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Abstract 

Osteoarthritis has been regarded as a typical lubrication deficiency related joint disease, 

which is characterized by the breakdown of articular cartilage at the joint surface and the 

inflammation of the joint capsule. Here, inspired by the structure of fresh euryale ferox seed 

that possesses a slippery aril and a hard coat containing starchy kernel, we biomimicked and 

synthesized a novel super-lubricated nanoparticle, namely poly (3-sulfopropyl methacrylate 

potassium salt)-grafted mesoporous silica nanoparticles (MSNs-NH2@PSPMK), via one-step 

photopolymerization method. The nanoparticles were endowed with enhanced lubrication by 

the grafted PSPMK polyelectrolyte polymer due to the formation of tenacious hydration 

layers surrounding the negative charges, and simultaneously were featured with effective 

drug loading and release behavior as a result of the sufficient mesoporous channels in the 

MSNs. When encapsulated with an anti-inflammatory drug diclofenac sodium (DS), the 

lubrication capability of the super-lubricated nanoparticles was improved, while the drug 

release rate was sustained by increasing the thickness of PSPMK layer, which was simply 

achieved via adjustment of the precursor monomer concentration in the photopolymerization 

process. Additionally, the in vitro and in vivo experimental results showed that the DS-loaded 

MSNs-NH2@PSPMK nanoparticles effectively protected the chondrocytes from degeneration, 

and thus, inhibited the development of osteoarthritis.  

 

Keywords: Bioinspired; osteoarthritis; photopolymerization; lubrication; nanoparticles.  
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1. Introduction 

From an engineering point of view, osteoarthritis has been regarded as a lubrication 

deficiency related joint disease triggered by breakdown of articular cartilage and 

inflammation of the joint, and it is considered that a synergetic therapy combining both 

lubrication and drug intervention predicts a promising non-surgical strategy for treatment of 

osteoarthritis.[1,2] Euryale ferox, also known as foxnut or makhana, is a flowering plant 

classified in the family of Nymphaeaceae. The fresh euryale ferox seed is composed of a 

membranous aril outside and a hard coat inside containing starchy kernel.[3,4] The streaked 

bright red membranous aril is very slippery and slimy in nature, while the hard coat loads the 

starchy kernel which can be used for the treatment of articular joint pain. Accordingly, on the 

basis of inspiration from the structure of fresh euryale ferox seed, biomimetic nanoparticles 

may provide superlubricity on the outer surface and simultaneously drug loading in the inner 

core. Moreover, an intra-articular injection of such super-lubricated drug-loaded 

nanoparticles into the joint can achieve both lubrication improvement during joint movement 

and drug intervene via local administration, and thus, be served as an effective treatment for 

osteoarthritis. 

Mesoporous silica nanoparticles (MSNs) have long been recognized to be representative 

drug nanocarriers, owing to their large surface area, large pore volume, high thermal stability 

and good biocompatibility.[5-9] Incorporating super-lubricated polymers onto the MSNs 

surface has been attempted as one of the most efficient and convenient approaches to 

construct multi-functional drug delivery systems with the feature of lubrication capability.[10] 

Various surface-grafted MSNs have been successfully developed for example, by different 
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polymers via atom transfer radical polymerization,[11,12] reversible addition-fragmentation 

chain transfer polymerization,[13,14] and ring opening polymerization.[15] However, these 

methods can introduce toxic catalysts during the reaction, for example, the toxic metallic 

components in the process of atom transfer radical polymerization.[16] The toxic substances 

are difficult to be completely eliminated through post-processing, consequently limiting the 

biological applications of such polymer-grafted MSNs. Additionally, so far few studies have 

investigated the lubrication capability of polymer-grafted MSNs and their biological 

applications where  enhanced lubrication and sustained drug delivery are preferably 

desirable, e.g., treatment of osteoarthritis. Therefore, developing super-lubricated drug-loaded 

MSNs without the involvement of complex synthesis and even the introduction of toxic 

catalysts is highly required but still remains a great challenge as yet. 

Recently, hydration lubrication mechanism proposed by Klein et al. has been accepted to 

dominate the scenario of the excellent superlubricity for articular cartilage.[17,18] Particularly, 

it is considered that the hydration layers surrounding both the positive (N+(CH3)3) and 

negative (PO4
–) charges of the zwitterionic headgroups in the phosphatidylcholine lipids can 

bear typical joint pressures (4~10 MPa) with the friction coefficient at the joint interface at a 

level as low as 0.001~0.01. This is because the water molecules within the hydration layers 

are tenaciously held due to the interaction of the large water dipole with the enclosed charge, 

and will respond in a fluidlike manner when being sheared.[19,20] Furthermore, various 

polyelectrolyte polymer brushes used to mimic the biomolecules of articular cartilage have 

been proved to significantly reduce friction coefficient based on the hydration lubrication 

mechanism.[21-23] Accordingly, in view of the excellent superlubricity behavior of the articular 
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cartilage, grafting polyelectrolyte polymer brushes onto the MSNs surface may represent an 

effective approach to endow MSNs with enhanced lubrication capability. 

In the present study, inspired by the unique structure of fresh euryale ferox seed which 

consists of a slippery aril outside and a starchy kernel-loaded hard coat inside, we develop a 

facile and low-toxic photopolymerization method to synthesize super-lubricated drug-loaded 

MSNs. As demonstrated in Scheme 1a, the slippery aril corresponds to the super-lubricated 

polyelectrolyte polymer brushes, poly (3-sulfopropyl methacrylate potassium salt) (PSPMK), 

and the starchy kernel-loaded hard coat corresponds to the diclofenac sodium (DS)-loaded 

nanocarriers (MSNs-NH2@DS). We hypothesize that the super-lubricated drug-loaded MSNs 

developed here, MSNs-NH2@PSPMK-DS, can be used as an effective intra-articular 

injective agent to inhibit the development of osteoarthritis, as shown in Scheme 1b. 
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Scheme 1. Schematic illustration showing (a) the design of the super-lubricated drug-loaded 

nanoparticles, MSNs-NH2@PSPMK-DS, which is bioinspired by the structure of fresh 

euryale ferox seed, and (b) the in vitro and in vivo experiments, showing the treatment of 

osteoarthritis by MSNs-NH2@PSPMK-DS based on synergetic effect of enhanced lubrication 

and sustained drug release. 

