
Poster: User-space Networking Libraries & Control
Plane Negotiations for Seamless Multi-connectivity

Seppo Hätönen
University of Helsinki

Ashwin Rao
University of Helsinki

Sasu Tarkoma
University of Helsinki

Abstract—Offering seamless connectivity to devices capable of
simultaneously using multiple communication interfaces contin-
ues to be a hard problem. This problem is important for edge
computing because edge services may be available only on a
subset of networks to which the device is capable of connecting to.
We argue that various aspects of this problem can be addressed
by leveraging the current trends of using user space libraries
for networking, and allowing control plane negotiations between
user devices and networks.

Index Terms—Multi-connectivity, Control Plane, user space
networking libraries, Edge Computing.

I. INTRODUCTION

Devices with multiple communication interfaces can be
simultaneously connected to one or more networks. These
networks may offer different capabilities and edge services to
the device. For instance, the cellular network can offer video
streaming services and the Wi-Fi network can offer access to
local edge computing services. However, typically the devices
only allow the usage of a single network for data transfer,
and usually the Wi-Fi has higher priority than cellular due to
different reasons such as monetary, bandwidth or latency [1].
In this context, managing multi-connectivity across different
networks continues to be hard. Specifically, the device needs
to decide which interfaces can be used by flows of an edge
services when multiple interfaces offer connectivity, and this
decision must not break connectivity to other networks and
services used by the device.

Offering seamless connectivity between networks is not
trivial, and it contains multiple facets that need to be ad-
dressed. For example, different networks use different IP
address spaces, a network might offer connectivity only via
a proxy, or the middleboxes in the network may modify the
packet headers [2]. Similarly, edge computing services are
typically only available in limited number of networks. For
instance, edge services hosted on Amazon Wavelength are
available only on specific operator networks [3]. The problem
of offering seamless multi-connectivity therefore requires ad-
dressing sub-problems that span multiple layers of the protocol
stack, while also requiring inputs from the networks to which
the device is connected.

The key sub-problems of this problem include i) seamless
connection establishment and mobility in available networks,
ii) support from multiple protocols, and iii) support for control
plane negotiations. From the user perspective the connection
establishment can be either seamless, i.e. the networking
stack used by the application takes care of connection estab-

lishment, or it can be transparent, i.e. applications have to
explicitly establish new connections. For instance, Multipath
TCP (MPTCP) offers seamless connection establishment and
mobility for TCP [4], while the approach of Hätönen et al. [5]
offers seamless mobility only within a network but is not
limited to any particular protocol. Connection establishment
is protocol specific, and applications are increasingly designed
to be able to exchange data using a variety of protocols. For
instance, an edge service may support MPTCP and QUIC [6]
as possible transport protocols. In this context, the solution
must also determine which of the supported protocols should
be used when communicating with the available services.
This requires control plane negotiations with the network to
determine protocols the network and the edge services support.

As shown in Figure 1, we argue that the problem of offering
seamless connectivity can be addressed by leveraging the
current trends of using user space libraries for networking, and
allowing control plane negotiations between user devices and
networks and services. As detailed in §II, decoupling control
and data plane using user space libraries, allows the host to
offer seamless connection establishment and mobility, support
multiple protocols, and support control plane negotiations. Our
work builds on the insights of the URLSession library [7]
which exemplifies some of the benefits of leveraging user
space libraries for networking.

II. SYSTEM ARCHITECTURE

Overview. As shown in Figure 1(a), our system consists
of two components on the host machine: the host network
controller, and a user space library. Our library decouples the
control and data plane for data exchange making our approach
drastically different from the traditional sockets interface.
It creates a Tx/Rx queue for each data exchange session
involving the application; the application uses these queues
instead of sockets to exchange data. At the same time, the
application can use the control plane API to configure the
data exchange and specify its requirements from the network.
For instance, applications can use this API to specify a) the
interfaces that should be used: prefer Wi-Fi but do not break
connections over cellular, etc.; b) the details for the connection
establishment including the hostname, the supported transport
layer protocols, the security credentials, etc., c) the Quality-of-
Experience (QoE) or Quality-of-Service (QoS) requirements
for the data exchange, and d) the services to be used. The
host network controller manages the networking interfaces
of the host machine, and this module is also responsible

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/401692655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Host

Network
A

pp
lic

at
io

n

U
se

rs
pa

ce
 L

ib
.

D
at

a 
Pl

an
e

Control 
Plane

T
x 

/ R
x

T
x 

/ R
x

Host Network 
Controller

Network 
Controller

So
ft

w
ar

e 
Sw

it
ch

Network

Network 
Controller

Network

Network 
Controller

Control plane
communication

...
P

er
 s

es
si

on
 T

x/
R

x 
qu

eu
es

Data plane
path

N
IC

N
IC

N
IC

vN
IC

vN
IC

vN
IC

Edge 
Service 

Edge 
Service 

(a) System Components. The user space library decouples the control and data plane of
data exchange sessions. It exposes a Tx/Rx queue for each session, and it contains a virtual
NIC for each host NIC. All NICs including the host NICs are connected to a software
switch managed by the host network controller. The host controller aids the control plane
of the library offer seamless connectivity. It also proxies the QoS/QoE requests made to
the control plane of the application library and networks offering connectivity to the host.

User Space Library

Data Plane

L1vNIC vNIC

L3IPv6IPv4

L4+MPTCP
UDP

vNIC ...

...

TCP
QUIC

...
L5+TLS ...

