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Abstract  1 

Background: The proper estimate of the risk of recurrences in early-stage oral tongue squamous cell 2 

carcinoma (OTSCC) is mandatory for individual treatment-decision making. However, this remains a 3 

challenge even for experienced multidisciplinary centers.  4 

Objectives: We compared the performance of four machine learning (ML) algorithms for predicting 5 

the risk of locoregional recurrences in patients with OTSCC. These algorithms were Support Vector 6 

Machine (SVM), Naive Bayes (NB), Boosted Decision Tree (BDT), and Decision Forest (DF).  7 

Materials and methods: The study cohort comprised 311 cases from the five University Hospitals in 8 

Finland and A.C. Camargo Cancer Center, São Paulo, Brazil. For comparison of the algorithms, we 9 

used the harmonic mean of precision and recall called F1 score, specificity, and accuracy values. These 10 

algorithms and their corresponding permutation feature importance (PFI) with the input parameters 11 

were externally tested on 59 new cases. Furthermore, we compared the performance of the algorithm 12 

that showed the highest prediction accuracy with the prognostic significance of depth of invasion (DOI).  13 

Results: The results showed that the average specificity of all the algorithms was 71%. The SVM 14 

showed an accuracy of 68% and F1 score of 0.63, NB an accuracy of 70% and F1 score of 0.64, BDT 15 

an accuracy of 81% and F1 score of 0.78, and DF an accuracy of 78% and F1 score of 0.70. Additionally, 16 

these algorithms outperformed the DOI-based approach, which gave an accuracy of 63%. With PFI-17 

analysis, there was no significant difference in the overall accuracies of three of the algorithms; PFI-18 

BDT accuracy increased to 83.1%, PFI-DF increased to 80%, PFI-SVM decreased to 64.4%, while PFI-19 

NB accuracy increased significantly to 81.4%. Conclusions: Our findings show that the best 20 

classification accuracy was achieved with the boosted decision tree algorithm. Additionally, these 21 

algorithms outperformed the DOI-based approach. Furthermore, with few parameters identified in the 22 

PFI analysis, ML technique still showed the ability to predict locoregional recurrence. The application 23 

of boosted decision tree machine learning algorithm can stratify OTSCC patients and thus aid in their 24 

individual treatment planning. 25 

KEYWORDS: Artificial Intelligence; Oral tongue cancer; Machine Learning; Prediction 26 

 27 
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1.  Introduction  1 

Oral tongue squamous cell carcinoma (OTSCC) refers to squamous cell carcinoma that arises 2 

from the anterior two thirds of the tongue (also known as mobile tongue). It is usually reported 3 

as part of oral squamous cell carcinoma (OSCC), which includes all anatomical subsites of the 4 

oral cavity. A recent international study including 22 registries reported 89,212 incident cases 5 

of OTSCC and an increasing annual incidence [1], which has been confirmed by others [2]. 6 

The primary treatment of choice for OTSCC is surgical excision. However, even early-stage 7 

tumors may express a pattern of aggressive behavior [3,4]. Thus, OTSCC with aggressive 8 

behavior and those with advanced stage require multimodality treatment including neck 9 

dissection and adjuvant (chemo)radiotherapy. Therefore, it is important to precisely estimate 10 

the clinical behavior and outcome of OTSCC. Predicting the risk of recurrences is one of the 11 

important assessments for the clinician during treatment planning. More importantly, early 12 

diagnosis and predicting the risk of recurrences form a milestone in the management of OTSCC 13 

as the recent analysis of Finnish cases reported that about 67% of OTSCC cases were diagnosed 14 

at an early stage (I-II) [5].  With accurate and timely recurrence prediction, high-risk cases of 15 

OTSCC can be identified and multimodality treatment applied accordingly. In a large cohort 16 

of early OTSCC, about one fourth of cases (27.8%) developed a recurrence, and all of them 17 

might have benefitted from early prediction and corresponding treatment planning [6].  18 