2. Results and Discussion 

We biomimicked and synthesized super-lubricated drug-loaded MSNs, 

MSNs-NH2@PSPMK-DS, for the treatment of osteoarthritis. For this we first prepared 

super-lubricated nanoparticles, PSPMK-grafted MSNs (MSNs-NH2@PSPMK), by grafting 

SPMK monomer onto the surface of MSNs via photopolymerization, employing 2959-Tos as 

the initiator. Briefly, 2959-Tos was immobilized onto the surface of MSNs, and the resulting 

product (MSNs-NH2@I2959) was uniformly dispersed in SPMK monomer solution and 

reacted under UV-irradiation to obtain MSNs-NH2@PSPMK. Subsequently, 

MSNs-NH2@PSPMK were encapsulated with DS, a widely used nonsteroidal 

anti-inflammatory drug in clinics, to prepare MSNs-NH2@PSPMK-DS as a novel 

super-lubricated drug-loaded nanoparticle. Similar to fresh euryale ferox seed, the polymer 

layer of MSNs-NH2@PSPMK-DS corresponding to the slippery aril was expected to endow 

the nanoparticles with lubrication capability, while DS-loaded MSNs corresponding to the 

starchy kernel-loaded hard coat to endow the nanoparticles with sustained drug release. The 

lubrication capability and drug release behavior of the nanoparticles can be easily tuned 

through controlling the thickness of the PSPMK layer by adjusting the monomer 
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concentration in the photopolymerization process. 

 

2.1. Characterization of Super-lubricated Nanoparticles 

Fourier transform infrared (FTIR) spectroscopy analysis was conducted to investigate the 

successful surface grafting reaction. As shown in Figure 1a, the spectra of MSNs, 

MSNs-NH2@I2959, and MSNs-NH2@PSPMK (0.500 M SPMK) all demonstrate the 

absorption band of Si-O-Si at 1093 cm-1 and the stretching vibration of Si-OH at 3439 cm-1. 

Compared with MSNs, only slight differences are observed in the spectrum of 

MSNs-NH2@I2959, as the amount of photopolymerization initiator 2959-Tos modified on 

the MSNs surface is small. After the PSPMK polymer is grafted on the surface of MSNs, the 

absorption bands of S=O in SO3
- appear at 1045 cm-1 and 1190 cm-1, and the absorption band 

of C=O appears at 1720 cm-1, as demonstrated from the spectrum of MSNs-NH2@PSPMK. 

The presence of these absorption bands confirms that PSPMK polyelectrolyte polymer has 

been successfully grafted on the MSNs surface via photopolymerization. 

Surface compositions of MSNs, MSNs-NH2@I2959 and MSNs-NH2@PSPMK (0.500 

M SPMK) were also evaluated by X-ray photoelectron spectroscopy (XPS). As shown in 

Figure 1b, for MSNs, the binding energies of Si 2p and Si 2s are at 104 eV and 155 eV, 

respectively. For MSNs-NH2@I2959, the signal of N 1s at 398 eV is attributed to the 

introduction of amine groups on the MSNs surface. For MSNs-NH2@PSPMK, the grafting of 

the PSPMK polymer on the MSNs surface is confirmed by the signals of K and S elements 

appearing at 377 eV (K 2s), 293 eV (K 2p), 232 eV (S 2s) and 168 eV (S 2p). 
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Surface morphologies of MSNs and MSNs-NH2@PSPMK were observed using 

transmission electron microscopy (TEM). Figure 1c (i) shows that MSNs have 

well-organized lattices, with an average diameter of about 114 nm. Figure 1c (ii-iv) 

demonstrates MSNs-NH2@PSPMK prepared by photopolymerization with different SPMK 

monomer concentrations. It is evident that all the MSNs-NH2@PSPMK nanoparticles are 

surrounded by a shaded polymer layer, and the thickness of the polymer layer is ~4 nm for 

MSNs-NH2@PSPMK-0.125, 7 nm for MSNs-NH2@PSPMK-0.250 and 9 nm for 

MSNs-NH2@PSPMK-0.500, respectively, which indicates that there is a positive correlation 

between the SPMK monomer concentration and the polymer layer thickness. 

Figure 1d exhibits the thermogravimetric analysis (TGA) results obtained for MSNs, 

MSNs-NH2, MSNs-NH2@I2959 and MSNs-NH2@PSPMK. To eliminate the interference 

from bound water on the surface of MSNs, the data are organized with the temperature 

starting from 100 °C. After amination and immobilization of the initiator, a weight loss of 

12.9% and 14.2% is observed, through which the content of the initiator is calculated to be 

1.5%. When the PSPMK polymer is grafted on the MSNs surface, the weight losses increase 

to 27.9% for MSNs-NH2@PSPMK-0.125, 29.1% for MSNs-NH2@PSPMK-0.250 and 38.0% 

for MSNs-NH2@PSPMK-0.500, respectively. As a result, the contents of the PSPMK 

polymer are calculated to be 16.0%, 17.4% and 27.7%, respectively. The TGA data not only 

confirm the successful grafting of PSPMK polyelectrolyte polymer on the MSNs surface, but 

also provide a quantitative evaluation for each component of the nanoparticles, as 

summarized in Table 1. It can be observed that with increasing SPMK monomer 

concentration, the amount of the PSPMK polyelectrolyte polymer grafted on the MSNs 
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surface increases remarkably. 

Table 1. The weight ratio of each component in MSNs-NH2@I2959 and 

MSNs-NH2@PSPMK calculated from TGA data. 

 MSNs-NH2 Irgacure 2959 PSPMK 

MSNs-NH2@I2959 98.5% 1.5%  

MSNs-NH2@PSPMK-0.125 82.7% 1.3% 16.0% 

MSNs-NH2@PSPMK-0.250 81.4% 1.2% 17.4% 

MSNs-NH2@PSPMK-0.500 71.2% 1.1% 27.7% 

In order to further investigate the pore properties of MSNs and MSNs-NH2@PSPMK, 

the N2 adsorption-desorption isotherms of the nanoparticles were measured. As shown in 

Figure 1e, all the isotherms demonstrate typical type IV N2 adsorption/desorption patterns, 

indicating a mesoporous structure of the nanoparticles. Based on the Brunauer-Emmett-Teller 

(BET) model, the specific surface area and pore volume of MSNs are calculated to be 805 

m2/g and 0.806 mL/g. Following grafting of PSPMK polyelectrolyte polymer on the MSNs 

surface, both specific surface area and pore volume of the nanoparticles decrease significantly, 

i.e., 429.6 m2/g and 1.20 mL/g for MSNs-NH2@PSPMK-0.125, 299.1 m2/g and 1.11 mL/g 

for MSNs-NH2@PSPMK-0.250 and 23.6 m2/g and 0.09 mL/g for 

MSNs-NH2@PSPMK-0.500, respectively. This result indicates that the mesoporous channels 

have been blocked by the PSPMK polyelectrolyte polymer. 

