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A B S T R A C T

It is not known how ghrelin affects insulin secretion in human islets from patients with type 2 diabetes (T2D) or
whether islet ghrelin expression or circulating ghrelin levels are altered in T2D. Here we sought out to identify
the effect of ghrelin on insulin secretion in human islets and the impact of T2D on circulating ghrelin levels and
on islet ghrelin cells.

The effect of ghrelin on insulin secretion was assessed in human T2D and non-T2D islets. Ghrelin expression
was assessed with RNA-sequencing (n = 191) and immunohistochemistry (n = 21). Plasma ghrelin was mea-
sured with ELISA in 40 T2D and 40 non-T2D subjects. Ghrelin exerted a glucose-dependent insulin-suppressing
effect in islets from both T2D and non-T2D donors. Compared with non-T2D donors, T2D donors had reduced
ghrelin mRNA expression and 75% less islet ghrelin cells, and ghrelin mRNA expression correlated negatively
with HbA1c. T2D subjects had 25% lower fasting plasma ghrelin levels than matched controls.

Thus, ghrelin has direct insulin-suppressing effects in human islets and T2D patients have lower fasting
ghrelin levels, likely as a result of reduced number of islet ghrelin cells. These findings support inhibition of
ghrelin signaling as a potential therapeutic avenue for stimulation of insulin secretion in T2D patients.

1. Introduction

Ghrelin is a 28-amino acid peptide originally isolated from rat sto-
mach (Kojima et al., 1999). It is the hormonal product of gastric A-like
cells in the rat and P/D1-cells in humans. In rats, the stomach is the
major source of circulating ghrelin; 20% of circulating ghrelin remains
after fundectomy (Dornonville de la Cour et al., 2001). However, in
humans 35–45% of plasma ghrelin remains after total gastrectomy
(Ariyasu et al., 2001; Popovic et al., 2005) suggesting that, although the
stomach is the major source of circulating ghrelin, other sources such as
the pancreas and intestine contribute (Wierup et al., 2007). Several
years ago, we identified islet ghrelin cells (epsilon cells) as a fifth islet
cell type in human islets (Wierup et al., 2002); mouse islet ghrelin cells
were later identified (Heller et al., 2005; Prado et al., 2004; Wierup

et al., 2014). In rodents islet ghrelin cells are present primarily during
fetal and early postnatal development, whereas in humans islet ghrelin
cells remain into adulthood and constitute approximately 1% of all is-
lets cells (Wierup et al., 2014). These species differences complicates
extrapolation of rodent data to humans. Although ghrelin clearly plays
a role in the regulation of glucose homeostasis (Gray et al., 2019;
Dezaki et al., 2008) it is to the best of our knowledge not known
whether human islet ghrelin cells are affected in T2D. Little is known
about the consequences of long-term hyperglycemia or T2D on circu-
lating ghrelin levels. Low ghrelin levels associate with T2D prevalence
(Poykko et al., 2003) and pregnant women with T2D or gestational
diabetes have lower ghrelin levels than non-diabetic women (Gomez-
Diaz et al., 2016), but the underlying causes are unknown.

It is established that ghrelin is a hormone with insulin-suppressing
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properties, both in vivo in healthy humans, as well as in isolated rodent
islets, single rodent beta cells and beta cell lines (Gray et al., 2019;
Dezaki et al., 2008). Blocking ghrelin signaling may be a therapeutic
avenue for T2D treatment; an assumption supported by observations
that oral administration of an antagonist to the ghrelin receptor, GHSR,
improves rodent glucose homeostasis (Esler et al., 2007). Although
human islets express GHSR (Segerstolpe et al., 2016) and the me-
chanistic basis for the insulin-suppressing effect has been thoroughly
dissected in rodent models (Yada et al., 2014), it remains to be proven
whether ghrelin affects insulin secretion in patients with T2D, as well
whether ghrelin has a direct insulin suppressing effect in human islets.