Many recent studies have examined the use of machine learning (ML) techniques for 19 

prognostication of different cancers [7,8]. Interestingly, predicting patient outcome by ML 20 

techniques has shown better accuracy than Cox regression [9]. This is why the use of ML has 21 

been in active research focus during recent years. For instance, ML techniques have been used 22 

to predict the outcome of various cancer types [10–12] and a web-based tool based on artificial 23 

neural network to predict outcome in cancer has been reported [13]. 24 
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 In this study, we examined four different ML algorithms, namely, support vector 1 

machine (SVM), naive Bayes (NB), boosted decision tree (BDT), and decision forest (DF) in 2 

terms of their performances to predict locoregional recurrence in OTSCC patients. Also, the 3 

predictive performance of a permutation feature importance (PFI) of these algorithms was 4 

evaluated. Many researchers have used this approach for comparing ML techniques for survival 5 

prediction in different malignancies like breast and lung cancers [14–17]. Tapak et al. examined 6 

six ML algorithms and two traditional methods for the prediction of breast cancer survival and 7 

metastasis [15]. In our study, we aimed to identify the best algorithm that would effectively 8 

classify patients as either low-risk or high-risk OTSCC recurrence. The algorithm with the 9 

overall best classification performance was further compared to a recently reported risk model 10 

based on the depth of invasion (DOI) [18]. This comparison was a result of the fact that DOI 11 

of 4mm or deeper has been considered to be a factor that accurately predicts locoregional 12 

recurrence [6]. Moreover, the recent American Joint Committee on Cancer (AJCC) 8th edition 13 

incorporated depth of invasion (DOI) into T-stage [19]. Similarly, the study by Almangush et 14 

al. suggested that DOI is one of the strongest pathological predictors for locoregional 15 

recurrence [6]. This suggestion is in agreement with reports by others [20,21].  16 

 We hypothesize that the application of the above-mentioned supervised learning 17 

classifiers may be used in the prediction of OTSCC locoregional recurrences and will thereby 18 

add value for the management of OTSCC. 19 

 20 

2.  Material and Methods 21 

Patients: We used data from a study cohort comprising patients treated at the five Finnish 22 

University Hospitals of Helsinki, Oulu, Turku, Tampere, and Kuopio and at the A.C. Camargo 23 

Cancer Center, Sao Paulo, Brazil. This is a multicenter study from six institutions and data 24 

were provided for many cases as locoregional recurrences without specification. The 25 
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clinicopathologic characteristics of this cohort have been previously reported and summarized 1 

[22]. The primary treatment for all cases was surgical excision. In addition, some cases received 2 

neck dissection and/or adjuvant radiotherapy.  The parameters included were age, gender, T-3 

stage, WHO grade, tumor budding, depth of invasion, worst pattern of invasion (WPOI), 4 

lymphocytic host response (LHR), and perineural invasion (PNI) as shown in Table 1. Several 5 

studies have confirmed the prognostic importance of these variables [6,13,22–25]. Neck 6 

dissection and adjuvant radiotherapy were also included in the machine learning algorithms 7 

due to the impact of variation in the treatment modality that might influence the risk of 8 

recurrence. The use of patient samples and data inquiry were approved by the Hospital 9 

Research Ethics Committees of all individual hospitals, by the Finnish National Supervisory 10 

Authority for Welfare and Health (VALVIRA) and by the Brazilian Human Research Ethics 11 

Committee.  12 

 13 

2.1. The classification algorithms examined  14 

The algorithms considered in this study are basic and have been commonly used in other cancer 15 

studies [14–18].  16 

 17 

2.1.1. Support vector machine (SVM) is an elegant and powerful ML technique extensively 18 

used for both classification and regression problems [26]. This is due to its ability to classify 19 

non-linearly separable patterns by projecting the original features into a higher dimensional 20 

space (hyperplane) [27]. 21 

 22 

2.1.2. Naive Bayes (NB) is known as Bayes point machine in the Azure ML studio and it is 23 

based on the generally-known Bayes theorem [26,27]. The algorithm operates by learning and 24 

estimating the prior probability of belonging to each class using the training data. [27,28]. 25 

 26 
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2.1.3. Boosted Decision Tree (BDT) with gradient boosting machine was the subtype of BDT 1 

used in this study. It is an ensemble learning method where the second tree corrects the errors 2 

of the first tree, the third tree corrects the errors in the second trees, the fourth tree corrects the 3 

errors in the third trees, etc. Predictions are based on the entire ensemble of trees [27,28].  4 

