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Distal myopathies are genetic primary muscle disorders with a prominent weak-
ness at onset in hands and/or feet. The age of onset (from early childhood to adult-
hood), the distribution of muscle weakness (upper versus lower limbs) and the 
histological findings (ranging from nonspecific myopathic changes to myofibrillar 
disarrays and rimmed vacuoles) are extremely variable. However, despite being 
characterized by a wide clinical and genetic heterogeneity, the distal myopathies 
are a category of muscular dystrophies: genetic diseases with progressive loss of 
muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopa-
thy usually caused by focal amyoplasia. 

Massive parallel sequencing has further expanded the long list of genes associated 
with a distal myopathy, and contributed identifying as distal myopathy-causative 
rare variants in genes more often related with other skeletal or cardiac muscle 
diseases.

Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, 
HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, 
NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant 
form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, 
GNE) cause an autosomal recessive form; and disease-causing variants in five 
genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a re-
cessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like 
form of distal myopathy, has been recently elucidated. Rare pathogenic mutations 
in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly 
cause a distal myopathy when combined with a common polymorphism in TIA1. 

The present review aims at describing the genetic basis of distal myopathy and at 
summarizing the clinical features of the different forms described so far.
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Introduction
The term distal myopathy refers to a long list of genetic muscle dis-

eases presenting at the onset with weakness of distal extremities, usually 
combined with progressive atrophy of the corresponding distal muscles. 
Other muscles, including proximal muscles and/or cardiac and respiratory 
muscles, can be affected at a later stage of the disease. The clinical phe-
notype is extremely variable, ranging from severe forms with earlier onset 
and loss of ambulation to very mild late adult onset forms. Other muscle 
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diseases (genetically determined or acquired) may pres-
ent with a distal phenotype, making the diagnostic pro-
cess more complex.

Although two patients with weakness in hands and 
in legs or feet were first described as distal myopathy by 
Gowers over 100 years ago 1, only in 1998 the first genet-
ic defect underlying a distal myopathy was identified  2. 
Ten years ago, in 2010, only fourteen causative genes 
were known. In the last years, massive parallel sequenc-
ing has contributed to identify disease-causing variants 
in novel genes and to elucidate the first example of a di-
genic mechanism causing a distal myopathy (Tab. I). At 
the same time, the number of causative variants, identi-
fied in large resequencing projects, has exponentially 
increased  3-7. Interestingly, most currently known genes 
are also responsible for separate different clinical entities, 
confirming the extreme phenotypic divergence observed 
in the field of genetic myopathies 8. 

More advanced histopathological techniques and re-
fined cell and molecular biology studies have resulted in a 
better understanding of the pathophysiology of distal my-
opathies. Clinical, histopathological, and imaging features 
of each form have been partly clarified, addressing the di-
agnosis, and supporting a proper interpretation in case of 
novel variants identified in previously known genes.

Adult – late onset distal 
myopathies

Welander distal myopathy (WDM) – TIA1

WDM was first described in several Swedish fam-
ilies in 1951 as an autosomal dominant late adult-onset 
(usually over 50 years) disease with a prominent early in-
volvement of fingers and wrist extensors 9. As the disease 
progresses, weakness involves also finger flexors, toe and 
ankle extensors. The disease course is usually slowly pro-
gressive, and patients remain ambulant. Histopathology 
features include rimmed vacuoles.

A missense variant (p.E384K) in TIA1 gene causing 
the disease was identified in 2013  10. TIA1 encodes an 
RNA-binding protein involved in the alternative splic-
ing of specific pre-mRNAs  11-14, and is a key molecule 
in stress granules, regulators of RNA-translation metabo-
lism that show altered dynamics in WDM 10. 

Digenic SQSTM1 and TIA1 mediated distal myopathy

Patients with a Welander distal myopathy phenotype 
but negative for causative rare mutations in TIA1 were 
discovered to have instead a common polymorphism in 
the TIA1, which, with a population frequency of 1%, 
could not be the cause of the disease. Further gene pan-

el sequencing in these patients showed the presence of 
SQSTM1 mutations previously known to cause the Pag-
et’s disease of the bone, a dominant disease with reduced 
penetrance 15. Functional studies showed that the SQSTM1 
gene product, p62, interferes with the same stress granule 
dynamics pathway as TIA1 explaining the background for 
the digenic mechanism  15. This genetic combination of 
rare SQSTM1 causative variants and the common TIA1 
polymorphism did not result in a Paget disease of the 
bone but caused the canonical Welander phenotype. On 
the other hand, a cohort of 50 patients with Paget disease 
of the bone carrying the same SQSTM1 mutations did not 
have the TIA1 polymorphism 15.

Tibial muscular dystrophy (Udd myopathy) – the first 
human titinopathy 

Tibial muscular dystrophy (TMD) or Udd myopathy 
was described in 1993 in Finnish patients  16. Weakness 
in ankle dorsiflexion and atrophy of anterior lower leg 
muscles (often asymmetric) start after age of 35 or much 
later. Progression is slow and walking is usually pre-
served. Extensor digitorum brevis and hand muscles are 
normally spared. Serum CK is normal or mildly elevated 
and muscle imaging shows fatty degeneration in anterior 
tibial muscles and at later stage in all long toe extensors, 
hamstring and medial gastrocnemius muscles.

Muscle biopsy shows myopathic changes with acid 
phosphatase, ubiquitin, p62 and LC3 positive in the af-
fected muscles, but in preserved muscles there is only a 
slight increase of internal nuclei. 

In Finnish TMD patients, a common founder muta-
tion (FINmaj) in the last exon of titin gene (TTN) was 
identified in 2002  17. FINmaj is a complex 11-bp inser-
tion–deletion resulting in substitution of four amino acids 
without any frameshift and preserving the downstream 
amino acid sequence. Following the FINmaj identifica-
tion, missense variants in the same exon (364) were also 
identified in non-Finnish patients 17-19. 

TTN gene encodes titin, the third filament system of 
the sarcomere 20. Titin interacts with several important pro-
teins, including calpain-3 that binds the C-terminal portion 
of titin 21,22. Through a large number of alternative splicing 
events, TTN encodes for a large number of different tran-
scripts, developmental-stage or tissue specific 23,24. Reflect-
ing the size and complexity of titin, causative variants result 
in allelic diseases affecting skeletal muscle, heart or both of 
them, referred to as ‘titinopathies’ 25,26. Dominant titinopa-
thies include the aforementioned TMD, and the hereditary 
myopathy with early respiratory failure (HMERF) caused 
by missense variants in exon 344 17,27-29. Recessive titinop-
athies include a wide spectrum of diseases with a prenatal, 
congenital, childhood or later onset 30,31. A recessive form 
of early/juvenile onset recessive distal titinopathy is further 
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discussed below in this review. With the increasing number 
of reported patients, first insights on the genotype-pheno-
type correlation are achieved 30. TTN variants are also asso-
ciated with dilated and hypertrophic cardiomyopathy 32,33. 

Vocal cord and pharyngeal distal myopathy – MATR3

First described in a large North American family  34 

and later in a large Bulgarian pedigree 35, vocal cord and 
pharyngeal distal myopathy (VCPDM) is characterized 
by adult-onset (between 35 and 60 years) distal weak-
ness and weakness of vocal cord and pharyngeal muscles. 
Limb weakness can be asymmetric and the phenotype is 
highly variable in terms of age of onset, progression and 
muscle weakness distribution 34,36,37. Most patients devel-
op respiratory failure 38. CK levels are normal or mildly 

Table I. List of distal myopathies and causative genes.
Clinical entity Gene(s) Trasmission References
Adult – late onset distal myopathies
Welander distal myopathy TIA1 AD Hackman et al., 2012
Digenic SQSTM1 and TIA1 mediated distal 
myopathy

SQSTM1+TIA1 DG Lee et al., 2018

Tibial muscular dystrophy (Udd myopathy) TTN AD Hackman et al., 2002
Vocal cord and pharyngeal distal myopathy MATR3 AD Senderek et al., 2009
Distal Actininopathy ACTN2 AD Savarese et al., 2019
Distal Myopathy with sarcoplasmic bodies MB AD Olive et al., 2019
Oculopharyngeal distal myopathy NOTCH2NLC, 

LRP12 and GIPC1 
AD Deng et al., 2020; Ishiura 

et al., 2019; Saito et al., 
2020; Sone et al., 2019

PLIN4 mutated distal myopathy PLIN4  AD Ruggieri et al. 2020
VCP distal myopathy VCP AD Palmio et al 2011
Myofibrillar distal myopathies
Distal myopathy with myotilin defect MYOT AD Penisson-Besnier et al., 

2006 
Late onset distal myopathy 
(Markesbery-Griggs, Zaspopathy)

LDB3 AD Griggs et al., 2007

Desminopathy DES AD > AR Sjoberg et al.,  1999
Alpha-B crystallin-mutated distal myopathy CRYAB AD Reichlich et al. 2010
Early adult onset distal myopathies
Miyoshi myopathy DYSF AR Liu et al., 1998
Recessive distal titinopathy TTN AR Evila et al., 2017
Distal myopathy with rimmed vacuoles 
(Nonaka and GNE myopathy)

GNE AR Kayashima et al., 2002

Distal ABD-filaminopathy FLNC AD Duff et al., 2011
DNAJB6 distal myopathy DNAJB6 AD Ruggieri et al., 2015 - 

Palmio et al., 2020
Rimmed vacuolar neuromyopathy HSPB8  AD Ghaoui et al., 2016
ANO5 distal muscular dystrophy ANO5 AR Bolduc et al., 2010
RYR1 mutated calf predominant distal myopathy RYR1 AD/AR Laughlin et al., 2017 - 

Jokela et al., 2019
Early-childhood onset distal myopathies
Early onset distal myopathy (Laing) MYH7 AD > AR Meredith et al., 2004
Early onset distal myopathies with nebulin defect NEB AR > AD Wallgren-Pettersson et al., 

2007, Kiiski et al., 2019
Early onset ADSSL distal myopathy ADSSL AR Park et al., 2016
Early onset distal myopathy with KLHL9 mutations KLHL9 AD Cirak et al., 2010
Other myopathies and dystrophies with distal weakness
Distal myopathy with caveolin defect CAV3 AD Tateyama et al., 2002
DNM2 related distal myopathy DNM2 AD Bitoun et al., 2005

AD: autosomal dominant; AR: autosome recessive; DG: digenic
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elevated. EMG shows myopathic changes and rimmed 
vacuoles are present in the biopsy. Muscle MRI shows a 
predominant involvement of the lower legs both anterior 
and posterior compartment and hamstrings in thighs 39. 

The underlying re-occurring p.S85C mutation was 
identified in MATR3 gene  35. MATR3 encodes matrin-3, 
a protein located in the nuclear matrix where it regulates 
several processes related to gene expression, RNA splic-
ing and export of RNA and nuclear proteins 40,41. Variants 
in MATR3 have also been identified in patients with amy-
otrophic lateral sclerosis (ALS) 42. 

Distal Actininopathy – ACTN2 

Distal actininopathy is an autosomal dominant, adult 
onset distal myopathy starting usually with foot drop. The 
disease later progresses to proximal lower limb muscles 
while upper limbs remain relatively spared  43. Serum 
CK levels are mildly elevated and muscle biopsy shows 
rimmed vacuoles with some myofibrillar disarrays and 
undulation of the Z-disk on electron microscopy 43. 

The underlying genetic defects in the four families 
reported so far are heterozygous missense variants in the 
ACTN2 gene. ACTN2 encodes alpha-actinin2, a structural 
molecule of the Z-disks that interacts with titin and acts 
a scaffold of many other Z-disk located proteins such as 
myotilin 44-47.

Variants in ACTN2 also cause congenital myopathy 
with structured cores and Z-line abnormalities 48. More-
over, dilated cardiomyopathy and hypertrophic cardio-
myopathy have been associated with missense variants in 
ACTN2 49-53.

Distal Myopathy with sarcoplasmic bodies – MB

In 1980 Edström et al. published a Swedish family 
with this title  54. Only recently, the genetic cause of the 
disease was identified with one unique causative variant 
in Myoglobin (MB), reoccurring in several unrelated fam-
ilies  55. In these later studied families, the characteristic 
muscle pathology was evident but the clinical phenotype 
was more proximo-distal and not particularly distal 55. 

Oculopharyngeal distal myopathy OPDM – CGG and 
GGC expansions

The peculiar combination of severe adult onset distal 
atrophies in limb muscles and facial weakness, ptosis and 
dysphagia can occur both in dominant and recessive fam-
ilies and in sporadic patients 56,57. In the studied patients, 
the muscle pathology is a rimmed vacuolar myopathy. 
In the two last years the cause of many Asian dominant 
families have been clarified as caused by triplet repeat ex-
pansions, both CGG and GGC, in three different genes 
NOTCH2NLC, LRP12 and GIPC1  58-61. The repeats are 

translated into aggregating protein products and the host 
gene functions are not supposed to contribute to the dis-
ease mechanism.

PLIN4 mutated distal myopathy – PLIN4

A large Italian family with an autosomal dominant 
adult-onset distal myopathy and histopathological fea-
tures of rimmed vacuoles was first described in 2004 62. 
Linkage analysis suggested that the causative gene could 
have been localized in the 19p13.3 locus 62.

Recently, Ruggieri et al. identified the underlying 
genetic defect in the PLIN4 gene, encoding for perili-
pin-4  63. Thirty-one repeats of 99 nucleotides in exon 4 
of PLIN4 encode the 31x33 amino acid amphipathic do-
main of perilipin-4. An expansion of the normal repeat to 
40 × 99 bases, resulting in 297 (9 × 33) extra amino acids, 
has been identified in the affected members of the family.

Perilipin-4 is a member of the perilipin family, a 
group of proteins that coat the surface of lipid droplets 64. 
Perilipin-4 is highly expressed in skeletal muscle with a 
possible role in lipid metabolism. The identified repeat 
expansion in patients with PLIN4-related distal myopathy 
seems to cause a misfolding and leads to protein accu-
mulation in vacuoles disrupting the myofibrillar organi-
zation 63. 

VCP distal myopathy – VCP

Initially described by Palmio and colleagues in a 
large dominant Finnish family, VCP-related distal myop-
athy has an onset in mid-adulthood mainly affecting ante-
rior leg muscles 65. After 25 years of disease, the patients 
became affected by a progressive frontotemporal demen-
tia. None of the patients had signs of Paget disease of the 
bone. Serum CK levels are normal or slightly elevated. 
Myopathic changes with rimmed vacuoles are observed 
in the muscle biopsy. MRI shows degenerative changes 
of anterior lower leg muscles. 

Although a clinical variability has been observed 66-

73, the most common phenotype of pathogenic VCP vari-
ants is proximal myopathy with scapular winging, Paget 
disease and frontotemporal dementia (IBMPFD) 74-76.

Myofibrillar distal myopathies

Distal myopathy with myotilin defect – MYOT

A late-onset distal myopathy has been associated 
with heterozygous variants in MYOT gene 77-79. The first 
symptoms, weakness of ankle dorsiflexion and/or calf 
muscles, occur after age 50 years but, despite late onset, 
the further progression can be rapid. Respiratory and car-
diac muscles are spared.
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Histopathological features are consistent with myo-
fibrillar myopathy and include rimmed and non-rimmed 
vacuoles, and myofibrillar disorganization with myotilin 
accumulations 79-81. Muscle imaging shows that soleus is 
typically the first muscle affected followed by tibialis an-
terior and gastrocnemius medialis muscles 82,83.

