day 4 except the cells in M6 (Figure 

3c). M1 and M5 caused significant increase in CER1 mRNA expression from day 4 to day 6. 

Comparing with undifferentiated cells, the expression level of SOX17 increased in the cells in M2 

from day 1 and in the others from day 4, but it did not change significantly in M6 (Figure 3d). 

Comparing with undifferentiated cells, CXCR4 increased in the cells in M1, M2, M4, and M5 from 

day 4 but not in M6 (Figure 3e). M1 and M5 treatments induced further increase in CXCR4 

expression from day 4 to day 6, whereas M2 treatment caused slight decrease in CXCR4 as well as 

in SOX17. Comparing with undifferentiated cells, HNF3B gene expression was significantly 

induced in the cells in M2 from day 1 and cells in M4 and M5 from day 4 of differentiation (Figure 

3f). M1 also increased HNF3B gene expression to the similar level by day 6 as M2, but the increase 

was not statistically significant. M5 treatment significantly upregulated HNF3B expression from 

day 4 to day 6. HNF4A expression increased mostly on day 4 and day 6 in comparison with day 0, 

except for the cells in M6 which did not cause significant change (Figure 3g). M1 and M5 
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treatments further upregulated HNF4A expression from day 4 to day 6. Expression of hepatocyte 

nuclear factor 6 (HNF6) was unaltered in most conditions except in M6 on day 4 (Figure 3h). The 

level of BRACHYURY mRNA expression peaked on day 1 of differentiation in all the conditions 

except M6, afterwards it decreased to the level similar to that in stem cells (Figure 3i). The 

expression of ectoderm marker SRY-box 1 (SOX1) increased in the cells in M4 and M5 from day 4 

(Figure 1j).  

In iPS(IMR90)-4 cells OCT4 mRNA expression was slightly upregulated in M1, M4, and M5 on 

day 1 and then downregulated in all the conditions from day 4 in comparison with day 0 (Figure 

4a). NANOG gene expression was downregulated in M2 and M6 but was upregulated in other 

conditions (Figure 4b). CER1 mRNA expression was upregulated during the differentiation in all 

the conditions except M6 (Figure 4c). Gene expression level of SOX17 became significantly higher 

from day 1 of differentiation in M2 and from day 4 in M1, M4, and M5 (Figure 4d). CXCR4 (Figure 

4e), HNF3B (Figure 4f), and HNF4A (Figure 4g) mRNA expression significantly increased from 

day 4 in M1, M2, M4, and M5. HNF6 mRNA expression level slightly increased from day 1 in the 

cells in M4 and M5 and from day 4 in M1, but it decreased in M6 (Figure 4h). BRACHYURY 

mRNA expression was first upregulated on day 1 in M1, M2, M4, and M5 and then decreased by 

day 4 (Figure 4i). SOX1 gene expression slightly increased in M5 at all the time points, in M6 on 

day 1, and in M1 and M4 on day 4 (Figure 4j). In addition, we found significant increase in CER1, 

CXCR4, HNF3B, and HNF4A gene expression from day 4 to day 6 in conditions M1, M2, M4, and 

M5. However, SOX17 expression was slightly decreased from day 4 to day 6 in M1 and M5. 

2.3 Analysis of hierarchical cluster plots 

By using hierarchical cluster analysis, we grouped medium conditions in clusters according to their 

influence on gene expression (Figure 5). Hierarchical analyses for both cell lines showed 

similarities between conditions M1 and M2 and between conditions M4 and M5. Condition M6 had 

dissimilarities with both groups. 
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2.4 Characterization of cell markers at the protein level 

After gene expression profile analyses, we concluded that conditions M1 and M2 led to significant 

increase of DE gene markers by day 6 and provided satisfactory cell survivals. We analyzed protein 

expression of pluripotency and DE markers by immunofluorescence staining and further confocal 

microscope and fluorescent microscope imaging (Figures 6 and 7). The majority of DE cells from 

both cell lines lost OCT4 after 6-day treatment with M1 and M2 media conditions (Figures 6a and 

7a). Fluorescent signals for NANOG in both cell lines after differentiation in M1 and M2 decreased, 

but did not disappear completely (Figures 6b and 7b) that is in agreement with qPCR results 

(Figures 3b and 4b). Similar to the upregulation of SOX17 mRNA expression (Figures 3d and 4d), 

