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Abstract 

Land surface temperature (LST) is affected by surface-atmosphere interaction. Yet, the degree to 

which surface and atmospheric factors impact the magnitude of LST trend is not well established. 

Here, we used surface energy balance, boosted regression tree model, and satellite observation and 

reanalysis data to unravel the effects of surface factors (albedo, sensible heat, latent heat, and ground 

heat) as well as incoming radiation (shortwave and longwave) on LST trends in East Africa (EA). 

Our result showed that 11% of EA was affected by significant (P < 0.05) daytime annual LST trends, 

which exhibited both cooling of –0.19 K year–1 (mainly in South Sudan and Sudan) and warming of 

0.22 K year–1 (mainly in Somalia and Kenya). The nighttime LST trends affected a large part of EA 

(31%) and were dominated by significant warming trend (0.06 K year–1). Influenced by contrasting 

daytime and nighttime LST trends, the diurnal LST range reduced in 15% of EA. The modeling result 

showed that latent heat flux (32%), incoming longwave radiation (30%), and shortwave radiation 

(23%) were stronger in explaining daytime LST trend. The effects of surface factors were stronger in 

both cooling and warming trends, whereas atmospheric factors had stronger control only on surface 

cooling trends. These results indicate the differential control of surface and atmospheric factors on 

warming and cooling trends, highlighting the importance of considering both factors for accurate 

evaluation of the LST trends in the future. 
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1 Introduction 

Land surface temperature trends play a crucial role in the assessment of land-atmosphere interactions 

and climate change. The radiometric land surface temperature (hereinafter LST) is a key parameter 

in the climate system that is modulated by the exchange of heat and water between the land surface 

and the atmosphere from local to global scales (Liang et al., 2013; Yu et al., 2008). LST has been 

identified as a high-priority parameter by the International Geosphere-Biosphere Programme and an 

essential climate variable by Global Climate Observation System (GCOS) of the World 

Meteorological Organization (WMO) (GCOS, 2016).  

The magnitude of LST trend is determined by surface and atmosphere interaction (Jin and Dickinson, 

2010; Schmugge and Becker, 1991). Surface conditions such as vegetation type, cover, and soil 

moisture affect LST by regulating the amount of energy and water exchanged with the atmosphere 

(Peñuelas et al., 2009; Sun and Pinker, 2004; Pielke et al., 1998). Consequently, global environmental 

changes have direct impact on the LST trend through altering the surface vegetation dynamics. Recent 

studies reported greening and browning trends in East Africa and beyond (Forzieri et al., 2017; Zhu 

et al., 2016). While many studies reported CO2 fertilization as the main driver for surface greening 

in tropics (Zhu et al., 2016; Graven et al., 2013), some studies indicated enhanced precipitation in the 

drylands of sub-Saharan Africa (e.g., Brandt et al., 2017). Such vegetation trends in the region can 

have an impact on surface energy balance (Forzieri et al., 2020) and contribute to the LST trend. 

 

Changes in incoming solar radiation and atmospheric longwave radiation directly affect the LST trend 

through their impact on energy supply (Donohoe et al., 2014). As the main source of energy to the 

climate system, incoming solar radiation (SRi) determines the Earth’s energy cycle (Wild et al., 2014; 

Ohmura and Gilgen, 1993). An increase or decrease in SRi directly impacts LST trend by influencing 

energy supply at the Earth’s surface. SRi changes can be induced by aerosol emissions and cloud 

cover dynamics (Pfeifroth, 2018; Wild,  2016; Liepert et al., 1994). Incoming longwave radiation 

(LRi) affects the LST through radiative heating of the earth’s surface. Most of the outgoing longwave 

radiation from the surface is absorbed by the atmosphere and much of this is reradiated to warm the 

earth’s surface. The magnitude of LRi is affected by greenhouse gas concentrations (Donohoe et al., 

2014), cloud cover (Stephens & Webster, 1981), and water vapor (Compo & Sardeshmukh, 2009) in 

the atmosphere.  

Regional or global monitoring of LST trend is mainly feasible using satellite observations due to 

scarcity of in situ observation over a wide geographic area. Spaceborne radiometers that operate in 

the infrared (IR) and microwave (MW) wavelengths can be used for LST trend analysis. LST 

estimates based on IR sensors (e.g., from Moderate Resolution Imaging Spectroradiometer or 

MODIS, Atmospheric Infrared Sounder or AIRS, Along-Track Scanning Radiometer or ATSR, etc.) 

are preferred due to their high radiometric accuracy, sensor stability, and the availability of products 

routinely (Smith et al., 2012; Wan et al., 2004;  Aumann et al., 2019). The main drawback of IR LSTs 

being they are limited to clear-sky conditions.  

In East Africa, where ground observations are scarce and the susceptibility to environmental changes 

are high (due to strong dependency of the economy and livelihood on the climate), satellite 

observations present a good opportunity to study LST trends. Previous studies of LST trends in EA 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD027418#jgrd54393-bib-0059
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD027418#jgrd54393-bib-0058
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD027418#jgrd54393-bib-0020
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or continental Africa are either: a) focused on nighttime LST trends and based on statistical analysis 

of sample points extracted from MODIS (Me-ead  and Mc-Neil, 2019); b) inferred from global studies 

which are focused on a diurnal cycle and variabilities than trends (e.g., Sharifnezhadazizi, 2019; 

Ruzmaikin et al., 2017);  c) local studies at watershed level in Tanzania (e.g., Muro et al., 2017) or 

d) urban-focused studies in Botswana (e.g., Akinyemi et al., 2020). Hence, comprehensive 

assessments of temporal and spatially explicitly LST trends (daytime, nighttime, and diurnal range) 

across East African landscape are currently lacking.  

