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Abstract 

Objectives: To examine different immunophenotypes of cancer-associated fibroblasts 

(CAFs) in tongue squamous cell carcinoma (TSCC) and to investigate how they 

related to clinical outcomes. 

Methods: Serial sections from 54 cases of TSCC were immunohistochemically 

stained with α-smooth muscle actin (αSMA, CAF marker) to determine CAF density, 

and double-immunostained with αSMA combined with CD80 and CD86 

(myeloid/monocytic-derived cell markers), Nanog (mesenchymal stem cell marker) 

and CD133 (hematopoietic/endothelial stem cell marker). Density of cells co-

expressing these marker combinations was semi-quantitatively assessed in 5 randomly 

selected high power fields within the tumor area and scored as  1 – one-to-five stained 

cells in each field, 2 – more than 5 stained cells in each field; any finding less than 

score 1, was allocated a score of 0. 

Results: There were 26 CAF-poor, 16 CAF-rich and 12 CAF-intermediated cases. 

CD86+αSMA+ cells were the most frequent (80.4%) followed by CD80+αSMA+ 

(72%) and Nanog+αSMA+ cells (56%). The CD133+αSMA+ phenotype was found 

only in association with blood vessels. High density of αSMA+ CAFs was associated 

with disease recurrence and poor survival (p<0.05). Increased density of 

CD86+αSMA+ cells was significantly associated with CAF-rich tumors and with poor 

survival (p<0.05).  

Conclusion: in TSCC, CAFs demonstrate heterogeneous and overlapping phenotypes 

with the myeloid/monocytic type being the most frequent and having an impact on the 

clinical outcomes. Further studies are needed in order to further characterize CAF 

phenotypes in carcinomas of various oral sites, as this may open new frontiers for 

personalized medicine. 
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Introduction 

 

The most common cancer involving the oral cavity originates from the lining 

squamous epithelium - oral squamous cell carcinoma (OSCC). There is a 5.5:2.5 

male-to-female ratio, with most patients aged 50-70 years (Sloan et al., 2017). 

However, recent reports from several regions in the world show an inexplicit shifting 

trend toward women and/or younger patients, especially regarding tongue cancer (Ng 

et al., 2017; Patel et al., 2011). The mainstay treatment strategy consists of surgery 

and radiotherapy aimed to eradicate the malignant epithelial cells. Unfortunately, this 

approach has yielded almost no progress over the past 4 decades and patients face 

poor survival rates (only ~50% five-year survival) (Hiemer et al., 2015).  

In OSCC, similar to other types of solid cancers, malignant cells interact with 

cells from the tumor micro-environment (TME), such as fibroblasts, endothelial cells, 

inflammatory cells, and others (Augsten 2014, Kalluri 2016; Kalluri and Zeisberg, 

2006). The molecular cross-talk among all these cellular components gives rise to 

phenotypical modifications with corresponding functional alternations that are 

collectively aimed to facilitate tumor proliferation, invasion and metastatic spread. 

Cancer-associated fibroblasts (CAFs), a characteristic sequela of this cross-talk, are 

the most abundant cell type within the TME (Augsten 2014). In principal, CAFs are 

phenotypically similar to myofibroblasts that are elicited during wound healing, but in 

contrast to those cells, CAFs do not disappear and continue to co-exist with the tumor 

and play a key role in its progression (Cirri and Chiarugi, 2011).  

It is now believed that CAFs represent a heterogeneous population of cells of 

distinct subtypes. Based on the notion that they express an array of markers, such as 

alpha smooth muscle actin (SMA), fibroblast specific factor 1 (FSP1, also known as 

S100A4), platelet-derived growth factor receptor beta (PDFGRβ), fibroblast 

activating protein (FAP) and NG2, a number of potential cellular origins have been 

proposed, including resident fibroblasts, mesenchymal stem cells, endothelial cells, 

pericytes, adipocytes and carcinoma cells that undergo epithelial-mesenchymal 

transition (EMT) process (Augsten 2014, Kalluri 2016; Kalluri and Zeisberg, 2006).  

Furthermore, the inconsistency of CAF markers that reflects the plasticity of the 

tumor and its microenvironment, led investigators to use the term "cell state" for the 

definition of CAFs rather than the more restricting term of cell origin (Madar et al., 
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2013). In in vivo models it has been shown that different types of cancers are 

characterized by CAFs of selective cellular origins/cell states according to the 

expression of specific markers (Augsten 2014).  