The most common causative variants in MYOT are 
missense changes affecting serine and threonine amino 
acids in the serine rich domain. MYOT gene encodes my-
otilin, a key component of the Z-disc, directly binding 
F-actin 84. Some patients have been described as affected 
by a dominant limb-girdle muscular dystrophy (previous-
ly LGMD1A) 85,86, but distal myopathy is the main phe-
notype. A proximal muscle involvement is only observed 
in later stages or in homozygosity for known dominant 
variants 87,88. The term ‘spheroid body myopathy’ was al-
so used since the protein aggregates in some cases have 
the corresponding shape 89,90.

Late onset distal myopathy (Markesbery-Griggs, 
Zaspopathy) – LDB3

The dominant LDB3-related distal myopathy usually 
starts with ankle weakness after the age of 40 years with 
later involvement of proximal muscles 91-94. Cardiomyop-
athy can occur very late; facial and respiratory muscles 
are preserved. Muscle biopsy reveals myofibrillar myopa-
thy with rimmed and non-rimmed vacuoles 95. Myofibril-
lar protein accumulations are similar with myotilinopathy 
and desminopathy 96.

LDB3 encodes the lim domain-binding 3 protein, 
also called Z-band alternatively spliced PDZ motif-con-
taining protein (ZASP) that interacts with other Z-disk 
proteins 97,98. Hypertrophic and dilated cardiomyopathies 
(with or without left ventricular noncompaction) are al-
lelic disorders 99,100.

Desminopathy – DES

Desmin-related distal myopathy is a myofibrillar my-
opathy with cytoplasmic accumulation of desmin in car-
diac and skeletal muscles. The first family was described 
in 1943 long before the gene was known  101,102. Cardio-
myopathy and cardiac conduction defects are frequent, 
and the weakness/atrophy involves both hands and lower 
legs with later spread to proximal muscles. MRI shows 
the early involvement of peroneal muscles followed by 
tibialis anterior, gastrocnemius and soleus muscles  80,82. 
CK is usually slightly elevated. 

The fist causative variants in DES were identified in 
1998 103. DES encodes desmin, a protein of the interme-
diate filament connecting Z-band with the plasmalemma 
and the nucleus104. As suggested by a recent study, desmin 
forms seeding-competent amyloid that is toxic to myofi-

bers and disease-causing mutations enhance the amyloid 
formation 105. Most patients have a dominant disease with 
onset in early adulthood but a later onset is possible 106. 
Rare cases with a recessive, more severe, form have been 
reported  107. Dominant cardiomyopathy without skeletal 
muscle disease, scapuloperoneal and other phenotypes, 
due to the increasing number of causative variants identi-
fied, are also reported 108-112.

Alpha-B crystallin-mutated distal myopathy – CRYAB

In 1998, Vicart and colleagues identified the first 
causative variant in the CRYAB gene causing a myopathy 
with accumulation of aggregates of desmin 113. In 2003, 
Selcen et al described patients with a generalized proxi-
mal and distal myopathy affecting also the cardiac and re-
spiratory function and carrying mutations in CRYAB 114D. 
In 2010 and in 2012, two studies identified patients with 
CRYAB mutations and a distal adult-onset myofibrillar 
myopathy  115,116. CRYAB-related distal myopathy main-
ly involves the anterior part of the distal leg at the early 
stage and progresses with a milder proximal weakness. 
Cataracts are the hallmark and dysphagia, dysphonia, re-
spiratory failure, and cardiomyopathy may be associated. 
Muscle MRI shows fatty degenerative changes in tibia-
lis anterior, gastrocnemius medialis muscles and vastus 
muscles 82,115,117,118. 

CRYAB encodes alpha-B-crystallin, also called 
HSPB5, a member of the small heat-shock protein family, 
a molecular chaperone that interacts with desmin in the 
assembly of intermediate filaments 119-122.

Causative CRYAB variants also cause a dominant di-
lated cardiomyopathy, congenital cataract (dominant and 
recessive) and a more severe, usually recessive myopathy 
(fatal infantile hypertonic myofibrillar myopathy) 123-127.

Early adult onset distal 
myopathies

Miyoshi myopathy – DYSF

Miyoshi and colleagues first described patients in the 
sixties with early adult-onset weakness, myalgia and at-
rophy in calf muscles  128. Serum creatine kinase (CK) is 
highly elevated already in the early stages of the disease or 
even in presymptomatic patients. Muscle imaging shows 
marked involvement of posterior lower legs. Muscle biop-
sy shows myopathic changes with necrotic fibers in the calf 
muscles and inflammation is a common finding. 

Dysferlin (DYSF) as causative gene with biallelic 
recessive mutations was identified in 1998  2. Dysferlin 
is a ubiquitous transmembrane protein with a high skel-
etal muscle expression. The protein most probably acts 
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in calcium-mediated sarcolemmal fusion events and re-
sealing 129-131. Dysferlin expression by immunostaining or 
western blot (even from blood leucocytes) is useful in the 
diagnostic process, although the protein can be also sec-
ondarily reduced 132,133.

Myoshi myopathy and LGMDR2 Dysferlin-related 
(previously LGMD2B), one of the most common LGMD 
form in several countries 4,134,135, are allelic diseases with 
overlapping symptoms and signs  136,137. LGMD patients 
have a more proximal involvement at the onset but, after 
20 years of disease progression, the two phenotypes usu-
ally merge as dysferlinopathies 138-140.

Recessive distal titinopathy – TTN

Some nonsense, small indels causing a frameshift or 
splice site variants in the last and second last exons of 
TTN, initially also thought to cause dominant TMD be-
cause of dominant-looking pedigrees, later proved to be 
recessive 141-145. The presence of second causative variants 
in trans explains the novel entity of early/juvenile onset 
recessive distal titinopathy, a more severe condition than 
the late onset TMD 141-143. In some families, multiple sec-
ond causative variants segregating with the disease would 
mimic the presence of a dominant inheritance, making 
the diagnosis even more complex 141,142,146. 

The complexity of TTN gene may result in elusive 
variants not identified on DNA by the traditional pipe-
lines  147. Second tier tests, such as copy number variant 
(CNV) analysis and RNA sequencing, contribute to iden-
tify unrecognized pathogenic variants 148-152. 

Distal myopathy with rimmed vacuoles (Nonaka or GNE 
myopathy) – GNE

Independently described by Nonaka et al. and by Ar-
gov and Yarom, the GNE distal myopathy is a rimmed 
vacuolar recessive myopathy with an early adult on-
set 153,154. It first affects the anterior compartment of low-
er legs and thigh hamstring muscles with sparing of the 
quadriceps, but the progression is rather severe, and half 
of the patients loose ambulation within 10 years. Serum 
creatine kinase is mildly elevated and muscle histopathol-
ogy is characterized by rimmed vacuoles. 

The causative gene (GNE) was identified in 2001 155 
and, since then, patients have been reported worldwide. 
GNE encodes an epimerase-kinase enzyme involved in 
the sialic acid biosynthesis. Glycoproteins and glycolip-
ids located in the membrane often undergo a sialic ac-
id modification that seems to be crucial for their func-
tion  156. Nevertheless, in a recent study, no consistent 
major change in sialylation has been observed comparing 
patients and matched control samples, suggesting that the 
pathophysiology of the disease is still unclear 157.

More than 180 variants are currently known and 
founder mutations first reported from Middle East and Ja-
pan have been described in many populations 158-163. GNE 
is susceptible to Alu-mediated recombination, and copy 
number variants (CNV) have been reported suggesting 
the utility of second-tier tests in case of an uninformative 
sequencing analysis aiming at the identification of single 
nucleotide variants  164-167. Moreover, a vast clinical het-
erogeneity, only partly explained by the GNE genotype, is 
observed in families with GNE mutations 160,168-170. 

Sialuria is an allelic dominant metabolic disease 
characterized by the accumulation of N-acetylneuraminic 
acid (NeuAc) due to missense variants in GNE 171.

Distal ABD-filaminopathy – FLNC

A large Australian family with a dominant, adult-on-
set, slowly progressive distal myopathy was described in 
2005 by Williams and colleagues 172. In a second Italian 
family with otherwise similar phenotype reported by Duff 
et al. cardiac involvement was also present 173. Weakness 
of handgrip is the usual presentation followed by calf 
muscle plantar flexion weakness. The progression is slow, 
and patients remain ambulant. CK is normal or mildly 
elevated, and muscle MRI shows fatty replacement in 
posterior compartment of lower legs. Histopathology is 
unspecific myopathic without vacuoles or myofibrillar 
abnormalities. 

Combining linkage data and resequencing of candi-
date genes in these two families, two different missense 
changes in the N-terminal actin-binding domain (ADB) of 
FLNC were identified 173. The FLNC gene encodes filamin, 
an actin ligand that plays an important role in mechanical 
stabilization, mechanosensation and intracellular signal-
ling through a large network of interactors 174,175. Mutations 
in other parts of the gene may cause late onset myofibrillar 
myopathy with generalized weakness and cardiomyopa-
thy 176-178. After the gene identification in 2011, novel FL-
NC causative variants have been identified, expanding the 
spectrum of FLNC-related myopathies 179-181. 

Recent findings suggest a more complex gen-
otype-phenotype correlation. A missense variant, 
p.M222V, in the N-terminal actin-binding domain, caus-
ing a distal myofibrillar myopathy, has been reported 182. 
Another missense change, p.C203Y, has been recently 
found to cause an upper limb distal myopathy with ne-
maline bodies 183. 

DNAJB6 distal myopathy – DNAJB6

The disease was originally reported by Servidei and 
colleagues in a large Italian family with onset of ankle 
weakness between the second and sixth decades of life 184, 
and usually progressing to proximal muscles and upper 
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limbs. Muscle biopsy showed dystrophic changes and 
rimmed vacuoles. In the Italian family, the causative vari-
ant was found in DNAJB6, in a different locus from the 
one initially reported 185. DNAJB6 encodes a ubiquitously 
expressed member of the DNAJ/HSP40 family of co-chap-
erones  119,186. Mutations in DNAJB6, specifically in the 
G/F domain, cause more often a proximal myopathy (LG-
MD1D) 187-193. Recently, a form of DNAJB6-related distal 
calf-predominant myopathy has been reported in patients 
with particular mutations in the N-terminal J-domain 194. 

Rimmed vacuolar neuromyopathy – HSPB8

Ghaoui and colleagues reported two families with 
a dominant HSPB8-related disease showing early adult 
neurogenic leg weakness and progressing towards a dis-
tal and proximal myofibrillar and rimmed vacuolar my-
opathy in the later stage of the disease 195. EMG revealed 
denervation in the distal lower limbs and myopathic prox-
imal changes. MRI of the lower limb muscles showed 
first diffuse neurogenic changes in gastrocnemius, deep 
toe flexors, and peroneus with later fatty replacement in 
proximal thigh and lower legs muscles.

The HSPB8 gene encodes the small heat-shock pro-
tein-beta 8, acting as stress protein with a chaperone-like 
activity and part of the chaperone-assisted selective auto-
phagy (CASA) complex 119,196. HSPB8 missense variants 
had been previously associated with distal hereditary mo-
tor neuropathy 2A (dHMN2A) and Charcot-Marie-Tooth 
disease (CMT2L) 197-201. The myofibrillar myopathy with 
aggregates and rimmed vacuoles mimics the histopatho-
logical changes seen in myopathies caused by defects in 
BAG3 and DNAJB6 202,203. 

Later other families with a combined neuromuscu-
lar disorder, encompassing dHMN and MFM have been 
described204. In one family decrease of TARDBP mRNA 
levels causing a consistent alteration of TDP‐43‐depen-
dent splicing was reported 204. Recently, a novel HSPB8 
variant has been found in a patient with limb-girdle my-
opathy without associated neuropathy 205.

ANO5 distal muscular dystrophy – ANO5

Distal anoctaminopathy has an age of onset in early/
mid adulthood (18-40 years)  206,207. Early manifestations 
include difficulties in sport activity and in walking on tip-
toes but often the clinical presentation is mild, or the dis-
ease does not even result in overt clinical signs. The early 
stage hypertrophy of calf muscles progresses into muscle 
atrophy 208. At a later stage, proximal muscle weakness and 
wasting is observed. Typically, the cardiac muscle is spared. 
CK levels are usually highly elevated (over 10 times the up-
per limits). Non-specific myopathic changes with scattered 
necrotic fibers are observed in the muscle biopsy. 

The disease is due to bi-allelic causative variants in 
the ANO5 gene, encoding for anoctamin-5, a putative cy-
toplasmic calcium-activated chloride channel, with a pos-
sible role in membrane fusion and repair 209,210. The more 
common phenotype of bi-allelic variants in ANO5 is late 
onset proximal (LGMDR12)  206,207,211-214. Variants causing 
ANO5-related recessive anoctaminopathies mostly result 
in a reduced protein expression and missense changes like-
ly destabilize the protein, causing its degradation 215,216. We 
still lack a clear genotype-phenotype correlation explain-
ing the high intrafamilial and interfamilial clinical variabil-
ity observed, also considering that female patients often 
have a milder disease than males 206,212,217-221. 

A dominant form of gnathodiaphyseal dysplasia is 
(GDD) an allelic disorder caused by ANO5 missense vari-
ants in heterozygosity  222,223. The pathomechanism of the 
ANO5-related GDD is still unclear. However, the protein 
seems to have an important role in the embryonic develop-
ment and most probably in the osteoblast differentiation 223.

RYR1 mutated calf predominant distal myopathy – RYR1

A very mild dominant distal myopathy with prefer-
ential fatty degeneration of medial gastrocnemius, clearly 
shown by muscle MRI, has been recently reported in one 
Italian and two Finnish families 224. Some patients exhibit 
toe walking in the childhood with spontaneous remission. 
In adulthood, patients complain of exercise myalgia in the 
calves, and show 5-10 fold elevated CK. No limitation 
of walking was present even in elderly patients. Mus-
cle biopsy reveals core pathology. Three different RYR1 
mutations were identified in different parts of the gene, 
which encodes ryanodine receptor 1, a calcium release 
channel of the sarcoplasmic reticulum that, together with 
sarcolemmal voltage-gated calcium channels (DHPR), is 
responsible for the excitation-contraction coupling.

Dominant and recessive mutations in the RYR1 gene 
present with a multitude of phenotypes including malig-
nant hyperthermia (MH) susceptibility and congenital 
central core disease (CCD), centronuclear myopathy, 
multiminicore myopathy, congenital fibre type dispropor-
tion, axial myopathy, King-Denborough syndrome, atyp-
ical periodic paralysis and exertional rhabdomyolysis/
myalgia  225-235. A childhood-onset distal myopathy pre-
senting with hand stiffness and facial weakness has been 
associated to bi-allelic RYR1 variants 236. 

Early-childhood onset distal 
myopathies
Early onset distal myopathy (Laing myopathy) – MYH7

Laing myopathy was the first distal myopathy with 
established genetic linkage 237. The onset is in early child-
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hood with the ankle dorsiflexor and toe extensor (hanging 
big toe) weakness and the disease has a slow progression. 
Severe forms develop scoliosis and involves proximal, 
neck and facial muscles. CK levels are normal or mildly 
elevated. The most consistent histopathology is hypot-
rophy of type 1 slow fibers, often combined with core/
minicore lesions 238. Muscle MRI shows the involvement 
of anterior compartment lower leg muscles and, eventu-
ally, of the sartorius, with relative sparing of the lateral 
gastrocnemius muscle and rectus femoris 239-242.