SOX17 protein expression was also increased in the cells in both conditions M1 and M2 as 

indicated by bright immunofluorescence (Figure 6 and 7). On the other hand, HNF3B, which 

significantly increased at the mRNA level in both cell lines in M2 and in iPS(IMR90)-4-derived 

cells in M1 (Figures 3f and 4f), showed weak positive immunofluorescence (Figures 6 and 7). The 

expression of HNF4A in the iPS(IMR90)-4-derived cells after treatment with M1 was weaker than 

that in the cells in M2. In WA07-derived cells the brightness of signals was similar for both 

treatment conditions. Alpha fetoprotein (AFP) is a specific hepatic marker and is absent from DE. 

In our experiments all the differentiated cells were AFP-negative.    

        

3 DISCUSSION 

This study presents efficient DE cell formation from hPSCs in vitro using soluble factors in serum-

free condition. Main properties of hiPSCs and hESCs are indefinite proliferation in vitro and the 

ability to differentiate into a large number of cell types in vitro and in vivo. These features are 

maintained by the expression of pluripotent transcription factors, including OCT4 (Nichols et al., 

1998) and NANOG (Chambers et al., 2003; Mitsui et al., 2003). Downregulation of OCT4 was 

accompanied by the loss of pluripotency properties and gain of specialization during the 
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differentiation experiments with current protocols. In most cases we did not observe changes in 

NANOG mRNA expression, but we observed decrease in its protein expression. Considering the 

fact of NANOG expression activation by TGFβ/Activin signaling (Xu et al., 2008), its stable mRNA 

expression during experiments does not indicate differentiation failure. An earlier study reported 

that each pluripotency marker had specific kinetics of downregulation during differentiation into 

three germ layers, OCT4 being lost by day 9 of differentiation whereas NANOG was still detectable 

on day 9 (Ramirez et al., 2011).  

During gastrulation, DE and mesoderm emerge from a common precursor known as 

mesendoderm in the primitive streak via an epithelial-to-mesenchymal transition. In our studies, we 

observed morphological change of hPSCs towards mesenchymal-like cells. Bipotential 

BRACHYURY positive cells can give rise to DE and mesoderm cells (Kubo et al., 2004). 

BRACHYURY is also expressed in mesoderm and controls the organization of mesoderm 

(Wilkinson et al., 1990). We confirmed the transient expression of BRACHYURY on day 1 

indicating the emergence of mesendoderm population, which is in concordance with previous 

research by Hay and co-authors, showing that in the first priming stage of differentiation, cells 

passed through mesendoderm to DE (Hay et al., 2008b). By day 6 of differentiation, the expression 

of BRACHYURY in most cases returned to a similar level to that in stem cells.  

For identification of DE formation efficacy, we checked gene expression dynamics of four 

markers: CER1, SOX17, CXCR4 and HNF3B. CER1 is a DE marker, whose role is to inhibit 

NODAL signaling (Katoh and Katoh, 2006). SOX17 is an important protein for the development of 

DE (Kanai-Azuma et al., 2002) and for further foregut differentiation (Spence et al., 2009). CXCR4 

is expressed in large variety of cell types including DE (McGrath et al., 1999). HNF3B (FOXA2) is 

a transcription factor expressed by the primitive streak and continuously expressed by DE 

progenitors (Ang et al., 1993). It is involved in the development of multiple endoderm-derived 

organ systems such as the liver, pancreas, and lungs. In this study, we found that NaB-containing 
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conditions more effectively upregulated SOX17, CXCR4, and HNF3B mRNA expression than the 

other conditions. The difference is clearly observed in WA07-derived cells. Successful DE 

formation in conditions M1, M2, M4, and M5 was evidenced by the simultaneous upregulation of 

several DE markers. Six-day DE induction in conditions M1, M2, M4, and M5 is more efficient 

than four day-induction in terms of gene expression upregulation of DE markers. Our results show 

that IDE 1 did not lead to DE induction, which is in agreement with an earlier report showing no 

increase in the expression of SOX17, FOXA2, and CXCR4 (Tahamtani et al., 2013). Given the fact 

that pluripotency markers were downregulated, IDE 1 might have activated other lineage 

pathway(s). Downregulation of HNF6 and the absence of DE markers after IDE 1 treatment 

additionally support our hypothesis of non-specific lineage commitment. Further investigation is 

required to identify the exact lineage(s). Parallel downregulation of pluripotency marker and 

simultaneous upregulation of DE markers enable us to conclude the effectiveness of M1, M2, M4, 

and M5 for DE formation. Effective DE differentiation includes morphological modification of 

cells, increased expression of DE gene markers, and decreased pluripotency gene expression. Two 

conditions, M1 and M2, demonstrate similar effects on both hESC and hiPSC differentiation to DE.  