Furthermore, previous studies were largely focused on LST trend and the relative impact of 

underlying drivers to the LST trend remain unclear. Consequently, it is unknown to what extent the 

magnitude of LST trend is caused by changes in the land surface properties (associated with recent 

greening and browning trend), incoming shortwave radiation trends (related to aerosol and cloud 

cover dynamics), and incoming longwave radiation trends (e.g., due to changes in greenhouse gas 

concentration or cloud cover). Thus, it is critical to unravel whether land and atmospheric changes 

are mitigating or amplifying surface-warming through their influence on LST. 

The objective of this study is to investigate LST trend and its drivers in East Africa from 2003 to 

2018. In more detail, we examine: (1) annual and seasonal (December—February and March–May) 

trends of daytime, nighttime, and diurnal LST range, and 2) the impacts of surface properties (inferred 

from trends of latent heat flux, sensible heat flux, and albedo) as well as incoming (shortwave and 

longwave) radiation on annual daytime LST trend. 

 

2 Study area 

The study covers the East Africa (EA) region, particularly the Greater Horn of Africa (GHA) that 

comprises 11 countries: Burundi, Rwanda, Tanzania, Kenya, Uganda, South Sudan, Sudan, Somalia, 

Ethiopia, Djibouti and Eritrea (Fig. 1a). The region covers a large land area (~ 5.9 x 106 km2) and is 

characterised by diverse topography, rainfall regimes, and vegetation types.  

Climate ranges from humid ecosystems in the highlands of Ethiopia, Kenya, and Tanzania to Arid 

and Semi-Arid Lands (ASAL) in the lowlands of the GHA. Most parts of East Africa, especially areas 

close to the equator, receive bimodal rainfall that peaks in March to May (‘long rains’) and October 

to November (‘short rains’). Further to north, the GHA receives unimodal rainfall that peaks in June 

to August (Nicholson, 2017). The annual rainfall distribution is influenced by the north-south 

movement of the Intertropical Convergence Zone (ITCZ). The rainfall distribution shows strong 

variability affected by local (e.g., topography, coasts, lakes), regional (e.g., Monsoon systems and 

local convergences), and remote (e.g., El Niño-Southern Oscillation, the Indian Ocean Dipole, and 

the Madden-Julian Oscillation, Walker Circulation) climatic factors (Nicholson, 2017; Ogallo, 

1988;  Indeje et al., 2000). 

Associated with the heterogeneous topographic and climatic gradients, the annual average 

temperature varies considerably (Fig. 1b). The annual average air temperature, calculated from 

Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data, ranges from 

285 K in the montane forest to 307 K in the Danakil Depression (~ –125 m b.s.l) in Ethiopia. While 

the corresponding LST from MODIS data ranges from 289 K to 328 K (Fig. 1c). Field measurements 

https://www.nature.com/articles/s41598-019-54703-z#auth-1
https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ruzmaikin%2C+A
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/el-nino-southern-oscillation
https://www.sciencedirect.com/science/article/pii/S0034425718305315#bb0225
https://www.sciencedirect.com/science/article/pii/S0034425718305315#bb0225
https://www.sciencedirect.com/science/article/pii/S0034425718305315#f0005
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in this region (e.g., in Taita Taveta county in Kenya) further showed important control of altitude and 

canopy cover on the magnitude of LST (Aalto, 2020).  

 

Figure 1. (a) Location of the study area with background elevation from GTOPO30, (b) 2003–2018 

annual average air temperature from MERRA-2, and (c) 2003–2018 clear-sky annual average daytime 

land surface temperature from MODIS Aqua. 

 

3 Data 

LST data were obtained from the MYD11A2 product, version 6, which is derived from the MODIS 

sensor, onboard the Aqua satellite. This product provides LST estimates at day (1:30 pm) and night 

(1:30 am) overpass times. The data were downloaded from the Land Processes Distributed Active 

Archive Center (LP DAAC) (Wan et al., 2015). The MYD11A2 provides an average of 8-day 

composite LST at 1 km resolution. We limited our analysis to only good quality clear-sky pixels with 

LST error ≤ 1 K using the MYD11A2 quality control (QC) layer. All pixels with LST error > 1 K 

were masked from our analysis applying QC flag bits. MODIS Aqua overpass time roughly 
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corresponds to daily maximum LST, which occurs in the afternoon, and daily minimum LST, which 

occurs after midnight; and their difference can be used for diurnal LST range computation 

(Ruzmaikin et al., 2013). 

For identifying surface biophysical role on LST trend, daily black-sky albedo (BSA) product at local 

noon (MCD43A3) and 500-m resolution was downloaded from NASA using Google Earth Engine. 

The product has a reported accuracy of mostly better than 5% for SZA below 70° (Liu et al., 2009). 

We chose this product due to its close timing with the overpass of MODIS Aqua (1:30 pm). Besides, 

the choice of albedo types (BSA, white-sky albedo, and blue-sky albedo) does not affect our result 

since they are strongly correlated in this region. For comparison of albedo types, refer Abera et al. 

(2019). 

Latent heat flux (LE) data (MOD16A2) at 500-m resolution and 8-day composite were downloaded 

from NASA using Google Earth Engine. This product was prepared based on the Penman-Monteith 

equation and used inputs from daily meteorological reanalysis data (e.g., air temperature, vapor 

pressure deficit, relative humidity, wind speed, and surface downward solar radiation), and remotely 

sensed products (e.g., leaf area index or LAI, land cover, and albedo) from MODIS. Validation 

against eddy flux towers in previous studies showed a mean absolute error of 0.3 mm day−1 (Running 

et al., 2017). 