In 2004 the causative variant was identified in the 
MYH7 gene encoding the beta heavy chain of myosin 243. 
Since then, a large number of causative variants in the tail 
of the protein were reported, with a large proportion (30%) 
of re-occurring de novo mutations masking the dominant 
effect of the variants 244-248. Causative variants in the head 
and neck domains at the N-terminal of the protein have 
been mainly associated with hypertrophic cardiomyopa-
thy (without skeletal muscle involvement) 249-251. Variants 
in the ultimate C-terminal region most often result in oth-
er skeletal myopathies (hyaline body myopathy) with or 
without cardiac involvement 252,253. Rare recessive forms 
of MYH7-related myopathy have been reported 254-256.

Early onset distal myopathies with nebulin defect – NEB

Bi-allelic, mainly missense, variants in NEB gene 
may result in an early-onset distal myopathy with a pre-
dominant weakness of extensor muscles of feet and later 
hands  257,258. The progression is very slow and adult pa-
tients do not have major disability.

Muscle imaging shows a selective fatty degeneration 
in the anterior tibial muscles, EMG is myopathic and 
CK is normal or mildly elevated. Scattered and grouped 
atrophic fibers (that can be misinterpreted as neurogenic 
changes) are detectable in the biopsy of affected muscle 
without rods on light microscopy 258,259. Small rods asso-
ciated with Z-disks may be present on electron micros-
copy 259.

A large in-frame deletion, dominantly inherited in a 
three-generation family with a distal nemaline rod/cap 
myopathy, was recently described  260. The in-frame de-
letion results in a protein of reduced size with a domi-
nant-negative effect  260. Patients present with foot drop 
in childhood and the disease progresses with the involve-
ment of distal upper limbs. CK can be slightly elevated, 
EMG is myopathic and muscle MRI shows fatty degen-
eration of the anterior compartment lower leg muscles. 
A large heterozygous de novo deletion in young patient 
with asymmetric distal and facial weakness has just been 
identified confirming the dominant effect of an abnormal 
protein (submitted). 

The 183-exon NEB gene encodes nebulin, a protein 
of 600-900   kDa that regulates the length of actin fila-

ments 261,262. Causative variants in NEB (mainly nonsense, 
out-of-frame indels or copy number variants, and splicing 
variants) are the most common cause of congenital nema-
line myopathy 263,264. Additional allelic diseases are core 
rod myopathy, and fetal akinesia/lethal multiple pterygi-
um syndrome 259,265,266. 

Copy number variant (CNV) analysis and RNA se-
quencing are essential to identify possible elusive patho-
genic NEB variants 148-150,267,268. 

Early onset ADSSL distal myopathy – ADSSL

In 2016, Park and colleagues reported two unrelat-
ed Korean families with an autosomal recessive adoles-
cent-onset distal myopathy with facial muscle weakness, 
mild CK elevation and rimmed vacuoles in the muscular 
biopsy  269,270. Two different variants in the ADSSL gene 
were identified by exome sequencing. The ADSSL gene 
encodes the muscle isozyme of adenylosuccinate syn-
thase, the enzyme catalysing the initial reaction in the 
conversion of inosine monophosphate (IMP) to adenos-
ine monophosphate (AMP) 271,272. Two following studies 
identified novel Korean and non-Korean (Turkish and 
Indian) patients, confirming the gene-disease associa-
tion 273,274. Most patients presented with a distal myopathy 
with onset in childhood or adolescence progressing to in-
volve weakness of proximal muscles in early adulthood. 
However, one patient, homozygous for a missense vari-
ant, shows a proximal myopathy with contractures and 
muscle atrophy, expanding the ADSSL-related spectrum 
of phenotypes 274.

Early onset distal myopathy with KLHL9 mutations – KLHL9

Cirak and colleagues described a German family 
with an autosomal distal weakness caused by a heterozy-
gous variant in the KLHL9 gene 275. Despite extensive lat-
er studies, this gene has not been confirmed in any other 
myopathy families.

Other myopathies and dystrophies 
with distal weakness
Distal myopathy with caveolin defect – CAV3

In 2002, Tateyama and colleagues described a form 
of sporadic distal myopathy caused by an heterozygous 
missense variant in CAV3 gene 276. Since then, additional 
patients and further causative variants have been report-
ed 277,278. Onset is in early adulthood, muscle atrophy and 
weakness are often limited to the small muscles of the 
hands and feet. Other features included calf hypertrophy, 
pes cavus, myalgias, slightly increased serum CK. EMG 
studies show a myopathic pattern and histological find-
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ings include nonspecific myopathic changes 278,279. CAV3 
expression can be reduced.

Variants in CAV3 can also cause an isolated hyper-
ckemia or a rippling muscle disease 280-285 and even car-
diac phenotypes (hypertrophic cardiomyopathy and long 
QT syndrome)  286,287. Some patients with CAV3 related 
myopathy have been previously described as LGMD1C 
patients 288.

DNM2 related distal myopathy – DNM2

DNM2-related myopathy is an autosomal dominant 
slowly progressive centronuclear myopathy characterized 
by the presence of centrally located nuclei in a several 
muscle fibres  289. The clinical onset is usually in child-
hood or early adulthood 290. The distal muscle weakness 
is marked although facial weakness is the clinical lead to 
diagnosis 291-300. More severe forms, clinically resembling 
myotubular myopathy, have been described 301. MRI stud-
ies shows fatty infiltration of the calf muscles 302. Electro-
myography may show a mix pattern with myopathic and 
neuropathic changes. 

DNM2 encodes dynamin 2, a ubiquitously expressed 
GTPase that is involved in endocytosis and intracellular 
trafficking 303-306. Dynamin 2 interacts with actin and has 
an active role in regulating microtubule networks and in 
centrosome function 307. DNM2 mutations can also cause 
an intermediate or axonal CMT disease with and without 
cataracts  308. A lethal congenital syndrome associating 
akinesia, joint contractures, hypotonia, skeletal abnor-
malities, and brain and retinal haemorrhages has been ob-
served in three consanguineous families with a missense 
variant (p.Phe379Val) in homozygosity 309.

Differential diagnostics 
A long range of other myopathies needs to be consid-

ered in the differential diagnostics since they may show 
prominent distal weakness and/or atrophy:
•	 Facioscapulohumeral muscular dystrophy;
•	 Myotonic dystrophy type1;
•	 HMERF titinopathy (i.e. p.C31712R mutation);
•	 Scapuloperoneal syndromes (FHL-1, TRIM32,…);
•	 Other nemaline and rod-core myopathies (TPM2, 

ACTA1,…);
•	 Inclusion body myositis;
•	 Telethoninopathy;
•	 Glycogenoses: brancher and debrancher enzyme de-

fects;
•	 Lipidosis in PNPLA2 mutated disease;
•	 Mitochondrial distal myopathy (POLG1);
•	 Nephropathic cystinosis;
•	 Amyloid myopathy (myeloma induced).

Conclusions
Despite the huge developments in the last 20 years to 

uncover the genetic cause of distal myopathy, some fam-
ilies and patients still remain without a final diagnosis. 
The introduction of long read sequencing and RNA se-
quencing in clinical care and the constitution of large in-
ternational consortia will most probably further increase 
the diagnostic rate 310-316. 

The reason for some genetic defects to have prefer-
ence for the distal limb muscles in causing loss of muscle 
tissue is unclear and understanding the molecular back-
ground for this preference may also harbour insight for 
therapeutic opportunities.

Considering the crucial advancements in the last de-
cade, we can look forward optimistically to the upcom-
ing decade. We will most probably identify an increasing 
number of digenic diseases and of genetic and non-ge-
netic modifiers influencing the phenotype. The next chal-
lenge is to translate the genetic and molecular advance-
ments in clinics, thereby contributing to the development 
of a personalized medicine aiming at providing a tailored 
approach to each patient with a distal myopathy 317,318. 

References
1	 Gowers WR. A lecture on myopathy and a distal form: delivered 

at the National Hospital for the Paralysed and Epileptic. Br Med J 

1902;2:89-92. https://doi.org/10.1136/bmj.2.2167.89

2	 Liu J, Aoki M, Illa I, et al. Dysferlin, a novel skeletal muscle gene, 

is mutated in Miyoshi myopathy and limb girdle muscular dystro-

phy. Nat Genet 1998;20:31-6. https://doi.org/10.1038/1682

3	 Evila A, Arumilli M, Udd B, et al. Targeted next-generation se-

quencing assay for detection of mutations in primary myopathies. 

Neuromuscul Disord 2016;26:7-15. https://doi.org/10.1016/j.

nmd.2015.10.003

4	 Nallamilli BRR, Chakravorty S, Kesari A, et al. Genetic landscape 

and novel disease mechanisms from a large LGMD cohort of 4656 

patients. Ann Clin Transl Neurol 2018;5:1574-87. https://doi.

org/10.1002/acn3.649

5	 Savarese M, Di Fruscio G, Torella A, et al. The genetic basis of 

undiagnosed muscular dystrophies and myopathies: results from 

504 patients. Neurology 2016;87:71-6. https://doi.org/10.1212/

WNL.0000000000002800

6	 Ankala A, da Silva C, Gualandi F, et al. A comprehensive genomic 

approach for neuromuscular diseases gives a high diagnostic yield. 

Ann Neurol 2015;77:206-14. https://doi.org/10.1002/ana.24303

7	 Ghaoui R, Cooper ST, Lek M, et al. Use of whole-exome sequenc-

ing for diagnosis of limb-girdle muscular dystrophy: outcomes 

and lessons learned. JAMA Neurol 2015;72:1424-32. https://doi.

org/10.1001/jamaneurol.2015.2274

8	 Benarroch L, Bonne G, Rivier F, et al. The 2020 version of the 



Marco Savarese et al.

254

gene table of neuromuscular disorders (nuclear genome). Neu-

romuscul Disord 2019;29:980-1018. https://doi.org/10.1016/j.

nmd.2019.10.010

9	 Welander L. Myopathia distalis tarda hereditaria; 249 examined cas-

es in 72 pedigrees. Acta Med Scand 1951(Suppl);265:1-124 (https://

www.ncbi.nlm.nih.gov/pubmed/14894174. Published 1951/01/01).

10	 Hackman P, Sarparanta J, Lehtinen S, et al. Welander distal myopa-

thy is caused by a mutation in the RNA-binding protein TIA1. Ann 

Neurol 2013;73:500-9. https://doi.org/10.1002/ana.23831

11	 Klar J, Sobol M, Melberg A, et al. Welander distal myopathy caused 

by an ancient founder mutation in TIA1 associated with perturbed 

splicing. Hum Mut 2013;34:572-7. https://doi.org/10.1002/hu-

mu.22282

12	 Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P. A polyade-

nylate binding protein localized to the granules of cytolytic lympho-

cytes induces DNA fragmentation in target cells. Cell 1991;67:629-

39. https://doi.org/10.1016/0092-8674(91)90536-8

13	 Eisinger-Mathason TS, Andrade J, Groehler AL, et al. Codepen-

dent functions of RSK2 and the apoptosis-promoting factor TIA-1 

in stress granule assembly and cell survival. Mol Cell 2008;31:722-

36. https://doi.org/10.1016/j.molcel.2008.06.025

14	 Forch P, Puig O, Kedersha N, et al. The apoptosis-promoting factor 

TIA-1 is a regulator of alternative pre-mRNA splicing. Mol Cell 

2000;6:1089-98. https://doi.org/10.1016/s1097-2765(00)00107-6

15	 Lee Y, Jonson PH, Sarparanta J, et al. TIA1 variant drives myode-

generation in multisystem proteinopathy with SQSTM1 mutations. 

J Clin Invest 2018;128:1164-77. https://doi.org/10.1172/JCI97103

16	 Udd B, Hakamies L, Partanen J, et al. Tibial muscular dystro-

phy: late adult-onset distal myopathy in 66 Finnish patients. 

Arch Neurol 1993;50:604-8. https://doi.org/10.1001/arch-

neur.1993.00540060044015

17	 Hackman P, Vihola A, Haravuori H, et al. Tibial muscular dystrophy 

is a titinopathy caused by mutations in TTN, the gene encoding the 

giant skeletal-muscle protein titin. Am J Hum Genet 2002;71:492-

500. https://doi.org/10.1086/342380

18	 Pollazzon M, Suominen T, Penttila S, et al. The first Italian family 

with tibial muscular dystrophy caused by a novel titin mutation. J 

Neurol 2010;257:575-9. https://doi.org/10.1007/s00415-009-5372-3

19	 Van den Bergh PYK, Bouquiaux O, Verellen C, et al. Tibial mus-

cular dystrophy in a Belgian family. Ann Neurol 2003;54:248-51. 

https://doi.org/10.1002/ana.10647

20	 Bang ML, Centner T, Fornoff F, et al. The complete gene sequence 

of titin, expression of an unusual approximately 700-kDa titin 

isoform, and its interaction with obscurin identify a novel Z-line 

to I-band linking system. Circ Res 2001;89:1065-72. https://doi.

org/10.1161/hh2301.100981

21	 Charton K, Sarparanta J, Vihola A, et al. CAPN3-mediated process-

ing of C-terminal titin replaced by pathological cleavage in titinop-

athy. Hum Mol Genet 2015;24:3718-31. https://doi.org/10.1093/

hmg/ddv116

22	 Sarparanta J, Blandin G, Charton K, et al. Interactions with M-band 

titin and calpain 3 link myospryn (CMYA5) to tibial and limb-gir-

dle muscular dystrophies. J Biol Che 2010;285:30304-15. https://

doi.org/10.1074/jbc.M110.108720

23	 Savarese M, Jonson PH, Huovinen S, et al. The complexity of tit-

in splicing pattern in human adult skeletal muscles. Skelet Muscle 

2018;8:11. https://doi.org/10.1186/s13395-018-0156-z

24	 Uapinyoying P, Goecks J, Knoblach SM, et al. A long-read RNA-

seq approach to identify novel transcripts of very large genes. Ge-

nome Res 2020;30:885-97. https://doi.org/10.1101/gr.259903.119

25	 Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing 

role of titin mutations in neuromuscular disorders. J Neuromuscul 

Dis 2016;3:293-308. https://doi.org/10.3233/JND-160158

26	 Hackman P, Udd B, Bonnemann CG, et al. Titinopathy database 

C. 219th ENMC International Workshop Titinopathies International 

database of titin mutations and phenotypes, Heemskerk, The Neth-

erlands, 29 April-1 May 2016. Neuromuscul Disord 2017;27:396-

407. https://doi.org/10.1016/j.nmd.2017.01.009

27	 Palmio J, Evila A, Chapon F, et al. Hereditary myopathy with ear-

ly respiratory failure: occurrence in various populations. J Neurol 

Neurosurg Psychiatry 2014;85:345-53. https://doi.org/10.1136/jn-

np-2013-304965

28	 Palmio J, Leonard-Louis S, Sacconi S, et al. Expanding the importance 

of HMERF titinopathy: new mutations and clinical aspects. J Neurol 

2019;266:680-90. https://doi.org/10.1007/s00415-019-09187-2

29	 Tasca G, Udd B. Hereditary myopathy with early respiratory fail-

ure (HMERF): still rare, but common enough. Neuromuscul Disord 

2018;28:268-76. https://doi.org/10.1016/j.nmd.2017.12.002

30	 Savarese M, Vihola A, Oates EC, et al. Genotype-phenotype cor-

relations in recessive titinopathies. Genet Med 2020;Aug 11. 

