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Novelty and Impact statement:  

Given the increasing evidence of the significant contribution of tumor-associated stroma to 

trastuzumab efficacy, we decided to evaluate these hypotheses in the context of a phase III 

clinical trial randomly assigning patients to anti-HER2 treatments. We show that reactive 

stroma is associated with resistance to trastuzumab therapy in HER2 positive breast cancer 

patients.  Moreover we show that the expected benefit from trastuzumab in patients with high 

levels of TILs is abolished in tumors with reactive stroma. 
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 Abstract 

We investigated the value of reactive stroma as a predictor for trastuzumab resistance in 

patients with early HER2-positive breast cancer receiving adjuvant therapy. 

The pathological reactive stroma and the mRNA gene signatures that reflect reactive stroma 

in 209 HER2-positive breast cancer samples from the FinHer adjuvant trial were evaluated. 

Levels of stromal gene signatures were determined as a continuous parameter, and 

pathological reactive stromal findings were defined as stromal predominant breast cancer 

(SPBC; ≥50% stromal) and correlated with distant disease-free survival (DDFS). 

Gene signatures associated with reactive stroma in HER2-positive early breast cancer 

(N=209), were significantly associated with trastuzumab resistance in estrogen receptor (ER)-

negative tumors (HR=1.27 p-interaction=0.014 [DCN], HR=1.58, p-interaction=0.027 

[PLAU], HR=1.71, p-interaction=0.019 [HER2STROMA, novel HER2 stromal signature]), 

but not in ER-positive tumors (HR=0.73 p-interaction=0.47 [DCN] , HR=0.71, p-

interaction=0.73 [PLAU], HR=0.84; p-interaction=0.36 [HER2STROMA]).   

Pathological evaluation of HER2-positive/ER-negative tumors suggested an association 

between SPBC and trastuzumab resistance. Reactive stroma did not correlate with tumor-

infiltrating lymphocytes (TILs), and the expected benefit from trastuzumab in patients with 

high levels of TILs was pronounced only in tumors with low stromal reactivity (SPBC 

<50%). 

In conclusion, reactive stroma in HER2-positive/ER-negative early breast cancer tumors may 

predict resistance to adjuvant trastuzumab therapy.    
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Introduction 

Cancer cells are surrounded by a tumor microenvironment, which is composed of the 

extracellular matrix (ECM) and various cell types, such as fibroblasts, endothelial cells, 

(myo)fibroblasts, and leukocytes. There is growing evidence to show that interaction of 

stromal cells with tumor cells is pivotal in breast cancer progression and response to therapy. 

Several studies have provided insight on the molecular characteristics differentiating tumor-

associated stroma from normal stroma1–5. It has also been suggested that tumor-associated 

stroma contribute to cancer growth and progression by promoting stromal–epithelial 

paracrine signaling6. A few stromal signatures have been developed and were found to be 

prognostic, especially in the HER2 breast cancer subgroup5,7–9. Four carcinoma associated 

fibroblast (CAF) subsets that accumulated differently in breast cancer subtypes were recently 

identified, of which the CAF-S1 subset was associated with an immunosuppressive 

microenvironment10. 

Trastuzumab, a monoclonal antibody targeted against HER2, has dramatically 

improved clinical outcomes for patients with HER2-positive disease 11. However, despite 

significant research efforts, there are currently no clinically useful biomarkers that can 

identify which of the patients are resistant to trastuzumab. The development of predictive 

biomarkers becomes an increasingly important issue in an era of a growing array of effective 

anti-HER2 agents available for clinical use and which add both to cost and toxicity12–14.  

Given the increasing evidence of the significant contribution of tumor-associated stroma to 

trastuzumab efficacy15, we decided to evaluate biomarkers capable of identifying the patients 
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who are resistant to trastuzumab in the context of a large phase III adjuvant clinical trial in 

which patients were randomly assigned to anti-HER2 treatments.  

 

Materials and Methods 

 

The original FinHer trial was reported in depth elsewhere 16. The clinicopathological 

characteristics of the original cohort and the cohort assessed for reactive stroma are given in 

Table 1. The Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) 

criteria were followed for reporting this study. 