DE gives rise to multiple organs during embryo development. For our research interest, it is 

important to obtain hPSC-derived DE cells that are suitable for further hepatic specialization. 

HNF4A is a liver-enriched transcription factor that controls the expression of many hepatic genes 

(Bolotin et al., 2010). Its upregulation in AA-containing conditions confirms the potential of the 

cells to differentiate to hepatic lineage. We determined the expression of HNF6, which is involved 

in hepatogenesis (Si-Tayeb et al., 2010). The upregulation of HNF6 expression in iPS(IMR90)-4-

derived cells in M1, M4, and M5 may indicate hepatic commitment but needs to be investigated 

further.  

To analyze whether current protocol may lead to ectoderm formation we measured the 

expression of SOX1 in stem cells and derivatives. SOX1 is an ectoderm marker, whose protein 
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expression emerges from 4-6 days of embryoid body formation (Pekkanen-Mattila et al., 2010). A 

slight increase in SOX1 expression was seen in both cell lines treated with NaB-containing media 

and also in iPS(IMR90)-4 cells treated with AA or IDE 1.     

Effective formation of DE cells includes morphological change of cells, increased expression of 

DE markers, and decreased expression of pluripotency genes. Six-day induction protocols are more 

effective in generation of DE cells than four-day protocols. Two conditions, M1 and M2, exhibited 

similar effects on both hESC and hiPSC differentiation. The AA alone condition might serve to 

exclude unwanted WNT-induced neural crest formation (Leung et al., 2016) and at the same time 

appears to be more cost effective. High cell viability and proliferation activity under conditions M1 

and M2 for both cell lines allow for the generation of enough DE cells for further differentiation. 

Two compositions of AA and NaB from two different companies appeared to be similarly effective. 

Due to high cell mortality, which we observed in our experiments, we do not consider NaB as a 

suitable component for obtaining sufficient number of DE cells for downstream analyses and 

applications. 

 

4 MATERIALS AND METHODS 

4.1 Cell lines  

The hESC line WA07 (RRID:CVCL_9772) and hiPSC line iPS(IMR90)-4 (RRID:CVCL_C437) 

were purchased from WiCell research institute Inc (Madison, USA) and cultured on Matrigel (BD 

Biosciences) with daily changes of mTeSR™1 medium (STEMCELL™ Technologies). Subculture 

was performed every 4-5 days using Versene 1:5000 (Invitrogen, 15040033) for cell detachment.  

4.2 Stem cells differentiation to DE 

Two days after passaging, DE induction was performed for six days. RPMI-1640 medium (Gibco, 

31870-025), supplemented with 1x GlutaMAX™ (Gibco, 35050-038) and 1x B-27 (Gibco, 17504-

044) was a base differentiation medium (DM). Six different mixtures of growth factors and/or small 
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molecules in DM were used (Table 1). Condition 1 (M1) contained 100 ng/ml AA (PeproTech, 120-

14E) in DM. Condition 2 (M2) contained 100 ng/ml AA and 75 ng/ml Wnt-3a (R&D Systems, 

5036-WN-010) in DM. Condition 3 (M3) was a mixture of 100 ng/ml AA and 1 mM sodium 

butyrate (NaB, Millipore, 19-137) in the first day, followed with 100 ng/ml AA and 0.5 mM NaB 

for the following five days. Condition 4 (M4) contained 100 ng/ml AA and 1 mM sodium butyrate 

(NaB, Abcam, UK) in the first day, followed with 100 ng/ml AA and 0.5 mM NaB for the 

following five days. Condition 5 (M5) contained 100 ng/ml AA and 1 mM sodium butyrate (NaB, 

Sigma Aldrich, B5887) in the first day, followed with 100 ng/ml AA and 0.5 mM NaB for the 

following five days. Condition 6 (M6) represents 100 nM IDE 1 (Tocris, 4015) in DM. 