Figure 1f displays the small-angle X-ray diffraction (XRD) patterns of MSNs and 

MSNs-NH2@PSPMK, showing the microcrystalline of the nanoparticles. The presence of the 

standard Bragg peaks of (100), (110) and (200) indicates the highly ordered hexagonal array 
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of MSNs. After the MSNs surface is grafted with PSPMK polyelectrolyte polymer, the Bragg 

peaks of (110) and (200) almost disappear for all of the MSNs-NH2@PSPMK nanoparticles, 

which is mainly due to the weak crystallinity of PSPMK polyelectrolyte polymer. 

 

Figure 1. (a) FTIR spectra and (b) XPS spectra of MSNs, MSNs-NH2@I2959 and 

MSNs-NH2@PSPMK. (c) The TEM images of MSNs and MSNs-NH2@PSPMK with three 

different SPMK monomer concentrations: (c-i) MSNs; (c-ii) MSNs-NH2@PSPMK-0.125; 
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(c-iii) MSNs-NH2@PSPMK-0.250; (c-iv) MSNs-NH2@PSPMK-0.500. The thickness of the 

polymer layer is ~4 nm, 7 nm and 9 nm, respectively. (d) TGA curves, (e) N2 

adsorption-desorption isotherm curves and (f) Small-angle XRD patterns of MSNs and 

MSNs-NH2@PSPMK with three different SPMK monomer concentrations.  

 

2.2. Super-lubricated Property and Analysis 

The tribological experiment was performed to investigate the lubrication property of MSNs 

and MSNs-NH2@PSPMK in aqueous suspension. As shown from the friction 

coefficient-time plots in Figure 2a (i) (loading force: 5N; reciprocating frequency: 3 Hz; 

concentration: 5 mg mL-1), the friction coefficient of MSNs is 0.168, which is much higher 

than that of MSNs-NH2@PSPMK with different monomer concentrations. Additionally, it is 

observed that as the monomer concentration increases, the friction coefficient value reduces 

gradually, i.e., 0.145 for MSNs-NH2@PSPMK-0.125, 0.102 for MSNs-NH2@PSPMK-0.250 

and 0.065 for MSNs-NH2@PSPMK-0.500, respectively. Figure 2a (ii) shows the comparison 

of friction coefficient lubricated using MSNs and MSNs-NH2@PSPMK at different aqueous 

suspension concentrations (1 mg mL-1, 2 mg mL-1 and 5 mg mL-1) under the reciprocating 

frequency of 3 Hz and the loading force of 5 N. It is observed that all the friction coefficients 

of MSNs-NH2@PSPMK are lower than that of MSNs, and generally the lubrication is 

improved with the increase in aqueous suspension concentration. Figure 2a (iii) demonstrates 

the comparison of friction coefficient lubricated by MSNs and MSNs-NH2@PSPMK at 

different reciprocating frequencies (1 Hz, 3 Hz and 5 Hz) under the loading force of 5 N and 
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the aqueous suspension concentration of 5 mg mL-1. The friction coefficients are relatively 

small, and there seems to be a decreasing trend with the increase in reciprocating frequency 

although the difference between 3 Hz and 5 Hz is slight. Figure 2a (iv) presents the 

comparison of friction coefficient lubricated by MSNs and MSNs-NH2@PSPMK at different 

loading forces (1 N, 2 N and 5 N) under the reciprocating frequency of 3 Hz and the aqueous 

suspension concentration of 5 mg mL-1. The friction coefficients remain at a low level, and 

there seems to be a decreasing trend with the increase in loading force. The results indicate 

that the charged polymer covering the surface of MSNs-NH2@PSPMK can achieve improved 

lubrication based on hydration lubrication mechanism,[24] which is mainly caused by the 

formation of hydration layers surrounding the negative charges of PSPMK polyelectrolyte 

polymer. 
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Figure 2. (a-i) The lubrication property of MSNs and MSNs-NH2@PSPMK nanoparticles in 

aqueous suspension. Contacting pairs: Ti6Al4V disk and PE ball; duration: 40 min; 

oscillation amplitude: 4 mm; (a-ii) aqueous suspension concentration: 1 mg mL-1, 2 mg mL-1 

and 5 mg mL-1; (a-iii) reciprocating frequency: 1 Hz, 3 Hz and 5 Hz; (a-iv) loading force: 1 N, 

2 N and 5 N. (b) Schematic graph showing the calculation of different configurations of 

PSPMK polymer chains on the MSNs surface. The polymer chains are in the 

“mushroom-brush” state for MSNs-NH2@PSPMK-0.125 and MSNs-NH2@PSPMK-0.250, 

and they are in the “brush” state for MSNs-NH2@PSPMK-0.500. (c) Release profiles of 

DS-loaded MSNs and DS-loaded MSNs-NH2@PSPMK nanoparticles in PBS at 37 °C for 72 
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h. A sustained drug release profile is observed for MSNs-NH2@PSPMK-0.125 and 

MSNs-NH2@PSPMK-0.250. 

 

Figure 2a shows that the lubrication performance of MSNs-NH2@PSPMK improves 

significantly along with thicker PSPMK polymer layer on the MSNs surface. This 

phenomenon may be due to the different configurations of the PSPMK polymer chains, 

which exhibit three potential states, namely “mushroom” state (the polymer chains are 

aggregated), “mushroom-brush” state (the polymer chains are stretched incompletely) and 

“brush” state (the polymer chains are stretched completely) (Figure 2b), depending on the 

ratio of the average distance between the PSPMK polymer chains (s) and the Flory radius 

(RF).[25,26] Generally, in case that s is larger than 2RF, PSPMK polymer chains are in the 

“mushroom” state as a result of the free movement of polymer segments. If s is far less than 

2RF, PSPMK polymer chains are in the “brush” state due to the repulsive force between the 

polymer chains. Besides, PSPMK polymer chains are in the “mushroom-brush” state. The 

values of s and RF for MSNs-NH2@PSPMK with different SPMK monomer concentrations 

are calculated and summarized in Table 2, and the calculation process is mentioned in detail 

in Supporting Information. 
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Table 2. Calculation of the parameters of PSPMK polymer chains for MSNs-NH2@PSPMK 

with different monomer concentrations. 

 n RF (nm) s (nm) s/2RF 

MSNs-NH2@PSPMK-0.125 11.2 1.32 

0.90 

0.34 

MSNs-NH2@PSPMK-0.250 13.2 1.46 0.31 

MSNs-NH2@PSPMK-0.500 22.9 2.03 0.22 

According to the previously published studies,[19,25] when 0.3 < s/2RF < 1.2, the polymer 

chains can be generally considered in the “mushroom-brush” state (e.g. 

