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Abstract 26 

Listeria ivanovii is one of the two pathogenic species within the genus Listeria, the other 27 

being L. monocytogenes. In this study, we generated a stable pediocin resistant mutant Liv-r1 28 

of a L. ivanovii strain, compared phenotypic differences between the wild-type and the 29 

mutant, localised the pediocin-induced mutations in the chromosome, and analysed the 30 

mechanisms behind the bacteriocin resistance. In addition to pediocin resistance, Liv-r1 was 31 

also less sensitive to nisin. The growth of Liv-r1 was significantly reduced with glucose and 32 

mannose, but less with cellobiose. The cells of Liv-r1 adsorbed less pediocin than the wild-33 

type cells. Consequently, with less pediocin on the cell surface, the mutant was also less leaky, 34 

as shown as the release of intracellular lactate dehydrogenase to the supernatant. The surface 35 

of the mutant cells was more hydrophobic than that of the wild-type. Whole genome 36 

sequencing revealed numerous changes in the Liv-r1 chromosome. The mutations were found 37 

e.g., in genes encoding sigma-54-dependent transcription regulator and internalin B, as well 38 

as in genes involved in metabolism of carbohydrates such as glucose and cellobiose. 39 

Genetic differences observed in the mutant may be responsible for resistance to pediocin but 40 

no direct evidence is provided.  41 

Keywords: Bacteriocin; Listeria ivanovii; Resistance; Antimicrobial activity 42 
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1. Introduction 50 

Lactic acid bacteria (LAB) are a diverse group of Gram positive, catalase negative, and 51 

oxidase negative bacteria with the GRAS (generally recognized as safe) status. LAB are 52 

widely used as starters in food fermentations, but also as protective cultures against foodborne 53 

pathogens and spoilage organisms, because they often produce antimicrobial compounds such 54 

as bacteriocins. Most bacteriocins of LAB are small, heat-stable, cationic antimicrobial 55 

peptides which can be classified into two main groups: post-translationally modified (class I) 56 

and non-modified (class II) bacteriocins [1]. These classes can then be divided into several 57 

subclasses, mainly based on their structures. Besides the class Ia bacteriocin nisin, which is 58 

used as a food preservative, also class IIa (a.k.a. pediocin-like) bacteriocins are considered 59 

promising candidates for industrial applications [2]. They have gained interest because of 60 

their strong inhibitory effect on Listeria sp. More than 40 class IIa bacteriocins have been 61 

identified and sequenced including pediocin, sakacin P, leucocin C, enterocin A etc [3, 4]. 62 

With the consumers’ increasing demand for natural and minimally processed food, as well as 63 

continuing emergence of antibiotic resistant bacteria, it has been suggested that class IIa 64 

bacteriocins could have applications as antimicrobials in food industry as natural 65 

preservatives, and in human and veterinary medicine as alternatives to antibiotics [5]. Even 66 

though a few fermentation products based on pediocin have been commercialized, 67 

bacteriocins are still underutilized by the food industry, at least partly due to insufficient 68 

knowledge about how these antimicrobials work [6-8]. 69 

  Positively charged class IIa bacteriocins easily bind to the negatively charged bacterial cell 70 

surface, penetrate into the hydrophobic part of the cell membrane, and cause bacterial lysis by 71 

forming pores [9]. The major uptake system for glucose and mannose, the mannose 72 

phosphotransferase system (Man-PTS), and particularly its membrane proteins IIC and IID 73 

form a receptor for class IIa bacteriocins [10]. By binding and inserting into Man-PTS, class 74 
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IIa bacteriocins form pores in cell membrane, which makes cells leaky, and eventually leads 75 

to cell death. Although resistance against class IIa bacteriocins does not happen at high 76 

frequency in nature, it has been reported to be developed in the laboratory, mainly by 77 

downregulation of Man-PTS gene expression [11]. Ramnath et al. [12] and Xue et al. [13] 78 

also demonstrated that there was a link between the expression of Man-PTS and resistance to 79 

class IIa bacteriocins. In addition, structural changes in cell surface have been proposed to be 80 

involved in the bacteriocin resistance [14].  81 

Previous studies of class IIa bacteriocin resistance have mainly been focused on Listeria 82 

monocytogenes, a foodborne human pathogen causing disease outbreaks and food recalls [15]. 83 