Differentiation media were renewed daily. Differentiation experiments were performed three times 

and analyzed on differentiation days 0, 1, 4, and 6. 

4.3 RNA isolation and cDNA conversion 

At each check point day, cells were lysed using an RLT-buffer (Qiagen). Total RNAs were 

extracted using an RNeasy Mini kit (Qiagen, 74104) according to the instructions of the 

manufacturer. The RNA to cDNA conversion was performed using a High Capacity RNA-to-cDNA 

kit (Applied Biosystems, 4387406).  

4.4 Quantitative PCR (qPCR) and hierarchical clustering analyses 

qPCR reactions of the obtained cDNA samples were carried out on a StepOnePlus Real-Time PCR 

System (Applied Biosystems) using a Fast SYBR Green Master Mix (Applied Biosystems, 

4385612) or TaqMan Universal Master Mix II (Applied Biosystems, 4440038). Ribosomal protein, 

large, P0 (RPLP0) was used as a housekeeping gene. All the used primers and TaqMan Gene 

Expression Assay mixes are listed in Table 2. All primers were designed by Primer Express v2.0 

software (Applied Biosystems) (Kanninen et al., 2016a), except the primers for OCT4 (Yu et al., 

2007) and HNF3B (D'Amour et al., 2005), and they were synthesized by Oligomer Oy (Helsinki, 

Finland). The relative quantification of each target gene in comparison with the housekeeping gene 
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was made by a standard curve method based on a published mathematical model (Pfaffl, 2001). The 

relative gene expression was calculated with reference to the undifferentiated hPSCs on day 0. 

In order to investigate the gene expression dynamics under different differentiations conditions, 

we performed a hierarchical clustering of the conditions using a complete agglomeration method 

with Euclidean distance measure using the heatmap.2 function in R package “gplots”.  

4.5 Immunofluorescent staining 

Cell culturing for immunostaining was performed in either 8-well Lab-Tek® Chamber Slide™ 

systems (Nunc, 177445) or black 96-well µ-plates (ibidi, 89626). The duration of differentiation 

experiments was six days. The cells were fixed with 4% paraformaldehyde for 10 minutes and then 

permeabilized with either 0.1% Triton X-100 or 0.5% Saponin for 10 minutes, followed with 

blocking by 10% normal goat or donkey serum (Millipore) for one hour. Then the cells were stained 

with the primary antibodies (Table 3). Negative controls included omission of the primary 

antibodies and staining with nonimmunized normal rabbit IgG (Peprotech 500-P00), goat IgG 

(Santa Cruz Biotechnology sc-2018), and mouse IgG (Peprotech 500-M00) (Supplementary Figure 

S1). On the following day the cells were stained with the secondary antibody conjugated with Alexa 

Fluor 594 (Invitrogen, 1:400) for one hour. After that, cell nuclei were stained with DAPI (Sigma-

Aldrich, D8417, 12.5 µg/ml in MilliQ water) for two minutes. The cells in Chamber Slides were 

mounted with a ProLong® Gold antifade reagent (Invitrogen, P36934). Samples in 96-well µ-plates 

were filled up with 1xPBS. The protein expression was visualized with two microscopes: a confocal 

microscope Leica TCS SP5II HCS A with aHCX PL APO 20x/0.7 Imm Cor (glycerol) objective 

and fluorescence wide field microscope Leica DM6000B with a 20x/0.7 HC PL APO CS wd=0.59 

objective. 

4.6 Statistical analyses 

Statistical significance was determined by one-way analysis of variance followed by Bonferroni 

posttest (SigmaPlot 11.0, RRID:SCR_003210). Differences of P < 0.05 (*), P < 0.01 (**), and P < 
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0.001 (***) in relative gene expression between differentiated cells and undifferentiated hPSCs on 

day 0 were considered significant (Figures 3-4). For each differentiation condition, differences of P 

< 0.05 (*) and P < 0.001 (***) in relative gene expression of DE and hepatic markers between day 

4 and day 6 were considered significant (Figures 3-4).    
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FIGURE 1 Morphology of WA07 cells and their derivatives on day 1, day 4, and day 6 of 

differentiation. Scale bars = 100 µm. ND: no data. 

FIGURE 2 Morphology of iPS(IMR90)-4 cells and their derivatives on day 1, day 4, and day 6 of 

differentiation. Scale bars = 100 µm. 