Downwelling shortwave radiation (DSW) data at 0.5° ×  0.6° resolution and monthly timestep were 

obtained from Modern-Era Retrospective analysis for Research and Applications (MERRA-2) 

(https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/). Previous comparison studies against station data 

showed that DSW data captures radiation variabilities in our study area (Stettz et al., 2019).  MERRA-

2 DSW data have a closer accuracy value (4 – 7 Wm–2) compared with CERES EBAF data (3 – 5 

Wm–2) (Hinkelman, 2019; Kato et al., 2018). Moreover, we used screen-level (2 m) maximum air-

temperature (Tmax) data from MERRA-2 with the same spatio-temporal resolution to that of DSW. 

The Tmax, which closely matches with Aqua overpass time, was used to calculate downwelling 

longwave radiation (Eq. 4). Over land surface, Tmax from MERRA-2 reported to have a daily mean 

bias of 0.1 K and maximum bias of 1.5 K against in situ data (Bosilovich et al., 2015).  

In addition, different reanalysis and satellite products were used for comparison and exploratory 

analysis. The products are: Aerosol Optical Depth (AOD) from MERRA-2 (at 0.5° × 0.6° resolution 

and monthly timestep), upwelling longwave radiation from NASA CERES EBAF (Version 4.1; 1 

degree; clear-sky; monthly data), rainfall data from Tropical Rainfall Measuring 

Mission (TRMM3B43; 0.25° resolution and monthly timestep) (Goddard Earth Sciences Data and 

Information Services Center, GES DISC; TRMM, 2011), MODIS Collection 6 leaf area index (LAI) 

product from Aqua (MYD15A2H) at 500-m resolution and 8-day composite (downloaded from 

NASA using GEE), and nadir bidirectional reflectance distribution function (BRDF)-adjusted 

reflectance from MODIS daily product (MCD43C4) at 0.05° resolution was downloaded from NASA 

Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/products/mcd19a1v006/) 

All data cover the period from 2003 to 2018 and were harmonized spatially and temporally to 

common spatial scale at 25 km resolution and monthly timestep, respectively. Spatial resampling to 

25 km resolution was done applying bilinear interpolation. Daily and 8-day composite data were 

averaged to monthly value. A summary of data used is presented in Table 1. 

https://www.sciencedirect.com/science/article/pii/S0168192319303958#bib0002
https://www.sciencedirect.com/science/article/pii/S0168192319303958#bib0002
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://www.sciencedirect.com/science/article/pii/S0168192319303958#bib0056
https://lpdaac.usgs.gov/products/mcd19a1v006/
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Table 1. Satellite observation and reanalysis data used in this study 

Data  Sensor Product Version Spatial 

resolution 

Temporal 

resolution 

Year Accuracy 

Land surface 

temperature/ 

emissivity 

MODIS MYD11A2 6 1 km 8-day 2003–

2018 

≤ 1 K  

(Wan et al., 2015) 

Leaf area 

index 

MODIS MYD15A2H 6 500 m 8-day 2003–

2018 

0.55 

 (Xu et al., 2018) 

Albedo MODIS MCD43A3 6 500 m Daily 2003–

2018 

5%  

(Liu et al., 2009) 

Latent heat 

flux 

MODIS MOD16A2 6 500 m 8-day 2003–

2018 
0.3 mm day−1 

(Running et al., 

2017) 

Upwelling 

longwave 

radiation 

CERES CERES 

EBAF 

4.1 1° Monthly 2003–

2018 

3 W m−2  

(Kato et al., 2018) 

Rainfall TRMM TRMM3B43 7 0.25° Monthly 2003–

2018 

10%  

(Dinku et al., 

2007) 

Downwelling 

shortwave 

radiation 

 MERRA 2 0.5° × 0.6° Monthly 2003–

2018 

4 – 7 W m−2  

(Hinkelman, 

2019) 

Air 

temperature  

 MERRA 2 0.5° × 0.6° Monthly 2003–

2018 

1.5 K  

(Bosilovich et al., 

2015) 

Aerosol 

optical depth 

 MERRA 2 0.5° × 0.6° Monthly 2003–

2018 

0.159  

(Gueymard and 

Yang, 2020) 

Nadir-BRDF 

Adjusted 

reflectance 

MODIS MCD43C4 6 0.05° Daily 2003–

2018 

5%  

(Liu et al., 2009) 

 

4 Methodology 

4.1 Identifying LST trend  

LST trend was assessed using the non-parametric Mann-Kendall trend test (Mann, 1945; Kendall, 

1975). Presence of monotonic annual (2003–2018) and seasonal trends were tested for daytime LST 

(LSTday), nighttime LST (LSTnight), and diurnal LST range (DSTR). For seasonal trend analysis, 

averages of major dry (DJF) and wet (MAM) seasons were used. The magnitude of trend was 

determined applying the non-parametric Theil-Sen estimator for every pixel (Wilcox, 1999). 

4.2 Attributing LST trend to surface biophysical and atmospheric radiation variables 

Surface biophysical and atmospheric radiation factors affecting LST trend were inferred from surface 

energy balance. The energy balance at the surface can be written as (Juang, 2007): 

(1 − 𝛼)𝑆𝑅𝑖 + 𝐿𝑅𝑖 − εσ𝐿𝑆𝑇4 = LE + H + G                                                                                                                 (1) 

https://www.frontiersin.org/articles/10.3389/feart.2020.00014/full#B33
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where α is albedo (dimensionless), SRi and LRi are incoming shortwave and longwave radiation (W 

m−2); LE is the latent heat flux (W m−2); H is the sensible heat flux (W m−2); G is the ground heat flux 

(W m−2); σ is the Stefan-Boltzmann constant (W m–2 k–4); and Ɛ is the surface emissivity. Rearranging 

Eq. (1), the outgoing longwave radiation, which is largely a function of LST, can be given as: 

εσ𝐿𝑆𝑇4 = (1 − 𝛼)𝑆𝑅𝑖 + 𝐿𝑅𝑖 − LE − (H + G)                                                                                                           (2) 

From Eq. (2), ignoring the impacts of surface emissivity (Ɛ), LST can be represented as a function of 

surface biophysical (α, LE, H, G) and atmospheric radiation (SRi and LRi) variables (i.e., LST ≈ f (α, 

LE, H, G, SRi, LRi)). The contribution of the trends of each variable (α, LE, H, G, SRi, and LRi) to 

LST trend (δLST) was computed for every pixel using Eqs. (3) – (8) respectively, following similar 

approach of Forzieri et al. (2017).  