 5 

2.1.4. Decision Forest (DF) relies on the combination of multiple related models to get better 6 

results and a more generalized model. Therefore, it works by using a bootstrapped sample of 7 

data to build each tree where only a proportion of the variable set is considered for each tree. 8 

Each tree in the decision forest outputs a frequency histogram of labels that is non-normalized. 9 

These frequency histograms were aggregated in the process that sums these histograms and 10 

then normalizes the results to get the probabilities for each label [27]. 11 

 12 

2.1.5. Permutation Feature Importance (PFI) is a model-agnostic ranker feature ranker that 13 

computes the scores for each of the variables contained in a dataset. It basically examines the 14 

contribution of each feature to the overall predictive performance of the algorithm [27]. 15 

 16 

2.2. Evaluation of the performance of the algorithms 17 

The performance metrics were aimed to evaluate how the algorithms performed [29–31]. Most 18 

of these metrics have been previously used in other studies [15,32]. However, in addition to 19 

accuracy, only two (F1 score and specificity) of these statistical measures that are medically 20 

more relevant in the clinic, were discussed in the current study. 21 

 22 

3. The training-validation phase for the algorithms in Microsoft Azure for prediction of 23 

recurrence 24 

Microsoft Azure Machine Learning Studio (Azure ML 2019) was used in this study [27]. The 25 

input parameters were age, gender, stage, grade, tumor budding, depth of invasion (DOI), worst 26 
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pattern of invasion (WPOI), lymphocytic host response (LHR), perineural invasion (PNI) and 1 

treatment given, while the target output was locoregional recurrence. Disease-free survival 2 

(DFS) time of the cases ranged from 1 to 267 months. Specifically, the DFS in cases with 3 

recurrence varied between 1 and 120 months. Firstly, a potential class imbalance with respect 4 

to the number of patients who experienced a tumor recurrence in the target class (locoregional 5 

recurrence) was handled by up-sampling in order to balance the classes used in the training. 6 

Synthetic minority oversampling technique (SMOTE) [33] offers a better way to handle 7 

imbalance than simply duplicating existing cases. The dataset and the corresponding samples 8 

are therefore more general [33]. The dataset was divided into two sets of training and 9 

validation. Due to the relatively limited amount of data, a 5-fold cross validation was used with 10 

50% training and 50% validation {50:50} percentage splitting sets [15]. Each of the algorithms 11 

of interest was then configured as shown in Figure 1 [27,28]. After training, the algorithms 12 

were evaluated for the various quality metrics (Table 3).  13 

 Furthermore, these algorithms were further tested with new cases (Section 3.1). The 14 

result obtained from this approach was considered as the gold standard in this study as it gives 15 

an account of how the algorithm is expected to predict in reality. Also, it addresses any concerns 16 

about the generalizability of the trained models. In addition, the contribution of each of the 17 

input variables on the predictive ability of each model was examined using permutation feature 18 

importance (PFI) analysis. Their contributions were given in the form of PFI-performance 19 

scores. To avoid bias in the algorithm, disease-free survival and treatment were removed from 20 

the PFI analysis that was aimed to examine the predictive ability of each variables. The input 21 

features with positive scores were selected. Also, only one of the inputs was selected when two 22 

or more inputs give the same negative score. The variables with least scores were not selected. 23 

These selected variables were used to train the algorithms. The given accuracies in the PFI 24 

analysis were compared with the accuracies obtained without PFI. Similarly, the PFI-based 25 

algorithms were tested with new cases. 26 
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 1 

3.1 Testing performance of the model with new cases: In this phase, the trained algorithms 2 

were tested with 59 new cohort cases that were not included in the training or in the validation 3 

sets (Figure 1). These new independent data were obtained from a cancer center in Brazil. The 4 

results are presented in Table 4. The PFI-based models were also tested with these new cases 5 

as presented in Table 5. 6 

3.2 Comparison with the depth of invasion (DOI): The algorithm that showed the highest 7 

overall accuracy when tested with these new external cases (section 3.1) was also compared 8 

with the depth of invasion (DOI) based model as shown in Figure 3. 9 

 10 

4. Results 11 

4.1 Data Description 12 

The study cohort included 311 patients with cT1-T2cN0M0 OTSCC; 165 men and 146 women, 13 