The objective of this study was to examine the pediocin resistance in Listeria ivanovii, a 84 

pediocin highly sensitive strain and also of great economic importance as pathogen in 85 

livestock [16]. Cells were made resistant by pediocin challenge, and the changes such as cross 86 

resistance to antimicrobials, metabolic and surface properties, and chromosomal mutations 87 

were investigated and compared with the wild-type strain. Understanding the mechanism 88 

behind the bacteriocin resistance in different bacteria helps elucidate the bacteriocin-cell 89 

interaction, which, in turn, may be useful for bacteriocin applications.  90 

 91 

 92 

 93 

 94 
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2. Materials and Methods 100 

2.1. Bacterial strains and growth conditions 101 

L. ivanovii wild-type strain DSMZ 20750 (Liv) and resistant variant (Liv-r1) were cultured 102 

in Brain Heart Infusion (BHI) purchased from Beijing Aobox Bio-Tech Co., Ltd. (Beijing, 103 

China) at 37 °C. Three class IIa bacteriocin-producing strains used in this study were cultured 104 

as follows. Pediococcus acidilactici PA003 and Lactobacillus plantarum CICC 24194 were 105 

cultured at 37 °C in de Man, Rogosa and Sharpe broth (MRS; Beijing Aobox Bio-Tech Co., 106 

Ltd., Beijing, China), and Lactobacillus curvatus ATCC 51436 was grown in MRS broth at 107 

28 °C. Tryptone Soy Broth (TSB; 15.5 g/L tryptone, 5 g/L soybean peptone, 6.5 g/L yeast 108 

extract, 5 g/L NaCl) was used for monitoring L. ivanovii growth in the presence of different 109 

sugars. For solid media, 2% (wt/vol) agar was added.  110 

2.2. Bacteriocin activity assays 111 

Pediocin was prepared from P. acidilactici PA003 according to the method of Wang et al. 112 

[17]. The neutral cell-free culture supernatants (nCFS) containing class IIa bacteriocins were 113 

prepared by centrifugation of cultures at 7, 000 g for 10 min, adjustment of supernatants to pH 114 

7.0 and filtration through a 0.22 µm pore size filter (Millipore, US). Nisin was purchased from 115 

Zhejiang Silver-Elephant Bio-engineering Co., Ltd. (Taizhou, China). Bacteriocin activity 116 

was assayed by the agar well diffusion method and expressed in units [18]. The arbitrary units 117 

(AU) per milliliter were equal to 2n × (1000/x), where n is the number of wells showing clear 118 

inhibition of the indicator zone and x is the sample volume.  119 

2.3. Generation of bacteriocin resistant variant and antimicrobial susceptibility test 120 

L. ivanovii-derived strain resistant to pediocin was isolated by cultivation on plates 121 

containing gradually increasing pediocin concentration (50-200 AU/mL, determined 122 

according to section 2.2). The stability of the pediocin resistance of the isolate Liv-r1 was 123 

verified after 10 serial sub-culturings in the absence of pediocin. The susceptibility and 124 
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minimum inhibitory concentrations (MIC) for antibiotic agents including kanamycin and 125 

ampicillin against L. ivanovii strains were determined by agar well diffusion method, for 126 

determining the possibility of cross-resistance to antibiotics. The MIC was defined as the 127 

lowest concentration resulting in a clear inhibition zone.  128 

2.4. Growth situations with different sugars 129 

The growth of the strains Liv and Liv-r1 on different sugars was examined in TSB 130 

supplemented with 1% (wt/vol) glucose, mannose or cellobiose (Shanghai Yuanye Bio-Tech 131 

Co., Ltd., Shanghai, China). The media were inoculated with 1% of the overnight cultures, 132 

and the growth was monitored by measuring the optical density at 600 nm for 12 h with a 133 

spectrophotometer (Infinite 200, Tecan, US).  134 

2.5. Adsorption of pediocin onto L. ivanovii strains 135 

L. ivanovii cells were collected after overnight cultivation by centrifugation at 7, 000 g for 136 

10 min. Pellets were washed with 5 mM phosphate buffer (pH 6.0) for 3 times and 137 

resuspended to 108 cfu/mL in the same buffer containing 640 AU/mL pediocin, determined 138 

according to section 2.2. The mixture was incubated at 30 °C for 1 h. Pediocin activity of the 139 

supernatant obtained after centrifugation at 7, 000 g for 10 min was determined. The 140 

phosphate buffer containing 640 AU/mL pediocin was used as a negative control.  141 