  

𝛿𝐿𝑆𝑇𝛼 =
∂LST

∂α
× δα                     (3) 

 

𝛿𝐿𝑆𝑇𝐿𝐸 =
∂LST

∂LE
× δLE                     (4) 

 

𝛿𝐿𝑆𝑇𝐻 =
∂LST

∂H)
× δH                                           (5) 

 

𝛿𝐿𝑆𝑇𝐺 =
∂LST

∂G
× δG                     (6) 

𝛿𝐿𝑆𝑇𝑆𝑅𝑖 =
∂LST

∂SRi
× δSRi                                                     (7)

       

 𝛿𝐿𝑆𝑇𝐿𝑅𝑖 =
∂LST

∂LRi
× δLRi                               (8) 

 

where δ is the trend calculated using the Theil-Sen estimator; the term ∂x/∂y is the sensitivity of LST 

to each of the surface biophysical and atmospheric radiation variables. Sensitivity term was derived 

from the slope of linear regression between LST and each variable. All variables were detrended prior 

to computing the sensitivity term. 

 

The LRi was computed from air temperature (Ta) and air emissivity (𝑒𝑎) using Eqs. (9) and (10) 

(Cleugh et al., 2007). Latent heat flux (LE) was obtained from MOD16A2 data. 

 

𝐿𝑅𝑖 = 𝑒𝑎σ𝑇𝑎4                                                       (9) 

𝑒𝑎 = (1 − 0.261) × exp(−7.77 × 10−4 × 𝑇𝑎2)                                                         (10)                            

The term H was calculated as closure of surface energy balance from net radiation (Rn), LE, and G: 

𝐻 = 𝑅𝑛 − LE − G                                                                 (11) 

Net radiation was estimated from α, 𝑆𝑅𝑖, 𝑒𝑎, surface emissivity (𝑒𝑠), and 𝑇𝑎 (Cleugh et al., 2007): 

𝑅𝑛 = (1 − 𝛼) × 𝑆𝑅𝑖 + σ × (𝑒𝑎 − 𝑒𝑠) × 𝑇𝑎4                                      (12) 

𝑒𝑎 = (1 − 0.261) × exp(−7.77 × 10−4 × 𝑇𝑎2)                                      (13)                                                               

The 𝑒𝑠  was computed from average of MODIS emissivity in band 29, 31, and 32, instead from band 

31 and 32 only, to avoid overestimation in arid and semiarid environment (Wan et al., 2002). 

Ground heat flux was estimated by multiplying the ratio of G and Rn (G/Rn) by Rn. The G/Rn was 

computed from LST, α, normalized difference vegetation index (NDVI) (Bastiaanssen, 2000):  

https://www.sciencedirect.com/science/article/pii/S0034425718305315#bb0065
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𝐺

𝑅𝑛
= (𝐿𝑆𝑇 − 273.15) × (0.0038 + 0.0074 × 𝛼) × (1 − 0.98 × 𝑁𝐷𝑉𝐼4)                                     (14) 

Good quality nadir-adjusted reflectances from full inversion MODIS BRDF were retrieved using 

quality control layer to compute NDVI using Eq. 15.  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
                   (15) 

where NIR is the near-infrared reflectance and R is red reflectance.   

 

4.3 Boosted regression tree modelling  

The boosted regression tree (BRT) method (Elith et al., 2008) was applied to statistically measure the 

relative importance and contribution of the trends of each predictor variable (α, SRi, LRi, LE, G, and 

H) to the total δLST (response variable). We used the ‘dismo’ package in R environment (Hijmans et 

al., 2017). BRT combines decision tree algorithm and boosting method to improve prediction 

accuracy by weighting input data prediction error in subsequent trees (Elith et al., 2008). It is non-

parametric, robust to outliers and missing values, and able to explain non-linear relationships (Elith 

et al., 2008).  

Prior to BRT modelling, spatial autocorrelation among predictor variables was checked using the 

variance inflation factor (VIF). The VIF of predictor variables was < 3.3 (i.e. showed weak 

collinearity) and hence all variables can be used in the BRT model. The minimum predictive error 

was achieved using gaussian error distribution, a tree complexity of 5, a learning rate of 0.01, bag 

fraction of 0.7, 10-fold cross validation, and ‘fixed’ tolerance method. Furthermore, only significant 

(P < 0.05) trends were used for all variables in the model.  

 

5. Results 

5.1 Daytime and nighttime LST trends 

The sign and magnitude of LST trend showed high spatial variability during 2003–2018 in EA (Fig. 

2a). LSTday changed significantly (P < 0.05) in approximately 11% of EA (787 946 km2). Of those, 

53% of the trends were negative (cooling) at an average rate of –0.19 K year–1, covering mainly the 

western part of EA (South Sudan, Sudan, and western Ethiopia) and western parts of Tanzania in 

southern EA. While the remaining 47% of the significant LSTday trend displayed positive trends 

(warming) at an average rate of 0.22 K year–1, affecting mostly the south-eastern and the south-

western part of the study area (Somalia, southern Ethiopia, Kenya, Uganda, and eastern Tanzania). 

