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Abstract

We show that if (M,∈1,∈2) satisfies the first order Zermelo-Fraenkel axioms

of set theory when the membership relation is ∈1 and also when the membership

relation is ∈2, and in both cases the formulas are allowed to contain both ∈1 and

∈2, then (M,∈1) ∼= (M,∈2), and the isomorphism is definable in (M,∈1,∈2).
This extends Zermelo’s 1930 theorem in [6].

Zermelo [6] proved that if (M,∈1) and (M,∈2) both satisfy the second order

Zermelo-Fraenkel axioms in which the Separation Schema and the Replacement Sche-

ma of ZFC are replaced by single second order axioms, then (M,∈1) ∼= (M,∈2). We

extend this as follows: Let us consider the vocabulary {∈1,∈2}, where both ∈1 and ∈2

are binary predicate symbols. Let ZFC(∈1) denote the first order Zermelo-Fraenkel

axioms of set theory when ∈1 is the membership relation but formulas are allowed to

contain ∈2 too. Similarly, in ZFC(∈2) the membership relation is ∈2 but formulas are

allowed to contain ∈1 too. We prove the following theorem:

Theorem 1. If (M,∈1,∈2) |= ZFC(∈1) ∪ ZFC(∈2), then (M,∈1) ∼= (M,∈2) via

a definable class function.

The result of Zermelo readily follows from our theorem. The important difference

between our result and Zermelo’s result is that our theories ZFC(∈1) and ZFC(∈2)
are first order theories. It is important that we allow in these axiom systems formulas

from the extended vocabulary {∈1,∈2}. Without this the result would be blatantly false

as there are countable non-isomorphic models of ZFC, assuming there are models of

ZFC at all. Since the isomorphism in Theorem 1 is definable, the result can be seen

as a provable theorem of the first order theory ZFC(∈1) ∪ ZFC(∈2).
Theorem 1 resembles the categoricity conclusion for set theory in [2, page 18].

There are two main differences: First, the axiomatization of set theory in [2] is in-

formal, based on the Axiom of Extensionality and an informal full Comprehension

∗I am indebted to John Steel and Philip Welch for helpful discussions concerning this paper.
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Axiom, while our result is completely formal and in the context of ZFC. Secondly, it

is assumed in [2] that the two ∈-relations give rise to the same (informal) structure of

the ordinals, owing to the uniqueness of the ordinal concept. We do not make this as-

sumption but rather prove that the two ∈-relations have isomorphic ordinals. Martin’s

work has been extended to class theory in [5]. Theorem 1 was stated without proof in

[3, page 104].

We call our theorem an internal categoricity result because it shows that one cannot

have in one and the same domain two non-isomorphic membership-relations∈1 and ∈2

if these relations can “talk” about each other.

Our theorem is a strong robustness result for set theory. Essentially, the model

cannot be changed “internally”. To get a non-isomorphic model one has to go “outside”

the model. Such robustness is important for set theory because set theory is already the

“outside” of mathematics, the framework where mathematics is (or can be) built.

How are the numerous independence results in harmony with this internal cate-

goricity? Let us take the Continuum Hypothesis CH as an example. CH is independent

of ZFC in the sense that both ZFC ∪ {CH} and ZFC ∪ {¬CH} are consistent,

if ZFC itself is. Internal categoricity means simply that if (M,∈1) satisfies CH and

(M,∈2) satisfies ¬CH , then either (M,∈1) or (M,∈2) does not satisfy the Separa-

tion Schema or the Replacement Schema if formulas are allowed to mention the other

membership-relation. Such models cannot be internal to each other in the sense dis-

cussed.

In the below proof we will work in ZFC(∈1) ∪ ZFC(∈2) but in fact operate all

the time in either ∈1-set theory or in ∈2-set theory. We have to keep the two set theories

separate even though they also interact via the Separation and Replacement Schemas

in the joint vocabulary {∈1,∈2}.

Let tri(x) be the formula ∀t ∈i x∀w ∈i t(w ∈1 x). Let TCi(x) be the unique

u such that tri(u) ∧ ∀v ∈i x(v ∈i u) ∧ ∀v((tri(v) ∧ ∀w ∈i x(w ∈i v)) → ∀w ∈i

u(w ∈i v)) (“u is the ∈i-transitive closure of x”). When we write TCi({x}), we mean

by {x} the singleton {x} in the sense of ∈i. Let φ(x, y) be the formula ∃fψ(x, y, f),
where ψ(x, y, f) is the conjunction of the following formulas (where f(t), f(w) and

f(x) are in the sense of ∈1):

(i) In the sense of ∈1, the set f is a function with TC1({x}) as its domain.