resulting in a male-to-female range of 1.1:1. Out of these 311 cases, 57 cases had missing 14 

details about any postoperative treatment information. Therefore, these cases were excluded 15 

and the machine learning training was performed with 254 cases. These cases included 141 16 

men and 113 women with the mean age at diagnosis was 61.51 (SD ± 14.81: range 10-95) and 17 

the median age was 62.0 years. The distribution according to tumor diameter showed that 100 18 

patients had stage T1 and 154 stage T2. The histopathologic parameters are briefly summarized 19 

in Table 2. In terms of the treatment, 157 patients had surgery alone while 97 had adjuvant 20 

(chemo)radiotherapy (92 radiotherapy and 5 chemoradiotherapy) . Similarly, 185 had neck 21 

dissection while 69 had no neck dissection performed. Thus, from the 185 patients who had 22 

neck dissection, 43% were exposed to adjuvant radiotherapy while 57% had only surgery as 23 

single-modality treatment. Similarly, out of the 69 cases who had no dissection performed, 24 

25% were exposed to adjuvant radiotherapy while 75% had only surgery. 25 
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 The number of patients with disease recurrences was 68 (26.8%). While the disease-1 

free survival (DFS) time ranged from 1 to 267 months, the DFS time for cases with a 2 

locoregional recurrence was between 1 to 120 months. Overall, 89.6% of the recurrences 3 

occurred in the first 2 years, while 10.45% recurrence was recorded after 2 years. The mean 4 

follow-up time was 75 months (SD ±  64.6; range 1 - 258 months) and the median was 60 5 

months. Similarly, for the 59 new OSCC cases used for external testing, DFS time varied 6 

between 1 to 146 months. Also, 74% had a recurrence in the first year, 16% after the first and 7 

before end of second year, and 10% of the patients recurred after the second year. The mean 8 

age in this external validation cohort was 56.2 years (range, 31-84 years). All these new cases 9 

had neck dissection, where 34 cases had surgery alone while 25 had adjuvant 10 

(chemo)radiotherapy (22 radiotherapy and 3 chemoradiotherapy). The DOI model performance 11 

in terms of accuracy in the training set was 47.2% and the overall accuracy in the new cohorts 12 

used for external validation was 63%.  13 

 14 

Performance metrics for the algorithms 15 

The distribution of true and false positives, true and false negatives, and other performance 16 

metrics for the algorithms in the training phase are given in Figure 2a and Table 3, respectively. 17 

During the training phase, decision forest showed the highest accuracy while naive Bayes and 18 

decision forest showed the best area under receiving operating characteristic (AUC of ROC). 19 

When these algorithms were tested on the 59 new external cases from the cancer center in 20 

Brazil, the average specificity of all the algorithms was 71%. The tested algorithms i.e. support 21 

vector machine, naive Bayes, decision forest, and boosted decision tree gave an overall 22 

accuracy of 68%, 70%, 78% and 81%, respectively. The details of the performance of 23 

parameters with this new cohorts are given in Table 4. Considering the harmonic mean of 24 

precision and recall, that is, F1 score, the support vector machine, naive Bayes, decision forest, 25 

and boosted decision tree gave 0.63, 0.64, 0.70 and 0.78, respectively. Therefore, the best 26 
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overall classification performance to predict recurrence was achieved with the boosted decision 1 

tree algorithm. Comparison of the boosted decision tree algorithm and the DOI model is shown 2 

in Figure 3; the DOI model showed an accuracy of 63% where 54.1% of the patients would be 3 

observed, thereby not subjected to adjuvant therapy or elective neck dissection (END). The 4 

boosted decision tree on the other hand showed 81% overall accuracy where 21.1% of the 5 

patients would have been observed and not subjected to END. Similarly, about half (49.5%) of 6 

the patients were correctly identified as having OTSCC recurrence using the DOI model. 7 

Boosted decision tree machine learning technique correctly identified 78.9% as having OTSCC 8 

recurrence as shown in Figure 3. Thus, each of these algorithms performed significantly better 9 

than the DOI-based model.  10 

 The results of the permutation feature importance (PFI) analyses are given in Table 5. 11 