https://doi.org/10.1038/s41436-020-0914-2

31	 Oates EC, Jones KJ, Donkervoort S, et al. Congenital titinopathy: 

comprehensive characterization and pathogenic insights. Ann Neu-

rol 2018;83:1105-24. https://doi.org/10.1002/ana.25241

32	 Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing 

dilated cardiomyopathy. N Engl J Med 2012;366:619-28. https://

doi.org/10.1056/NEJMoa1110186

33	 Itoh-Satoh M, Hayashi T, Nishi H, et al. Titin mutations as the 

molecular basis for dilated cardiomyopathy. Biochem Bio-

phys Res Commun 2002;291:385-93. https://doi.org/10.1006/

bbrc.2002.6448

34	 Feit H, Silbergleit A, Schneider LB, et al. Vocal cord and pharyn-

geal weakness with autosomal dominant distal myopathy: clin-

ical description and gene localization to 5q31. Am J Hum Gen 

1998;63:1732-42. https://doi.org/10.1086/302166

35	 Senderek J, Garvey SM, Krieger M, et al. Autosomal-domi-

nant distal myopathy associated with a recurrent missense mu-

tation in the gene encoding the nuclear matrix protein, matrin 

3. Am J Hum Genet 2009;84:511-8. https://doi.org/10.1016/j.

ajhg.2009.03.006



Distal myopathies

255

36	 Muller TJ, Kraya T, Stoltenburg-Didinger G, et al. Phenotype of 

matrin-3-related distal myopathy in 16 German patients. Ann Neu-

rol 2014;76:669-80. https://doi.org/10.1002/ana.24255

37	 Barp A, Malfatti E, Metay C, et al. The first French case of 

MATR3-related distal myopathy: clinical, radiological and histo-

pathological characterization. Rev Neurol (Paris) 2018;174:752-5. 

https://doi.org/10.1016/j.neurol.2017.08.004

38	 Kraya T, Schmidt B, Muller T, et al. Impairment of respiratory 

function in late-onset distal myopathy due to MATR3 Mutation. 

Muscle Nerve 2015;51:916-8. https://doi.org/10.1002/mus.24603

39	 Mensch A, Kraya T, Koester F, et al. Whole-body muscle MRI of 

patients with MATR3-associated distal myopathy reveals a dis-

tinct pattern of muscular involvement and highlights the value of 

whole-body examination. J Neurol 2020;267:2408-20. https://doi.

org/10.1007/s00415-020-09862-9

40	 Belgrader P, Dey R, Berezney R. Molecular cloning of matrin 3. A 

125-kilodalton protein of the nuclear matrix contains an extensive 

acidic domain. J Biol Chem 1991;266:9893-9 ().https://www.ncbi.

nlm.nih.gov/pubmed/2033075. Published 1991/05/25.

41	 Nakayasu H, Berezney R. Nuclear matrins: identification of the 

major nuclear matrix proteins. PNAS 1991;88:10312-6. https://doi.

org/10.1073/pnas.88.22.10312

42	 Johnson JO, Pioro EP, Boehringer A, et al. Mutations in the Matrin 

3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosc 

2014;17:664-6. https://doi.org/10.1038/nn.3688

43	 Savarese M, Palmio J, Poza JJ, et al. Actininopathy: a new muscu-

lar dystrophy caused by ACTN2 dominant mutations. Ann Neurol 

2019;85:899-906. https://doi.org/10.1002/ana.25470

44	 Tiso N, Majetti M, Stanchi F, et al. Fine mapping and genomic 

structure of ACTN2, the human gene coding for the sarcomeric 

isoform of alpha-actinin-2, expressed in skeletal and cardiac mus-

cle. Biochem Biophys Res Commun 1999;265:256-9. https://doi.

org/10.1006/bbrc.1999.1661

45	 Young P, Ferguson C, Banuelos S, et al. Molecular structure of 

the sarcomeric Z-disk: two types of titin interactions lead to an 

asymmetrical sorting of alpha-actinin. EMBO J 1998;17:1614-24. 

https://doi.org/10.1093/emboj/17.6.1614

46	 Gupta V, Discenza M, Guyon JR, et al. alpha-Actinin-2 deficiency 

results in sarcomeric defects in zebrafish that cannot be rescued by 

alpha-actinin-3 revealing functional differences between sarcomer-

ic isoforms. FASEB journal: official publication of the Federation 

of American Societies for Experimental Biology 2012;26:1892-

908. https://doi.org/10.1096/fj.11-194548

47	 Ribeiro Ede A, Jr., Pinotsis N, Ghisleni A, et al. The structure and 

regulation of human muscle alpha-actinin. Cell 2014;159:1447-60. 

https://doi.org/10.1016/j.cell.2014.10.056

48	 Lornage X, Romero NB, Grosgogeat CA, et al. ACTN2 mutations 

cause “Multiple structured Core Disease” (MsCD). Acta Neuropathol 

2019;137:501-19. https://doi.org/10.1007/s00401-019-01963-8

49	 Haywood NJ, Wolny M, Rogers B, et al. Hypertrophic cardiomyop-

athy mutations in the calponin-homology domain of ACTN2 affect 

actin binding and cardiomyocyte Z-disc incorporation. Biochem J 

2016;473:2485-93. https://doi.org/10.1042/BCJ20160421

50	 Mohapatra B, Jimenez S, Lin JH, et al. Mutations in the muscle 

LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy 

and endocardial fibroelastosis. Mol Genet Metab 2003;8:207-15. 

https://doi.org/10.1016/s1096-7192(03)00142-2

51	 Chiu C, Bagnall RD, Ingles J, et al. Mutations in alpha-actinin-2 

cause hypertrophic cardiomyopathy: a genome-wide analysis. 

J Am Coll Cardio 2010;55:1127-35. https://doi.org/10.1016/j.

jacc.2009.11.016

52	 Girolami F, Iascone M, Tomberli B, et al. Novel alpha-actinin 2 

variant associated with familial hypertrophic cardiomyopathy and 

juvenile atrial arrhythmias: a massively parallel sequencing study. 

Circ Cardiovasc Genet 2014;7:741-50. https://doi.org/10.1161/

CIRCGENETICS.113.000486

53	 Bagnall RD, Molloy LK, Kalman JM, et al. Exome sequencing 

identifies a mutation in the ACTN2 gene in a family with idiopathic 

ventricular fibrillation, left ventricular noncompaction, and sud-

den death. BMC Med Genet 2014;15:99. https://doi.org/10.1186/

s12881-014-0099-0

54	 Edstrom L, Thornell LE, Eriksson A. A new type of hereditary dis-

tal myopathy with characteristic sarcoplasmic bodies and interme-

diate (skeletin) filaments. J Neurol Sci 1980;47:171-90. https://doi.

org/10.1016/0022-510x(80)90002-7

55	 Olive M, Engvall M, Ravenscroft G, et al. Myoglobinopathy is 

an adult-onset autosomal dominant myopathy with characteristic 

sarcoplasmic inclusions. Nat Commun 2019;10:1396. https://doi.

org/10.1038/s41467-019-09111-2

56	 Durmus H, Laval SH, Deymeer F, et al. Oculopharyngodistal 

myopathy is a distinct entity: Clinical and genetic features of 47 

patients. Neurology 2011;76:227-35. https://doi.org/10.1212/

WNL.0b013e318207b043

57	 Lu H, Luan X, Yuan Y, et al. The clinical and myopathological 

features of oculopharyngodistal myopathy in a Chinese family. 

Neuropathology 2008;28:599-603. https://doi.org/10.1111/j.1440-

1789.2008.00924.x

58	 Ishiura H, Shibata S, Yoshimura J, et al. Noncoding CGG repeat 

expansions in neuronal intranuclear inclusion disease, oculo-

pharyngodistal myopathy and an overlapping disease. Nat Genet 

2019;51:1222-32. https://doi.org/10.1038/s41588-019-0458-z

59	 Saito R, Shimizu H, Miura T, et al. Oculopharyngodistal myopa-

thy with coexisting histology of systemic neuronal intranuclear in-

clusion disease: clinicopathologic features of an autopsied patient 

harboring CGG repeat expansions in LRP12. Acta Neuropathol 

Commun. 2020;8:75. https://doi.org/10.1186/s40478-020-00945-2

60	 Sone J, Mitsuhashi S, Fujita A, et al. Long-read sequencing identi-

fies GGC repeat expansions in NOTCH2NLC associated with neu-

ronal intranuclear inclusion disease. Nat Genet 2019;51:1215-21. 

https://doi.org/10.1038/s41588-019-0459-y



Marco Savarese et al.

256

61	 Deng J, Yu J, Li P, et al. Expansion of GGC repeat in GIPC1 is 

associated with oculopharyngodistal myopathy. Am J Hum Genet 

2020;106:793-804. https://doi.org/10.1016/j.ajhg.2020.04.011

62	 Di Blasi C, Moghadaszadeh B, Ciano C, et al. Abnormal lysosom-

al and ubiquitin-proteasome pathways in 19p13.3 distal myopathy. 

Ann Neurol 2004;56:133-8. https://doi.org/10.1002/ana.20158

63	 Ruggieri A, Naumenko S, Smith MA, et al. Multiomic elucidation of a 

coding 99-mer repeat-expansion skeletal muscle disease. Acta Neuro-

pathol 2020;140:231-5. https://doi.org/10.1007/s00401-020-02164-4

64	 Pourteymour S, Lee S, Langleite TM, et al. Perilipin 4 in human 

skeletal muscle: localization and effect of physical activity. Physiol 

Rep 2015;3. https://doi.org/10.14814/phy2.12481

65	 Palmio J, Sandell S, Suominen T, et al. Distinct distal myopathy 

phenotype caused by VCP gene mutation in a Finnish family. 

Neuromuscul Disord 2011;21:551- 5. https://doi.org/10.1016/j.

nmd.2011.05.008

66	 Ikenaga C, Findlay AR, Seiffert M, et al. Phenotypic diversity in 

an international Cure VCP Disease registry. Orphanet J Rare Dis 

2020;15:267. https://doi.org/10.1186/s13023-020-01551-0

67	 Guo X, Zhao Z, Shen H, et al. VCP myopathy: A family with un-

usual clinical manifestations. Muscle Nerve 2019;59:365-9. https://

doi.org/10.1002/mus.26389

68	 Al-Tahan S, Al-Obeidi E, Yoshioka H, et al. Novel valosin-contain-

ing protein mutations associated with multisystem proteinopathy. 

Neuromuscul Disor 2018;28:91-501. https://doi.org/10.1016/j.

nmd.2018.04.007

69	 Boland-Freitas R, Graham J, Davis M, et al. Late-onset distal 

myopathy of the upper limbs due to P.Ile151Val mutation in the 

valosin-containing protein. Muscle Nerve 2016;54:165-6. https://

doi.org/10.1002/mus.25073

70	 Kazamel M, Sorenson EJ, McEvoy KM, et al. Clinical spec-

trum of valosin containing protein (VCP)-opathy. Muscle Nerve 

2016;54:94-9. https://doi.org/10.1002/mus.24980

71	 Liewluck T, Milone M, Mauermann ML, et al. A novel VCP 

mutation underlies scapuloperoneal muscular dystrophy and 

dropped head syndrome featuring lobulated fibers. Muscle Nerve 

2014;50:295-9. https://doi.org/10.1002/mus.24290

72	 Shi Z, Hayashi YK, Mitsuhashi S, et al. Characterization of the 

Asian myopathy patients with VCP mutations. Eur J Neurol 

2012;19:501-9. https://doi.org/10.1111/j.1468-1331.2011.03575.x

73	 Papadopoulos C, Malfatti E, Anagnostou E, et al. Valosin-con-

taining protein-related myopathy and Meige syndrome: Just a 

coincidence or not? Muscle Nerve 2019;60:e43-5. https://doi.

org/10.1002/mus.26704

74	 Watts GDJ, Wymer J, Kovach MJ, et al. Inclusion body myopathy 

associated with Paget disease of bone and frontotemporal dementia 

is caused by mutant valosin-containing protein. Nature Genetics 

2004;36:377-81. https://doi.org/10.1038/ng1332

75	 Kimonis VE, Mehta SG, Fulchiero EC, et al. Clinical studies in 

familial VCP myopathy associated with paget disease of bone and 

frontotemporal dementia. Am J Med Genet, Part A. 2008;146:745-

57. https://doi.org/10.1002/ajmg.a.31862

76	 Stojkovic T, Hammouda EH, Richard P, et al. Clinical outcome in 

19 French and Spanish patients with valosin-containing protein 

myopathy associated with Paget’s disease of bone and frontotem-

poral dementia. Neuromuscul Disord 2009;19:316-23. https://doi.

org/10.1016/j.nmd.2009.02.012

77	 Olivé M, Goldfarb LG, Shatunov A, et al. Refining the clinical and 

myopathological phenotype. Brain 2005;128:2315-26. https://doi.

org/10.1093/brain/awh576

78	 Pénisson-Besnier I, Talvinen K, Dumez C, et al. Myotilinopa-

thy in a family with late onset myopathy. Neuromuscular Disord 

2006;16:427-31. https://doi.org/10.1016/j.nmd.2006.04.009

79	 Selcen D, Engel AG. Mutations in myotilin cause myofibrillar my-

opathy. Neurology 2004;62:1363-71. https://doi.org/10.1212/01.

wnl.0000123576.74801.75

80	 Fischer D, Clemen CS, Olive M, et al. Different early patho-

genesis in myotilinopathy compared to primary desminopathy. 