The seasonal trends (December–February and March–May) showed a similar spatial pattern to that 

of the annual trends in areas of significant (P < 0.05) LST change (Fig. 2b and c). However, the 

cooling trends were more extensive in both seasons (in Sudan, South Sudan, and Ethiopia) and 

covered a larger area (i.e., up to 1.5% and 0.7% more areas in December–February and March–May, 

respectively) than the annual trends in these countries.  
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Figure 2. Spatial distribution of clear-sky (a) annual LST trend, (b) December–February LST trend, 

and (c) March–May LST trend during 2003–2018 in East Africa. Only statistically significant (P < 

0.05) trends are displayed.  

The LSTnight showed a significant (P < 0.05) and dominantly positive trend (warming) throughout EA 

(Fig. 3a–c). The trend was significant (P < 0.05) in 31% of EA. From these areas 99% showed surface 

warming (0.06 K year–1) and the remaining 1% displayed surface cooling of comparable magnitude 

(–0.07 K year-1). Similarly, the seasonal LST trend showed a dominantly significant warming across 

EA in dry (December–February) and wet (March–May) seasons (Fig. 3b and c). Nonetheless, the 

total area affected by significant trend (P < 0.05) was relatively smaller in both seasons (17 % in DJF 

and 13.5% in MAM) compared with the annual trend. 

 

Figure 3. Spatial distribution of clear-sky nighttime (a) annual LST trend, (b) December–February 

LST trend, and (c) March–May LST trend during 2003–2018 in East Africa. Only statistically 

significant (P < 0.05) trends are displayed.  

The diurnal surface temperature range (DSTR) showed a dominantly decreasing trend across EA 

(Fig.4a–c). Approximately 19% (annually), 18% (in DJF), and 11% (in MAM) of EA exhibited 
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significant (P < 0.05) DSTR trend. Of this, the decreasing DSTR trend accounts for 82% annually, 

88% in MAM, and 69% in DJF. The magnitude of the decreasing DSTR trend was also relatively 

larger annually (– 0.09 K year–1) as well as seasonally (– 0.13 K year–1 in MAM and – 0.10 in K year–

1 DJF) than the increasing DSTR trend (0.08 K year–1, 0.09 K year–1, and 0.09 K year–1) for the 

corresponding period.  

 

Figure 4. Spatial distribution of trends of (a) annual diurnal land surface temperature range (DSTR), 

(b) December–February DSTR, (c) March–May DSTR during 2003–2018 in East Africa. Only 

statistically significant (P < 0.05) trends are displayed. 

The spatially averaged regional annual LST trend showed different patterns for LSTday, LSTnight, and 

DSTR trends. Regionally, the daytime warming and cooling trends largely cancel each other and 

displayed a non-significant (P > 0.05) net cooling of negligible magnitude (–0.001 K year–1) on 

average (Fig. 5a), while the regional average LSTnight and the DSTR trend were significant (P < 0.05) 

and exhibited net warming (Fig. 5b) as well as cooling (Fig. 5c) of a similar magnitude (0.003 K year–

1), respectively. 

 

Figure 5. Regionally averaged annual daytime (LSTday), nighttime (LSTnight), and diurnal (DSTR) 

land surface temperature trend over East Africa during 2003—2018. The red line shows the trend 
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calculated using Sen’s slope. The blue line shows the trend component of the LST monthly time 

series. Significance level determined from MK-test. 

Furthermore, the latitudinal and longitudinal variations of the annual and seasonal (DJF and MAM) 

LSTday, LSTnight, and DSTR trends are provided in Supplementary Figs. S1, S2, and S3, respectively. 

 

5.2 Trends of surface biophysical and atmospheric variables 

Trends of surface biophysical and atmospheric radiation variables are displayed in Figs. 6 and 7. 

Albedo trends showed high spatial variability and displayed a regional average close to zero (0.000 

± SD 0.001) (Fig. 6a). Similarly, in areas of significant LST warming or cooling, albedo trends were 

negligible and had a similar magnitude and sign (0.001 ± SD 0.001).  

The SRi rather showed a dominantly decreasing trend on the average (–0.894 Wm–2 year–1 ± SD 

0.238) with trends mainly affecting the western and the southern part of EA (Fig. 5b). Regardless of 

the sign of LST trend, SRi showed a decreasing trend with the magnitude being higher (–0.972 Wm–

2 year–1 ± SD 0.711) in the areas of LST cooling and relatively lower (–0.228 Wm–2 year–1 ± SD 

0.565) in areas of significant LST warming (Fig. 7a, b).  

Similar to the SRi trend, LRi and H showed a dominantly decreasing trend in the western and the 

southern part of the study area (Fig. 6c, e). Regionally, LRi decreased by –1.116 Wm–2 year–1 ± SD 

0.695 and H by –1.795 ± SD 0.860. In areas of both LST warming and cooling, LRi and H showed a 

decreasing trend. In terms of magnitude, the LRi trend was higher (–0.971 Wm–2 year–1 ± SD 0.711) 

than the H trend (–0.543 Wm–2 year–1 ± SD 1.322) in pixels with LST cooling, while the opposite 

was true in areas of significant LST warming (Fig. 7a, b). Furthermore, G showed a dominantly 

decreasing trend throughout the study area (Fig. 6f). The G trend was smaller in magnitude in areas 

of LST cooling (–0.167 Wm–2 year–1 ± SD 0.194) than in areas of LST warming (–0.315 Wm–2 year–

1 ± SD 0.151) (Fig. 7a, b). 

    

Different from other variables, the LE trend showed a dominantly increasing and significant trend in 

the western and southern part of the study area (Fig. 6d). Although the LE trend increased (0.555 

Wm–2 year–1 ± SD 0.636) regionally on average, it showed opposite patterns to that of the LST trend. 