The PFI scores were calculated for each feature independently. A zero score is returned when 12 

there is no difference in the performance metrics before and after PFI of that feature. Similarly, 13 

a negative score is returned when a random PFI of that feature produced a higher accuracy and 14 

lower error (better performance metrics) compared to the performance before PFI was applied. 15 

Moreover, a higher importance score (positive) gives an indication of the contribution of that 16 

feature to the predictive ability of the model. The PFI of boosted decision tree (PFI-BDT) 17 

showed the highest accuracy (83.1%). Also, it was observed that the accuracy of BDT increased 18 

from 81.0% to 83.1% and DF increased from 78% to 80%, while SVM showed a reduction in 19 

accuracy from 68% to 64.4% in the PFI analysis. Interestingly, the accuracy of NB increased 20 

significantly from 70.0% to 81.4% in the permutation feature importance fitting. The ranking 21 

of the scores of the features is as shown in Table 5.  22 

5. Discussion 23 

The present study compared the performance of ML algorithms to stratify patients with OTSCC 24 

into low or high-recurrence risk group. In this regard, four ML algorithms, namely, boosted 25 

decision tree, naive Bayes, support vector machine, and decision forest were examined. We 26 
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found that the performance of these techniques was higher than that of depth of invasion (DOI) 1 

based approach. Our multicenter cohort of cases is one of the largest published series. Majority 2 

of the previous publications including hundreds of cases have mixed early-stage cases with 3 

those with advanced stage, and/or have mixed different subsites of the oral cavity (e.g. oral 4 

tongue with floor of mouth and retromolar region). Therefore, heterogeneity of such series 5 

makes it difficult to identify robust prognostic markers. The advantage of our homogenous 6 

cohort (only early stage and only oral tongue) allows for reaching definitive conclusions that 7 

can be considered to be applied in daily practice. 8 

 Although significant progress has been made in early diagnostics, treatment strategies 9 

and prevention of OTSCC in recent years, the prognosis of OTSCC is poor due to aggressive 10 

local invasion and metastasis, leading to recurrence. The mortality rates in cases with 11 

recurrence has been reported to be very high [34]. When recurrence is diagnosed earlier, the 12 

mortality rates have been reported to decrease [35,36]. The reported rates of recurrence in oral 13 

squamous cell carcinoma range from 6.9 % to 37.4% of patients [37,38]. This is in accordance 14 

with the 26.8% locoregional recurrence rate within the dataset used in this study. Improved 15 

prediction of locoregional recurrences in early-stage OTSCC can lead to an adjusted, patient-16 

oriented follow-up program. For example, based on prediction of the patient as a high-risk case 17 

a customized surveillance could be organized instead of the general follow-up program.   18 

 Abundant studies exist that have considered DOI as a strong histologic feature that 19 

correlates with locoregional recurrence. The machine learning algorithms examined in this 20 

study, however, outperformed the power of prediction of locoregional recurrence based on 21 

DOI. However, it will offer a better approach with significant accuracy in stratifying the 22 

patients as carrying a high- or low-risk for recurrence. Therefore, it seems obvious, that the 23 

described challenge in the treatment-decision making would be successfully addressed by the 24 

machine learning model due to increased specificity, F1 score and overall accuracies of the ML 25 
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algorithms. Thus, this study has potentially high impact to clinicians in the management of 1 

early OTSCC.  2 

 With regards to the performance metrics examined, F1 score used as the benchmark  to 3 

choose the best algorithm as it finds the optimal blend between two other performance metrics 4 

(precision and recall). As shown in Table 4, the F1 score for the boosted decision tree algorithm 5 

showed to be very good at stratifying the patients as having either low-risk or high-risk of 6 

recurrence of OTSCC. This justifies why boosted decision tree was compared to the DOI as 7 

shown in Figure 3 [18]. It is important to note that the support vector machine showed 8 

promising evaluation performance metrics in the training phase. This is due to the fact that it 9 

is an empirical risk minimizer algorithm. Hence, it is not usually prone to overfitting related 10 

issue as it avoids the danger of getting trapped into local minima [39]. However, the ensemble 11 

algorithms performed better than the support vector machine because they were able to create 12 

a fleet of algorithms with relatively similar bias and subsequently combining their outputs to 13 

reduce variance.  14 

 Furthermore, a major challenge in the treatment of patients with early OTSCC is in 15 

finding the right parameters that predict prognosis and help to properly identify patients at high 16 

risk of locoregional recurrences. This would carry the potential to minimize the incidence 17 

treatment failure of patients with OTSCC [35]. With the PFI-analyses, the exact contribution 18 

of each parameter to the predictive ability of the machine learning algorithms was known. 19 