Neuromuscul Disord 2006;16:361-7. https://doi.org/10.1016/j.

nmd.2006.03.007

81	 Maerkens A, Olive M, Schreiner A, et al. New insights into the 

protein aggregation pathology in myotilinopathy by combined pro-

teomic and immunolocalization analyses. Acta Neuropathol Com-

mun 2016;4:8. https://doi.org/10.1186/s40478-016-0280-0

82	 Fischer D, Kley RA, Strach K, et al. Distinct muscle imaging 

patterns in myofibrillar myopathies. Neurology 2008;71:758-65. 

https://doi.org/10.1212/01.wnl.0000324927.28817.9b

83	 Bugiardini E, Morrow JM, Shah S, et al. The diagnostic value 

of MRI pattern recognition in distal myopathies. Front Neurol 

2018;9:456.https://doi.org/10.3389/fneur.2018.00456

84	 Salmikangas P, van der Ven PF, Lalowski M, et al. Myotilin, the 

limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-

links actin filaments and controls sarcomere assembly. Hum Mol 

Genet 2003;12:189-203. https://doi.org/10.1093/hmg/ddg020

85	 Hauser MA, Horrigan SK, Salmikangas P, et al. Myotilin is mu-

tated in limb girdle muscular dystrophy 1A. Hum Mol Genet 

2000;9:2141-7. https://doi.org/10.1093/hmg/9.14.2141

86	 Hauser MA, Conde CB, Kowaljow V, et al. myotilin Mutation 

found in second pedigree with LGMD1A. Am J Hum Genet 

2002;71:1428-32. https://doi.org/10.1086/344532

87	 Rudolf G, Suominen T, Penttila S, et al. Homozygosity of the dom-

inant myotilin c.179C>T (p.Ser60Phe) mutation causes a more 

severe and proximal muscular dystrophy. J Neuromuscul Disord 

2016;3:275-81. https://doi.org/10.3233/JND-150143

88	 Schessl J, Bach E, Rost S, et al. Novel recessive myotilin mutation 

causes severe myofibrillar myopathy. Neurogenetics 2014;15:151-

6. https://doi.org/10.1007/s10048-014-0410-4

89	 Foroud T, Pankratz N, Batchman AP, et al. A mutation in myoti-

lin causes spheroid body myopathy. Neurology 2005;65:1936-40. 

https://doi.org/10.1212/01.wnl.0000188872.28149.9a



Distal myopathies

257

90	 Goebel HH, Muller J, Gillen HW, et al. Autosomal dominant 

“spheroid body myopathy”. Muscle Nerve 1978;1:14-26. https://

doi.org/10.1002/mus.880010104

91	 Griggs R, Vihola A, Hackman P, et al. Zaspopathy in a large classic 

late-onset distal myopathy family. Brain 2007;130(Pt 6):1477-84. 

https://doi.org/10.1093/brain/awm006

92	 Newby R, Jamieson S, Udd B, et al. When myopathy breaks the 

rules: a late-onset distal presentation. BMJ Case Rep 2015;2015. 

https://doi.org/10.1136/bcr-2015-209436

93	 Zheng J, Chen S, Chen Y, et al. A novel mutation in the PDZ-like 

motif of ZASP causes distal ZASP-related myofibrillar myopathy. 

Neuropathology 2017;37:45-51. https://doi.org/10.1111/neup.12328

94	 Strach K, Reimann J, Thomas D, et al. ZASPopathy with child-

hood-onset distal myopathy. J Neurol 2012;259:1494-6. https://doi.

org/10.1007/s00415-012-6543-1

95	 Behin A, Salort-Campana E, Wahbi K, et al. Myofibrillar myopa-

thies: state of the art, present and future challenges. Rev Neurol (Par-

is) 2015;171:715-29. https://doi.org/10.1016/j.neurol.2015.06.002

96	 Claeys KG, Fardeau M, Schröder R, et al. Electron microsco-

py in myofibrillar myopathies reveals clues to the mutated gene. 

Neuromuscul Disord 2008;18:656-66. https://doi.org/10.1016/j.

nmd.2008.06.367

97	 Lin X, Ruiz J, Bajraktari I, et al. Z-disc-associated, alternatively 

spliced, PDZ motif-containing protein (ZASP) mutations in the 

actin-binding domain cause disruption of skeletal muscle actin fila-

ments in myofibrillar myopathy. J Biol Chem 2014;289:13615-26. 

https://doi.org/10.1074/jbc.M114.550418

98	 Martinelli VC, Kyle WB, Kojic S, et al. ZASP interacts with the 

mechanosensing protein Ankrd2 and p53 in the signalling net-

work of striated muscle. PLoS One 2014;9:e92259. https://doi.

org/10.1371/journal.pone.0092259

99	 Vatta M, Mohapatra B, Jimenez S, et al. Mutations in Cypher/

ZASP in patients with dilated cardiomyopathy and left ventricular 

non-compaction. J Am Coll Cardiol 2003;42:2014-27. https://doi.

org/10.1016/j.jacc.2003.10.021

100	 Xing Y, Ichida F, Matsuoka T, et al. Genetic analysis in patients with 

left ventricular noncompaction and evidence for genetic heteroge-

neity. Mol Genet Metab 2006;88:71-7. https://doi.org/10.1016/j.

ymgme.2005.11.009

101	 Milhorat AT, Wolff HG. Studies in diseases of muscle: XIII. Pro-

gressive muscular dystrophy of atrophic distal type; report on a 

family; report of autopsy. Arch Neurol Psychiatry 1943;49:655-

64.10.1001/archneurpsyc.1943.02290170025002

102	 Van Spaendonck-Zwarts KY, Van Hessem L, Jongbloed JDH, et al. 

Desmin-related myopathy. Clin Genet 2011;80:354-66. https://doi.

org/10.1111/j.1399-0004.2010.01512.x

103	 Goldfarb LG, Park KY, Cervenákova L, et al. Missense mutations 

in desmin associated with familial cardiac and skeletal myopathy. 

Nature Genet 1998;19:402-3. https://doi.org/10.1038/1300

104	 Kouloumenta A, Mavroidis M, Capetanaki Y. Proper perinuclear 

localization of the TRIM-like protein myospryn requires its bind-

ing partner desmin. J Biol Chem 2007;28:35211-21. https://doi.

org/10.1074/jbc.M704733200

105	 Kedia N, Arhzaouy K, Pittman SK, et al. Desmin forms tox-

ic, seeding-competent amyloid aggregates that persist in mus-

cle fibers. PNAS 2019;116:16835-40. https://doi.org/10.1073/

pnas.1908263116

106	 Palmio J, Penttilä S, Huovinen S, Haapasalo H, Udd B. An un-

usual phenotype of late-onset desminopathy. Neuromuscul Disord 

2013;23:922-3. https://doi.org/10.1016/j.nmd.2013.06.374

107	 Riley LG, Waddell LB, Ghaoui R, et al. Recessive DES cardio/myop-

athy without myofibrillar aggregates: intronic splice variant silences 

one allele leaving only missense L190P-desmin. Eur J Hum Genet 

2019;27:1267-73. https://doi.org/10.1038/s41431-019-0393-6

108	 Goldfarb LG, Dalakas MC. Tragedy in a heartbeat: malfunctioning 

desmin causes skeletal and cardiac muscle disease. J Clin Investig 

2009;119:1806-13. https://doi.org/10.1172/JCI38027

109	 Goldfarb LG, Olivé M, Vicart P, et al. Intermediate filament diseas-

es: desminopathy. Adv Exp Med Biol 2008;642:131-64. https://doi.

org/10.1007/978-0-387-84847-1_11

110	 Walter M, Reichlich P, Hübner A. Identification of a desmin gene 

mutation in scapuloperoneal syndrome type Kaeser. Neuromuscul 

Disord 2006;16:708-9.

111	 Li D, Tapscoft T, Gonzalez O, et al. Desmin mutation responsible 

for idiopathic dilated cardiomyopathy. Circulation 1999;100:461-4. 

https://doi.org/10.1161/01.cir.100.5.461

112	 Taylor MR, Slavov D, Ku L, et al. Prevalence of desmin mutations 

in dilated cardiomyopathy. Circulation 2007;115:1244-51. https://

doi.org/10.1161/circulationaha.106.646778

113	 Vicart P, Caron A, Guicheney P, et al. A missense mutation in the 

αb-crystallin chaperone gene causes a desmin-related myopathy. 

Nature Genet 1998;20:92-5. https://doi.org/10.1038/1765

114	 Selcen D, Engel AG. Myofibrillar myopathy caused by nov-

el dominant negative alpha B-crystallin mutations. Ann Neurol 

2003;54:804-10. https://doi.org/10.1002/ana.10767

115	 Reilich P, Schoser B, Schramm N, et al. The p.G154S mutation 

of the alpha-B crystallin gene (CRYAB) causes late-onset distal 

myopathy. Neuromuscul Disord 2010;20(4):255-9. https://doi.

org/10.1016/j.nmd.2010.01.012

116	 Sacconi S, Feasson L, Antoine JC, et al. A novel CRYAB muta-

tion resulting in multisystemic disease. Neuromuscul Disord 

2012;22:66-72. https://doi.org/10.1016/j.nmd.2011.07.004

117	 Bortolani S, Fattori F, Monforte M, et al. Peculiar muscle imaging 

findings in a patient with alphaB-crystallinopathy and axial my-

opathy. J Neurol Sci 2020;416:116999. https://doi.org/10.1016/j.

jns.2020.116999

118	 Carvalho AAS, Lacene E, Brochier G, et al. Genetic mutations 

and demographic, clinical, and morphological aspects of myo-

fibrillar myopathy in a French cohort. Genet Test Mol Biomarkers 

2018;22:374-83. https://doi.org/10.1089/gtmb.2018.0004



Marco Savarese et al.

258

119	 Sarparanta J, Jonson PH, Kawan S, et al. Neuromuscular diseases 

due to chaperone mutations: a review and some new results. Int J 

Mol Sc 2020;21. https://doi.org/10.3390/ijms21041409

120	 D’Agostino M, Scerra G, Cannata Serio M, et al. Unconventional 

secretion of alpha-crystallin B requires the autophagic pathway and 

is controlled by phosphorylation of its serine 59 residue. Sci Rep 

2019;9:16892. https://doi.org/10.1038/s41598-019-53226-x

121	 Ciano M, Allocca S, Ciardulli MC, et al. Differential phosphory-

lation-based regulation of alphaB-crystallin chaperone activity for 

multipass transmembrane proteins. Biochem Biophys Res Com-

mun 2016;479:325-30. https://doi.org/10.1016/j.bbrc.2016.09.071

122	 D’Agostino M, Lemma V, Chesi G, et al. The cytosolic chaperone 

alpha-crystallin B rescues folding and compartmentalization of mis-

folded multispan transmembrane proteins. J Cell Sci 2013;126(Pt 

18):4160-72. https://doi.org/10.1242/jcs.125443

123	 Del Bigio MR, Chudley AE, Sarnat HB, et al. Infantile muscular 

dystrophy in Canadian aboriginals is an alphaB-crystallinopathy. 

Ann Neurol 2011;69:866-71. https://doi.org/10.1002/ana.22331

124	 Inagaki N, Hayashi T, Arimura T, et al. Alpha B-crystallin muta-

tion in dilated cardiomyopathy. Biochem Biophys Res Commu 

2006;342:379-86. https://doi.org/10.1016/j.bbrc.2006.01.154

125	 Berry V, Francis P, Reddy MA, et al. Alpha-B crystallin gene 

(CRYAB) mutation causes dominant congenital posterior polar 

cataract in humans. Am J Hum Genet 2001;69:1141-5. https://doi.

org/10.1086/324158

126	 Ma K, Luo D, Tian T, et al. A novel homozygous initiation codon 

variant associated with infantile alpha-Bcrystallinopathy in a Chi-

nese family. Mol Genet Genomic Med 2019;7:e825. https://doi.

org/10.1002/mgg3.825

127	 Marcos AT, Amoros D, Munoz-Cabello B, et al. A novel dominant 

mutation in CRYAB gene leading to a severe phenotype with child-

hood onset. Mol Genet Genomic Med 2020;8:e1290. https://doi.

org/10.1002/mgg3.1290

128	 Miyoshi K, Tada Y, Iwasa M. Autosomal recessive distal myopathy 

observed characteristically in Japan. Jpn J Hum Genet 1975;20:62-

63.

129	 Bansal D, Campbell KP. Dysferlin and the plasma membrane repair 

in muscular dystrophy. Trends in Cell Biology 2004;14:206-13. 

https://doi.org/10.1016/j.tcb.2004.03.001

130	 Glover L, Brown RH, Jr. Dysferlin in membrane trafficking and 

patch repair. Traffic 2007;8:785-94. https://doi.org/10.1111/j.1600-

0854.2007.00573.x

131	 Klinge L, Harris J, Sewry C, et al. Dysferlin associates with the 

developing T-tubule system in rodent and human skeletal muscle. 

Muscle Nerve 2010;41:166-73. https://doi.org/10.1002/mus.21166

132	 Cacciottolo M, Numitone G, Aurino S, et al. Muscular dystrophy 

with marked dysferlin deficiency is consistently caused by prima-

ry dysferlin gene mutations. Eur J Hum Genet 2011;19:974-80. 

https://doi.org/10.1038/ejhg.2011.70

133	 Cox D, Henderson M, Straub V, et al. A simple and rapid im-

munoassay predicts dysferlinopathies in peripheral blood film. 

Neuromuscul Disord 2019;29:874-80. https://doi.org/10.1016/j.

nmd.2019.09.008

134	 Magri F, Nigro V, Angelini C, et al. The Italian limb girdle mus-

cular dystrophy registry: Relative frequency, clinical features, and 

differential diagnosis. Muscle Nerve 2017;55:55-68. https://doi.

org/10.1002/mus.25192

135	 Wang L, Zhang VW, Li S, et al. The clinical spectrum and genetic 

variability of limb-girdle muscular dystrophy in a cohort of Chinese 

patients. Orphanet J Rare Dis 2018;13:133. https://doi.org/10.1186/

s13023-018-0859-6

136	 Izumi R, Takahashi T, Suzuki N, et al. The genetic profile of dys-

ferlinopathy in a cohort of 209 cases: genotype-phenotype re-

lationship and a hotspot on the inner DysF domain. Hum Mutat 

2020;41:1540-54. https://doi.org/10.1002/humu.24036

137	 Fatehi F, Nafissi S, Urtizberea JA, et al. Dysferlinopathy in Iran: 

clinical and genetic report. J Neurol Sci 2015;359:256-9. https://

doi.org/10.1016/j.jns.2015.11.009

138	 Bushby KM. The limb-girdle muscular dystrophies-multiple genes, 

multiple mechanisms. Hum Mol Genet 1999;8:1875-82. https://doi.

org/10.1093/hmg/8.10.1875

139	 Nigro V, Savarese M. Genetic basis of limb-girdle muscular 

dystrophies: the 2014 update. Acta Myol 2014;33:1-12. PMID 

24843229.

140	 Klinge L, Dean AF, Kress W, et al. Late onset in dysferlinopathy 

widens the clinical spectrum. Neuromuscul Disord 2008;18:288-

90. https://doi.org/10.1016/j.nmd.2008.01.004

141	 Evila A, Palmio J, Vihola A, et al. Targeted next-generation se-

quencing reveals novel TTN mutations causing recessive distal titi-

nopathy. Mol Neurobiol 2017;54:7212-23. https://doi.org/10.1007/

s12035-016-0242-3

142	 Evila A, Vihola A, Sarparanta J, et al. Atypical phenotypes in 

titinopathies explained by second titin mutations. Ann Neurol 

2014;75:230-40. https://doi.org/10.1002/ana.24102

143	 Hackman P, Marchand S, Sarparanta J, et al. Truncating mutations 

in C-terminal titin may cause more severe tibial muscular dys-

trophy (TMD). Neuromuscul Disord 2008;18:922-8. https://doi.

org/10.1016/j.nmd.2008.07.010

144	 Savarese M, Maggi L, Vihola A, et al. Interpreting genetic vari-

ants in titin in patients with muscle disorders. JAMA Neurol 

2018;75:557-65. https://doi.org/10.1001/jamaneurol.2017.4899

145	 Penisson-Besnier I, Hackman P, Suominen T, et al. Myopathies 

caused by homozygous titin mutations: limb-girdle muscular dys-

trophy 2J and variations of phenotype. J Neurol Neurosurg Psy-

chiatry 2010;81:1200-2. https://doi.org/10.1136/jnnp.2009.178434

146	 Savarese M, Johari M, Johnson K, et al. Improved criteria for the 

classification of titin variants in inherited skeletal myopathies. J 

Neuromuscul Dis 2020;7:153-66. https://doi.org/10.3233/JND-

190423

147	 Savarese M, Valipakka S, Johari M, et al. Is gene-size an issue for 



Distal myopathies

259

the diagnosis of skeletal muscle disorders? J Neuromuscul Dis 

2020;7:203-16. https://doi.org/10.3233/JND-190459

148	 Välipakka S, Savarese M, Johari M, et al. Copy number variation 

analysis increases the diagnostic yield in muscle diseases. Neurol 

Genet 2017;3. https://doi.org/10.1212/nxg.0000000000000204

149	 Sagath L, Lehtokari VL, Valipakka S, et al. An extended targeted 

copy number variation detection array including 187 genes for 

the diagnostics of neuromuscular disorders. J Neuromuscul Dis 

2018;5:307-14. https://doi.org/10.3233/JND-170298

150	 Valipakka S, Savarese M, Sagath L, et al. Improving copy number 

variant detection from sequencing data with a combination of pro-

grams and a predictive model. J Mol Diagn 2020;22:40-9. https://

doi.org/10.1016/j.jmoldx.2019.08.009

151	 Bryen SJ, Ewans LJ, Pinner J, et al. Recurrent TTN metatran-

script-only c.39974-11T>G splice variant associated with autoso-

mal recessive arthrogryposis multiplex congenita and myopathy. 