  

Patients 

This study used samples and data from the FinHer trial (the trial identifier is 

ISRCTN76560285), a multicenter, phase 3, randomized breast cancer trial in an adjuvant 

setting that enrolled 1010 patients (CONSORT diagram figure 1)16. A total of 232 (23.0%) of 

those patients had HER2-positive cancer. One patient with HER2-positive cancer who had 

overt distant metastases at the time of randomization was excluded from the analyses17, and 

209 (90.5%) of the remaining 231 HER2-positive tumors had tissue slides that were available 

for the current study. The clinicopathological characteristics of the patients with HER2-

positive cancer who also had available reactive stroma data (n=209) were compared with the 

HER2-positive subgroup of the FinHer series (n=231). The patients with reactive stroma 

evaluation findings were representative of the entire population, with no substantial 

differences in patient and tumor characteristics having been identified between the two 
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groups (Table 1). Study participants provided written informed consent to allow further 

research analyses to be carried out on their tumor tissue. Profiling of the breast tumor samples 

was approved by the institutional review board (permission HUS 177/13/03/02/2011). The 

primary endpoint of the FinHer study, distant disease-free survival (DDFS), was reported to 

be superior for the trastuzumab-containing arms after a follow-up of 62 months 17.  

 

Reactive stroma and tumor-infiltrating lymphocyte (TIL) pathologic assessment 

Evaluation of reactive stroma was performed on full-face hematoxylin and eosin-stained 

(H&E) sections. The full stromal area of the tumor was taken as 100% (excluding the tumor 

cell nests), and the percentage of non-normal reactive stroma of the whole area was 

estimated. Reactive stroma was defined as scar-like desmoplastic tissue containing a higher 

proportion of reactive myofibroblasts compared to the normal stroma of the breast, which 

does not contain any reactive myofibroblasts. Two pathologists (RS and GVdE) performed 

the readings and reached a consensus. TILs were assessed as described by Loi et al 18.  

 

Statistical analysis 

The primary pre-defined hypothesis was that higher levels of reactive stroma would be 

associated with trastuzumab resistance. For the survival analyses, the primary endpoint was 

DDFS, which was defined by the time interval between the date of randomization and the 

date of first cancer recurrence outside of the ipsilateral locoregional region or to death, 

whenever death occurred before distant recurrence. Associations between reactive stroma and 

clinicopathological characteristics were investigated. A two-sided p-value less than 0.05 was 
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considered significant. No adjustment for multiple testing was made. Five stromal gene 

signature scores (PLAU, DCN, Yoshiara, CAFS1, and CD10)5,7–10,19 (Table S1) were 

calculated for each patient as previously described 20. PLAU, which was associated with 

prognosis in HER2 positive breast cancer subgroup8; DCN, defined as a list of genes 

correlated to decorin and was able to predict chemoresistance in patients treated with 

preoperative chemotherapy7;  Yoshiara stromal signature which represents the fraction of 

“normal” stromal cells in tumor tissue19; CAFS1 defined by Costa et al, via the concomitant 

analysis of six fibroblast markers10; and CD10+ stroma signature which  is able to predict 

chemoresistance in the HER2 positive subpopulation9.  We computed the sum of the products 

of the gene coefficient (–1 or 1, depending upon down-regulation or up-regulation, 

respectively) by the corresponding z-normalized gene expression value. Patients were divided 

into two groups, those with a high and those with a low stromal gene signature score, using 

the median as the dichotomous cutoff 20. Multivariate Cox proportional hazards regression 

models were then applied to each group separately to test the association between 

trastuzumab treatment and patient survival. A possible interaction between survival with 

trastuzumab treatment was tested using a Wald test after adding the gene score variable 

together with trastuzumab as main effects and a product interaction term in the Cox model. 

The following clinicopathological characteristics were included as covariates in all 

multivariate analyses: tumor size [T1 (≤2 cm) versus T2 (>2 cm and ≤5 cm) and T3 (>5 cm)], 

histological grade (1, 2, vs 3), and age (≤50 years vs >50 years). A total of 202 out of 209 

patients for whom there was a pathology stroma value had expression arrays, and 195 of them 

had the grade, tumor size, and age values required in the multivariate model. Kaplan Meier 
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survival curves were produced for visualization purposes, and they defined the groups as 

being high- and low-reactive stroma according to a predefined variable, i.e., stromal 

predominant breast cancer (SPBC; ≥50% stromal). Interaction effects were displayed using 

forest plots. Stromal TILs were evaluated as a continuous variable (per increasing 10% 

increments). Associations between TILs and SPBC were investigated with Spearman's rank 

correlation. To detect whether the benefit from trastuzumab in patients with high levels of 

TILs is dependent upon reactive stroma, the interaction between TILs and trastuzumab 

treatment were evaluated separately for patients with low- and those with high-reactive stoma 

(SPBC). The analyses were performed using the survival and forest-plot R software 

packages, and SPSS (Chicago, IL).  