Interestingly, there was no significant difference in the overall accuracies achieved  in the 20 

ensemble methods (decision forest and boosted decision tree) with reduced parameters 21 

identified in the PFI analyses compared to the algorithms without PFI. Therefore, the cost and 22 

resources associated with getting numerous parameters can be properly managed. Also, the 23 

time taken to properly prepare an individualized treatment plan for the patients can be 24 

improved. This is because a few but important features that are needed for the ML algorithms 25 

were identified in the PFI analysis while producing the same range of prediction accuracies. 26 
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Thus, predicting recurrence with such accuracy as shown in this study would be crucial to the 1 

clinicians in terms of management decisions. 2 

 Numerous studies have compared the performance of various machine learning 3 

classifiers to predict an outcome of interest in cancer. Tapak et al. compared various machine 4 

learning classifiers in series of 550 breast cancer patients, and found that the support vector 5 

machine predicted survival better than other classifiers [15]. Similarly, the study by Tseng et 6 

al. compared decision tree ML technique with a traditional statistical model such as logistic 7 

regression in series of 673 oral cancer patients and the decision tree was found to perform better 8 

[40]. De Melo et al. used decision tree to evaluate the quality of life among patients with head 9 

and neck cancer [41]. Similarly, Sumbaly et al. used the decision tree in the diagnosis of breast 10 

cancer [42]. The decision forest also produced the highest prognostic performance when 11 

compared with other machine algorithms by Zhang et al. for the radiomics-based prediction of 12 

failure in advanced nasopharyngeal carcinoma [43].  13 

In conclusion, this study investigated four different ML algorithms and found that the 14 

boosted decision tree algorithm showed the best overall performance accuracy. Due to the 15 

sensitive nature of the application of machine learning in medicine, it is important for these 16 

algorithms to produce very high accuracies. In this study, the ensemble algorithms such as the 17 

boosted decision tree and the decision forest algorithms performed better than non-ensemble 18 

algorithms such as support vector machine, naive Bayes and a method based on depth of 19 

invasion. Therefore, the ensemble machine algorithms should be considered in medical 20 

applications. Presently, it is challenging for clinicians to assess the outcomes of clinical early-21 

stage oral cancer. For the clinicians, knowledge of potential locoregional prediction to stratify 22 

the patients into low-risk or high-risk groups using machine learning applications can help to 23 

guide clinical practice. Patients can be counseled accordingly with realistic expectations and 24 

clinicians can be guided in making informed decisions. Furthermore, this contributes to the 25 

individual data regarding patient and tumor-related factors and thereby helps the clinician in 26 
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planning the optimal patient-specific treatment and follow-up (post-operative adjuvant 1 

treatment). For instance, high-risk patients might benefit from adjuvant oncological therapy 2 

after surgery. Future research should consider including other prognostic parameters as inputs 3 

for the selected algorithms. In terms of the limitation of this study, we are limited by the number 4 

of available cases as this was a retrospective study of five teaching hospitals in Finland and 5 

one in Brazil. Also, the external data used to test the performance of the algorithms were 6 

relatively limited. Therefore, with larger external data, the performance of the algorithms could 7 

be improved. 8 

 9 
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Summary points 23 

What was already known on the topic: 24 

o There are few published studies on the comparison of  machine learning techniques to 25 

predict locoregional recurrence of oral tongue squamous cell carcinoma (OTSCC). 26 
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o Accuracy value is the most considered performance metrics to choosing the machine 1 

learning technique for prediction. 2 

What knowledge this study adds: 3 

 To the best of our knowledge, this is the first study that analyzed more than three 4 

machine learning techniques to predict risk of locoregional recurrence in oral tongue 5 

squamous cell carcinoma (OTSCC) as low-risk or high-risk. 6 

 It is important to consider other performance metrics such as specificity and F1 score 7 