Hum Mutat 2020;41:403-11. https://doi.org/10.1002/humu.23938

152	 Savarese M, Qureshi T, Torella A, et al. Identification and char-

acterization of splicing defects by single-molecule real-time se-

quencing technology (PacBio). J Neuromuscul Dis 2020;7:477-81. 

https://doi.org/10.3233/JND-200523

153	 Nonaka I, Sunohara N, Ishiura S, et a. Familial distal myopa-

thy with rimmed vacuole and lamellar (myeloid) body forma-

tion. J Neurol Sci 1981;51:141-5. https://doi.org/10.1016/0022-

510X(81)90067-8

154	 Argov Z, Yarom R. “Rimmed vacuole myopathy” sparing the quad-

riceps. A unique disorder in iranian jews. J Neurol Sci 1984;64:33-

43. https://doi.org/10.1016/0022-510X(84)90053-4

155	 Eisenberg I, Avidan N, Potikha T, et al. The UDP-N-acetylglu-

cosamine 2-epimerase/N-acetylmannosamine kinase gene is mu-

tated in recessive hereditary inclusion body myopathy. Nat Genet 

2001;29:83-7. https://doi.org/10.1038/ng718

156	 Keppler OT, Hinderlich S, Langner J, et al. UDP-GlcNAc 2-epime-

rase: a regulator of cell surface sialylation. Science 1999;284:1372-

6. https://doi.org/10.1126/science.284.5418.1372

157	 Sela I, Goss V, Becker-Cohen M, et al. The glycomic sialylation 

profile of GNE Myopathy muscle cells does not point to consis-

tent hyposialylation of individual glycoconjugates. Neuromuscul 

Disord 2020;30:621-30. https://doi.org/10.1016/j.nmd.2020.05.008

158	 Chen Y, Xi J, Zhu W, et al. GNE myopathy in Chinese population: 

hotspot and novel mutations. J Hum Genet 2019;64:11-6. https://

doi.org/10.1038/s10038-018-0525-9

159	 Bhattacharya S, Khadilkar SV, Nalini A, et al. Mutation Spectrum 

of GNE Myopathy in the Indian Sub-Continent. J Neuromuscul Dis 

2018;5:85-92. https://doi.org/10.3233/JND-170270

160	 Papadimas GK, Evila A, Papadopoulos C, et al. GNE-myopathy in 

a Greek Romani family with unusual calf phenotype and protein 

aggregation pathology. J Neuromuscul Dis 2016;3:283-8. https://

doi.org/10.3233/JND-160154

161	 Alrohaif H, Pogoryelova O, Al-Ajmi A, et al. GNE myopathy in the 

bedouin population of Kuwait: genetics, prevalence, and clinical 

description. Muscle Nerve 2018;58:700-7. https://doi.org/10.1002/

mus.26337

162	 Khadilkar SV, Nallamilli BRR, Bhutada A, et al. A report on 

GNE myopathy: individuals of Rajasthan ancestry share the Ro-

ma gene. J Neurol Sci 2017;375:239-40. https://doi.org/10.1016/j.

jns.2017.02.005

163	 Pogoryelova O, Urtizberea JA, Argov Z, et al. 237th ENMC Inter-

national Workshop: GNE myopathy – current and future research 

Hoofddorp, The Netherlands, 14-16 September 2018. Neuromuscul 

Disord 2019;29:401-10. https://doi.org/10.1016/j.nmd.2019.02.010

164	 Chakravorty S, Berger K, Arafat D, et al. Clinical utility of RNA 

sequencing to resolve unusual GNE myopathy with a novel promot-

er deletion. Muscle Nerve 2019;60:98-103. https://doi.org/10.1002/

mus.26486

165	 Garland J, Stephen J, Class B, et al. Identification of an Alu ele-

ment-mediated deletion in the promoter region of GNE in siblings 

with GNE myopathy. Mol Genet Genomic Med 2017;5:410-7. 

https://doi.org/10.1002/mgg3.300

166	 Miao J, Wei XJ, Wang X, et al. A case report: identification of a novel 

exon 1 deletion mutation in the GNE gene in a Chinese patient with 

GNE myopathy. Medicine (Baltimore) 2020;99:e22663.10.1097/

MD.0000000000022663

167	 Zhu W, Eto M, Mitsuhashi S, et al. GNE myopathy caused by 

a synonymous mutation leading to aberrant mRNA splicing. 

Neuromuscul Disord 2018;28:154-7. https://doi.org/10.1016/j.

nmd.2017.11.003

168	 Pogoryelova O, Cammish P, Mansbach H, et al. Phenotypic strat-

ification and genotype-phenotype correlation in a heterogeneous, 

international cohort of GNE myopathy patients: first report from 

the GNE myopathy Disease Monitoring Program, registry portion. 

Neuromuscul Disord 2018;28:158-68. https://doi.org/10.1016/j.

nmd.2017.11.001

169	 Pogoryelova O, Wilson IJ, Mansbach H, et al. GNE genotype ex-

plains 20% of phenotypic variability in GNE myopathy. Neurol Gen-

et 2019;5:e308. https://doi.org/10.1212/NXG.0000000000000308

170	 Soule T, Phan C, White C, et al. GNE myopathy with novel mu-

tations and pronounced paraspinal muscle atrophy. Front Neurol 

2018;9:942. https://doi.org/10.3389/fneur.2018.00942

171	 Seppala R, Lehto VP, Gahl WA. Mutations in the human 

UDP-N-acetylglucosamine 2-epimerase gene define the disease 

sialuria and the allosteric site of the enzyme. Am J Hum Genet 

1999;64:1563-9. https://doi.org/10.1086/302411

172	 Williams DR, Reardon K, Roberts L, et al. A new dominant dis-

tal myopathy affecting posterior leg and anterior upper limb mus-

cles. Neurology 2005;64:1245-54. https://doi.org/10.1212/01.

WNL.0000156524.95261.B9

173	 Duff RM, Tay V, Hackman P, et al. Mutations in the N-terminal ac-

tin-binding domain of filamin C cause a distal myopathy. Am J Hum 

Genet 2011;88:729-40. https://doi.org/10.1016/j.ajhg.2011.04.021



Marco Savarese et al.

260

174	 Mao Z, Nakamura F. Structure and function of filamin C in the 

muscle Z-disc. Int J Mol Sc 2020;21. https://doi.org/10.3390/

ijms21082696

175	 Gonzalez-Morales N, Holenka TK, Schock F. Filamin actin-bind-

ing and titin-binding fulfill distinct functions in Z-disc cohesion. 

PLoS Genet 2017;13:e1006880. https://doi.org/10.1371/journal.

pgen.1006880

176	 Reinstein E, Gutierrez-Fernandez A, Tzur S, et al. Congenital di-

lated cardiomyopathy caused by biallelic mutations in Filamin 

C. Eur J Hum Genet 2016;24:1792-6. https://doi.org/10.1038/

ejhg.2016.110

177	 Tasca G, Odgerel Z, Monforte M, et al. Novel FLNC mutation in 

a patient with myofibrillar myopathy in combination with late-on-

set cerebellar ataxia. Muscle Nerve 2012;46:275-82. https://doi.

org/10.1002/mus.23349

178	 Vorgerd M, Van Der Ven PFM, Bruchertseifer V, et al. A mutation in 

the dimerization domain of filamin c causes a novel type of autoso-

mal dominant myofibrillar myopathy. Am J Hum Gen 2005;77:297-

304. https://doi.org/10.1086/431959

179	 van den Bogaart FJ, Claeys KG, Kley RA, et al. Widening the spec-

trum of filamin-C myopathy: predominantly proximal myopathy 

due to the p.A193T mutation in the actin-binding domain of FL-

NC. Neuromuscul Disord 2017;27:73-7. https://doi.org/10.1016/j.

nmd.2016.09.017

180	 Verdonschot JAJ, Vanhoutte EK, Claes GRF, et al. A mutation up-

date for the FLNC gene in myopathies and cardiomyopathies. Hum 

Mutat 2020;41:1091-111. https://doi.org/10.1002/humu.24004

181	 Rossi D, Palmio J, Evila A, et al. A novel FLNC frameshift and 

an OBSCN variant in a family with distal muscular dystrophy. 

PLoS One 2017;12:e0186642. https://doi.org/10.1371/journal.

pone.0186642

182	 Gemelli C, Prada V, Fiorillo C, et al. A novel mutation in the N-ter-

minal acting-binding domain of filamin C protein causing a distal 

myofibrillar myopathy. J Neurol Sci 2019;398:75-8. https://doi.

org/10.1016/j.jns.2019.01.019

183	 Evangelista T, Lornage X, Carlier PG, et al. A heterozygous mu-

tation in the filamin C gene causes an unusual nemaline myopathy 

with ring fibers. J Neuropathol Exp Neurol 2020;79:908-14. https://

doi.org/10.1093/jnen/nlaa052

184	 Servidei S, Capon F, Spinazzola A, et al. A distinctive autosomal 

dominant vacuolar neuromyopathy linked to 19p13. Neurology 

1999;53:830-7. https://doi.org/10.1212/wnl.53.4.830

185	 Ruggieri A, Brancati F, Zanotti S, et al. Complete loss of the DNA-

JB6 G/F domain and novel missense mutations cause distal-onset 

DNAJB6 myopathy. Acta Neuropathol Commun 2015;3:44. https://

doi.org/10.1186/s40478-015-0224-0

186	 Hageman J, Rujano MA, van Waarde MA, et al. A DNAJB chap-

erone subfamily with HDAC-dependent activities suppresses 

toxic protein aggregation. Mol Cell 2010;37:355-69. https://doi.

org/10.1016/j.molcel.2010.01.001

187	 Harms MB, Sommerville RB, Allred P, et al. Exome sequencing 

reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann 

Neurol 2012;71:407-16. https://doi.org/10.1002/ana.22683

188	 Sarparanta J, Jonson PH, Golzio C, et al. Mutations affecting 

the cytoplasmic functions of the co-chaperone DNAJB6 cause 

limb-girdle muscular dystrophy. Nat Genet 2012;44:450-5, S451-

452. https://doi.org/10.1038/ng.1103

189	 Palmio J, Jonson PH, Evila A, et al. Novel mutations in DNAJB6 

gene cause a very severe early-onset limb-girdle muscular dystro-

phy 1D disease. Neuromuscul Disor 2015;25:835-42. https://doi.

org/10.1016/j.nmd.2015.07.014

190	 Bohlega SA, Alfawaz S, Abou-Al-Shaar H, et al. LGMD1D myop-

athy with cytoplasmic and nuclear inclusions in a Saudi family due 

to DNAJB6 mutation. Acta Myol 2018;37:221-6. PMID 30838352. 

191	 Zima J, Eaton A, Pal E, et al. Intrafamilial variability of limb-gir-

dle muscular dystrophy, LGMD1D type. Eur J Med Genet 

2020;63:103655. https://doi.org/10.1016/j.ejmg.2019.04.012

192	 Jonson PH, Palmio J, Johari M, et al. Novel mutations in DNA-

JB6 cause LGMD1D and distal myopathy in French families. Eur J 

Neurol 2018;25:790-4. https://doi.org/10.1111/ene.13598

193	 Sandell S, Huovinen S, Palmio J, et al. Diagnostically important 

muscle pathology in DNAJB6 mutated LGMD1D. Acta Neuro-

pathol Commun 2016;4:9. https://doi.org/10.1186/s40478-016-

0276-9

194	 Palmio J, Jonson PH, Inoue M, et al. Mutations in the J domain 

of DNAJB6 cause dominant distal myopathy. Neuromuscul Disord 

2020;30:38-46. https://doi.org/10.1016/j.nmd.2019.11.005

195	 Ghaoui R, Palmio J, Brewer J, et al. Mutations in HSPB8 causing a 

new phenotype of distal myopathy and motor neuropathy. Neurology 

2016;86:391-8. https://doi.org/10.1212/WNL.0000000000002324

196	 Carra S, Seguin SJ, Lambert H, et al. HspB8 chaperone activity 

toward poly(Q)-containing proteins depends on its association with 

Bag3, a stimulator of macroautophagy. J Biol Chem 2008;283:1437-

44. https://doi.org/10.1074/jbc.M706304200

197	 Nakhro K, Park JM, Kim YJ, et al. A novel Lys141Thr mutation in 

small heat shock protein 22 (HSPB8) gene in Charcot-Marie-Tooth 

disease type 2L. Neuromuscul Disord 2013;23:656-63. https://doi.

org/10.1016/j.nmd.2013.05.009

198	 Rusmini P, Cristofani R, Galbiati M, et al. The Role of the Heat 

Shock Protein B8 (HSPB8) in Motoneuron Diseases Front Mol 

Neurosci 2017;10:176. https://doi.org/10.3389/fnmol.2017.00176

199	 Echaniz-Laguna A, Geuens T, Petiot P, et al. Axonal neuropathies 

due to mutations in small heat shock proteins: clinical, genetic, and 

functional insights into novel mutations. Hum Mutat 2017;38:556-

68. https://doi.org/10.1002/humu.23189

200	 Irobi J, Van Impe K, Seeman P, et al. Hot-spot residue in small 

heat-shock protein 22 causes distal motor neuropathy. Nat Genet 

2004;36:597-601. https://doi.org/10.1038/ng1328

201	 Tang BS, Zhao GH, Luo W, et al. Small heat-shock protein 22 mu-

tated in autosomal dominant Charcot-Marie-Tooth disease type 2L. 