MSNs-NH2@PSPMK-0.125 and MSNs-NH2@PSPMK-0.250), and when s/2RF < 0.3, the 

polymer chains will be in the “brush” state (e.g. MSNs-NH2@PSPMK-0.500). Figure 2a 

shows that the PSPMK polymer chains in the “mushroom-brush” state or “brush” state can 

result in a significant reduction in the friction coefficient. Additionally, the lubrication 

property of the PSPMK polymer chains in the “brush” state is even better than that in the 

“mushroom-brush” state, where the polymer chains are unable to be completely stretched out, 

and thus, hydration lubrication is to a certain degree compromised. 

2.3. In Vitro Drug Loading and Release 

The results of drug loading capacity (LC, %) and encapsulation efficiency (EE, %) of MSNs 

and MSNs-NH2@PSPMK are shown in Table 3.  
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Table 3. Loading capacity (LC, %) and encapsulation efficiency (EE, %) of DS-loaded MSNs 

and DS-loaded MSNs-NH2@PSPMK. 

 LC (%) EE (%) 

MSNs 5.8 77.2 

MSNs-NH2@PSPMK-0.125 2.8 36.4 

MSNs-NH2@PSPMK-0.250 2.3 29.6 

MSNs-NH2@PSPMK-0.500 0.4 4.9 

The PSPMK polyelectrolyte polymer on the MSNs surface impedes encapsulation of DS, 

and MSNs-NH2@PSPMK-0.500 hardly adsorb any DS, indicating that the polymer layer is 

too thick for the drug molecules to penetrate through into the channels. Figure 2c presents the 

release profiles of DS-loaded MSNs and DS-loaded MSNs-NH2@PSPMK. All the curves 

show an initial rapid drug release within 10 h, followed by a relatively flat stage afterward. 

When MSNs, MSNs-NH2@PSPMK-0.125 and MSNs-NH2@PSPMK-0.250 are used as the 

nanocarriers, 77.6%, 59.8% and 47.2% of DS are released within 72 h, respectively, 

demonstrating the excellent sustained release effect of MSNs-NH2@PSPMK. It is noted that 

the release profile of MSNs-NH2@PSPMK-0.500 is not provided due to the extremely low 

drug loading capacity. 

From Table 3 it can be seen that the drug loading capacity of MSNs-NH2@PSPMK 

decreases along with thicker PSPMK polymer layers on the MSNs surface. Additionally, 

from the drug release profiles of the three nanoparticles in Figure 2c, 

MSNs-NH2@PSPMK-0.125 and MSNs-NH2@PSPMK-0.250 exhibit a sustained drug 

release behavior, indicating that the hydrated PSPMK polymer chains on the MSNs surface 

are both penetrable and impeditive for the drug. It is considered that when the polymer chains 
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are in the “mushroom-brush” state or the short-length “brush” state, MSNs-NH2@PSPMK 

can be used as a nanocarrier for sustained drug release, until the length of the polymer chains 

increases and blocks drug loading into the mesoporous channels of the nanoparticles, e.g. in 

the case of MSNs-NH2@PSPMK-0.500. In addition, the drug loading process of 

MSNs-NH2@PSPMK, i.e., the preparation of DS-loaded MSNs-NH2@PSPMK, is performed 

after surface grafting of PSPMK polyelectrolyte polymer on the MSNs surface. This is 

mainly because the drug may experience a rapid release during the photopolymerization 

process if it is initially loaded into MSNs. On the other hand, the UV-irradiation may cause 

potential influence on the drug activity, which as a consequence further affects the therapeutic 

effect of DS-loaded MSNs-NH2@PSPMK for oxidative stress-induced degeneration of 

chondrocytes (in vitro test) and treatment of osteoarthritis (in vivo test). 

 

2.4. In Vitro Cytotoxicity and Protective Effect of Chondrocytes Degeneration 

In order to examine the potential clinical application of the developed super-lubricated 

drug-loaded nanoparticles, we investigated the in vitro cytotoxicity of MSNs, 

MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS on primary rat chondrocytes, and 

subsequently performed experiments to indicate whether MSNs-NH2@PSPMK-DS could 

protect the oxidative stress-induced degeneration of the chondrocytes. It was noted that 

MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS used in the following tests were 

prepared with the SPMK monomer concentration of 0.250 M, as the nanoparticles made at 

this concentration demonstrated both good lubrication property and sustained drug release 
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behavior. 

The in vitro cytotoxicity of MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS 

on primary rat chondrocytes are first discussed. Following incubation at 1, 3 and 5 days, the 

cells were proceeded for CCK-8 test and Live/Dead assay. In Figure 3a the CCK-8 test shows 

that the cell viability and proliferation activity have no significant difference among the 

experimental groups compared with the control group at all time points. In addition, the 

Live/Dead staining show that most of the seeded cells stay alive and only very few dead cells 

are observed over the course of 5-day culture (Figure 3b). Furthermore, the cell density 

increased gradually with time from day 1 to day 5, which is confirmed by the data of the 

number of viable cells shown in Figure 3c. All these results indicate that the nanoparticles 

show excellent biocompatibility to the chondrocytes. 
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Figure 3. (a) Cytotoxicity of MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS on 

chondrocytes examined with CCK-8. (b) Live/Dead staining of chondrocytes co-cultured 
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with MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS detected employing 

fluorescence microscopy. All the nanoparticles show excellent biocompatibility to the 

chondrocytes. (c) The live cell count summarized from the Live/Dead assay. n=3; NS=no 

significance; ***P < 0.001. 