In other words, the LE trend increased (0.519 Wm–2 year–1 ± SD 0.469) in areas of significant LST 

cooling and decreased (–0.173 Wm–2 year–1 ± SD 0.455) in areas of LST warming (Fig. 7a, b). 
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Figure 6. Trends of a) albedo, b) shortwave incoming radiation (SRi), c) longwave incoming 

radiation (LRi), d) latent heat flux (LE), e) sensible heat flux (H), and f) ground heat flux during 

2003–2018. Only significant (P < 0.05) trends are displayed at 0.25° resolution. 

 

Figure 7. Trends of atmospheric and surface biophysical variables in areas of significant a) LST 

cooling trend and b) LST warming trend. The albedo trend is not displayed here due to negligible 
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magnitude. G = ground heat flux; H = sensible heat flux; LE = latent heat flux; LRi = incoming 

longwave radiation; SRi = incoming shortwave radiation.  

The impact on the LST trend depends on the sensitivity of LST to each of the surface biophysical and 

incoming radiation variables. Sensitivity was computed using Ordinary Least Square (OLS) 

regression after detrending the time series to avoid impacts of trend component on sensitivity term. 

The result showed that LST was sensitive to LE (–0.110 K [Wm–2]–1), LR (0.062 K [Wm–2]–1), and 

SR (0.057 K [Wm–2]–1), but relatively less sensitive to H (–0.036 K [Wm–2]– 1), G (0.029 K [Wm–2]– 

1 ), and albedo (0.001 K albedo–1) (Fig. 8a–e).   

 

Figure 8. Sensitivity of surface temperature to a) albedo, b) incoming shortwave radiation, c) 

incoming longwave radiation, d) latent heat flux, e) sensible heat flux, and f) ground heat flux. 

Sensitivity is displayed for areas affected by significant (P < 0.05) trends as in Fig. 6 at 0.25° 

resolution.  

 

The spatial distribution of the contribution of each variable to the LST trend was inferred from the 

product of sensitivity term and trend (Fig. 9). Regionally, the cooling impact was dominant in terms 

of coverage. In areas of significant LST trend, the main contribution to LST cooling came from LR 

(–0.167 K year –1, SD 0.092), LE (–0.151 K year –1, SD 0.097), and SR (–0.149 K year –1, SD 0.092), 

while the contributions from H (–0.015 K year –1, SD 0.07), albedo (–0.007 K year –1, SD 0.004), and 

G (–0.003 K year –1, SD 0.008) were minor on average (Fig. 10a, e, and f). On the other hand, the 
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LST warming was mainly affected by LE (0.163 K year –1, SD 0.121) and H (0.155 K year –1, SD 

0.102) while atmospheric radiation (i.e., SR 0.053 Wm–2, SD 0.042, and LR 0.049 Wm–2, SD 0.044), 

G (–0.019 K year –1, SD 0.004), and albedo (0.001 K year –1, SD 0.009) had a negligible impact (Fig. 

10a, b, c, and f). 

 

Figure 9. Impacts of atmospheric and surface biophysical variables (the product of sensitivity term 

and trend) on the magnitude of annual LST trend. SRi = incoming shortwave radiation; LRi = 

incoming longwave radiation; LE = latent heat flux; H = sensible heat flux; G = ground heat flux. 
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Figure 10. Contribution of atmospheric and surface biophysical variables in areas of significant a) 

LST cooling trend and b) LST warming trend. G = ground heat flux; H = sensible heat flux; LE = 

latent heat flux; LRi = incoming longwave radiation; SRi = incoming shortwave radiation. 

The contribution of each variable to the overall LST trend (warming plus cooling) was estimated 

using the BRT model (Fig. 11). The albedo was removed from the model due to its negligible trend 

(Fig. 6a and Fig. 10a, b) and high standard error (> 4) unlike other variables (standard error < 0.01). 

The model explained 88% of the total LST variance. Ground heat flux had minor changes and non-

causal relation in areas of LST warming (i.e., G showed a small decrease in areas of increasing LST 

trend as indicated in Fig.10b) and hence was not considered in BRT to reduce model uncertainty. The 

most influential variables, in a decreasing order, were latent heat (31.6%), incoming longwave 

radiation (29.7%), incoming shortwave radiation (23.1%), and sensible heat flux (15.6%). Together, 

the atmospheric variables (LRi and SRi) explained only slightly more (~53%) than the surface 

biophysical variables (47%; LE and H).  
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Figure 11. Partial-dependence plots and smoothed response curves for the explanatory variables in 

the x-axis and response variable in the y-axis (fitted function, LST trend) in the boosted regression 

tree model. Annual trends were used in all variables in the model. SRi = incoming shortwave radiation 

trend; LRi = incoming longwave radiation trend; LE = latent heat flux trend; and H = sensible heat 

flux trend. The relative contribution of each of the atmospheric and surface biophysical variables is 

shown in brackets in percentage. In total, the model explained 88.0% of the variance.  

 

6 Discussion 

Daytime LST trend showed both warming and cooling trends while the nighttime LST mainly 

diplayed a warming trend in EA. This pattern has reduced the trends of diurnal LST range in areas of 

divergent daytime (cooling) and nighttime (warming) LST trends. Our result showed that while both 
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surface (increase in LE trend) and atmospheric (decrease in LRi and SRi) variables played an 

important role in daytime surface cooling, the surface warming was strongly influenced by surface 

variables. Below, the drivers of LSTday and LSTnight trends as well as the limitations of our study are 

discussed. 