Distal myopathies

261

Hum Genet 2005;116:222-4. https://doi.org/10.1007/s00439-004-

1218-3

202	 Al-Tahan S, Weiss L, Yu H, et al. New family with HSPB8-associat-

ed autosomal dominant rimmed vacuolar myopathy. Neurol Genet 

2019;5:e349. https://doi.org/10.1212/NXG.0000000000000349

203	 Echaniz-Laguna A, Lornage X, Lannes B, et al. HSPB8 haploin-

sufficiency causes dominant adult-onset axial and distal myopa-

thy. Acta Neuropathol 2017;134:163-5. https://doi.org/10.1007/

s00401-017-1724-8

204	 Cortese A, Laura M, Casali C, et al. Altered TDP-43-dependent 

splicing in HSPB8-related distal hereditary motor neuropathy and 

myofibrillar myopathy. Eur J Neurol 2018;25:154-63. https://doi.

org/10.1111/ene.13478

205	 Nicolau S, Liewluck T, Elliott JL, et al. A novel heterozygous muta-

tion in the C-terminal region of HSPB8 leads to limb-girdle rimmed 

vacuolar myopathy. Neuromuscul Disord 2020;30:236-40. https://

doi.org/10.1016/j.nmd.2020.02.005

206	 Bolduc V, Marlow G, Boycott KM, et al. Recessive mutations 

in the putative calcium-activated chloride channel Anoctamin 5 

cause proximal LGMD2L and distal MMD3 muscular dystro-

phies. Am J Hum Genet 2010;86:213-21. https://doi.org/10.1016/j.

ajhg.2009.12.013

207	 Penttila S, Palmio J, Suominen T, et al. Eight new mutations and 

the expanding phenotype variability in muscular dystrophy caused 

by ANO5. Neurology 2012;78:897-903. https://doi.org/10.1212/

WNL.0b013e31824c4682

208	 Sarkozy A, Deschauer M, Carlier RY, et al. Muscle MRI find-

ings in limb girdle muscular dystrophy type 2L. Neuromus-

cul Disord 2012;22(Suppl 2):S122-9. https://doi.org/10.1016/j.

nmd.2012.05.012

209	 Whitlock JM, Yu K, Cui YY, et al. Anoctamin 5/TMEM16E facil-

itates muscle precursor cell fusion. J Gen Physiol 2018;150:1498-

509. https://doi.org/10.1085/jgp.201812097

210	 Griffin DA, Johnson RW, Whitlock JM, et al. Defective membrane 

fusion and repair in Anoctamin5-deficient muscular dystrophy. 

Hum Mol Genet 2016;25:1900-11. https://doi.org/10.1093/hmg/

ddw063

211	 Topf A, Johnson K, Bates A, et al. Sequential targeted exome se-

quencing of 1001 patients affected by unexplained limb-girdle 

weakness. Genet Med 2020;22:1478-88. https://doi.org/10.1038/

s41436-020-0840-3

212	 Savarese M, Di Fruscio G, Tasca G, et al. Next generation se-

quencing on patients with LGMD and nonspecific myopathies: 

Findings associated with ANO5 mutations. Neuromuscul Disord 

2015;25:533-41. https://doi.org/10.1016/j.nmd.2015.03.011

213	 van der Kooi AJ, Ten Dam L, Frankhuizen WS, et al. ANO5 mu-

tations in the Dutch limb girdle muscular dystrophy population. 

Neuromuscul Disord 2013;23:456-60. https://doi.org/10.1016/j.

nmd.2013.03.012

214	 Schneider I, Stoltenburg G, Deschauer M, et al. Limb girdle mus-

cular dystrophy type 2L presenting as necrotizing myopathy. Acta 

Myol 2014;33:19-21. PMID 24843231. 

215	 Vihola A, Luque H, Savarese M, et al. Diagnostic anoctamin-5 

protein defect in patients with ANO5-mutated muscular dystro-

phy. Neuropathol Appl Neurobiol 2018;44:441-8. https://doi.

org/10.1111/nan.12410

216	 Jarmula A, Lusakowska A, Fichna JP, et al. ANO5 mutations in 

the Polish limb girdle muscular dystrophy patients: effects on the 

protein structure. Sci Rep 2019;9:11533. https://doi.org/10.1038/

s41598-019-47849-3

217	 Vazquez J, Lefeuvre C, Escobar RE, et al. Phenotypic spectrum of 

myopathies with recessive anoctamin-5 mutations. J Neuromuscul 

Di 2020;7:443-51. https://doi.org/10.3233/JND-200515

218	 Panades-de Oliveira L, Bermejo-Guerrero L, de Fuenmayor-Fer-

nandez de la Hoz CP, et al. Persistent asymptomatic or mild symp-

tomatic hyperCKemia due to mutations in ANO5: the mildest end 

of the anoctaminopathies spectrum. J Neurol 2020;267:2546-55. 

https://doi.org/10.1007/s00415-020-09872-7

219	 Silva AMS, Coimbra-Neto AR, Souza PVS, et al. Clinical and mo-

lecular findings in a cohort of ANO5-related myopathy. Ann Clin 

Transl Neurol 2019;6:1225-38. https://doi.org/10.1002/acn3.50801

220	 Cai S, Gao M, Xi J, et al. Clinical spectrum and gene mutations 

in a Chinese cohort with anoctaminopathy. Neuromuscul Disord 

2019;29:628-33. https://doi.org/10.1016/j.nmd.2019.06.005

221	 Papadopoulos C, LaforEt P, Nectoux J, et al. Hyperckemia and my-

algia are common presentations of anoctamin-5-related myopathy 

in French patients. Muscle Nerve 2017;56:1096-100. https://doi.

org/10.1002/mus.25608

222	 Tsutsumi S, Kamata N, Vokes TJ, et al. The novel gene encoding 

a putative transmembrane protein is mutated in gnathodiaphyseal 

dysplasia (GDD). Am J Hum Genet 2004;74:1255-61. https://doi.

org/10.1086/421527

223	 Jin L, Liu Y, Sun F, et al. Three novel ANO5 missense mutations in 

Caucasian and Chinese families and sporadic cases with gnathodi-

aphyseal dysplasia. Sci Rep 2017;7:40935. https://doi.org/10.1038/

srep40935

224	 Jokela M, Tasca G, Vihola A, et al. An unusual ryanodine re-

ceptor 1 (RYR1) phenotype: Mild calf-predominant myop-

athy. Neurology 2019;92:e1600-9. https://doi.org/10.1212/

WNL.0000000000007246

225	 Dlamini N, Voermans NC, Lillis S, et al. Mutations in RYR1 

are a common cause of exertional myalgia and rhabdomyolysis. 

Neuromuscul Disord 2013;23:540-8. https://doi.org/10.1016/j.

nmd.2013.03.008

226	 Jungbluth H, Müller CR, Halliger-Keller B, et al. Autosomal re-

cessive inheritance of RYR1 mutations in a congenital myopathy 

with cores. Neurology 2002;59:284-7. https://doi.org/10.1212/

WNL.59.2.284

227	 Mathews KD, Moore SA. Multiminicore myopathy, central core 

disease, malignant hyperthermia susceptibility, and RYR1 muta-



Marco Savarese et al.

262

tions: one disease with many faces? Arch Neurol 2004;61:27-9. 

https://doi.org/10.1001/archneur.61.1.27

228	 Monnier N, Ferreiro A, Marty I, et al. A homozygous splicing mu-

tation causing a depletion of skeletal muscle RYR1 is associated 

with multi-minicore disease congenital myopathy with ophthalmo-

plegia. Hum Mol Genet 2003;12:1171-8.https://doi.org/10.1093/

hmg/ddg121

229	 Matthews E, Neuwirth C, Jaffer F, et al. Atypical periodic paralysis 

and myalgia: a novel RYR1 phenotype. Neurology 2018;90:e412-8. 

https://doi.org/10.1212/WNL.0000000000004894

230	 Jungbluth H, Zhou H, Sewry CA, et al. Centronuclear myopathy 

due to a de novo dominant mutation in the skeletal muscle ryano-

dine receptor (RYR1) gene. Neuromuscul Disord 2007;17:338-45. 

https://doi.org/10.1016/j.nmd.2007.01.016

231	 Jungbluth H, Dowling JJ, Ferreiro A, Muntoni F, Consortium 

RYRM. 217th ENMC International Workshop: RYR1-related 

myopathies, Naarden, The Netherlands, 29-31 January 2016. 

Neuromuscul Disord 2016;26:624-33. https://doi.org/10.1016/j.

nmd.2016.06.001

232	 Clarke NF, Waddell LB, Cooper ST, et al. Recessive mutations in 

RYR1 are a common cause of congenital fiber type disproportion. 

Hum Mut 2010;31:e1544-550. https://doi.org/10.1002/humu.21278

233	 Loseth S, Voermans NC, Torbergsen T, et al. A novel late-onset axi-

al myopathy associated with mutations in the skeletal muscle ryan-

odine receptor (RYR1) gene. J Neurol 2013;260:1504-10. https://

doi.org/10.1007/s00415-012-6817-7

234	 Dowling JJ, Lillis S, Amburgey K, et al. King-Denborough syn-

drome with and without mutations in the skeletal muscle ryano-

dine receptor (RYR1) gene. Neuromuscul Disord 2011;21:420-7. 

https://doi.org/10.1016/j.nmd.2011.03.006

235	 Kossugue PM, Paim JF, Navarro MM, et al. Central core disease 

due to recessive mutations in RYR1 gene: is it more common than 

described? Muscle Nerve 2007;35:670-4. https://doi.org/10.1002/

mus.20715

236	 Laughlin RS, Niu Z, Wieben E, et al. RYR1 causing distal my-

opathy. Mol Genet Genomic Med 2017;5:800-4. https://doi.

org/10.1002/mgg3.338

237	 Laing NG, Laing BA, Meredith C, et al. Autosomal dominant 

distal myopathy: linkage to chromosome 14. Am J Hum Genet 

1995;56:422-7. PMID 7847377

238	 Lamont PJ, Udd B, Mastaglia FL, et al. Laing early onset distal my-

opathy: slow myosin defect with variable abnormalities on muscle 

biopsy. J Neurol Neurosurg Psychiatry 2006;77:208-15. https://doi.

org/10.1136/jnnp.2005.073825

239	 Tasca G, Ricci E, Penttila S, et al. New phenotype and pathology 

features in MYH7-related distal myopathy. Neuromuscul Disord 

2012;22:640-7. https://doi.org/10.1016/j.nmd.2012.03.003

240	 Quijano-Roy S, Carlier RY, Fischer D. Muscle imaging in congen-

ital myopathies. Seminars in pediatric neurology. 2011;18:221-9. 

https://doi.org/10.1016/j.spen.2011.10.003

241	 Dabaj I, Carlier RY, Gomez-Andres D, et al. Clinical and imaging 

hallmarks of the MYH7-related myopathy with severe axial in-

volvement. Muscle Nerve 2018;58:224-34. https://doi.org/10.1002/

mus.26137

242	 Astrea G, Petrucci A, Cassandrini D, et al. Myoimaging in the NGS 

era: the discovery of a novel mutation in MYH7 in a family with 

distal myopathy and core-like features – a case report. BMC Med 

Genet 2016;17:25. https://doi.org/10.1186/s12881-016-0288-0

243	 Meredith C, Herrmann R, Parry C, et al. Mutations in the slow 

skeletal muscle fiber myosin heavy chain gene (MYH7) cause 

Laing early-onset distal myopathy (MPD1). Am J Hum Genet 

2004;75:703-8. https://doi.org/10.1086/424760

244	 Fiorillo C, Astrea G, Savarese M, et al. MYH7-related myopa-

thies: clinical, histopathological and imaging findings in a cohort 

of Italian patients. Orphanet J Rare Dis 2016;11:91. https://doi.

org/10.1186/s13023-016-0476-1

245	 Carbonell-Corvillo P, Tristan-Clavijo E, Cabrera-Serrano M, et al. 

A novel MYH7 founder mutation causing Laing distal myopathy in 

Southern Spain. Neuromuscul Disord 2018;28:828-36. https://doi.

org/10.1016/j.nmd.2018.07.006

246	 Banfai Z, Hadzsiev K, Pal E, et al. Novel phenotypic variant in 

the MYH7 spectrum due to a stop-loss mutation in the C-terminal 

region: a case report. BMC Med Genet 2017;18:105. https://doi.

org/10.1186/s12881-017-0463-y

247	 Feinstein-Linial M, Buvoli M, Buvoli A, et al. Two novel MYH7 

proline substitutions cause Laing Distal Myopathy-like phenotypes 

with variable expressivity and neck extensor contracture. BMC Med 

Genet 2016;17:57. https://doi.org/10.1186/s12881-016-0315-1

248	 Surikova Y, Filatova A, Polyak M, et al. Common pathogenic mech-

anism in patients with dropped head syndrome caused by different 

mutations in the MYH7 gene. Gene 2019;697:159-64. https://doi.

org/10.1016/j.gene.2019.02.011

249	 Das KJ, Ingles J, Bagnall RD, et al. Determining pathogenicity 

of genetic variants in hypertrophic cardiomyopathy: importance 

of periodic reassessment. Genet Med 2014;16:286-93. https://doi.

org/10.1038/gim.2013.138

250	 Morales A, Kinnamon DD, Jordan E, et al. Variant interpretation 

for dilated cardiomyopathy: refinement of the American Col-

lege of Medical Genetics and Genomics/ClinGen Guidelines for 

the DCM Precision Medicine Study. Circ Genom Precis Med 

2020;13:e002480. https://doi.org/10.1161/CIRCGEN.119.002480

251	 Mattivi CL, Bos JM, Bagnall RD, et al. Clinical utility of a phe-

notype-enhanced MYH7-specific variant classification frame-

work in hypertrophic cardiomyopathy genetic testing. Circ 

Genom Precis Med 2020;13:453-9. https://doi.org/10.1161/CIRC-

GEN.120.003039

252	 Muelas N, Hackman P, Luque H, et al. MYH7 gene tail mu-

tation causing myopathic profiles beyond Laing distal my-

opathy. Neurology 2010;75:732-41. https://doi.org/10.1212/

WNL.0b013e3181eee4d5



Distal myopathies

263

253	 Negrao L, Machado R, Lourenco M, et al. Laing early-onset distal 

myopathy with subsarcolemmal hyaline bodies caused by a novel 

variant in the MYH7 gene. Acta Myol 2020;39:24-8. https://doi.

org/10.36185/2532-1900-004

254	 Beecroft SJ, van de Locht M, de Winter JM, et al. Recessive 

MYH7-related myopathy in two families. Neuromuscul Disord 

2019;29:456-67. https://doi.org/10.1016/j.nmd.2019.04.002

255	 Tajsharghi H, Oldfors A, Macleod DP, et al. Homozygous mu-

tation in MYH7 in myosin storage myopathy and cardiomy-

opathy. Neurology 2007;68:962. https://doi.org/10.1212/01.

wnl.0000257131.13438.2c

256	 Yuceyar N, Ayhan O, Karasoy H, et al. Homozygous MYH7 

R1820W mutation results in recessive myosin storage myopa-

thy: scapuloperoneal and respiratory weakness with dilated car-

diomyopathy. Neuromuscul Disord 2015;25:340-4. https://doi.

org/10.1016/j.nmd.2015.01.007

257	 Lehtokari VL, Pelin K, Herczegfalvi A, et al. Nemaline myopathy 

caused by mutations in the nebulin gene may present as a distal 

myopathy. Neuromuscul Disord 2011;21:556-62. https://doi.

org/10.1016/j.nmd.2011.05.012

258	 Wallgren-Pettersson C, Lehtokari VL, Kalimo H, et al. Distal myop-

athy caused by homozygous missense mutations in the nebulin gene. 