2.6. Assessment of extracellular enzymes for pediocin inactivation 142 

The CFSs of L. ivanovii cultures were obtained after overnight cultivation and 143 

centrifugation at 7, 000 g for 10 min. Pediocin was mixed with the CFSs and incubated at 144 

30 °C for 0.5 and 1.5 h. Bacteriocin activity was assayed by agar well diffusion according to 145 

section 2.2. Pediocin mixed with BHI broth was used as a negative control. 146 

2.7. Assessment of cell surface hydrophobicity 147 

L. ivanovii cultures were centrifuged at 7, 000 g for 10 min. Cells were washed 3 times 148 

with 50 mM phosphate buffer (pH 6.5) and resuspended in the same buffer to OD600 of 149 
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approximately 0.5. Then, 4.8 mL of each bacterial suspension was mixed with 0.8 mL of 150 

xylene in a glass tube, and vigorously shaken for 1 min. After incubation at room temperature 151 

for 45 min, the aqueous phase was removed carefully and the OD600 was determined. The cell 152 

surface hydrophobicity was calculated with the following equation according to Pérez et al. 153 

[19]: Adherence (%) = (1- A/A0) × 100, where A0 and A are the OD600 of the bacterial 154 

suspension before and after mixing with xylene, respectively. 155 

2.8. Measurement of membrane permeability using extracellular lactate dehydrogenase 156 

(LDH) 157 

L. ivanovii strains were cultured 8 h and centrifuged at 11, 000 g for 10 min. Cell pellets 158 

were washed twice with 10 mM phosphate buffer (pH 7.2) and resuspended in the same buffer 159 

to the concentration of 108 cfu/mL. Then, the suspensions were mixed with 64 AU/mL 160 

pediocin, determined according to section 2.2 and incubated at 37 °C. Samples were taken out 161 

and filtered through a 0.22 µm pore size filter at 0, 1, 3 and 4 h. The filtrate was determined 162 

for extracellular LDH using a LDH kit (Jiancheng Biology Engineering Institute, Nanjing, 163 

China). L. ivanovii suspensions without pediocin treatment were used as controls. 164 

2.9. DNA extraction and sequencing 165 

Genomic DNA from wild-type L. ivanovii and the resistant variant was isolated from 166 

overnight cultures using standard cetyl trimethyl ammonium bromide (CTAB) method [20]. 167 

DNA samples were submitted to the Biomarker Technologies (Beijing, China) and sequenced 168 

using Illumina sequencer (NOVA seq) according to the instructions of the manufacturer.   169 

2.10. Sequencing analysis 170 

Pair-end reads from the sensitive wild-type strain and the corresponding resistant variant 171 

were subjected to quality evaluation and filtering before obtaining clean reads, and then 172 

compared to the fully annotated database reference genome of L. ivanovii  173 

(https://www.ncbi.nlm.nih.gov/genome/?term=Listeria+ivanovii) using Burrows-Wheeler 174 
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Alignment tool (BWA) software [21]. Observed differences (SNPs or indels) between the 175 

genomes of the two sequenced strains were analysed to identify the mutations possibly 176 

causing pediocin resistance. 177 

2.11. Statistical analysis 178 

Results were presented as mean ± standard deviation (SD) from three replicates. A one-way 179 

analysis of variance in SPSS software version 17 was performed for evaluation of each pair of 180 

strains, wild-type and pediocin-resistant mutant, based on post hoc analysis with significance 181 

level of P < 0.05. 182 

 183 

3. Results and Discussion 184 

3.1. Generation of pediocin resistant L. ivanovii   185 

Pediocin resistant L. ivanovii cells were isolated after exposure to gradually increasing 186 

concentrations of pediocin at a frequency of 10-6, consistent with reported class IIa bacteriocin 187 

resistance frequency in Listeria depending on the conditions and strains [22, 23]. One mutant 188 

of L. ivanovii with stable resistant phenotype, designated as Liv-r1, was chosen for 189 

comparisons with the wild-type L. ivanovii. Wild-type strain was sensitive to the nCFSs from 190 

three class IIa bacteriocin-producing strains, among which pediocin was the most effective 191 

bacteriocin (Table 1). The Liv-r1 mutant was resistant to all tested nCFSs showing no visible 192 

inhibition zones in agar well diffusion analysis. Besides, Liv-r1 displayed increased resistance 193 

to class I bacteriocin nisin but not to ampicillin (Table 1 and 2). Cross resistance among 194 

bacteriocins has been described in several reports. Pediocin 34 resistant mutant of L. 195 

monocytogenes showed cross resistance to enterocin FH99, and the nisin resistant 196 