 

Multiple factors are associated with pathogenesis of osteoarthritis, such as reactive 

oxygen species (ROS), mechanical loading stress, and inflammatory factors. These factors 

can result in chondrocytes degeneration, which is the most significant characteristic of 

osteoarthritis. In this study, we introduced H2O2 to simulate ROS stress of chondrocytes 

during the pathogenesis of osteoarthritis. The robust production of Col2α and aggrecan are 

important characteristics of healthy chondrocytes. After addition of H2O2, the mRNA 

expression of Col2α and aggrecan both decrease gradually with prolonged culture time and to 

less than half of the original value (0 h) at 12 h. Moreover, a significant reduction in the 

mRNA expression of Col2α and aggrecan is observed at 24 h after addition of H2O2 (Figure 

4a and 4b). In order to explore the protective effect of MSNs-NH2@PSPMK-DS for 

chondrocytes degeneration, subsequently we evaluated the mRNA expression of Col2α and 

aggrecan in chondrocytes after addition of MSNs, MSNs-NH2@PSPMK and 

MSNs-NH2@PSPMK-DS with H2O2. The qRT-PCR analyses indicate that the mRNA 

expression of Col2α and aggrecan increases significantly after addition of 

MSNs-NH2@PSPMK-DS, whilst no significant changes have been observed for MSNs and 

MSNs-NH2@PSPMK, which clearly indicates the protective effect of 

MSNs-NH2@PSPMK-DS for chondrocytes degeneration (Figure 4c and 4d).  
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Figure 4. (a and b) The qRT-PCR analysis exhibiting the mRNA expression of Col2α (a) and 

aggrecan (b) in chondrocytes treated with 10 mU of H2O2 at deferent time points. n = 3, *P < 

0.05, **P < 0.01, ***P < 0.001, compared with control (0 h). (c and d) The qRT-PCR analysis 

showing the mRNA expression of Col2α (c) and aggrecan (d) in chondrocytes treated with 10 

mU of H2O2, and co-cultured with MSNs, MSNs-NH2@PSPMK and 

MSNs-NH2@PSPMK-DS for 24 h. n = 3, **P < 0.01, ***P < 0.001, compared with control; 

###P < 0.001, compared with MSNs-NH2@PSPMK-DS. The data clearly demonstrate the 

protective effect of MSNs-NH2@PSPMK-DS for chondrocytes degeneration. 

Furthermore, the result of immunofluorescence staining and corresponding statistical 

analysis show that the addition of MSNs-NH2@PSPMK-DS can reverse H2O2 stress-induced 
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reduction of Col2α protein expression compared with the MSNs and MSNs-NH2@PSPMK 

groups (Figure 5). As a consequence, the results confirm the protective effect of 

MSNs-NH2@PSPMK-DS for chondrocytes degeneration and tentatively suggest the potential 

clinical application for treatment of osteoarthritis. 
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Figure 5. (a) Representative photomicrographs of chondrocytes treated with 10 mU of H2O2 

and co-cultured with MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS for 12 h, 

acquired using a laser scanning confocal microscopy. Green: Molecular Probes labeling 

Col2α; Blue: DAPI labeling cell nuclei; Red: Phalloidin labeling cell actin. (b) The 

quantitative data showing comparison of Col2α protein expression of chondrocytes treated 

with 10 mU of H2O2, and co-cultured with MSNs, MSNs-NH2@PSPMK and 

MSNs-NH2@PSPMK-DS for 12 h. n = 3, **P < 0.01, ***P < 0.001, compared with control; 

###P < 0.001, compared with MSNs-NH2@PSPMK-DS. The results confirm the protective 

effect of MSNs-NH2@PSPMK-DS for chondrocytes degeneration. 

 

2.5. In Vivo Therapeutic Effect of Osteoarthritis 

An animal model of destabilization of the medial meniscus (DMM)-induced osteoarthritis has 

been commonly employed in previous studies.[27] In the present study, we performed in vivo 

analysis of Sprague-Dawley rats that had undergone DMM surgery, including X-ray 

radiograph and histological staining. One week following the DMM surgery, the rats were 

injected once every week with PBS, MSNs, MSNs-NH2@PSPMK and 

MSNs-NH2@PSPMK-DS. Figure 6a shows the X-ray radiographs of the knee joints of the 

rats obtained at one and eight weeks after the DMM surgery, and no signs of acute 

inflammation are observed in any of these treatment groups (including MSNs, 

MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS). In addition, the values of articular 

space width are calculated from the radiographies, and it is indicated that the medial 
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compartments between femur and tibia become narrower at eight weeks after DMM surgery 

for all the groups, although it seems that the MSNs-NH2@PSPMK-DS group generates a 

slightly larger articular space width, Figure 6b. 

  

Figure 6. (a) Representative X-ray radiographs of the rat knee joints showing the 

intra-articular injection of PBS, MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS 

in the treatment of DMM-induced osteoarthritis at one and eight weeks after surgery. (b) The 
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relative articular space width between the medial compartments of rat knee joints at one and 

eight weeks after surgery. No signs of acute inflammation are observed from the X-ray 

radiographs of the MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS groups. 

The cartilage tissues were then evaluated histologically by H&E staining and Safranin 

O-fast green staining. As displayed in Figure 7a and 7b, typical osteoarthritis features, such as 

surface discontinuity, vertical fissure, erosion denudation and deformation, are observed in 

the PBS group. Compared with the PBS group, all the treatment groups present varied 

degrees of improvement with respect to morphological change, matrix staining and tidemark 

integrity promotion. Specifically, the MSNs-NH2@PSPMK-DS group is considered the most 

effective in maintaining the columnar architecture of normal cartilage, which is typically 

manifested as less severe lesion and extensive erosion, decreased surface denudation and 

deformation, as well as increased tissue cellularity and cloning. Furthermore, the 

MSNs-NH2@PSPMK-DS group shows more intense Safranin O-fast green positive staining 

than do the other groups (Figure 7c). This finding indicates that the MSNs-NH2@PSPMK-DS 

group has better outcome with respect to glycosaminoglycan deposition, attenuation of 

cartilage matrix depletion and also retention of overall cartilage thickness. The result of 

OARSI score is illustrated in Figure 7d. All the treatment groups decrease the OARSI score 

more or less compared with the PBS group, and the MSNs-NH2@PSPMK-DS group shows 

the best result with about 64% reduction. In addition, the depth of the cartilage macroscopic 

lesion is also compared for each group at eight weeks after DMM surgery, and again the 

MSNs-NH2@PSPMK-DS group demonstrates the best result with about 55% reduction 

relative to the PBS group (Figure 7e). All these results indicate that the super-lubricated drug 
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nanocarrier (MSNs-NH2@PSPMK-DS) can inhibit development of osteoarthritis based on 

the in vivo rat DMM model. 