Control and Management
Plane

Co
nn

ec
ti

on
M

an
ag

em
en

t
M

ob
ili

ty
M

an
ag

em
en

t

Q
oS

 / 
Q

oE
M

an
ag

em
en

t

Se
ss

io
n 

St
at

e
M

an
ag

em
en

t

Tx / Rx Tx / Rx Tx / Rx Tx / Rx

Co
nt

ro
l 

Pl
an

e 
AP

I Per session Tx / Rx queues 

L2WiFi LTE ...

(b) User space library for seamless connectivity. The library will consists of modules
for the control plane and data plane. The control plane modules are responsible for
managing the seamless connectivity and QoS/QoE negotiations. The data plane modules
are responsible for exchanging data using the protocols specified by the control plane.
Instead of using sockets, the applications use per-flow Rx/Tx queues for the data exchange,
and a dedicated control plane API to exchange the control plane information.

Fig. 1. System Design. Our system aims to offer seamless connectivity by leveraging recent advances in user space libraries for networking and the ability to
negotiate the application requirements and demands with the networks offering connectivity and edge services.

for negotiating the requirements of the applications with the
controllers of the networks offering connectivity to the host.
Control Plane. Along with a dedicated network controller
in the host machine, we assume that each network offering
connectivity to the host has its own controller. As shown in
Figure 1(a), the host controller uses a dedicated control plane
channel for exchanging the control plane information with
the network controllers. For instance, the controller can use
the MAMS protocol [8], or the work of Rezende et al. [9].
Furthermore, this channel can also be used by the controllers
in the network to inform hosts about network capabilities and
services such as the edge services. As shown in Figure 1(a),
the host controller uses the control plane API to exchange the
control plane information with the user space library. Specifi-
cally, it aids the various control plane activities of the library
such as connection management, mobility management, and
managing the session state. For instance, it aids connection
management by notifying the library when a new interface is
available for the data exchange.
Data plane module in the user space library. As shown
in Figure 1(b), the data plane module is responsible for
performing the data exchange with the remote hosts. It exposes
a Tx/Rx queue for exchanging data for a given session, and it
uses the protocols specified by the application. For instance,
an application may specify that it supports data exchange only
using TLS, MPTCP, and IPv6. Furthermore, it performs this
data exchange using the interfaces made available to the library
by the host network controller and authorized by the control
plane module. For instance, the host network controller may
provide connectivity using multiple interfaces, but the control
plane module may be configured by the application to prefer
a subset of the interfaces.
Example connection to multiple edge services. Typical mo-
bile devices have access to both Wi-Fi and cellular networks.
For example, an edge service A may be available only in
the Wi-Fi network, while another service B may be available

only in the cellular network. Using service B would normally
require disconnecting from Wi-Fi and switching to cellular
network, thus breaking the access to service A.

The application begins by using the control plane API to
query for available edge services in the connected networks.
The application then specifies that it wants to exchange data
with an edge service preferably using Quic or TCP, IPv6, and
any of the possible communication interfaces.

The library takes care of performing the connection estab-
lishment and provides a Tx/Rx queue for the data exchange.
Furthermore, the application can specify the QoE requirements
for the edge service which the host controller can exchange
with the network controllers. Based on these negotiations,
the host controller provides the control plane module of the
application with the list of interfaces that can be used for
exchanging data. When one of the interfaces of the host
machine moves to another network, the host controller updates
the lists of interfaces which can be used. If the new network
can satisfy the application requirements, the user space library
uses it for creating a new connection, and starts using it for the
data exchange after the connection is successfully established.
Note that during the data exchange sessions, the application
continues to exchange data using the Tx/Rx queues.

III. DISCUSSION

Some of the key enablers for this work include networking
namespaces which allow creation of isolated virtual inter-
faces [10], the ability to perform control plane negotiations [8],
[9], and the URLsession library [7]. Furthermore, our work on
seamless flow migration [5] helped us envision the benefits of
using a network controller on the host machines. Some of the
key challenges which we plan to address include the design
of the control plane interface and quantifying the impact of
control plane negotiations on the QoE.



REFERENCES

[1] “Android Help - Connect to Wi-Fi networks on your Android device,”
https://support.google.com/android/answer/907584, [accessed 2020-08-
26].

[2] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is It Still Possible to Extend TCP?” in Proceedings of
IMC, 2011.

[3] “AWS Wavelength,” https://aws.amazon.com/wavelength/, [accessed
2020-08-26].

[4] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications
of the ACM, no. 4, p. 51–57, 2014. [Online]. Available: https:
//doi.org/10.1145/2578901

[5] S. Hätönen, T. Huque, A. Rao, G. Jourjon, V. Gramoli, and S. Tarkoma,
“An SDN Perspective on Multi-connectivity and Seamless Flow Migra-
tion,” IEEE Networking Letters, 2019.

[6] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, “Innovating transport
with quic: Design approaches and research challenges,” IEEE Internet
Computing, vol. 21, no. 2, pp. 72–76, 2017.

[7] Apple Inc., “URLSession - Apple Developer Documentation,”
https://developer.apple.com/documentation/foundation/urlsession,
[accessed 2020-08-26].

[8] S. Kanugovi, F. Baboescu, J. Zhu, J. Mueller, and S. Seo, “Multiple
Access Management Services,” IETF Internet-Draft, Tech. Rep. draft-
kanugovi-intarea-mams-framework-04, May 2019.

[9] P. Rezende, S. Kianpisheh, R. Glitho, and E. Madeira, “An SDN-Based
Framework for Routing Multi-Streams Transport Traffic Over Multipath
Networks,” in Proceedings of ICC, 2019.

[10] P. B. Menage, “Adding Generic Process Containers to the Linux Kernel,”
in Proceedings of the Ottawa Linux Symposium, 2007.