In our previous analysis of the TME in tongue SCC (TSCC), we found an 

inflammatory response rich in T lymphocytes and macrophages and that the presence 

of this response was inversely related to the presence of CAFs (Dayan et al., 2012). In 

the present study we aimed to investigate the possibility of CAFs being a product of 

macrophage "cell state" using CD80 and CD86 as markers of hematopoietic-derived 

immune cells (Tsushima et al., 2006). In addition, we also investigated whether CAFs 

co-express Nanog, a marker of cellular pluripotency and self-renewal (Das et al., 

2011; Jeter 2009), and CD133, a hematopoietic stem cell marker (Lee et al., 2017; 

Ranji et al., 2016), as feasible other "cell states" that would add to the phenotypic 

heterogeneity of the CAF population in TSCC. Finally, associations between CAF 

phenotypes and the clinical outcomes of disease recurrence and patients' survival, we 

analyzed.          

 

Material and Methods 

1. Study group 

Serial sections from resection specimens of 54 patients with TSCC were used, 

as previously described (Dayan et al., 2012). The study was approved by the IRB of 

the Chaim Sheba Medical Center, Tel Hashomer. The clinical outcomes were 

measured by two endpoints: locoregional disease control expressed by locoregional 

recurrence and overall survival. Time to recurrence was calculated as the interval 

between the date of diagnosis and the first sign of treatment failure at the primary 

tumor site, at the site of cervical metastases, or both. The calculation for overall 

survival included patients alive and free of disease and those alive with disease at the 

last follow-up visit.  

2. Cancer-associated fibroblasts (CAF): staining and immunomorphometry 

CAFs were immunohistochemically stained with SMA mouse monoclonal 

antibody (Clone 1A4, 1:100, Zytomed, Berlin, Germany). Positive control tissue was 

appendix; negative control included section from which the primary antibody was 

omitted. 
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Immunoreaction assessment relied on our previously described 5-scale scoring 

system (Dayan et al., 2012): 0 = absent, 0.5 = a few spindle-shaped CAFs at the 

periphery of the tumor, 1 = CAFs surrounding the tumor in a few concentric layers in 

several foci, 2 = CAFs with both spindle-shaped and plump morphology in many 

areas of the tumor, and 3 = similar to “2” but CAFs exceptionally abundant 

throughout the section, occasionally exceeding the carcinomatous component. For 

statistical survival analysis, stained cases were divided into CAF-poor (scores of 0, 

0.5, 1), CAF-intermediate (score of 2), and CAF-rich (score of 3) groups.  

3. Double immunoreactions: staining and immunomorphometry  

These stains included SMA coupled with CD80, CD86, CD133 and Nanog. 

For this part of the study we used the above mentioned antibody against SMA that 

was co-stained with CD80 (rabbit monoclonal, clone EPR1157(2), Abcam, 

Cambridge, UK; 1:200) and CD133 (rabbit polyclonal, Abnova, Walnut, CA, USA; 

1:100). CD86 (goat monoclonal, clone AF-141, R&D Systems, Minneapolis, MN, 

USA; 1:20) and Nanog (mouse monoclonal, clone 5A10, Acris Antibodies, San 

Diego, CA, USA; 1:100) were co-stained with SMA (rabbit polyclonal, Zytomed, 

Berlin, Germany; 1:100).  Prior to the double immunostaining procedure, the 

immunoreaction of each antibody was examined separately on positive controls: 

Nanog on seminoma; CD133 on hepatocellular carcinoma, and CD80 and CD86 on 

lymph nodes. Negative controls included sections from which the primary antibodies 

were omitted. For the double immunostains of CD80 and CD133 with SMA the 

primary antibodies were mixed and incubated overnight at 4oC. Secondary antibody 

was HRP rabbit and mouse (Innovex Biosciences, Richmond, CA, USA). The color 

reaction of SMA was performed using di-amino benzidine (DAB; Invitrogen, 

Carlsbad, CA, USA) while the reactions of the other antibodies was performed using 

permanent AP-red chromagen (Thermo Scientific, San José, CA, USA).  In regard to 

the double immunostains of CD86 and Nanog, the slides were first stained with 

SMA and color reaction was performed with DAB (Invitrogen); Meyer's 

hematoxylin nuclear staining was not performed. Then slides were put in water at 

90oC for 5 minutes, cooled to room temperature and incubated with the other primary 

antibody (i.e., CD86 or Nanog) overnight at 4oC. The CD86 set of slides were further 

incubated with an anti-goat secondary antibody (Bethyl Laboratories, Montgomery, 

TX, USA) and the Nanog set with HRP-AP rabbit (Innovex Biosciences, Richmond, 
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CA, USA). Finally, color reaction was performed with permanent AP-red chromagen 

(Thermo Scientific, San José, CA, USA).  