6.1 Surface biophysical drivers of LST trend 

An increase in LE reduces LST owing to the dissipation of energy from surface to the atmosphere 

through evapotranspiration (Zeng et al., 2017). The increase in latent heat flux shows strong spatial 

agreement with an increase in leaf area index (LAI) (Supplimentary Fig. S4). This indicates that the 

increase in latent heat flux can be associated with an enhanced surface greening. Previous global 

(Forzieri et al., 2017; Zhu et al., 2016) and sub-Saharan Africa (Martin et al., 2017) studies reported 

an increase in LAI trend and woody vegetation in EA using satellite observation data. Forzieri et al. 

(2017) further noted the surface cooling (i.e., LST reduction) in response to an increase in LAI in this 

region during 1982–2011. Based on modeling studies, Zeng et al. (2017) attributed an increased 

evapotranspiration as a major contributor to surface cooling related to global greening, including the 

Sahel region. Our result supports these studies and adds evidence from LE flux trend.  

By contrast, a reduction in latent heat flux increases LST due to accumulation of energy on the surface 

as less energy leaves through evaporation. Similarly, the decrease in LAI closely matches with the 

reduction of latent heat flux indicating LAI control over the sign of LE flux trends in the region (Fig. 

S4). Nonethelss, the LAI trend solely can not fully explain the LE trend in the region (i.e., a regression 

between LE and LAI showed that LAI explains 42% of the LE variation). Soil evaporation trend, 

associated with climate extremes (e.g. drought events), can also affect the LE trend (Abera et al., 

2020a). For instance, soil mositure trend explains 23% of the LE variation (see supplimentary Figure 

S5 and Table S1 for details), indicating impotant role of soil moisture. Other factors, such as global 

warming and anthropogenic activities (through land cover change) can also affect LE flux through 

their influence on evapotranspiration (Abera et al., 2019; Bright et al., 2017; Moratiel et al., 2010). 

LE had the highest contribution (33%) in explaining the overall daytime LST trends (warming and 

cooling). This is likely related to the stronger sensitivity of LST to LE flux in water-limited arid and 

semiarid environment (Fig. 8; Abera et al., 2020a; Small and Kurc, 2003) as well as due to the 

radiative heating of the surface, which is largely balanced by latent heat flux through 

evapotranspiration during daytime (Abera et al., 2019; Oke, 1987).  

Sensible heat flux had minor impact on the total LST trend. This is attributed to the smaller influence 

of H on the LST cooling than LST warming. Meaning, in areas of surface cooling, the reduction of 

SRi, LRi, and LE decreases the difference in temperature between surface and air above and can lead 

to less convective transfer of energy from the surface to the atmosphere and can minimize the 

contribution of sensible heat trend. By contrast, the relatively higher contribution of H to surface 

warming can be explained by the strong declining trend in H, which likely contributes more to LST 

warming as less energy leaves the surface to warm the air above.  

The albedo trend had a negligible impact on LST trend. This result agrees with previous studies in 

tropical regions, which showed a minor role of albedo on the magnitude and sign of LST compared 

to LE (e.g., Abera et al., 2019; Li et al., 2016; Bright et al., 2017; Pielke et al., 1998). For example, 

an increase in albedo was reported in areas of increased LST during dry period in arid parts of EA 
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(Abera et al., 2020a), indicating minor influence of albedo on LST since an increase in albedo is 

expected to reduce LST.   

6.2 Drivers of nighttime LST trends 

The increasing LSTnight trend can be related to the enhanced LRi associated with the build-up of 

greenhouse gases in the atmosphere. LRi emission is the dominant process at night owing to the 

absence of shortwave radiation and consequent decline of surface biophysical processes (latent and 

sensible heat flux) (de Kok et al., 2020; Oke, 1987). On the other hand, the global warming effect is 

more pronounced at night than daytime due to higher sensitivity of nighttime air temperatue to 

perturbations of radiation balance associated with shallow boundary layer formation (Davy et al., 

2016; Alexander et al., 2006; Vose et al., 2005). Thus, rapid warming of nighttime air temperature, 

in response to greenhouse gases effects, will likely increase LRi as warm air emits more longwave 

radiation. Especially, as the nighttime warming is weakly counterbalanced by biophysical processes, 

the greenhouse gas effect can be important in increasing LST trend through radiative warming. 

Overall, the result indicates that different mechanisms govern LSTday and LSTnight trends. 

6.3 Radiative drivers of LST trend 

Although investigating the causes of SRi decline requires detailed analysis, two factors can be 

attributed to its reduction. First, scattering and absorbtion of solar radiation by aerosols (or direct 

radiative forcing) can reduce SRi (Lohmann, 2015). Analysis of Aerosol Optical Thickness (AOD) 

from MERRA showed a significant positive trend in the Sahel region (mainly Sudan and South 

Sudan) (Supplementary Fig. S6a) and the SRi reduction in the Sahel region can partly be related to 

aerosol increase. Furthermore, aerosol can also reduce SRi through indirect ways via its role in 

cloud condensation (or indirect radiative forcing) (Lohmann, 2015; Hansen et al., 1995).  

Second, enhanced precipitation caused by factors other than aerosols (e.g., large scale climate 

oscillation) can reduce SRi through cloud scattering and absorption of SRi (Pfeifroth, 2018; 

Wild, 2016). Enhanced mean annual precipitation (MAP) was reported as main driver of increased 

LAI (or woody cover) in drylands of sub-Saharan Africa, despite its non-significant increase (Martin, 

et al., 2017). Analysis of precipitation data using TRMM showed similar indication of increasing 

MAP in small parts of Sudan and Uganda, although regionally, the trends were largely non-significant 

(Supplementary Fig. S6b). Hence, in those areas where MAP exhibited an increasing trend, the SRi 

could be affected. 