 

Development of the HER2-reactive stromal signature  

To develop a gene signature corresponding to reactive stroma in the FinHer HER2-positive 

cohort (HER2STROMA -Table S1), we used a method called ProGENI21, implemented as 

part of the KnowEnG analytical platform (www.knoweng.org)22. ProGENI is a gene 

prioritization method that combines information on ‘omics’ profiles of samples with a 

network of gene-gene interactions to improve the accuracy of prioritization. For this task, we 

used the z-normalized gene expression values and the pathological reactive stroma scores in 

the “Feature prioritization” pipeline of KnowEnG. For the gene interaction network, we used 

the protein-protein interaction from REACTOME 23, which is readily available as an option 

in KnowEnG (“Reactome PPI reaction partners”). We selected the “Number of response-

correlated features” as 10, and did not use any bootstrap sampling. The other parameters were 
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kept as default. Out of the top 10, 20, 50, 70, and 100 ranked by ProGENI genes, the top 70 

were best associated with reactive stroma and used as the gene signature. To obtain a 

polygenic score for each sample, we calculated a weighted average of the z-normalized 

expression of the 70 genes for each sample, in which the weights were equal to the Pearson 

correlation of the expression of that gene and the reactive stroma score across all samples. 

The pROC R package 20 was applied for the receiver operating characteristic (ROC) analysis 

and for deriving the area under the curve (AUC) using the polygenic score as predictor, and 

the previously reported “Responsify” reactive stroma scoring level coded as 1 for low level 

and 3 for high level (medium levels were not included). 

 

Gene expression analysis 

Gene mRNA expression data were produced from 202 of the FinHer HER2 samples as 

described at: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=wfermmkijzktzcb&acc=GSE6509520,2

4 . Before gene expression was done, all samples were reevaluated by pathologist to ensure 

tumor was present in the tissue sample. We computed the average value when multiple probe 

sets were mapped to the same official gene symbol. Linear modelling with the Limma R 

package25 was used to detect genes responding to reactive stroma in ER-positive and in ER-

negative patients (p < 0.005). Those genes were subjected to Ingenuity Pathway Analysis 

(IPA®) software to detect functional gene networks associated with reactive stroma.   

To calculate the distribution of stromal gene signature across breast cancer subtypes, 

we used the downloaded TCGA gene expression data of 514 breast cancer patients together 
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with their subtype information as detected by the PAM50 test (98 basal-like, 58 HER2, 127 

Luminal B, and 231 Luminal A). Stromal metagene scores were calculated for each patient as 

described above, and the distribution of those scores across different breast cancer subtypes 

was visualized using boxplots.  

 

Correlation between differentiation states and reactive stroma 

Gene sets which represent luminal, luminal progenitors, basal (mammary stem cell-enriched), 

and epithelial-to-mesenchymal transition (EMT) were obtained from the literature 26–29. The 

metagene scores of these signatures were calculated for each patient using the same method 

described above. The Pearson correlation between these signatures and the stromal 

reactivation score was performed using the cor.test R function. 

Data Availability  

Gene mRNA expression data are available at: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=wfermmkijzktzcb&acc=GSE65095   

Results 

The gene-expression analysis from the TCGA data30 revealed that reactive stromal gene 

expression signatures were associated more with the luminal A cancer subtype than with the 

luminal B breast cancer subtype (figure S1). This is in agreement with Dennison et al.’s study 

which showed that high intratumoral stromal content defines reactive breast cancer as a low-

risk subtype31. Our analysis also revealed that other subtypes, such as HER2-positive, have 

differential reactive stromal expression (figure S1). Given that preclinical data suggested that 
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reactive stroma may decrease trastuzumab efficacy15, we investigated this hypothesis in 

HER2-positive breast cancer. 