Enterococcus faecium variant conferred cross resistance to both pediocin 34 and enterocin 197 

FH99 [24]. Likewise, in the study by Kumariya et al. [9], pediocin resistant Enterococcus 198 

faecalis was also resistant to nisin. However, there was no cross resistance to antibiotics in 199 
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Liv-r1, indicating that acquiring bacteriocin resistance in Listeria may not hinder the 200 

antibiotic therapy. In fact, it may render the cells even more sensitive to antibiotics due to 201 

fitness cost of developing bacteriocin resistant phenotype, as reported previously by Martínez 202 

and Rodríguez [25].  203 

3.2. Carbohydrate utilization  204 

Bacteria transport carbohydrates mainly by specific phosphoenolpyruvate-dependent 205 

phosphotransferase systems (PTS). In the genome sequence of L. monocytogenes EGDe, 206 

seven families of pts genes have been recognized (Glc-PTS, Man-PTS, Lac-PTS, Fru-PTS, 207 

Gut-PTS, Gat-PTS and Asc-PTS) [26, 27]. It has been reported that the class IIa bacteriocin 208 

resistant L. monocytogenes grow slower on mannose and glucose than on cellobiose, which 209 

indicates that the gene expression of the Man-PTS, the main receptor of class IIa bacteriocins, 210 

is downregulated in the resistant mutants [11]. Similarly, spontaneous pediocin resistant E. 211 

faecalis mutants have shown reduced glucose consumption [28]. Therefore, in the present 212 

study, the growth of L. ivanovii strains was evaluated on different carbohydrates, i.e., glucose, 213 

mannose, and cellobiose. When compared to the wild-type strain, the growth of the resistant 214 

variant Liv-r1 was reduced with all three carbohydrates (Fig. 1). However, like in the study by 215 

Tessema et al. [11] mentioned above, the variant grew remarkably better on cellobiose than on 216 

glucose and mannose (Fig. 1), suggesting similar mechanism of bacteriocin resistance in L. 217 

ivanovii and L. monocytogenes. According to Stoll and Goebel [27], cellobiose is transported 218 

by both Glc-PTS and Lac-PTS in L. monocytogenes, whereas glucose and mannose are 219 

transported by Glc-PTS and Man-PTS. Therefore, possible downregulation of Man-PTS 220 

would have smaller effect on growth with cellobiose. In addition, it has been shown that 221 

growth on glucose, mannose and fructose increased the sensitivity of L. monocytogenes to 222 

leucocin A or carnocyclin A, while growth on cellobiose and sucrose increase the resistance to 223 

bacteriocins [29].  In conclusion, it seems likely that carbohydrate metabolism plays a crucial 224 
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role in class IIa bacteriocin sensitivity in different bacterial species. 225 

3.3. Adsorption of pediocin on Listeria cells 226 

To test whether the pediocin resistance was based on poorer adsorption of the peptide onto 227 

cell surface, pediocin was mixed with wild-type and resistant variant cells, and the bacteriocin 228 

activity was measured from the supernatant after 1 h incubation in a buffer with pH 6.0. 229 

Pediocin has been shown to adsorb onto cell surface in a pH-dependent manner, the strongest 230 

adsorption occurring around at pH 6.0 [30]. As shown in Table 3, the residual concentrations 231 

of free pediocin in PBS decreased both in wild-type and resistant cells, indicating that the 232 

pediocin had adsorbed on the cell surface. However, the adsorption level of the wild-type cells 233 

was twice as much of that of the resistant variant, suggesting that there may be less specific 234 

receptor sites on the surface of Liv-r1, or that the cell surface of Liv-r1 may have changed 235 

somehow, making it less adherent to pediocin. One way or another, less pediocin adsorbed on 236 

the variant Listeria cells, which partly reduces the antimicrobial activity for taking effect.  237 