 

Figure 7. (a and b) Representative H&E staining (a) and Safranin O-fast green staining (b) of 

the cartilage sections after treatment of rat DMM-induced osteoarthritis employing PBS, 

MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS at eight weeks after surgery. 

Extensive morphological and cellular changes in the PBS group are reflected by surface 

irregularities and fissures (black arrows), increase in tissue cellularity with cloning (black 
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triangles), along with full-depth erosion and widespread cell loss. The 

MSNs-NH2@PSPMK-DS group presents the best result in maintaining columnar architecture 

of normal cartilage. (c) Glycosaminoglycan (GAG) content relative to the sham group 

obtained from the quantification of Safranin O-fast green staining of the cartilage sections 

using the Image J software. The values are presented as mean ± SD, n = 12. (d) OARSI score 

of articular cartilage for each group after treatment for eight weeks. The values are presented 

as mean ± SD, n = 12. (e) Depth of cartilage macroscopic lesion for each group after 

treatment for eight weeks. The values are presented as mean ± SD, n = 10. *P < 0.05, 

**P<0.01, ***P < 0.001, compared with the PBS group. The results of (c-e) indicate that the 

MSNs-NH2@PSPMK-DS group with enhanced lubrication and sustained drug release, which 

is bioinspired by the structure of fresh euryale ferox seed, demonstrates the best therapeutic 

effect in the treatment of osteoarthritis based on the rat DMM model. 

 

3. Conclusions 

In the present study, inspired by the fresh euryale ferox seed, we introduced a facile and 

low-toxic photopolymerization method and successfully synthesized PSPMK polymer 

brushes-grafted MSNs (MSNs-NH2@PSPMK), which with a controllable state of the 

polymer chains, acted as novel nanoparticles for efficient lubrication and sustained drug 

release. Such nanoparticles were then encapsulated with DS to prepare the super-lubricated 

drug-loaded nanoparticles, MSNs-NH2@PSPMK-DS, for the treatment of osteoarthritis. The 

lubrication and drug release tests revealed that the lubrication capability of the developed 
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nanoparticles could be improved, while the drug release rate be sustained with the increase in 

the thickness of the PSPMK polymer layer. The in vitro and in vivo experiments showed that 

the super-lubricated drug-loaded nanoparticles with excellent biocompatibility not only 

protected the chondrocytes from oxidative stress-induced degeneration, but also provided 

therapeutic effect against development of osteoarthritis based on a rat DMM model. Combing 

the advantage of both efficient lubrication capability and drug loading and release behavior, 

the super-lubricated drug-loaded nanoparticles, MSNs-NH2@PSPMK-DS, developed here 

are considered to have great potential for various biomedical applications, particularly in the 

situations where these two typical features are preferably desirable, for example, the 

treatment of osteoarthritis. 

4. Experimental Section 

Preparation of MSNs and MSNs-NH2: MSNs were prepared with reference to our 

previous studies.[28-31] Briefly, 0.5 g of cetyltrimethyl ammonium bromide (CTAB, 98%) and 

1.75 mL of NaOH solution (2 M) were added to 240 mL of aqueous solution under stirring. 

Afterward, 5 mL of tetraethyl orthosilicate (TEOS, 98%) was added, and then the solution 

was vigorously stirred at 80 °C for 15 min, followed by normal stirring for 6 h. The solution 

was filtered and washed with deionized water and methanol, and the CTAB template was 

extracted by stirring in 50 mL of methanol and 5 mL of concentrated hydrochloric acid at 

60 °C for 24 h. The final resulting product (MSNs) was filtered and washed with methanol 

and dried under vacuum. 

In order to prepare amino MSNs (MSNs-NH2), 500 mg of MSNs was dispersed in 50 
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mL of anhydrous toluene, and 5 mL of 3-aminopropyltriethoxysilane (APTES, 98%) was 

added. The solution was refluxed under a nitrogen atmosphere for 24 h. The resulting product 

(MSNs-NH2) was collected through centrifugation (8000 rpm, 10 min), washed twice with 

toluene and ethanol and dried under vacuum. 

Synthesis of photopolymerization initiator: Photopolymerization initiator was 

synthesized following the previously published protocol.[32] 

2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanone (Irgacure 2959, 26.9 g, 

0.12 mol), p-methyl benzene sulfonic chloride (TsCl, 19.0 g, 0.10 mol) and KOH (22.4 g, 

0.40 mol) were dissolved in 300 mL of CH2Cl2 in a three-necked round bottom flask. The 

solution was stirred at room temperature for 2 h and then washed three times with deionized 

water. The organic layer was dried over Na2SO4 and distilled under vacuum. The resulting 

product was purified using silica gel (200~300 mesh) column chromatography, with ethyl 

acetate and methylene chloride (1:4, v/v) as an elution. The final product was named as 

2959-Tos. 

Immobilization of 2959-Tos onto MSNs-NH2: Briefly, 2959-Tos (1 g), MSNs-NH2 (400 

mg) and K2CO3 (2 g) were dissolved in 30 mL of N,N-dimethylformamide (DMF, 99%) in a 

50 mL round bottom flask. The solution was stirred at 110 °C for 24 h. The resulting product 

(MSNs-NH2@I2959) was collected by centrifugation (8000 rpm, 15 min), washed with DMF 

and deionized water for several times, and finally dried under vacuum at room temperature 

overnight. 

Synthesis of MSNs-NH2@PSPMK: MSNs-NH2@I2959 (100 mg) and SPMK monomer 

(1.25 mmol, 2.50 mmol, and 5.00 mmol) were dispersed in 10 mL of deionized water in a 50 
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mL round bottom flask. The mixture was deoxygenated by bubbling nitrogen for 30 min, and 

then photopolymerization was processed at 80 °C under UV-irradiation with an intensity of 5 

mW/cm2 for 90 min. The resulting product (MSNs-NH2@PSPMK) was collected through 

centrifugation, washed with ethanol/H2O (1:1, v/v) for several times, and finally dried under 

vacuum overnight. The product was distinguished by the monomer concentration used during 

the photopolymerization reaction, i.e., MSNs-NH2@PSPMK-0.125 (0.125 M SPMK), 

MSNs-NH2@PSPMK-0.250 (0.250 M SPMK) and MSNs-NH2@PSPMK-0.500 (0.500 M 

SPMK). 