(ii) ∀t ∈1 TC1(x)(f(t) ∈2 TC2(y))

(iii) ∀t ∈2 TC2(y)∃w ∈1 TC1(x)(t = f(w))

(iv) ∀t ∈1 TC1(x)∀w ∈1 TC1({x})(t ∈1 w ↔ f(t) ∈2 f(w))

(v) f(x) = y

We prove a sequence of lemmas about the formulas φ(x, y) and ψ(x, y, f):

Lemma 2. If ψ(x, y, f) and ψ(x, y, f ′), then f = f ′.

Proof. To prove f = f ′ assume w ∈1 TC1({x}). We show f(w) = f ′(w). W.l.o.g.

f(s) = f ′(s) for s ∈1 w. Suppose t ∈2 f(w). Clearly, t ∈2 TC2({y}). By (iii),
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t = f(s) for some s ∈1 TC1({x}). By (iv), s ∈1 w. By (iv) again, f ′(s) ∈2 f
′(w).

By assumption, f(s) = f ′(s). Hence t ∈2 f
′(w). Thus ∀t(t ∈2 f(w) → t ∈2 f

′(w)).
By symmetry, f(w) = f ′(w).

Lemma 3. Suppose ψ(x, y, f). If x′ ∈1 x, then φ(x′, f(x′)). If y′ ∈2 y, then there is

x′ ∈1 x such that f(x′) = y′ and φ(x′, y′).

Proof. Let y′ = f(x′) and f ′ = f ↾ TC1({x
′}). Clearly now ψ(x′, y′, f ′). Hence

φ(x′, f(x′)). The other claim is proved similarly.

Lemma 4. If φ(x, y) and φ(x, y′), then y = y′. If φ(x, y) and φ(x′, y), then x = x′.

Proof. We may assume the claim holds for all ∈1-elements of x. Suppose ψ(x, y, f)
and ψ(x, y′, f ′). We prove y = y′. Let s ∈2 y. By Lemma 3 there is t ∈1 x such that

f(t) = s and φ(t, s). By (iv), s ∈1 x. Let s′ = f ′(t). By (iv), s′ ∈2 y
′. By Lemma 3

again, φ(t, s′). By the Induction Hypothesis, s = s′. We have proved ∀s(s ∈2 y →
s ∈2 y

′). The converse follows from symmetry. Now to the second claim. We may

assume the claim holds for all ∈2-elements of y. Suppose ψ(x, y, f) and ψ(x′, y, f ′).
We prove x = x′. Let s ∈1 x. Thus f(s) ∈2 y. There is s′ ∈1 TC1({x

′}) such that

f ′(s′) = f(s). Now φ(s, f(s)) and φ(s′, f(s)) by Lemma 3. Since f(s) ∈2 y, s = s′.

Hence s ∈1 x
′. We have proved ∀s(s ∈1 x → s ∈1 x

′). The converse follows from

symmetry.

Lemma 5. If φ(x, y) and φ(x′, y′), then x ∈1 x
′ ↔ y ∈2 y

′.

Proof. Suppose ψ(x, y, f) and ψ(x′, y′, f ′). Suppose x ∈1 x
′. Then z = f ′(x) ∈2 y

′.

By Lemma 3, φ(x, z). We have φ(x, y) and φ(x, z). By Lemma 4, y = z. Hence

y ∈2 y
′. The converse is similar.

Let On1(x) be the ∈1-formula saying that x is an ordinal i.e. a transitive set of tran-

sitive sets, and similarly On2(x). For On1(α) let V 1
α be the αth level of the cumulative

hierarchy in the sense of ∈1, and similarly V 2
y when On2(y).

Lemma 6. If φ(α, y), then On1(α) if and only if On2(y). If α is a limit ordinal then so

is y i.e. if ∀u ∈1 α∃v ∈1 α(u ∈1 v), then ∀u ∈2 y∃v ∈2 y(u ∈2 v), and vice versa.

Proof. Let us fix y. Suppose ψ(α, y, f). We prove that y is a transitive set of transitive

sets. Suppose w ∈2 s ∈2 y. There are t ∈1 α and u ∈1 t such that f(t) = s and

f(u) = w. Now w ∈2 y follows from u ∈1 α. This shows that tr2(y). Similarly one

proves that all s ∈2 y satisfy tr2(y). This ends the proof of the first claim. The second

claim is proved similarly.

Lemma 7. Suppose ψ(α, y, f). If On1(α) (or equivalently On2(y)), then there is

f̄ ⊇ f such that ψ(V 1
α , V

2
y , f̄).