3.4. Examination of pediocin inactivation by extracellular enzymes 238 

Many bacteria, e.g., Bacillus subtilis and Lactococcus lactis, produce extracellular 239 

proteases, which can degrade antimicrobial peptides [15, 31]. Even though this has never been 240 

shown to happen with Listeria and class IIa bacteriocins, the secretion of proteases or other 241 

bacteriocin-inactivating enzymes is a possible mechanism for resistance, and should not be 242 

excluded without testing it. Therefore, to examine whether the resistant mutant excretes a 243 

pediocin-inactivating enzyme, the bacteriocin was mixed and incubated in Listeria CFSs, and 244 

the pediocin activity was determined. The results shown in Table 4 verified that neither the 245 

wild-type, nor the pediocin resistant Listeria had any pediocin-degrading activity. This result 246 

further supports the previous finding that pediocin resistance of Liv-r1 was, at least partly, 247 

mediated by reduced pediocin adsorption onto the cell surface, and not by secretion of 248 

proteases.  249 
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3.5. Pediocin-induced cell leakage 250 

Cell leakage caused by pore-forming activity of pediocin was evaluated by measuring LDH 251 

enzyme in culture supernatants. The culture supernatant of the wild-type L. ivanovii had 252 

significantly higher LDH activity in the presence of pediocin compared with that of Liv-r1 at 253 

the same time (Fig. 2). Immediately after pediocin addition (time point zero), the wild-type 254 

cells started to leak, and the leaking continued through the monitored four hours. On the 255 

contrary, in Liv-r1 supernatants at time point zero, the LDH activity with and without 256 

pediocin was approximately the same. During the 4-h test, the LDH activity in the Liv-r1 257 

supernatant with pediocin still increased, but evidently less than in wild-type supernatant. The 258 

results demonstrated that pediocin took effect in a rapid manner. Similar fast lytic effect of 259 

pediocin has also been reported before. In 30 min after pediocin treatment, Listeria cells were 260 

visibly leaking in SEM image [32]. Not surprising, the results also showed that the resistant 261 

cells were more tolerant than the wild ones. The resistance could be explained by alterations 262 

of cell surface properties either by decreased fluidity, increased rigidity or decreased negative 263 

charges disrupting pediocin-receptor interaction [33]. 264 

3.6. Cell surface hydrophobicity 265 

It has been previously shown that there are several mechanisms of class IIa bacteriocin 266 

resistance, one of which is related to alterations in cell membrane or cell wall [34]. In this 267 

study, we compared the hydrophobicity of cell surfaces of wild-type and the Liv-r1 mutant by 268 

determining the cells’ adhesion to xylene. Significantly higher cell surface hydrophobicity (P 269 

< 0.05) was seen in resistant L. ivanovii variant compared with the wild-type (Fig. 3). In 270 

Kumariya et al. [9] work, the increase in cell surface hydrophobicity was collinear with the 271 

degree of pediocin resistance. In addition, Lather et al. [35] have also pointed out the 272 

contribution of cell surface hydrophobicity as an adaptive reaction against antimicrobial 273 

agents. As the bacterial cell envelope is negatively charged, the increased hydrophobicity may 274 
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suggest less negative charges on the surface, which decreases the interaction with cationic 275 

antimicrobial peptides, leading to increased resistance. 276 

3.7. Whole-genome sequencing 277 

The technological progress of whole-genome sequencing (WGS) may grant access to 278 

potential mechanisms of bacteriocin-resistance by providing high-throughput information at 279 

bacterial molecular level. In this work, to find out which genes actually had been mutated in 280 

the pediocin-resistant mutant Liv-r1, the genomes of the mutant and the wild-type strain were 281 

sequenced. After filtering, 4463819 and 4802008 clean reads were obtained from Liv and Liv-282 

r1, respectively. The GC content of Liv was 37.14% with sufficient quantity (Q20 = 98.12%) 283 

and quality (Q30 = 94.26%) of the data for further analysis. The GC content of Liv-r1 was 284 

37.12% with sufficient quantity (Q20 = 98.04%) and quality (Q30 = 94.09%) of the data.  285 