FIGURE 3 Relative mRNA expression of the pluripotency (a, b), DE (c-f), hepatic (g), bile duct 

(h), mesendoderm (i), and ectoderm (j) markers in the WA07 cells during the differentiation. The 

mRNA expression was analyzed by real-time qPCR. Relative mRNA expression was normalized to 

the housekeeping gene RPLP0, and fold inductions were calculated with reference to the 

undifferentiated WA07 cells on day 0. N = 3 biological samples. Error bars are SD. * P < 0.05, *** 

P < 0.01, and *** P < 0.001 in comparison with day 0 are shown above bars. * P < 0.05 and *** P 

< 0.001 between day 4 and day 6 are shown above lines. M1-M6 are medium conditions according 

to Table 1. ND: no data. 

FIGURE 4 Relative mRNA expression of the pluripotency (a, b), DE (c-f), hepatic (g), bile duct 

(h), mesendoderm (i), and ectoderm (j) markers in the iPS(IMR90)-4 cells during the 

differentiation. The mRNA expression was analyzed by real-time qPCR. Relative mRNA 

expression was normalized to the housekeeping gene RPLP0, and fold inductions were calculated 

with reference to the undifferentiated iPS(IMR90)-4 cells on day 0. N = 3 biological samples. Error 

bars are SD. * P < 0.05, *** P < 0.01, and *** P < 0.001 in comparison with day 0 are shown 

above bars. *** P < 0.001 between day 4 and day 6 are shown above lines. M1-M6 are medium 

conditions according to Table 1. 

FIGURE 5 Heat map representing gene expression levels and hierarchical clustering of different 

treatments. The values are log2 transformed relative gene expressions. The dendrogram represents 

the distance (dissimilarity) between treatment clusters. The intensity of the red and blue color 

indicates high and low expression levels, respectively. Data analysis was performed with gplots 

package in R (version 3.3.1). 
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FIGURE 6 Immunostaining of the pluripotency, DE, and hepatic markers in the WA07 cells 

differentiated in conditions M1 and M2 for six days. Scale bars = 100 µm.  

FIGURE 7 Immunostaining of the pluripotency, DE, and hepatic markers in the iPS(IMR90)-4 

cells differentiated in conditions M1 and M2 for six days. Scale bars = 100 µm.  

TABLE 1 Medium composition for the DE induction 

TABLE 2 Primers and TaqMan® Gene Expression Assay mixes used in qPCR 

TABLE 3 Antibodies used in immunofluorescent staining  

SUPPORTING INFORMATION 

Supplementary Figure S1 is found online in the supporting information tab for this article. 
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TABLE 1 Medium composition for the DE induction 

Condition DE priming (day 0) medium 

composition 

DE induction (days 1-5) medium 

composition 

M1 DM, 100 ng/ml AA DM, 100 ng/ml AA 

M2 DM, 100 ng/ml AA, 75 ng/ml Wnt-3a DM, 100 ng/ml AA, 75 ng/ml Wnt-3a 

M3 DM, 100 ng/ml AA, 1 mM NaB 

(Millipore) 

DM, 100 ng/ml AA, 0.5 mM NaB (Millipore) 

M4 DM, 100 ng/ml AA, 1 mM NaB (Abcam) DM, 100 ng/ml AA, 0.5 mM NaB (Abcam) 

M5 DM, 100 ng/ml AA, 1 mM NaB (Sigma) DM, 100 ng/ml AA, 0.5 mM NaB (Sigma) 

M6 DM, 100 nM IDE 1  DM, 100 nM IDE 1 

DM: RPMI-1640, 1 x GlutaMAX™, and 1 x B-27 
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TABLE 2 Primers and TaqMan® Gene Expression Assay mixes used in qPCR 

Gene Accession Size (bp) Sequence (5’ to 3’) 