Density of cells co-expressing these marker combinations was semi-

quantitatively assessed in 5 randomly selected high power fields within the tumor area 

and scored as  1 – one-to-five stained cells in each field, 2 – more than 5 stained cells 

in each field; any finding less than score 1, was allocated a score of 0. Results are 

presented as the mean scores for each marker combination per CAF-related group 

(i.e., poor, intermediate and rich). The association between the density of each of the 

double immunostain type with clinical outcome of disease recurrence and patients' 

survival was investigated.  

4. Statistical analysis 

The differences in the mean scores for the double immunostains among the 

CAF-related groups were calculated by One-way ANOVA.  Survival analysis was 

performed using the Kaplan–Meier method, and significance was confirmed by the 

log-rank test. All statistical analyses were done using SPSS, version 22 (SPSS Inc., 

Chicago, IL), and the significance level was set at p<0.05. 

 

Results 

1. CAF density and association with clinical outcomes  

Classification of cases according to CAF density yielded 26 (48%) CAF-poor, 12 

(22.2%) intermediate and 16 (29.6%) CAF-rich cases. Examples for each class of 

CAF are illustrated in Fig. 1. High CAF density (score 3) had a negative impact on 

disease recurrence (p<0.05) and was associated with poor survival (p<0.05) (Fig. 2). 

2. Double immunohistochemical stains and association with clinical 

outcomes 

Stromal cells showed co-expression of α-SMA with CD80, CD86, Nanog and 

CD133. The TME was rich in CD86+αSMA+ stained cells: 19 (35.2%) cases were 

scored as 2, 22 (40.7%) as 1, and 10 (18.5%) cases were allocated a score of 0.  

Stromal cells co-expressing CD80+αSMA+ were found to a lesser extent: 10 (18.5%) 

cases were given a score of 2, 29 (53.7%) a score of 1 and 15 cases were considered 

as negative (score 0). Nanog+αSMA+ stained cells were the less frequent: 22 (44%) 

were negative (score of 0), 27 (54%) were weakly immunoreactive (score 1) and only 

one (2%) was scored as 2. CD133+αSMA+ cells were found only in association with 

blood vessels (Fig. 3).  
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In regard to the associations with the clinical outcomes, only CD86+αSMA+ was 

found to be a negative prognostic factor for survival (p<0.05) (Fig. 4). 

The mean score of the CD86+αSMA+ cells in the CAF-rich tumors was 

significantly higher than in CAF-poor tumors (p<0.001; Fig. 5). The mean score of 

the CD80+αSMA+ cells did not differ among the CAF-related groups of tumors. 

Nanog+αSMA+ increased only slightly as the density of CAFs increased but it did not 

reach any statistical significance.   

 

Discussion  

We have examined SMA+CAF cells in terms of co-expression of a series of 

markers that represent various cell origins/cell states in order to assess the phenotypic 

heterogeneity of CAF cell population in TSCC. We also investigated the associations 

between CAF phenotypes and the clinical outcomes of disease recurrence and 

patients' survival. We found that high density of SMA+CAF was associated with 

disease recurrence and had a negative impact on patients' survival. Furthermore, we 

found that the CAF cell population comprised heterogenic phenotypes, with the 

CD86+SMA+ being the predominant variety. Furthermore, we showed that 

CD86+SMA+CAFs were associated with poor survival.  

 Although CD80 and CD86 are generally considered to play a similar co-

stimulatory effect for T lymphocyte response, the CD80+SMA+ phenotype was less 

common than CD86+SMA+ among the CAF cell population. CD80+SMA+ CAFs 

were not found to be associated with clinical outcomes. The Nanog+SMA+ 

phenotype, assumedly associated with pluripotent and self-renewal cellular functions, 

was the least common among the CAFs. CD133+SMA+ phenotype was found only 

in blood vessel walls and was not associated with the stromal spindle-shaped CAFs. 