The genome sequences of the pediocin-resistant strain showed 12 single nucleotide 286 

polymorphisms (SNP) compared to the wild-type reference, 6 of which belonged to non-287 

synonymous coding, 4 to synonymous coding and 2 to upstream regions of genes. Precise 288 

locations of these SNPs, and the annotation results of predicted proteins in NR (non-289 

redundant) and Swiss-Prot databases are shown in Table 5. Three SNPs were related to genes 290 

i-inlB1 and i-inlB2 (gene IDs 1383 and 503 in Table 5), encoding variants of internalin B, 291 

surface proteins involved in invasion of multiple mammalian cell types in L. monocytogenes 292 

by activating junctional endocytosis [36]. Two mutations in the i-inlB1 gene caused amino 293 

acid changes (V5631 and I985V) in the GW-domains responsible for non-covalent binding of 294 

the i-InlB1 internalin onto the bacterial cell surface. However unlikely, it cannot be excluded 295 

that these two amino acid changes have had an effect on i-InlB1 protein and its binding or 296 

release to/from the cell surface. Winkelströter et al. [37] demonstrated that in the presence of 297 

bacteriocins from Lactobacillus sakei, Leuconostoc mesenteroides, and E. faecium, the 298 
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expression of the internalin A gene inlA was downregulated in L. monocytogenes. 299 

Downregulation of internalins is likely to reduce the virulence of the strain. However, in our 300 

study, the observed mutation related to the gene i-inlB2 was quite far, 1289 bp upstream of 301 

the gene, and thus probably did not have much effect on the expression level of the i-inlB2 302 

gene. As cell surface proteins, internalins affect the cell’s surface properties, and thus 303 

mutations or changes in their expression level may also affect the binding or adhesion of 304 

bacteriocins onto cell surface. However, the effect of the observed SNPs in the protein 305 

properties or gene expression levels were not determined in this work, and therefore further 306 

studies would be needed to clarify which SNPs, if any, actually had effect on the pediocin 307 

resistant phenotype.  308 

  Altogether 87 indels were found in the resistant mutant Liv-r1, including frameshifts, 309 

upstream and downstream mutations, codon deletions and codon deletion plus codon insertion 310 

(Supplemental material). The most common mutation was frameshift. Annotation analysis 311 

was conducted in COG database, and in total 10 indels were found to belong to carbohydrate 312 

transport and metabolism, 9 were involved in transcription, 6 in inorganic ion transport and 313 

metabolism, and 5 in amino acid transport and metabolism. Metabolism of carbohydrates 314 

including glucose, cellobiose, lactose, and β-glucoside were identified in the indels (Table 6). 315 

These results corresponded with the observed differences in carbohydrates metabolism of 316 

wild-type and variant one. Laursen et al. [38] have previously pointed out that after exposure 317 

to 180 min to pediocin-containing Lb. plantarum WHE92 supernatant, 25 genes related to 318 

carbohydrate transport and metabolism were upregulated, while 31 related genes were 319 

downregulated in L. monocytogenes. Thus, class IIa bacteriocin sensitivity may be associated 320 

with genes in charge of carbohydrate transportation, metabolism and regulation.  321 

Regarding the transcription class of the observed indels, gene 910 annotated as sigma-54-322 

dependent transcriptional regulator was found to have a frameshift. Sigma-54 is in charge of 323 
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regulating numerous genes, often related to sugar transport and metabolism, including Man-324 

PTS [39]. It has also been recognized to have a role in the resistance of class IIa bacteriocins 325 

in E. faecalis and L. monocytogenes [40, 41]. In a study about class IIa bacteriocin resistance 326 

in Enterococcus by Geldart and Kaznessis [42], a mutation in the sigma-54 transcription 327 

factor and the disruption of the sigma-54-associated activator protein, ManR, were found after 328 

genome comparison.  329 

4. Conclusion 330 

This study provides the characterisation of class IIa bacteriocin resistance in L. ivanovii. 331 

The resistant cells exhibited reduced growth on glucose, adsorption of pediocin, and cell lysis 332 

by pediocin attack. Additionally, increased cell surface hydrophobicity was detected in 333 

resistant mutant compared with the wild-type. Lastly, results from whole-genome sequencing 334 

provided evidence to suggest the vital role of the carbohydrate transportation, metabolism and 335 

regulation in the development of pediocin resistance. PTS systems responsible for different 336 

carbon sources will be further examined for their functions in L. ivanovii for in-depth 337 

understanding of bacteriocin-cell surface interaction.  338 
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Legends to figures 462 