Proof. We use induction on α. Suppose the claim holds for α. We prove the claim for

α+1. Suppose to this endψ(α+1, y+1, f). We construct f̄ such thatψ(V 1
α+1, V

2
y+1, f̄).

From ψ(α + 1, y + 1, f) we obtain ψ(α, y, f ↾ α). By assumption there is g ⊇ f ↾ α

such that ψ(V 1
α , V

2
y , g). Let θ(u, v) be the formula

∀w(w ∈2 v ↔ (w ∈2 V
2
y ∧ ∃t ∈1 u(g(t) = w))).
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It follows from the Separation Schema of ZFC(∈2) that for all u ∈1 V
1
α+1 there is v

such that θ(u, v). By the Replacement Schema ofZFC(∈1), we can let f̄ be a function

(in the sense of {∈1}) such that for all u ∈1 V
1
α+1 we have θ(u, f̄(u)). It is easy to see,

using the Separation Schema of ZFC(∈1), that ψ(V 1
α+1, V

2
y+1, f̄).

Suppose then the claim holds for all β < α =
⋃
α. For each β < α there is thus

some gβ such that ψ(V 1
β , V

2
f(β), gβ). By the Replacement Schema of ZFC(∈1) we

can form the ∈1-set f̄ =
⋃

β<α gβ . It is easy to see that ψ(V 1
α , V

2
y , f̄).

Lemma 8. ∀x∃yφ(x, y) and ∀y∃xφ(x, y).

Proof. Let us first assume that both

∀α(On1(α) → ∃yφ(α, y)) (1)

and

∀y(On2(y) → ∃αφ(α, y)). (2)

hold. In order to prove ∀x∃yφ(x, y), suppose x is given. There is α such that On1(α)
and x ∈1 V

1
α . By (1) there are v and f such that ψ(α, v, f). By Lemma 7 there is

f̄ ⊇ f such that ψ(V 1
α , V

2
v , f̄). By Lemma 3, φ(x, f̄ (x)). Thus ∃yφ(x, y).

In order to prove ∀y∃xφ(x, y), suppose y is given. There is v such that On2(v) and

y ∈2 V
2
v . By (2) there are α and f such that ψ(α, v, f). By Lemma 7 there is f̄ ⊇ f

such that ψ(V 1
α , V

2
v ). By condition (iii) of the definition of ψ there is w ∈1 V

1
α such

that f̄(w) = y. By Lemma 3, φ(w, f̄ (w)). Thus ∃xφ(x, y).
Thus it suffices to show that the failure of (1) or (2) to hold leads to a contradiction.

Case 1: ¬(1)∧¬(2). Let α be the ∈1-least α such that On1(α) ∧ ¬∃yφ(α, y). Let

y be the ∈2-least y such that On2(y) ∧ ¬∃βφ(β, y). It is easy to see that φ(α, y), a

contradiction.

Case 2: (1)∧¬(2). Let y be the ∈2-least y such that On2(y) ∧ ¬∃αφ(α, y). Now,

∀t ∈2 y∃α(On1(α) ∧ φ(α, t)). Clearly, y is an ∈2-limit ordinal. Suppose z ∈2 V
2
t ,

where t ∈2 y. Let α and f be such that On1(α) ∧ ψ(α, t, f). By Lemma 7 there is

f̄ ⊇ f such that ψ(V 1
α , V

2
t , f̄). There is x ∈1 V

1
α such that f̄(x) = z. Thus φ(x, z)

and hence

∀z ∈2 V
2
y ∃x φ(x, z).

By the Replacement Schema in ZFC(∈2) there is c such that

∀z ∈2 V
2
y ∃x ∈2 c φ(x, z). (3)

Let α be such that c ∈1 V
1
α . By (1) there are t and f such that φ(α, t, f). Necessarily,

t ∈2 y. By Lemma 7 there is f̄ ⊇ f such that ψ(V 1
α , V

2
t , f̄). In particular, f̄(c) ∈2 V

2
y .

By (3) there is b ∈2 c such that φ(b, f̄(c)). Since also φ(c, f̄(c)), Lemma 4 gives c = b.

Thus c ∈2 c, a contradiction.

Case 3: ¬(1)∧(2). This case is analogous to Case 2.
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Proposition 9. The class defined by φ(x, y) is an isomorphism between the ∈1-reduct

and the ∈2-reduct.

Proof. By Lemmas 4, 5 and 8.

A similar result holds for first order Peano arithmetic, extending the categoricity

result of Dedekind [1] of second order Peano arithmetic. The proof (see [4]) of this is

similar, but somewhat easier.
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