This suggests that cells of a hematopoietic origin are not involved in generation of the 

CAF population in TSCC. 

Our findings regarding the negative impact that TSCC CAFs have on the clinical 

outcomes are supported by previous studies (Bello et al., 2011; Dayan et al., 2012; 

Ding et al., 2014; Vered et al., 2010), however this is the first study that attempted to 

investigate the diversity of phenotypes within the CAF population. It should be noted 

that the sum of percentages of the various combined phenotypes was higher than 

100% as there were cells that expressed markers characteristic to more than one cell 
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phenotype. This highlights the dynamic state of CAFs that may express overlapping 

markers at each time point, thus increasing their phenotypical heterogeneity (Augsten, 

2014; Kalluri, 2016).        

In the present study we found that among the stromal, spindle-shaped cells, the 

most frequent phenotype was CD86+SMA+, closely followed by CD80+SMA+. 

CD86 and CD80, co-stimulatory molecules for inducing T cell response, are 

characteristically expressed by "professional" antigen presenting cells, such as B 

lymphocytes, dendritic cells and macrophages (Saada et al., 2006).  Acquirement of 

SMA+ expression in cells of the myeloid/monocytic lineage, such as macrophages, 

has been already reported. For example, in human and experimental kidney disease, 

macrophages were shown to directly transdifferentiate into collagen-producing 

SMA+ myofibroblasts, the counterpart of CAFs in non-malignant conditions (Meng 

et al., 2016). The macrophage-to-myofibroblast transition (MMT) process was 

specifically demonstrated in bone marrow-derived macrophages that contributed to 

the process of tissue fibrosis (Wang et al., 2015). Furthermore, in that study, it was 

shown that the MMT occurred in the M2-type macrophages. In our previous study 

(Dayan et al., 2012), which serves as the base for the present investigation, we 

showed that a considerable part of the macrophages in the TME of TSCC were of 

M2-phenotype, thus, it may be assumed that these cells were preferred candidates for 

the acquirement of  SMA+ CAF "cell state". In another study, it has been shown that 

when the MMT process occurs within the bone marrow, the SMA+ macrophages 

became resistant to radiation-induced cell death (Ludin et al., 2012). In addition, the 

SMA+ state in these macrophages was associated with upregulated expression of 

cyclooxygenase (COX)-2 under stress conditions.  The COX-2-mediated production 

of prostaglandin (PG)-E2 led, in turn, to a reduced production of reactive oxygen 

species within the adjacent cells, especially in progenitor cells that preserved their 

primitive stem phenotype. Future investigation of these sequelae in the context of 

TSCC is of great importance, since both effects of resistance to radiation of the 

CD86+SMA+/CD80+SMA+ TME cells and maintenance of stemness within the 

cancer cells could explain, at least in part, the biological aggressiveness of TSCC and 

the poor clinical outcomes. Although it would be difficult to specify the origin of the 

TSCC CD86+SMA+/CD80+SMA+ cells, either from local and/or bone marrow, it is 

interesting to mention that bone-marrow-derived infiltrating macrophages were found 
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to express mainly CD80, while resident macrophages within the TME of the cancer 

express mainly CD86 (Hallam et al., 2009).    

The molecular pathway for the up-regulation of SMA mRNA and its protein 

levels in cells of the monocyte/macrophage lineage depends not only on transforming 

growth factor beta (Wang et al., 2016) but also on nutlin-3, a small molecule with the 

ability to inhibit the mouse double minute (MDM)-2 - p53 interactions (Secchiero et 

al., 2012). The "converted" monocytes/macrophages exhibited characteristic 

elongated, spindle-like morphology of CAFs and produced fibronectin and collagen 

type I, both markers of fibrocyte differentiation. If this will be supported by additional 

studied in TSCC, then nutlin-3 may serve in the future as a new therapeutic target in 

TSCC.  