Fig.1.  Growth situations of the wild-type Liv (A) and the pediocin resistant variant Liv-r1 (B) 463 

in TSB broth containing glucose, mannose, or cellobiose. The growth of the variant strain 464 

Liv-r1 is reduced stronger on glucose and mannose than on cellobiose.  465 

Fig.2. LDH activity at different time points after pediocin addition. High LDH activity in the 466 

wild-type strain Liv with pediocin indicates strong and fast cell leakage due to pore-forming  467 

activity of pediocin. Cells of the resistant variant Liv-r1 leaked noticeably less, as seen as 468 

lower LDH activity. Statistically significant difference between Liv and Liv-r1 was found (*P 469 

< 0.05). 470 

Fig.3. Cell surface hydrophobicity of the wild-type Liv and the pediocin-resistant variant Liv-471 

r1. The resistant variant showed higher cell surface hydrophobicity than the wild-type strain. 472 

Statistically significant difference between Liv and Liv-r1 was found (*P < 0.05). 473 



Table 1 Activities of neutral cell-free culture supernatants (nCFS) from class IIa 1 

bacteriocin-producing strains and nisin to Listeria strains. 2 

Strain P. acidilactici PA003 

(AU/mL) 

Lb. curvatus 

ATCC 51436 

(AU/mL) 

Lb. plantarum 

CICC 24194 

(AU/mL) 

Nisin (AU/mL) 

Liv 640 320 320 1280 

Liv-r1 No inhibition No inhibition No inhibition 320 

 3 

Table 2 The minimum inhibitory concentrations (MICs) of antibiotics. 4 

Strain MIC of kanamycin (µg/mL) MIC of ampicillin (µg/mL) 

Liv 12.5 12.5 

Liv-r1 6.3 12.5 

 5 

Table 3 Pediocin activities in PBS (pH 6.0) after incubation with Listeria strains. PBS containing 6 

640 AU/ml pediocin without cells was used as a control. 7 

 8 

 9 

 10 

 11 

 Control  Liv Liv-r1 

Pediocin activity 

(AU/ml) 
640 160 320 



Table 4 Pediocin activities (AU/mL) after mixing with Listeria CFSs at different times. Pediocin 12 

mixed with BHI broth was used as a control.  13 

Time Control Liv Liv-r1 

0.5 h 320 320 320 

1.5 h 320 320 320 

 14 

Table 5 Annotation of SNP with non-synonymous coding and upstream types. 15 

Effect Gene ID Site in gene NR annotation Swissprot annotation 

Non-synonymous 

coding  

 

 

281 526 peptidase M4 family protein Zinc metalloproteinase 

469 759 hypothetical protein UPF0365 protein 

519 890 hypothetical protein -- 

1383 1687 GW domain-containing glycosaminoglycan-binding protein Internalin B 

1383 2953 GW domain-containing glycosaminoglycan-binding protein Internalin B 

2288 57 hypothetical protein -- 

Upstream 503 -1289 GW domain-containing glycosaminoglycan-binding protein Internalin B 

 658 -97 HdeD family acid-resistance protein -- 

 16 

Table 6 Summary of small indels annotated in genes involved in carbohydrate transport and 17 

metabolism. 18 

Effect Gene ID Site in gene NR annotation Swissprot annotation 

Frameshift 254 368 glucose transporter GlcU Putative sugar uptake protein lin0215 

260 2958 glycoside hydrolase family 31 protein Alpha-xylosidase 

261 2159 Alpha-glucosidase 2 glycoside hydrolase family 31 protein 

436 944 PTS fructose transporter subunit IIBC PTS system fructose-specific EIIB 

558 184 Uncharacterized ABC transporter extracellular-binding protein YurO ABC transporter substrate-binding protein 



2223 923 -- DUF3502 domain-containing protein 

2225 633 Uncharacterized multiple-sugar transport system permease YteP protein LplB 

2942 102 Gluconokinase gluconate kinase 

Upstream 63 -52 PTS beta-glucoside transporter subunit EIIBCA PTS system beta-glucoside-specific EIIBCA component 

Downstream 2552 1287 Uncharacterized MFS-type transporter YuxJ MFS transporter 
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Fig. 2 
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