Characterization: FTIR spectrum was recorded employing a Nicolet 6700 transform 

infrared spectrometer (Thermo Scientific, USA) at a wavelength ranging from 400 cm-1 to 

4000 cm-1. XPS spectrum was recorded using a 250XI XPS system (Thermo Scientific, USA), 

and the binding energy data were calibrated against O1s peak at 523 eV. TGA was performed 

on a Q5000IR instrument (TA Instruments, USA). Field emission TEM (FEI, JEM-2100F, 

JEOL, Japan) was used to observe the morphologies of MSNs and MSNs-NH2@PSPMK. 

BET model was used to calculate specific surface area and pore volume of MSNs and 

MSNs-NH2@PSPMK on the basis of the adsorption data obtained by a NOVA4000 nitrogen 

adsorption instrument (Quantachrome Instruments, USA). Small angle XRD measurement 

was performed using a diffractometer (D8, Bruker, USA) over a 2θ range from 0.6 ° to 10 ° at 

a scanning speed of 1 °/min. 

Lubrication property: The tribological experiment was performed employing a universal 

material tester (UMT-3, Centre for Tribology Inc., Campbell, California, USA). All the tests 

were done in a reciprocating mode (oscillation amplitude: 4 mm; reciprocating frequency: 1 
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Hz, 3 Hz and 5 Hz) for a duration of 40 min, and the loading force was set at 1 N, 2 N and 5 

N. A polished Ti6Al4V disk with a surface roughness of 1.7 nm was employed as the lower 

specimen, and a polyethylene (PE) ball (diameter: 8 mm) was used as the upper specimen. 

Here, Ti6Al4V disk and PE ball were chosen as the specimens as they have been considered 

to represent the most typical biomaterials for total joint replacement prosthesis, and 

consequently can be used to mimic physiological conditions in the joint. Different 

concentrations (1 mg mL-1, 2 mg mL-1 and 5 mg mL-1) of MSNs or MSNs-NH2@PSPMK 

aqueous suspension were added between the two contacting pairs as the lubricant. The 

apparent maximum contact pressure was calculated using the Hertz equation based on the 

ball-on-flat configuration from our previous studies (Eq. 1),[33-36] where P is the apparent 

maximum contact pressure, F is the loading force (1 N, 2 N and 5 N), R is the radius of the 

PE ball (4 mm), E1 and µ1 are the elastic modulus and Poisson’s ratio of Ti6Al4V (110 GPa, 

0.3), and E2 and µ2 are the elastic modulus and Poisson’s ratio of PE (1 GPa, 0.4). 

Accordingly, the apparent maximum contact pressure was calculated to be 26.0 MPa (1 N), 

32.0 MPa (2 N) and 43.8 MPa (5 N), respectively. 

P =
1

𝜋 √
6𝐹

(
1−𝜇1

2

𝐸1
+
1−𝜇2

2

𝐸2
)

2

𝑅2

3                                                    (Eq. 1) 

In vitro drug loading and release: In order to load the drug, MSNs (20 mg) and 

MSNs-NH2@PSPMK (20 mg) were added to 10 mL of DS solution (0.5 mM) in phosphate 

buffer solution (PBS, pH 7.4). The nanoparticles were uniformly dispersed by ultrasound, and 

then the mixture was stirred for 48 h. The DS-loaded nanoparticles were collected by 

centrifugation, washed with deionized water for several times, and finally dried under 
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vacuum. The amount of DS remaining in the solution was analyzed by a UV-vis 

spectrophotometer (UV-6100s, Metash Instruments, China) at a wavelength of 276 nm. The 

relationship between DS concentration in PBS and its absorbance at the wavelength of 276 

nm was measured beforehand as the reference. The drug loading capacity (LC, %) and 

encapsulation efficiency (EE, %) were calculated by the following Eqs. (2-4): 

LC(%)
MSNs

=
 amount of loaded DS

 amount of DS-loaded MSNs
×100                                     (Eq. 2) 

 

LC(%)
MSNs-NH2@PSPMK

=
 amount of loaded DS

 amount of DS-loaded MSNs-NH2@PSPMK
×100                   (Eq. 3) 

 

EE(%)=
amount of loaded DS

amount of added DS
×100                                             (Eq. 4) 

Subsequently, 20 mg of DS-loaded MSNs and 20 mg of DS-loaded 

MSNs-NH2@PSPMK were first uniformly dispersed in 10 mL of PBS respectively, and then 

2 mL of each sample was put into dialysis tubes (molecular weight cutoff: 8, 000~10, 000). 

The tubes were dialyzed in 20 mL of PBS at 37 °C. After a predetermined time, 2 mL of the 

medium was taken out from the release buffer and replaced by 2 mL of fresh PBS. Finally, 

the amount of DS released from DS-loaded nanoparticles was evaluated by the UV-vis 

spectrophotometer. 

Primary rat chondrocyte isolation: Chondrocytes were isolated from the articular 

cartilage of rats in the knee joint as previously reported.[37] The articular cartilage tissues were 

cut into small pieces (1 mm3) and digested with 0.25% trypsin for 30 min, followed by 

digestion with 0.2% type II collagenase for 4 h. The released cells were then cultured in 

DMEM/F12 media supplemented with 10% fetal bovine serum and antibiotics. Only the cells 

with less than three passages were used in this study in order to preserve chondrocyte 
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phenotype. Unless otherwise explained, the MSNs-NH2@PSPMK and 

MSNs-NH2@PSPMK-DS used in the following tests were prepared with the SPMK 

monomer concentration of 0.250 M. 

Cell cytotoxicity: The primary rat chondrocytes were seeded in 24-well plates with a cell 

density of 5×104/mL. The plates were incubated in a humidified atmosphere at 37 °C and 5% 

CO2, and the culture medium of the plates was replaced every other day. After treatment with 

1 mg mL-1 of MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS in triplicate for 1, 

3 and 5 days, the Cell Counting Kit-8 (CCK-8, Dojindo Kagaku, Japan) was used to 

investigate the cytotoxicity of the nanoparticles on chondrocytes. Briefly, 0.5 mL of fresh 

culture medium and 50 µL of CCK-8 solution were added to each well of the plates. After 

incubation for 2 h, the mixed medium was transferred to 96-well plates in the darkness. The 

absorbance of the solution was measured employing a microplate reader (Infinite F50, Tecan, 

Switzerland) at a wavelength of 450 nm. 