The dynamics and plasticity of cells within the SMA+ CAF population can also 

be reflected by the acquirement of CD86+/CD80+phenotypes (Saada et al., 2006). It 

has been shown that colonic SMA+ fibroblasts (i.e., myofibroblasts) express major 

histo-compatibility type II molecules together with CD80/86 costimulatory molecules 

and, as such, they can present antibodies to T cell lymphocytes and thus play an 

important role in regulating the local immune response. In the context of cancer, 

CD80 was shown to function as an inducer of regulatory T-cells (Zheng et al., 2004), 

which are known as pro-tumorigenic components of the cancer-related immune 

response and, therefore, can drive the tumor towards escape from the immune attack.    

It is now speculated that normal tissue fibroblasts in a resting state (i.e., negligible 

metabolic and transcriptomic activity) may share many features with mesenchymal 

stem cell (MSC) precursors or monocyte precursor-derived mesenchymal cells 

(Kalluri 2016). These cells will be activated by appropriate stimuli and become MSCs 

with functional properties of SMA+ myofibroblasts (wound healing and 

inflammatory response), or of their counterparts in TME of cancer - SMA+ CAFs. 

Nanog together with additional markers, such as SOX2, OCT3, KLF4 and LIN28, 

support a stem cell–like phenotype (Herrera et al., 2013). Expression of Nanog and 

related markers has been reported in CAFs from human colorectal cancer, with most 

of these cells having a pro-migratory effect on the cancer cells. In our study, 

expression of Nanog was less than that of CD86 and CD80, yet it can be assumed that 

since its expression overlapped with the expression of CD86+/CD80+, it hints toward a 

stem-like state of these cells, irrespective of their origin. 
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We have shown that CAFs in TSCC, although sharing the SMA+ phenotype, are 

actually a heterogeneous cell population representing phenotypes of different cell 

origins or cell states. Stromal cells with an SMA+ phenotype and spindle-shaped 

morphology could represent cells of monocyte/macrophage lineage that acquired 

expression of SMA+, or, alternatively, activated fibroblasts that acquired expression 

of CD80+/CD86+, emphasizing that irrespective of the origin of the cells, their 

phenotype and functionality (i.e., "cell state") can be modulated according to given 

temporal and spatial conditions. Furthermore, selective CAF phenotypes have a 

significant impact on the clinical outcomes. This is the first study of its kind and 

should be extended to further characterize the composition of the CAFs in TSCC as 

well as in cancers of other oral sites. Recently, it has been shown that CAFs were 

infrequent in cancers of the buccal mucosa and gingivae (Akrish et al., 2017) with 

these patients having a better prognosis than patients with TSCC. Therefore, it would 

be interesting to investigate how CAF phenotypes vary in SCCs at different sites of 

the oral cavity and how these phenotypes relate to the clinical outcomes.  

In conclusion, the novelty of the study lies in showing the heterogeneity of the 

CAF population and the negative impact that specific phenotypes might have on the 

clinical outcomes. It seems that generation of CAFs is a dynamic, inter-related and 

complex process resulting in "cell states" that acquire diverse, and possibly opposing, 

functions in the context of specific TMEs. Studies are needed in order to further 

characterize CAF phenotypes in carcinomas of various oral sites, as this may open 

new frontiers for personalized medicine.    
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Legend to Figures 

Fig. 1. Immunohistochemical stain of tongue squamous cell carcinoma with alpha 

smooth muscle actin antibody reveal spindle-shaped, positively stained cells in the 

tumor stroma that closely related to the tumor islands. These cells are consistent with 

cancer associated fibroblasts (CAFs). A – an example of CAF-poor tumor (CAFs are 

shown by arrows). B – an example of CAF-intermediate tumor, and C – CAF-rich 

tumor (scale bars 100 ) 

Fig. 2.  Kaplan–Meier analysis for overall survival (A) locoregional recurrence (B) by 

CAF scores  

Fig. 3. Stromal spindle cells double immuno-stained with alpha smooth muscle actin 

(brown color) and CD86 (A), CD80 (B) and Nanog (C) (purple color; arrows). Co-

expression of alpha smooth muscle actin and CD133 was found only in walls of blood 

vessels. (scale bars 25). 

Fig. 4. Kaplan–Meier analysis for overall survival by alpha-smooth muscle 

actin+CD86+ scores 

Fig. 5. Distribution of the mean scores of the double immunostains (alpha-smooth 

muscle actin+CD86+/CD80+/Nanog+) as a factor of the density of the cancer-

associated fibroblasts, poor, intermediate and rich 
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