Brain 2007;130(Pt 6):1465-76. https://doi.org/10.1093/brain/awm094

259	 Romero NB, Lehtokari VL, Quijano-Roy S, et al. Core-rod myopathy 

caused by mutations in the nebulin gene. Neurology 2009;73:1159-

61. https://doi.org/10.1212/WNL.0b013e3181bacf45

260	 Kiiski KJ, Lehtokari VL, Vihola AK, et al. Dominantly inherited 

distal nemaline/cap myopathy caused by a large deletion in the 

nebulin gene. Neuromuscul Disord 2019;29:97-107. https://doi.

org/10.1016/j.nmd.2018.12.007

261	 Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, et 

al. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol 

Rev 2009;89:1217-67. https://doi.org/10.1152/physrev.00017.2009

262	 Bang ML, Caremani M, Brunello E, et al. Nebulin plays a direct 

role in promoting strong actin-myosin interactions. FASEB J 

2009;23:4117-25. https://doi.org/10.1096/fj.09-137729

263	 Wallgren-Pettersson C, Pelin K, Nowak KJ, et al. Genotype-pheno-

type correlations in nemaline myopathy caused by mutations in the 

genes for nebulin and skeletal muscle α-actin. Neuromuscular Dis-

orders. 2004;14:461-70. https://doi.org/10.1016/j.nmd.2004.03.006

264	 Lehtokari VL, Kiiski K, Sandaradura SA, et al. Mutation update: 

the spectra of nebulin variants and associated myopathies. Hum 

Mut 2014;35:1418-26. https://doi.org/10.1002/humu.22693

265	 Feingold-Zadok M, Chitayat D, Chong K, et al. Mutations in the 

NEB gene cause fetal akinesia/arthrogryposis multiplex congenita. 

Prenat Diagn 2017;37:144-50. https://doi.org/10.1002/pd.4977

266	 Abdalla E, Ravenscroft G, Zayed L, et al. Lethal multiple pterygi-

um syndrome: a severe phenotype associated with a novel mutation 

in the nebulin gene. Neuromuscul Disord 2017;27:537-41. https://

doi.org/10.1016/j.nmd.2017.01.013

267	 Kiiski K, Lehtokari VL, Loytynoja A, et al. A recurrent copy 

number variation of the NEB triplicate region: only revealed by 

the targeted nemaline myopathy CGH array. Eur J Hum Genet 

2016;24:574-80. https://doi.org/10.1038/ejhg.2015.166

268	 Hamanaka K, Miyatake S, Koshimizu E, et al. RNA sequencing 

solved the most common but unrecognized NEB pathogenic vari-

ant in Japanese nemaline myopathy. Genet Me 2019;21:1629-38. 

https://doi.org/10.1038/s41436-018-0360-6

269	 Park HJ, Hong YB, Choi YC, et al. ADSSL1 mutation relevant to 

autosomal recessive adolescent onset distal myopathy. Ann Neurol 

2016;79:231-43. https://doi.org/10.1002/ana.24550

270	 Park HJ, Lee JE, Choi GS, et al. Electron microscopy pathology 

of ADSSL1 myopathy. J Clin Neurol 2017;13:105-6. https://doi.

org/10.3988/jcn.2017.13.1.105

271	 Sun H, Li N, Wang X, et al. Molecular cloning and characterization 

of a novel muscle adenylosuccinate synthetase, AdSSL1, from hu-

man bone marrow stromal cells. Mol Cell Biochem 2005;269:85-

94. https://doi.org/10.1007/s11010-005-2539-9

272	 Lipps G, Krauss G. Adenylosuccinate synthase from Saccharomy-

ces cerevisiae: homologous overexpression, purification and char-

acterization of the recombinant protein. Biochem J 1999;341(Pt 

3):537-43 (https://www.ncbi.nlm.nih.gov/pubmed/10417315. Pub-

lished 1999/07/27).

273	 Park HJ, Shin HY, Kim S, et al. Distal myopathy with ADSSL1 

mutations in Korean patients. Neuromuscul Disord 2017;27:465-

72. https://doi.org/10.1016/j.nmd.2017.02.004

274	 Mroczek M, Durmus H, Bijarnia-Mahay S, et al. Expanding the 

disease phenotype of ADSSL1-associated myopathy in non-Ko-

rean patients. Neuromuscul Disord 2020;30:310-4. https://doi.

org/10.1016/j.nmd.2020.02.006

275	 Cirak S, Von Deimling F, Sachdev S, et al. Kelch-like homologue 

9 mutation is associated with an early onset autosomal dominant 

distal myopathy. Brain 2010;133:2123-35. https://doi.org/10.1093/

brain/awq108

276	 Tateyama M, Aoki M, Nishino I, et al. Mutation in the caveo-

lin-3 gene causes a peculiar form of distal myopathy. Neurolog 

2002;58:323-5. https://doi.org/10.1212/WNL.58.2.323

277	 Chen J, Zeng W, Han C, et al. Mutation in the caveolin-3 gene caus-

es asymmetrical distal myopathy. Neuropathology 2016;36:485-9. 

https://doi.org/10.1111/neup.12297

278	 Gonzalez-Perez P, Gallano P, Gonzalez-Quereda L, et al. Phenotyp-

ic variability in a Spanish family with a caveolin-3 mutation. J Neu-

rol Sci 2009;276:95-8. https://doi.org/10.1016/j.jns.2008.09.009

279	 Fulizio L, Nascimbeni AC, Fanin M, et al. Molecular and mus-

cle pathology in a series of caveolinopathy patients. Hum Mutat 

2005;25:82-9. https://doi.org/10.1002/humu.20119

280	 Carbone I, Bruno C, Sotgia F, et al. Mutation in the CAV3 gene 

causes partial caveolin-3 deficiency and hyperCKemia. Neurology 

2000;5:1373-6. https://doi.org/10.1212/wnl.54.6.1373

281	 Vorgerd M, Bolz H, Patzold T, et al. Phenotypic variability in 



Marco Savarese et al.

264

rippling muscle disease. Neurology 1999;52:1453-9. https://doi.

org/10.1212/wnl.52.7.1453

282	 Kubisch C, Schoser BG, von During M, et al. Homozygous muta-

tions in caveolin-3 cause a severe form of rippling muscle disease. 

Ann Neurol 2003;53:512-20. https://doi.org/10.1002/ana.10501

283	 Ishiguro K, Nakayama T, Yoshioka M, et al. Characteristic findings 

of skeletal muscle MRI in caveolinopathies. Neuromuscul Disord 

2018;28:857-62. https://doi.org/10.1016/j.nmd.2018.07.010

284	 Macias A, Gambin T, Szafranski P, et al. CAV3 mutation in a pa-

tient with transient hyperCKemia and myalgia. Neurol Neurochir 

Pol 2016;50:468-73. https://doi.org/10.1016/j.pjnns.2016.06.008

285	 Scalco RS, Gardiner AR, Pitceathly RD, et al. CAV3 mutations 

causing exercise intolerance, myalgia and rhabdomyolysis: expand-

ing the phenotypic spectrum of caveolinopathies. Neuromuscul 

Disord 2016;26:504-10. https://doi.org/10.1016/j.nmd.2016.05.006

286	 Vatta M, Ackerman MJ, Ye B, et al. Mutant caveolin-3 induc-

es persistent late sodium current and is associated with long-QT 

syndrome. Circulation 2006;114:2104-12. https://doi.org/10.1161/

CIRCULATIONAHA.106.635268

287	 Hayashi T, Arimura T, Ueda K, et al. Identification and function-

al analysis of a caveolin-3 mutation associated with familial hy-

pertrophic cardiomyopathy. Biochem Biophys Res Commun 

2004;313:178-84. https://doi.org/10.1016/j.bbrc.2003.11.101

288	 Minetti C, Sotgia F, Bruno C, et al. Mutations in the caveolin-3 

gene cause autosomal dominant limb-girdle muscular dystrophy. 

Nat Genet 1998;18:365-8. https://doi.org/10.1038/ng0498-365

289	 Bitoun M, Maugenre S, Jeannet PY, et al. Mutations in dynamin 2 

cause dominant centronuclear myopathy. Nat Genet 2005;37:1207-

9. https://doi.org/10.1038/ng1657

290	 Bitoun M, Bevilacqua JA, Prudhon B, et al. Dynamin 2 mutations 

cause sporadic centronuclear myopathy with neonatal onset. Ann 

Neurol 2007;62:666-70. https://doi.org/10.1002/ana.21235

291	 Fischer D, Herasse M, Bitoun M, et al. Characterization of the 

muscle involvement in dynamin 2-related centronuclear myopathy. 

Brain 2006;129(Pt 6):1463-9. https://doi.org/10.1093/brain/awl071

292	 Bitoun M, Bevilacqua JA, Eymard B, et al. A new centronu-

clear myopathy phenotype due to a novel dynamin 2 muta-

tion. Neurology 2009;72:93-5. https://doi.org/10.1212/01.

wnl.0000338624.25852.12

293	 Bohm J, Biancalana V, Dechene ET, et al. Mutation spectrum in 

the large GTPase dynamin 2, and genotype-phenotype correla-

tion in autosomal dominant centronuclear myopathy. Hum Mutat 

2012;33:949-59. https://doi.org/10.1002/humu.22067

294	 Chen S, Huang P, Qiu Y, et al. Phenotype variability and histopatho-

logical findings in patients with a novel DNM2 mutation. Neuropa-

thology 2018;38:34-40. https://doi.org/10.1111/neup.12432

295	 Lin P, Liu X, Zhao D, et al. DNM2 mutations in Chinese Han pa-

tients with centronuclear myopathy. Neurol Sci 2016;37:995-8. 

https://doi.org/10.1007/s10072-016-2513-1

296	 Abath Neto O, Martins Cde A, Carvalho M, et al. DNM2 muta-

tions in a cohort of sporadic patients with centronuclear myopathy. 

Genet Mol Biol 2015;38:147-1. https://doi.org/10.1590/S1415-

4757382220140238

297	 Casar-Borota O, Jacobsson J, Libelius R, et al. A novel dynamin-2 

gene mutation associated with a late-onset centronuclear myopathy 

with necklace fibres. Neuromuscul Disord 2015;25:345-8. https://

doi.org/10.1016/j.nmd.2015.01.001

298	 Catteruccia M, Fattori F, Codemo V, et al. Centronuclear myopathy 

related to dynamin 2 mutations: clinical, morphological, muscle 

imaging and genetic features of an Italian cohort. Neuromuscul 

Disord 2013;23:229-38. https://doi.org/10.1016/j.nmd.2012.12.009

299	 Mori-Yoshimura M, Okuma A, Oya Y, et al. Clinicopathological 

features of centronuclear myopathy in Japanese populations harbor-

ing mutations in dynamin 2. Clin Neurol Neurosurg 2012;114:678-

83. https://doi.org/10.1016/j.clineuro.2011.10.040

300	 Hanisch F, Muller T, Dietz A, et al. Phenotype variability and histopatho-

logical findings in centronuclear myopathy due to DNM2 mutations. J 

Neurol 2011;258:1085-90. https://doi.org/10.1007/s00415-010-5889-5

301	 Biancalana V, Romero NB, Thuestad IJ, et al. Some DNM2 muta-

tions cause extremely severe congenital myopathy and phenocopy 

myotubular myopathy. Acta Neuropathol Commun 2018;6:93. 

https://doi.org/10.1186/s40478-018-0593-2

302	 Gallardo E, Claeys KG, Nelis E, et al. Magnetic resonance imaging 

findings of leg musculature in Charcot-Marie-Tooth disease type 2 

due to dynamin 2 mutation. J Neuro 2008;255:986-92. https://doi.

org/10.1007/s00415-008-0808-8

303	 Ramachandran R, Schmid SL. The dynamin superfamily. Curr Biol 

2018;28:r411-6. https://doi.org/10.1016/j.cub.2017.12.013

304	 Lee JS, Ismail AM, Lee JY, et al. Impact of dynamin 2 on ade-

novirus nuclear entry. Virology 2019;529:43-56. https://doi.

org/10.1016/j.virol.2019.01.008

305	 Zhao M, Maani N, Dowling JJ. Dynamin 2 (DNM2) as cause of, 

and modifier for, human neuromuscular disease. Neurotherapeutics 

2018;15:966-75. https://doi.org/10.1007/s13311-018-00686-0

306	 González-Jamett AM, Baez-Matus X, Olivares MJ, et al. Dy-

namin-2 mutations linked to centronuclear myopathy impair ac-

tin-dependent trafficking in muscle cells. Scientific Reports 2017;7. 

https://doi.org/10.1038/s41598-017-04418-w

307	 Durieux AC, Vignaud A, Prudhon B, et al. A centronuclear my-

opathy-dynamin 2 mutation impairs skeletal muscle structure and 

function in mice. Hum Mol Genet 2010;19:4820-36. https://doi.

org/10.1093/hmg/ddq413

308	 Claeys KG, Zuchner S, Kennerson M, et al. Phenotypic spectrum 

of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy. Brain 

2009;132(Pt 7):1741-52. https://doi.org/10.1093/brain/awp115

309	 Koutsopoulos OS, Kretz C, Weller CM, et al. Dynamin 2 homozy-

gous mutation in humans with a lethal congenital syndrome. Eur J 

Hum Genet 2013;21:637-42. https://doi.org/10.1038/ejhg.2012.226

310	 Lochmuller H, Badowska DM, Thompson R, et al. RD-Connect, 

NeurOmics and EURenOmics: collaborative European initiative 



Distal myopathies

265

for rare diseases. Eur J Hum Genet 2018;26:778-85. https://doi.

org/10.1038/s41431-018-0115-5

311	 Peterlin B, Gualandi F, Maver A, et al. Genetic testing offer for in-

herited neuromuscular diseases within the EURO-NMD reference 

network: a European survey study. PLoS One 2020;15:e0239329. 

https://doi.org/10.1371/journal.pone.0239329

312	 Austin CP, Cutillo CM, Lau LPL, et al. Future of Rare Diseas-

es Research 2017-2027: an IRDiRC perspective. Clin Transl Sci 

2018;11:21-7. https://doi.org/10.1111/cts.12500

313	 Gonorazky HD, Naumenko S, Ramani AK, et al. Expanding the 

boundaries of RNA sequencing as a diagnostic tool for rare men-

delian disease. Am J Hum Genet 2019;104:466-83. https://doi.

org/10.1016/j.ajhg.2019.01.012

314	 Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic 

diagnosis in Mendelian disease with transcriptome sequencing. Sci 

Transl Med 2017;9. https://doi.org/10.1126/scitranslmed.aal5209

315	 Matalonga L, Laurie S, Papakonstantinou A, et al. Improved di-

agnosis of rare disease patients through systematic detection of 

runs of homozygosity. J Mol Diagn 2020;22:1205-15. https://doi.

org/10.1016/j.jmoldx.2020.06.008

316	 Mantere T, Kersten S, Hoischen A. Long-read sequencing emerg-

ing in medical genetics. Front Genet 2019;10:426. https://doi.

org/10.3389/fgene.2019.00426

317	 Thompson R, Spendiff S, Roos A, et al. Advances in the diag-

nosis of inherited neuromuscular diseases and implications for 

therapy development. Lancet Neurol 2020;19:522-32. https://doi.

org/10.1016/S1474-4422(20)30028-4

318	 Boycott KM, Hartley T, Biesecker LG, et al. A diagnosis for all 

rare genetic diseases: the horizon and the next frontiers. Cell 

2019;177:32-7. https://doi.org/10.1016/j.cell.2019.02.040