(weighted average of precision and recall) in medical applications. 8 

 The permutation importance feature (PFI) algorithm to extract important features does 9 

not correspond to better overall prediction and does not necessarily perform better than 10 

the ensemble algorithms.  11 

 The application of these supervised learning techniques to stratify the patients as having 12 

low-risk or high-risk for the recurrence of OTSCC may be useful for effective cancer 13 

management. 14 
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Figure Legend 23 

Figure 1. The training process in azure machine learning studio.  24 

Figure 2. The classification results of the four basic parameters for each algorithm in the 25 

training and also for PFI analysis.  26 
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(TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative, BDT: Boosted Decision Tree, SVM: Support 1 

Vector Machine, NB: Naive Bayes, and DF: Decision Forest). 2 

Figure 3. The comparison of the boosted decision tree algorithm to the depth of Invasion model 3 

[18] 4 

 5 
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Table 1. The parameters contained in the dataset and their respective descriptors.  

Number      Parameters                                      Description                                                        Type 

1 

 
2 

Age 

 
Gender 

Age at the time of diagnosis 

 
The sexual orientation of the patient 

Discrete 

 
Categorical 

1 = Male; 2 = Female 

3 T-stage T stage describing tumor size 
 

Categorical 
1 = T1; 2 = T2.  

 

4 WHO Grade Histopathologic grading according to 

World Health Organization (WHO) criteria 

Categorical 

1 = Grade I; 2 = Grade II; 3 = 
Grade III 

 

5 Tumor budding Tumor budding is defined as the presence 

of single cells or small clusters 
of cancer cells detached from the main 

tumor mass  

Categorical 

0 = No budding; 1 <  5 buds; 
2 for  ≥ 5 buds. 

6 Tumor depth This is the measure of tumor depth of 
invasion. It was measured in millimetres 

(mm) 

Categorical 
1 for < 4mm,  

2 for  ≥ 4mm 

7 WPOI Worst pattern of invasion Categorical  

Value of 0 for WPOI type 1 
to 3; Value of 1 for WPOI 

type 4; Value of 3 for WPOI 

type 5. 
 

8 LHR Lymphocytic host response Categorical 

Value of 0 for LHR type 1; 

Value of 1 for LHR type 2; 
Value of 3 for LHR type 3. 

 

9 PNI Perineural invasion Categorical 

0 = Absent; 1 = Present 
 

 

10 Treatment This indicates the type of treatment offered 
for the patient. It could either be surgery 

alone or adjuvant (chemo)radiotherapy in 

addition to the surgery 

Categorical 
0 = Surgery alone 

1 = Surgery + Adjuvant 

(chemo)radiotherapy 

 

11 Neck treatment This variable indicates whether neck 

dissection was performed or not 

Categorical 

0 = No neck dissection 

1 = Neck dissection 
performed. 

12 Recurrence* The occurrence of disease after treatment Categorical 

0 = Low-Risk; 1 = High-Risk 
* Recurrence was considered as the output/target label. The disease-survival (DFS) ranges from 1 to 267 months 

while DFS for locoregional recurrence patient ranges from 1 to 120 months. 

 

 

 



Table 2: Summary of histopathologic parameters included for the machine learning training. 

Variable Category (Definition) Number 

WHO grade   

 Grade I (Well-differentiated tumor) 78 

 Grade II (Moderately-differentiated tumor) 103 

 Grade III (Poorly-differentiated tumor) 73 

   

Tumor budding   

 None (There is no tumor budding) 93 

 Low (Tumor has less than five buds) 85 

 High (Tumor has five buds or more at the invasive 

front) 

76 

   

Depth of invasion   

 Superficial (Tumor < 4 mm in depth) 96 

 Deep (Tumor ≥ 4 mm in depth) 158 

   

Worst pattern of invasion 

(WPOI) 

  

 Type 1 (Pushing border) 

Type 2 (Finger-like growth) 

Type 3 (Large tumor islands) 

64 

 Type 4(Small tumor islands of ≤ 15 cancer cells)  158 

 Type 5 (Tumor satellites)  32 

   

Lymphocytic host response 

(LHR)  