 

FinHer baseline patient characteristics 

There were no significant differences in the characteristics of the patients of the stromal 

evaluation series (n=209) compared with the original series (Table 1). Associations between 

reactive stroma and other clinical-pathological characteristics showed that reactive stroma 

was not significantly associated with any of the investigated characteristics (Table S2). 

 

Association between reactive stroma and trastuzumab resistance 

We evaluated the benefit of trastuzumab therapy according to the stromal signature score in 

the FinHer HER2-positive population. There was a statistically significant interaction 

between the reactive stroma signature scores and trastuzumab resistance for two stromal 

reactive signatures (DCN and PLAU) in the ER-negative tumors (HR=1.27 p-

interaction=0.014 [DCN], HR=1.58, p-interaction=0.027 [PLAU]), but not in the ER-positive 

tumors (HR=0.73 p-interaction=0.47 [DCN], HR=0.71, p-interaction=0.73 [PLAU]) (figure 

2). The YOSHIARA signature 19 that represents normal stromal volume in the tumor 

specimen was not associated with trastuzumab resistance (figure 2). We then evaluated two 

signatures that represent specific stromal CAF subtypes (CAF-S1 and CD10) 9,10. Both the 

CD10 signature and the CAF-S1 signature (which represent a subset of cells which are 

associated with immunosuppression) were non-significantly associated with trastuzumab 

resistance (Supplementary figure 2).  
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Reactive stroma signatures were associated with the stromal pathological score, TGF-β1 

pathway activation, and EMT  

We next evaluated reactive stroma at the histological level on full-face H&E-stained sections 

from the FinHer samples by two independent pathologists who reached scoring consensus 

(Methods section). The mean pathological stromal reactivity level was 48% (SD 24.3%; 

range 5% to 90%). Stromal genomic signatures scores were positively but weakly correlated 

with pathological stromal reactivity (DCN r=0.3; p=2.287e-05; PLAU r=0.28 p=8.75e-05) 

(figure 3A). The pathological evaluation of HER2-positive/ER-negative tumors suggested 

that SPBC was associated with the lack of any benefit from trastuzumab (in contrast to non-

SPBC) (ER-negative/SPBC <50%: HR=0.257 CI: 0.066–0.996; ER-negative/SPBC ≥50%; 

HR=0.66 CI: 0.22-1.93) (figure 4). These results suggest that pathological evaluation of 

reactive stroma in HER2-positive/ER-negative early breast cancer tumors may predict 

resistance to adjuvant trastuzumab therapy.       

In order to develop a gene signature corresponding to reactive stroma specifically in 

the FinHer HER2-positive population taken from the FinHER study (HER2STROMA 

signature), we used protein-protein interaction knowledge (figure S3A) together with 

expression data to rank genes with respect to their relationship with pathological reactive 

stroma (see Methods). The top 70 genes (Table S1) were selected, and the correlation of their 

polygenic score with reactive stroma was 0.41 (p value = 3.364 e-09). To validate the 

association of the HER2STROMA signature with pathological reactive stroma, we calculated 

the signatures' predictive ability in an independent dataset which had been previously 
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evaluated for reactive stroma (Responsify) 20. The area under the curve (AUC) resulting from 

the use of the HER2STROMA signature score as predictor to reactive stroma outcome was 

0.78 (figure S3B), which was higher than the AUC from using DCN (0.68), PLAU (0.71), 

and YOSHIARA (0.62) (Figure S3B). Ten out of the 70 genes in the HER2STROMA 

signature were shared by DCN and/or PLAU signatures (Figure S3C and Table S1), and the 

main biological process that had been enriched in the HER2STROMA gene signature (by GO 

analysis) was organization of the extracellular matrix (false discovery rate (FDR) =2.54e-12). 