Live/Dead staining: The cell viability of the nanoparticles was analyzed by a Live/Dead 

Cell kit (Life Tech, USA). Chondrocytes were seeded and cultured the same as before. After 

being co-cultured with 1 mg mL-1 of MSNs, MSNs-NH2@PSPMK and 

MSNs-NH2@PSPMK-DS in triplicate for 1, 3 and 5 days, the cells were stained with 500 µL 

of Live/Dead cell dye for 15 min, and observed employing a fluorescence microscopy 

(ZEISS, Axio Imager M1, Germany). As described in the manufacturer’s protocol, the viable 

cells with esterase activity appeared green, whereas the dead cells with compromised plasma 

membranes appeared red. 

qRT-PCR analysis: The primary rat chondrocytes were seeded in 6-well plates with a 
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cell density of 5×105/mL, treated with 10 mU of H2O2 and co-cultured with 1 mg mL-1 of 

MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS for 24 h. Total RNA from 

chondrocytes was extracted using TRIzol reagent (Invitrogen, USA) based on previously 

reported study.[38] The concentration and purity of the RNA preparations were determined 

through measuring the absorbance of RNA at 260 nm and 280 nm. cDNA was synthesized 

using 1 µg of RNA and a RevertAid First Strand cDNA Synthesis Kit (TaKaRa, Dalian, 

China). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to 

amplify the cDNA employing the SYBR Premix Ex Tag Kit (TaKaRa) and an ABI 7500 

sequencing detection system (Applied Biosystems, Foster City, CA, USA). The mRNA levels 

of collagen II (Col2α), aggrecan and GAPDH were quantified by using specific primers and 

normalized to GAPDH. The primer sequences used in the present study were as follows: 

GAPDH: forward, 5‘-GAAGGTCGGTGTGAACGGATTTG-3’; reverse, 

5’-CATGTAGACCATGTAGTTGAGGTCA-3’; Col2α: forward, 

5’-CTCAAGTCGCTGAACAACCA-3’; reverse, 5’-GTCTCCGCTCTTCCACTCTG-3’; 

aggrecan: forward, 5'-GATCTCAGTGGGCAACCTTC-3'; reverse, 5’- 

TCCACAAACGTAATGCCAGA-3’. 

Immunofluorescence staining: The chondrocytes were seeded onto sterile cover slips at a 

density of 5×104 cells per well in 24-well culture plates, treated with 10 mU of H2O2 and 

co-cultured with 1 mg mL-1 of MSNs, MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS. 

After incubation for 12 h, the cells were fixed in 4% paraformaldehyde for 10 min, treated 

with 0.1% Triton X-100 for 15 min and incubated in 3% bovine serum albumin (BSA)/PBS 

for 30 min at room temperature. Afterward, the cells were incubated with rat anti-Col2α 
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antibody (1:200 dilution) at 4 °C overnight. Following primary antibody incubation, the cells 

were washed employing PBS and incubated with appropriate Alexa Fluor-coupled secondary 

antibodies (Molecular Probes, Life Tech, USA, 1:400) for 1 h at room temperature. The cell 

nuclei were counterstained with 4, 6-Diamidino-2-phenyindole dilactate (DAPI, Life Tech, 

USA) at room temperature for 15 min in the darkness. Additionally, the cell actin was labeled 

with Alexa Fluor 594 phalloidin (Life Tech, USA). The images were acquired using a laser 

scanning confocal microscopy (LSCM, LSM800, ZEISS, Germany). 

Rat osteoarthritis model and surgical procedure: This animal experiment was approved 

by the Animal Research Committee of Ruijin Hospital, School of Medicine, Shanghai 

Jiaotong University, China, which was in compliance with the National Institutes of Health 

Guidelines for the Care and Use of Laboratory Animals. An osteoarthritis model was 

established via DMM surgery in male Sprague-Dawley rats (12 weeks old; n = 25; mean 

body weight: 256.7 g). After the rats were anesthetized by intraperitoneal injection of 

pentobarbital sodium (30 mg kg-1 body weight), the right knee joint was exposed following a 

medical capsular incision and gentle lateral displacement of the extensor muscles without 

transection of the patellar ligament. Afterward, the medial meniscus ligament (MMTL) was 

transected and then the medial meniscus could be removed medially. The medial capsular 

incision was well sutured after restoring the extensor muscles. Additionally, a sham operation 

was performed employing the same approach without MMTL transection. The rats were then 

permitted unrestricted activity and provided free access to food and water. One week after the 

surgical operation, the rats were randomly sorted into five groups (n = 5 for each group) and 

intra-articularly injected once every week with the following formulations, i.e. PBS, MSNs, 
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MSNs-NH2@PSPMK and MSNs-NH2@PSPMK-DS. Subsequently, the rats started a running 

exercise on a level treadmill at a speed of 60 km/h for 1 h every other day in order to induce 

osteoarthritis at the knee joint. 

X-ray radiograph and histological staining analyses: At one and eight weeks after 

surgery, the rats were scanned using an X-ray imager for small animals (Faxitron X-ray, USA) 

with the voltage of 32 kV and the exposure time of 6 mAs. After scanning, the rats were 

sacrificed and their knee joints were fixed in 4% paraformaldehyde for 24 h and decalcified 

in 10% EDTA. The macroscopic cartilage lesion depth for each group was measured by a 

vernier caliper. Afterward, the samples were dehydrated and embedded within paraffin, and 

then serial paraffin sections with a thickness of 5 m were prepared and stained alternately 

with hematoxylin-eosin (H&E) and safranin O-fast green. The safranin O-fast green sections 

were evaluated utilizing the Osteoarthritis Research Society International (OARSI) score 

established by Pritzker et al.,[39] which scored the product of six grades (depth of lesion) and 

four stages (extent of involvement) on a scale of 0 (normal) to 24 (severe osteoarthritis). 

Digital images were captured and two authors (Yan and Qi) graded the sections independently. 

The relative glycosaminoglycan content was also measured based on the safranin O staining 

using Image J software. 

Statistical analysis: The data were shown as mean ± standard deviation (SD), and 

similar independent experiments were repeated at least three times with three replicates to 

verify the results. One-way analysis of variance (ANOVA) was used for the multiple 

comparison tests. A two-tailed non-paired Student's t-test was employed to compare the 

significant differences between two groups, and statistical significance was displayed as *P < 
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0.05, **P < 0.01 or ***P < 0.001; #P < 0.05, ##P < 0.01 or ###P < 0.001. 
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Graphical Abstract 

 

Bioinspired by the unique structure of fresh euryale ferox seed, a novel super-lubricated 

drug-loaded nanoparticle was designed and synthesized based on photopolymerization for 

treatment of osteoarthritis. 
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