  

 Type 1 (Strong)  36 

 Type 2 (Intermediate)  88 

 Type 3 (Weak)  130 

   

Perineural invasion (PNI)   

 Absent (PNI was not observed) 223 

 Present (PNI was observed) 31 
 

 

 

 

 

 

 

 

 

 



 Table 3. The overall performance metrics of the classifiers in the training phase 

50% Training and 50% Testing Cross Validation Scheme 

Algorithm Sensitivity Specificity Precision NPV LR + LR - F1 Score AUC Accuracy % 

NB 0.67 0.81 0.77 0.92 3.53 0.41 0.66 0.89 80.0 

SVM 0.94 0.79 0.59 0.97 4.48 0.08 0.73 0.88 82.7 

DF 0.77 0.86 0.65 0.92 5.50 0.27 0.71 0.89 84.0 

BDT 0.68 0.87 0.62 0.89 5.23 0.37 0.65 0.82 82.0 

PFI-NB 0.77 0.83 0.59 0.92 4.53 0.28 0.67 0.89 81.0 

PFI-SVM 0.87 0.72 0.50 0.95 3.11 0.18 0.64 0.87 76.0 

PFI-DF 0.77 0.83 0.60 0.92 4.53 0.28 0.68 0.85 82.0 

PFI-BDT 0.65 0.85 0.59 0.88 4.33 0.41 0.62 0.84 80.0 

BDT = Boosted Decision Tree, SVM = Support Vector Machine,  BPM = Bayes Point Machine, DF = 

Decision Forest, Precision (PPV = Predictive positive value), NPV = Negative predictive value, LR+ = 

Positive likelihood ratio and LR- = Negative likelihood ratio, Sensitivity (recall), Area under receiving 

operating characteristics curve (AUC), and CDE = Custom Designed Ensemble. 

 

 

Table 4. The performance of the algorithms with external cases. 

Parameter SVM NB BDT DF 

True Positive (TP) 16 16 15 15 
False Positive (FP) 16 15 07 09 
True Negative (TN) 24 25 33 31 
False Negative (FN) 03 03 04 04 

Sensitivity 0.84 0.84 0.79 0.79 
Specificity 0.60 0.63 0.83 0.78 

Precision (PPV) 0.50 0.52 0.76 0.63 
NPV 0.89 0.89 0.89 0.89 
LR+ 2.10 2.27 4.65 3.59 
LR- 0.27 0.25 0.25 0.27 

F1 Score 0.63 0.64 0.78 0.70 
Accuracy 68% 70% 81% 78% 

 

 

 

 

 

 

 

 



Table 5. Permutation Feature Importance (PFI ) of the algorithms.  

                   PFI-DF            PFI-BDT              PFI-SVM                     PFI-NB 

Features Scores Features Scores Features Scores Features Scores 

PNI 0.0078 Age 0.0315 Gender 0.0079 Age 0.0079 

Depth 0.0000 Depth 0.0236 Stage 0.0079 Gender 0.0079 

Tumor 
Budding 

0.0158* WPOI 0.0236 Tumor 
Budding 

0.0079 Stage 0.0079 

Stage 0.0315* PNI 0.0079 Depth 0.0079 Depth 0.0079 

LHR 0.0315* Tumor 
Budding 

0.0000 LHR 
 

0.0079 Grade 0.0000 

Gender 0.0394* LHR 0.0079* PNI 0.0079 Tumor Budding 0.0079* 

Grade 0.0394* Stage 0.0158* Age 0.0000 LHR 0.0079* 

WPOI 0.0472* Grade 0.0158* Grade 0.0000 PNI 0.0079* 

Age 0.0551* Gender 0.0236* WPOI 0.0000 WPOI 0.0236* 

        

Accuracy 
(External 

Testing) 

80.0% Accuracy 
(External 

Testing) 

83.1% Accuracy 
(External 

Testing) 

64.4% Accuracy 
(External Testing) 

81.4% 

* Negative score.  DF : Decision Forest, BDT: Boosted Decision Forest, SVM: Support Vector Machine, 
NB: Naive Bayes. WPOI: Worst Pattern of Invasion, PNI: Perineural Invasion, LHR: Lymphocytic host 
response. 
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