To fill these knowledge gaps, we studied how ghrelin affects insulin
secretion in isolated human islets from cadaver donors with or without
T2D and how T2D affects circulating ghrelin levels, islet ghrelin cell
density and ghrelin mRNA expression in human islets.

2. Materials and methods

2.1. Human specimens

Human islets (www.nordicislets.org) from 191 donors and pan-
creata from 14 non-T2D and seven T2D donors were used. Donor
characteristics have previously been described elsewhere (https://
www.biorxiv.org/content/10.1101/435743v2.full). Plasma samples
from 40 T2D patients and 40 age- and BMI-matched non-T2D controls
were obtained from the PPP Prospective Study (Isomaa et al., 2010).
Specimens of gastric corpus mucosa (3 cm distal to the cardia) from
T2D patients and non-T2D controls (n = 8 and 9, respectively) were
taken during gastric bypass surgery (Nergard et al., 2015). The ethics
committees at Uppsala and Lund Universities approved all procedures.

2.2. In vitro islet studies

Islet experiments were carried out in Krebs-Ringer bicarbonate
HEPES buffer containing 0.1% fatty acid free BSA (Roche, Basel,
Switzerland) with pH 7.4. Islets were pre-incubated in 2.8 mM glucose
for 30 min before five islets/well were placed in 96-well plates and
incubated for 1h at 37 °C. Human ghrelin (Phoenix Pharmaceuticals,
Burlingame, CA) was added in concentrations shown to affect insulin
secretion in INS-1 832/13 cells as indicated (Wierup et al., 2004). Ex-
periments were run with eight technical replicates. Information on the
donors is provided in Supplementary Table 1.

2.3. Insulin and ghrelin measurement

Insulin and ghrelin secretion was determined by ELISA (Mercodia,
Uppsala, Sweden and EMD Millipore, Darmstadt, Germany, respec-
tively).

2.4. RNA-sequencing

Islet RNA from an additional 102 donors was isolated, sequenced
and analyzed as previously described for the first subset of 89 donors
(Fadista et al., 2014). Data from islets from 191 donors was used for
analysis of GHRL and GHSR gene expression.

2.5. Differential expression analysis

Differential expression between 22 T2D patients (T2D diagnosis and
HbA1c ≥ 48 mmol/mol) and 92 non-T2D (HbA1c < 42 mmol/mol)
control subjects was assessed using EdgeR; age, sex, BMI, days in cul-
ture and purity being covariates. For differential expression between
male and female donors, age, BMI, days in culture and purity were
covariates.

2.6. Correlation with islet phenotypes

Spearman rank correlation was used for correlating GHRL and GHSR
gene expression with BMI, age and HbA1c in all 191 donors using
custom R scripts.

2.7. Immunohistochemistry

Immunohistochemistry was performed as previously described
(Wierup et al., 2002). Primary antibodies used were: anti-goat ghrelin
(code sc10368, dilution 1:1000, Santa Cruz Biotechnology, Houston,
TX) (Wierup et al., 2007) and anti-guinea pig insulin (code M9003,
dilution 1:5000, EuroDiagnostika, Malmö, Sweden). Secondary anti-
bodies used were donkey anti-guinea pig Texas Red and donkey anti-
goat Cy2. Both secondary antibodies (Jackson ImmunoResearch, West
Grove, PA) were diluted 1:400 in PBS (pH 7.2 with 0.25% BSA and
0.25% Triton X-100). All ghrelin cells were counted in all islets in three
sections of frozen isolated islet preparations.

3. Results

3.1. Ghrelin suppresses insulin secretion in human islets

To study the impact of ghrelin (1–100 nM) on insulin secretion in
isolated human islets we performed static incubations. Non-T2D islets
responded to increased glucose (16.7 vs 2.8 mM) with 4-fold increased
insulin secretion, compared to 3-fold in T2D donors. Ghrelin had no
effect at 2.8 mM glucose, but at 16.7 mM glucose 100 nM ghrelin re-
duced insulin secretion by 32% in non-T2D (Fig. 1A). In T2D donors
ghrelin dose dependently decreased (30–50% reduction) insulin secre-
tion (Fig. 1B).