In the Responsify data set, HER2STROMA gene signature positively correlated with CD29 

protein (a potential marker of reactive stroma) in ER negative tumors but not in ER positive 

tumors (figure S4). Caveolin1 (CAV1) and PDGFRβ (other potential markers of reactive 

stroma) were not correlated with HER2STROMA gene signature. There was a statistically 

significant interaction between the HER2STROMA signature and trastuzumab resistance in 

the ER-negative tumors (HR=1.71; p-interaction=0.019), but not in the ER-positive tumors 

(HR=0.84; p-interaction=0.36) (figure 2). In an effort to show that reactive stroma assessment 

can be performed on breast cancer biopsies  in the neo-adjuvant setting we analyzed gene 

expression data from neo-adjuvant studies32 and show that HER2STROMA signature has 

trend  towards worse outcome in HER2 positive patients (odds ratio=0.30; 0.09–1.01 

p=0.052).   

Next, we used IPA® software to uncover pathways associated with reactive stromal 

tumors. A few pathways were identified as being significantly associated with reactive 

stroma (figure 3B, Z score≥2). The TGF-β1 pathway was found to be up-regulated in both 

stromal reactive ER-positive as well as ER-negative tumors.  
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We further assessed whether HER2 tumors with reactive stroma are associated with 

distinguishable differentiation states. We analyzed the correlation of their transcription 

profiles with previously established signatures that represent luminal, luminal progenitors, 

basal (mammary stem cell-enriched), and EMT 26–29 (figure 3C). The expression profile of 

the reactive stromal tumors showed a significant but low correlation with EMT, suggesting 

that the TGF-β1 pathway and EMT may be associated with trastuzumab resistance in tumors 

with reactive stroma. 

 

Stromal reactivation and TILs  

Given that TILs are associated with benefit from trastuzumab 18, we tested whether reactive 

stroma is positively or negatively correlated with TILs. Pathological evaluations of reactive 

stroma did not correlate with mean intra-tumoral lymphocyte infiltration (Spearman 

correlation: 0.02, p=0.80) or with mean stromal lymphocyte infiltration (Spearman 

correlation: 0.03, p=0.69). The expected benefit from trastuzumab in patients with high levels 

of TILs was observed only in tumors with SPBC <50% (DDFS p-interaction=0.025), and not 

in tumors with SPBC ≥50% (DDFS p-interaction=0.99) (figure 5). 

 

Discussion 

 Given the increasing pre-clinical evidence of the significant contribution of tumor-associated 

stroma to trastuzumab efficacy, we decided to evaluate these hypotheses in the context of a 

phase III clinical trial randomly assigning patients to anti-HER2 treatments. The results of 

this study reveal that reactive stroma may be  associated with trastuzumab resistance in 
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HER2-positive/ER-negative early breast cancer.  Increased effectiveness of dual anti-HER2 

treatments (pertuzumab+trastuzumab, trastuzumab+lapatinib, and trastuzumab→neratinib) 

over single blockade (trastuzumab alone) has been recently reported in clinical studies in 

HER2-positive breast cancer 12,33,34. However, the actual benefit is relatively small (2-4% in 

terms of disease-free survival in the adjuvant setting), and there are currently no clinically 

useful biomarkers that can identify the patients who are resistant to trastuzumab and will 

benefit from a dual blockade. Therefore, while our finding may not change current 

management of HER2-positive patients, it is still clinically relevant, since stromal reactivity 

may be used as a stratification factor in clinical trials and be useful in identifying those 

patients that may benefit from a dual blockade. 

There are a number of mechanisms by which reactive stroma can support cancer cells 

and contribute to drug resistance. Several studies have suggested that stromal drug resistance 

in breast cancer is partly induced by integrin signaling and an extracellular matrix 35,36. 

Specifically, integrin and collagen can lead to resistance to anti-HER2 treatment by activating 

the PI3K/Akt or the ERK pathway 37.  

Another mechanism through which stroma support tumor cells and drug resistance is 

through secretion of cytokines and growth factors 38–40. The secretion of cytokines, such as 

TGF-β1 and stromal-derived factor 1, promotes the transition of normal fibroblasts to CAFs, 

which can impact tumor progression and response to therapy 41,42. Notably, there is evidence 

for cross-talk between the HER2 and the TGF-β1 signaling pathways, and evidence that 

TGF-β1 activation may be associated with trastuzumab resistance 43. Indeed, we were able to 

demonstrate in a clinical setting that the TGF-β1 pathway is activated and associated with 
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trastuzumab resistance in tumors with reactive stroma. Moreover in our study, the predictive 

role of reactive stroma was confined to the ER-negative group while the ER-positive group 

showed an opposite pattern, although not significant. A possible explanation is that in the ER-

positive group, different signal transduction pathways are activated by TGF-β144. 