The reduction of LRi affects the LST through its control on the transfer of thermal energy from the 

atmosphere to the earth’s surface. The magnitude of LRi is affected by the outgoing LR from the 

earth. With a reduction in the SWi trend, less outgoing energy is expected to be emitted by the earth 

surface, which in turn can lead to a reduction in LRi during daytime.The decreasing trend in outgoing 

LR computed from CERES-EBAF product corroborates this explanation, mainly in South Sudan and 

Tanzania (Supplementary Fig. S7a).  

However, other atmospheric conditions such as the concentration and vertical distributions of water 

vapor (Compo & Sardeshmukh, 2009), cloud cover (Harrpor et al., 2016), carbon dioxide (Arrhenius, 

1896), and trace gases (e.g., ozone, nitrous dioxide, methane, aerosols, etc.) can affect LRi (Liang et 

al., 2018). Furthermore, vegetation-climate feedback might affect the LRi through modifying the 

https://www.sciencedirect.com/topics/physics-and-astronomy/condensation
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JD027418#jgrd54393-bib-0058
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local air temperature via increased LAI in the region (Zeng et al., 2017). Hence, future studies are 

needed to clarify the influence of atmospheric and surface factors on LRi trends.    

6.4 Limitations and uncertainities 

Our results are limited to clear-sky observations. In other words, the results do not represent cloudy 

conditions and should be applicable for clear-sky conditions. The reason for restricting analysis to 

clear-sky observation was due to the high uncertainty and low accuracy of LST retrievals over pixels 

overcast by cloud. Furthermore, the inherent limitation of satellite observation and reanalysis data 

(e.g., accuracy and spatial resolution) can affect the results. For example, sensible heat flux, which 

was derived as residual of surface energy balance applying coarse resolution data, might carry large 

uncertainties as it contains errors from the surface energy balance closure. However, we have checked 

overall impact of satellite data uncertainties on closure of Eq.2 by comparing modeled LST trend, 

computed based on Eq. 2, with observed LST trend from MODIS. The result showed good agreement 

(r2 = 0.82) (see supplementary Fig. S9 for details). However, dense networks of flux tower data are 

needed to independently verify and estimate the biases originated from satellite and reanalysis data 

on LST trend in data scarce region, such as East Africa in the future. 

 

Also, the results of trend analysis might depend on the length of the data record used. Trends can 

change over time and space due to the dynamic nature of earth system processes. Our short term trend 

analysis (2003–2018) might not represent long term trends in climatological terms (30+ years) and 

the results should be used mainly for the mentioned period. However, the use of good quality LST 

retrievals along with the use of statistically significant trends of all variables in our analysis increases 

the robustness of the results.    

 

The BRT model, which was based on explanatory variables selected from surface energy balance, 

was able to explain 88% of the LST trend. Thus, there are other factors unexplained by the BRT 

model (11%), that can affect the LST trend. Land cover and management change is one such factor. 

Through anthropogenic modification of surface biophysical properties (e.g., LAI and associated 

evapotranspiration, surface roughness, and albedo, or through irrigation and application of fertilizers) 

land cover and management change can affect the water and energy fluxes between the land surface 

and the atmosphere (Pielke et al., 2007; Bright et al., 2017; Luyssaert et al., 2014) and hence LST 

trend. However, the anthropogenic impact can have more impact on the LST warming trend than 

cooling in the region due to widespread clearing of woody cover for agriculture in EA (Brink et al., 

2014; Abera et al., 2019; Abera et al., 2020b). This indicates that increase in woody cover (e.g. 

through reforestation) can contribute in counteracting surface warming trend in the region (Abera et 

al., 2020b; Abera et al., 2019 ). The impacts of these and other possible factors were not addressed in 

our analysis. This, however, does not affect our conclusions as the BRT model mostly explained the 

LST trend in the region.  

 

7 Conclusions 

In this study, we assessed temporal trends in LST and its drivers across East Africa, applying satellite 

observation and reanalysis data during 2003–2018. Annual and seasonal trends of LSTday, LSTnight, 

and DSTR were explored. Surface (albedo, LE, and H) and atmospheric (SRi and LRi) drivers were 
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analyzed to clarify their contribution to annual daytime LST trend based on surface energy balance 

and BRT model.  

Significant trends in LSTnight were observed in a larger portion of East Africa (31%), in comparison 

with trends in LSTday (11%). LSTnight trends (annually and seasonally) were dominantly positive (up 

to 99%), indicating an overal nighttime warming of 0.06 K year–1, while both warming (0.22 K year–

1) and cooling (–0.19 K year–1) trends were prevalent during daytime. In terms of magnitude of 

change, the LSTday trends were up to ~ 3 times stronger than the LSTnight trend. The DSTR showed a 

predominant (69% in DJF to 88% in MAM) decreasing trend, affected by contrasting LSTday and 

LSTnight trends. With the exception of the magnitudes, the spatial patterns between annual and 

seasonal trends were similar for each of the LST variants (i.e., LSTday, LSTnight, and DSTR).  

Analysis of the annual LST drivers showed that both atmospheric (53%) and surface (47%) variables 

were important in explaining the overall LST trends. However, the impacts of these variables vary 

strongly in magnitude between areas affected by surface warming (i.e., largely dominated by LE and 

H) and cooling (i.e., largely dominated by LRi, LE, and SRi) with the exception of LE, which had a 

crucial role in explaining both surface warming and cooling, and hence overall LST trend (32%) in 

the region. LE flux trend closely mimics the leaf area index trend (i.e., greening and browning trend) 

and soil moisture trend, and both had significant (P < 0.05) impact on the observed LE trend in the 

region. Hence, we demonstrate that surface temperature trends over EA vary spatially and temporally, 

with different mechanisms governing these trends during daytime. 

Overall, our results offer a new insight on how surface and atmospheric factors differently affect 

surface warming and cooling trends in EA, clarifying the drivers of LST trends, that can serve as an 

important input in earth system modelling and for monitoring of environmental changes in the region.  
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