3.2. Reduced ghrelin cell density and fasting circulating levels in T2D
patients

Next, we investigated ghrelin cell density in pancreas sections im-
munostained for ghrelin from T2D- and non-T2D donors. Notably,
ghrelin cell density was reduced by 75% in T2D donors (p < 0.05;
Fig. 1C and D). In line with the observed reduction of ghrelin cells in
T2D donors, T2D patients from a different cohort had 25% lower fasting
ghrelin levels (p < 0.05; Fig. 1E). To assess whether this reduction
could be explained by reduced gastric ghrelin expression (the main
source of circulating ghrelin(9)) we quantified ghrelin cell density in
corpus mucosa specimens from obese subjects with T2D as well mat-
ched non-T2D controls. This revealed that gastric ghrelin cell density
was unaffected by glycemic status (Fig. 1F).

3.3. RNA-sequencing of human islets

We assessed islet GHRL expression in RNA-sequencing data from
191 donors (technical replication in microarray data from 89 islet do-
nors) (Taneera et al., 2012). GHRL mRNA was robustly expressed in
human islets and did not correlate with BMI (Fig. 2A), but correlated
negatively with age (rho = −0.26, p = 0.0002; Fig. 2B) and HbA1c
(Fig. 2C; rho = −0.15, p = 0.044). GHRL expression was lower in T2D
donors compared with non-T2D donors (Fig. 2D; p = 0.036). Finally,
GHRL expression was higher in female than in male donors (Fig. 2E;
p = 1.27 × 10−7).

GHSR mRNA (encoding the ghrelin receptor) was also assessed in
the same data set. GHSR expression did not correlate with BMI
(Fig. 3A), but correlated positively with age (Fig. 3B; rho = 0.16,
p = 0.025). GHSR expression was similar in T2D and non-T2D donors
(Fig. 3D), and not affected by sex (Fig. 3E). Finally, GHSR expression
correlated positively with expression of INS (Fig. 3F; rho = 0.58,
p = 5.45 × 10−19) and SST (Fig. 3H; rho = 0.68, p = 1.28 × 10−27).
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4. Discussion

Here we show that ghrelin directly suppresses insulin secretion in
human islets and that T2D patients have reduced number of islet
ghrelin cells, islet ghrelin mRNA expression, and circulating fasting
ghrelin levels.

A direct effect of ghrelin on insulin secretion from human islets has
not previously been shown, but agrees with a body of evidence showing
insulin-suppressing action of ghrelin in several experimental models,

and in vivo in humans. Furthermore, the effect of ghrelin on insulin
secretion has so far not been assessed in patients with T2D (Yada et al.,
2014). Notably, ghrelin dose dependently reduced insulin secretion in
islet of T2D donors. This proof-of-concept finding suggests that
blockade of GHSR could be used to release the “ghrelin brake” on in-
sulin secretion also in T2D patients. The potential for antagonizing
GHSR as insulin stimulatory treatment of T2D subjects with impaired
insulin secretion should be evaluated. Our trancriptomic analyses
showed that GHSR expression was not correlated with HbA1c and

Fig. 1. Ghrelin inhibits glucose-stimulated insulin secretion in islets from non-T2D donors (A) and donors with T2D (B). Ghrelin has no effect on insulin secretion at
2.8 mM glucose. All experiments were performed in 8 replicates with n = 6 for (A) and n = 5 for (B). Double-immunostaining for ghrelin (green) and insulin (red) in
T2D (top) and non-T2D (bottom) donors (C). Donors with T2D (n = 7) have 75% lower pancreatic density of ghrelin immunoreactive (IR) cells compared with non-
T2D donors (n = 14) (D). Circulating ghrelin levels are lower in subjects with T2D compared with that of matched non-T2D controls (n = 40 for both groups) (E).
Density of ghrelin IR cells in the gastric mucosa is unaffected by T2D (n = 8 for T2D and n = 9 for non-T2D) (F). * denotes p < 0.05 using one-way ANOVA with
Tukey's test for multiple comparisons, or unpaired Student's t-test. (For interpretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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Fig. 2. GHRL expression modulation and correlation with donor phenotypes. RNA-sequencing analyses of islet expression data from 191 cadaver donors show that
ghrelin expression does not correlate with BMI (A), but correlates negatively with age (B) and HbA1c (C). GHRL expression is lower in T2D donors (n = 22) than in
non-T2D donors (n = 92) (D). GHRL expression is higher in female donors (E).