 Several studies have shown an association between increasing TILs and increased 

benefit from trastuzumab, highlighting the role of immunity in the efficacy of trastuzumab 

18,45. We now showed that reactive stroma is neither positively nor negatively correlated with 

the presence of TILs. More importantly, we demonstrated that the expected benefit from 

trastuzumab in patients with high levels of TILs was abolished in tumors with reactive 

stroma. Therefore, if TILs indicate the presence of an  immune response, it may be possible 

that the role of immune surveillance for tumor control is relatively ineffective when using 

trastuzumab due to stromal reactivity which exerts immune suppression 45. In support of this 

possibility are the findings of several recent preclinical studies that demonstrated that CAFs 

have immunosuppressive effects which may affect the response to trastuzumab 10,15. The 

application of data from a prospective, rigorously conducted randomized clinical trial  

strengthens the relevance of our observation and highlights the importance of the role of the 

tumor microenvironment in the efficacy of trastuzumab.  

 Our study has limitations. While the evaluation of reactive stroma was done by gene 

expression profiling and pathological evaluation, no specific IHC staining was performed. In 

addition, four carcinoma associated fibroblast (CAF) with six concomitant analysis of six 

fibroblast markers10 accumulate differently in breast cancer, making any such analysis  more 

difficult10. Another limitation of our study is that, reactive stroma was evaluated using full-
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face H&E-stained sections, in contrast to the practical more routine use of biopsy in the neo-

adjuvant setting. Of note, two stromal gene expression signatures were evaluated on the 

neoadjuvant Neo-ALTTO trial and showed  opposite roles in modulating the response to 

trastuzumab as they predicted higher pCR rates in the single arms (trastuzumab or lapatinib) 

but lower pCR rates in the combination arm (trastuzumab+lapatinib)46.     

 In conclusion, our study provides clinical evidence that reactive stroma is associated 

with resistance to trastuzumab therapy in HER2-positive early breast cancer patients.   
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Figure legends 

Figure 1: CONSORT diagram.  

 

Figure 2: Forest plots according to different reactive stroma signature statuses in all patients, 

in ER-negative only patients, or in ER-positive only patients. The plots indicate Cox 

regression hazard ratios, 95% confidence intervals, and p-values for trastuzumab benefit for 

DDFS, as well as p-values of the interaction (Int pval) between reactive stromal signatures 

and trastuzumab treatment. 

 

Figure 3: Correlation of stromal genomic signature scores with the evaluation of pathological 

reactive stroma. A. Histological sections showing breast tumors containing low (right), 

intermediate, and high (left) reactive stroma. Heatmap showing the association of reactive 

stromal content with clinical pathological parameters and correlation with different gene 

signatures and mutations. B. Ingenuity Pathway Analysis (IPA®) of pathways associated with 

stromal reactivation. A Z score ≥2 is considered significant. C. Correlation of transcription 

profiles of stromal tumors with established signatures which represent luminal, luminal 

progenitor, basal (mammary stem cell-enriched), and epithelial-to-mesenchymal transition 

(EMT). * p≤0.05  

 

Figure 4: Kaplan–Meier curves of stromal predominant breast cancer (SPBC) status assessed 

in the FinHer dataset. Patients with a low SPBC level (<50%) and a high SPBC level (≥50%) 

This article is protected by copyright. All rights reserved.



 
 

according to trastuzumab treatment in the ER-negative group (up) or in the ER-positive group 

(down). 

 

Figure 5: Interactions between stromal tumor-infiltrating lymphocytes (TILs) and 

trastuzumab benefit in HER2-positive disease. A. Forest plots indicating Cox regression 

hazard ratios, 95% confidence intervals, and p-values for trastuzumab benefit for DDFS, as 

well as p-values of the interaction between tumor-infiltrating lymphocytes (TILs) and 

trastuzumab treatment. An analysis based on patients with stromal predominant breast cancer 

(SPBC) of low levels (<50%) and SPBC of high levels (≥50%) is shown. B. Histological 

sections showing breast tumors containing a high SPBC level (≥50%), high TIL levels 

(≥50%) (left side) and a low SPBC/low TIL level (right).  
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