RPLP0 NM_001002.3 

NM_053275.3 

74 F: AATCTCCAGGGGCACCATT 

R: CGCTGGCTCCCACTTTGT 

OCT4 NM_002701.4 

NM_203289.4 

NM_001173531.1 

161 F: CAGTGCCCGAAACCCACAC 

R: GGAGACCCAGCAGCCTCAAA 

NANOG NM_024865.2 80 F: GCAGAAGGCCTCAGCACCTA 

R: GGTTCCCAGTCGGGTTCAC 

HNF3B NM_021784.4 

NM_153675.2 

89 F: GGGAGCGGTGAAGATGGA 

R: TCATGTTGCTCACGGAGGAGTA 

BRACHYURY NM_001270484.1 

NM_003181.3 

118 F: AGAACGGCAGGAGGATGTTTCC 

R: ACGTACTTCCAGCGGTGGTTGT 

Gene TaqMan® Gene Expression Assay ID 

RPLP0 Hs99999902_m1 

CER1 Hs00193796_m1 

SOX17 Hs00751752_s1 

CXCR4 Hs00607978_s1 

HNF4A Hs00230853_m1 

HNF6 Hs00413554_m1 

SOX1 Hs01057642_s1 
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TABLE 3 Antibodies used in immunofluorescent staining 

Antibody Manufacturer RRID Dilution ratio 

rabbit anti-OCT4 Santa Cruz Biotechnology sc-9081 AB_2167703 1:500 

rabbit-anti NANOG Abcam ab21624 AB_446437 1:50 

rabbit anti-HNF4A Sigma-Aldrich HPA004712 AB_1079075 1:91 

goat anti-NANOG R&D Systems AF1997 AB_355097 1:40 

goat anti-SOX17 R&D Systems AF1924 AB_355060 1:50 

goat anti-HNF3B Santa Cruz Biotechnology sc-6554 AB_2262810 1:50 

mouse anti-AFP Sigma-Aldrich A8452 AB_258392 1:500 
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FIGURE 1 Morphology of WA07 cells and their derivatives on day 1, day 4, and day 6 of differentiation. Scale 
bars = 100 µm. ND: no data.  
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FIGURE 2 Morphology of iPS(IMR90)-4 cells and their derivatives on day 1, day 4, and day 6 of 
differentiation. Scale bars = 100 µm.  
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FIGURE 3 Relative mRNA expression of the pluripotency (a, b), DE (c-f), hepatic (g), bile duct (h), 
mesendoderm (i), and ectoderm (j) markers in the WA07 cells during the differentiation. The mRNA 

expression was analyzed by real-time qPCR. Relative mRNA expression was normalized to the housekeeping 

gene RPLP0, and fold inductions were calculated with reference to the undifferentiated WA07 cells on day 0. 
N = 3 biological samples. Error bars are SD. * P < 0.05, *** P < 0.01, and *** P < 0.001 in comparison 

with day 0 are shown above bars. * P < 0.05 and *** P < 0.001 between day 4 and day 6 are shown above 
lines. M1-M6 are medium conditions according to Table 1. ND: no data.  
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FIGURE 4 Relative mRNA expression of the pluripotency (a, b), DE (c-f), hepatic (g), bile duct (h), 
mesendoderm (i), and ectoderm (j) markers in the iPS(IMR90)-4 cells during the differentiation. The mRNA 
expression was analyzed by real-time qPCR. Relative mRNA expression was normalized to the housekeeping 

gene RPLP0, and fold inductions were calculated with reference to the undifferentiated iPS(IMR90)-4 cells on 
day 0. N = 3 biological samples. Error bars are SD. * P < 0.05, *** P < 0.01, and *** P < 0.001 in 

comparison with day 0 are shown above bars. *** P < 0.001 between day 4 and day 6 are shown above 
lines. M1-M6 are medium conditions according to Table 1.  
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FIGURE 5 Heat map representing gene expression levels and hierarchical clustering of different treatments. 
The values are log2 transformed relative gene expressions. The dendrogram represents the distance 

(dissimilarity) between treatment clusters. The intensity of the red and blue color indicates high and low 

expression levels, respectively. Data analysis was performed with gplots package in R (version 3.3.1).  
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FIGURE 6 Immunostaining of the pluripotency, DE, and hepatic markers in the WA07 cells differentiated in 
conditions M1 and M2 for six days. Scale bars = 100 µm.  
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FIGURE 7 Immunostaining of the pluripotency, DE, and hepatic markers in the iPS(IMR90)-4 cells 
differentiated in conditions M1 and M2 for six days. Scale bars = 100 µm.  

 

169x205mm (300 x 300 DPI)  

 

 

Page 31 of 31

John Wiley & Sons, Inc.

Journal of Cellular Physiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