Fig. 3. GHSR expression modulation and correlation with donor phenotypes. RNA-sequencing analyses of expression data from 191 islet donors show that GHSR
expression does not correlate with BMI (A) or HbA1c (C), but correlates positively with age (B). GHSR expression is similar in T2D and non-T2D donors (D), and not
affected by sex (E). GHSR expression correlates positively with expression of INS (F) and SST (H), but not with GCG (G).
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similar expression of GHSR expression was seen in T2D and non-T2D
donors. These observations, speak in favor of similar ghrelin respon-
siveness in both groups. Recent data obtained using single-cell RNA-
sequencing show that GHSR is predominantly expressed in human delta
cells (Segerstolpe et al., 2016), suggesting that the effect of ghrelin on
insulin secretion is mediated via release of somatostatin. High expres-
sion of GHSR in delta cells, gain support from our observation of a
strong correlation between expression of GHSR and SST in human islets.
Previous rodent studies (Wierup et al., 2004) suggest GHSR expression,
albeit at lower levels also in beta cells. Thus, the available data suggests
that the insulin-suppressing effect of ghrelin could be mediated via
release of somatostatin, or via a direct action on the beta cell. The latter
is supported by elegant studies in single rat (Dezaki et al., 2004, 2007)
and mouse (Kurashina et al., 2015) beta cells, in which ghrelin inhibits
glucose-induced Ca2+ signaling in a GHSR dependent manner.

Notably, ghrelin mRNA expression was lower in T2D donor islets
and ghrelin expression correlated negatively with HbA1c. In agreement,
ghrelin cell density was markedly lower in T2D donors. This is a novel
finding, not previously reported in humans or in experimental models;
the latter likely due to lack of experimental models with islet ghrelin
cells during adulthood (Gray et al., 2019; Wierup et al., 2004).

Also, fasting circulating ghrelin levels were lower in T2D patients.
This agrees with observations of lower circulating ghrelin levels in
pregnant women with T2D or gestational diabetes (Gomez-Diaz et al.,
2016). Supporting reduced islet ghrelin expression as an explanation for
the reduced plasma ghrelin levels, we found that the density of gastric
ghrelin cells, the main source of circulating ghrelin, was unaffected by
T2D. Based on the insulin-suppressing actions of ghrelin, the observed
reduction in islet ghrelin expression in T2D is likely an adaptation to
the increased insulin demand in these subjects.

A few limitations of the study should be recognized. Firstly, the
relatively low number of donors used for insulin secretion experiments
may be a limiting factor. Secondly, we do not, for ethical reasons, have
full access to the medical history of the donors. Thirdly, the doses of
ghrelin used were higher than circulating levels of ghrelin. This not-
withstanding, it is not inconceivable that such ghrelin levels can be
reached locally within the islets. The doses of ghrelin used here were
chosen based on having insulin-suppressing effects in INS-1 832/
13 cells (Wierup et al., 2004).

5. Conclusions

We provide evidence for direct, glucose- and dose-dependent in-
sulin-suppressing actions of ghrelin in human T2D islets, and that T2D
patients have reduced pancreatic ghrelin expression, and lower circu-
lating ghrelin levels. Our findings point at antagonizing islet ghrelin
action as a potential strategy for new T2D treatments.
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