1	
2	DR. FREDRIK ABERG (Orcid ID : 0000-0002-3833-0705)
3	
4	
5	Article type : Critical Review
6	
7	
8	Interaction between alcohol use and metabolic risk factors for liver disease: a
9	critical review of epidemiological studies
10	
11	Fredrik Åberg, MD, PhD (1, 2)
12	Martti Färkkilä, professor (3)
13	Ville Männistö, MD, PhD (4,5)
14	
15	(1) Transplantation and Liver Surgery Clinic, Helsinki University Hospital, Helsinki University,
16	Helsinki, Finland
17	(2) The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
18	(3) Clinic of Gastroenterology, Helsinki University and Helsinki University Hospital, Helsinki,
19	Finland
20	(4) Department of Medicine, University of Eastern Finland and Kuopio University Hospital,
21	Finland
22	(5) Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at
23	University of Amsterdam, Amsterdam, The Netherlands
24	
25	
26	Correspondence: Fredrik Åberg, MD, PhD. HUCH Meilahti Hospital, PB 372, 00029 HUS,
27	Finland. Email: fredrik.aberg@helsinki.fi, telephone +35894711
28	
29	
30	Conflict of interest: The authors declare no conflict of interest for this work.
31	
	This article has been accepted for publication and undergone full neer review but has not been

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/ACER.14271</u>

This article is protected by copyright. All rights reserved

32

41

33 Abbreviations

- 34 ALT, alanine aminotransferase
- 35 AST, aspartate aminotransferase
- 36 BMI, body mass index
- 37 GGT, gamma-glutamyltransferase
- 38 HCC, hepatocellular carcinoma
- 39 MetS, metabolic syndrome
- 40 NAFLD, non-alcoholic fatty liver disease

43 ABSTRACT

44

42

45 Co-existence of alcohol use and metabolic risk – the two commonest population risk factors for 46 non-viral chronic liver disease – is a growing concern. Clinical and mechanistic evidence point to 47 considerable supra-additive interaction effects for the development and progression of chronic 48 liver disease between hazardous alcohol use and metabolic abnormalities including obesity, 49 diabetes, and the metabolic syndrome. Intermittent binge drinking once monthly or more often 50 seems to be associated with progression of liver disease even when average alcohol intake is 51 within the currently allowed limits for a diagnosis of non-alcoholic fatty liver disease (NAFLD), 52 and supra-additive interaction between binge drinking and the metabolic syndrome has been 53 reported. There are contradictory findings regarding the association between low alcohol use and 54 liver steatosis, but, clearly, the mechanisms of alcoholic hepatotoxicity extend beyond simple fat 55 accumulation. The presence of liver steatosis seems to amplify alcoholic hepatotoxicity. Recent 56 longitudinal studies of NAFLD subjects report low alcohol use associated with both increased fibrosis progression and an elevated risk for liver cancer and severe liver disease. There is no clear 57 58 safe limit of alcohol intake in the presence of NAFLD or metabolic risk. The interaction effects 59 between alcohol and metabolic dysfunction merit increased attention in public health policy, 60 individual counseling, and risk stratification. Based on current evidence, a strict dichotomization of liver disease into either pure alcoholic or non-alcoholic may be inappropriate. 61

Acceb

62 Introduction

63 Chronic liver disease and its complications is a growing global public health burden. Worldwide,
64 liver cirrhosis is the 11th leading cause of death, and hepatocellular carcinoma is the 4th leading
65 cause of cancer death (Asrani et al., 2019).

66

Alcohol use and obesity and associated metabolic abnormalities are key independent population
risk factors for non-viral liver cirrhosis, hepatocellular carcinoma (HCC), and for prognosis in
established liver disease (Stepanova et al., 2010).

70

71 At the population level, there is an exponential dose-response relationship between alcohol 72 consumption and the risk for liver cirrhosis (Rehm et al., 2010; Thun et al., 1997; Askgaard et al., 73 2015; Bellentani et al., 2000; Hagstrom et al., 2018). Both in general contexts (WHO, 2018) and in 74 liver-specific contexts (European Association for the Study of the Liver, 2016; Chalasani et al., 75 2018), hazardous alcohol use is currently considered as a regular intake of more than 20 grams of 76 pure alcohol per day for women (140g/wk) or 30 grams for men (210g/wk), and these same 77 cutoffs have been used to separate alcoholic liver disease from non-alcoholic fatty liver disease (NAFLD). However, the risk for liver cirrhosis begins to increase at alcohol consumption around 78 79 12-24 grams of alcohol per day or even lower, and no liver-safe limit of alcohol intake has been 80 firmly established (Roerecke et al., 2019; Rehm et al., 2010). Individual susceptibility to liver 81 toxicity from alcohol is wide and seems to depend on drinking pattern (binge drinking, drinking) 82 outside meals), beverage type (lower risk for wine), gender, genetic and environmental factors, 83 diet, gut microbiome and co-morbidity.

84

Obesity, especially abdominal obesity, is associated with metabolic abnormalities and NAFLD
(Liu et al., 2010; Harris et al., 2017; Hagstrom et al., 2018; Caballeria et al., 2018) and is also a
co-factor in other types of liver diseases including alcoholic liver disease (Åberg et al., 2019;
Diehl and Day, 2017). NAFLD affects an estimated 25% of individuals in the general population,
and over 90% of those severely obese (Younossi et al., 2016), but less than 5% of NAFLD patients
eventually develop end-stage liver disease.

92 There is considerable overlap in the molecular pathways between alcoholic and non-alcoholic liver93 disease, and the diseases share genetic risk factors and histologic features in common. Animal

studies have suggested synergism between the hepatotoxic effects of alcohol and high-fat dietinduced obesity (Minato et al., 2014; Xu et al., 2011; Duly et al., 2015).

96

97 Currently around 23% of adults are obese, rising to 38% in the USA (OECD, 2017). Similarly, an 98 estimated quarter of the world's population suffers from the metabolic syndrome (MetS) (O'Neill 99 and O'Driscoll, 2015). Alcohol consumption in the population varies by region, but around 60% of adults in Europe and the USA drink alcohol. When abstainers are excluded, average annual 100 consumption per capita among the actively drinking population is 15-17 litres of pure alcohol per 101 102 year (WHO, 2018). Therefore, many persons with obesity and/or metabolic disorders also 103 consume significant amounts of alcohol, and the synergistic interaction between them can 104 potentially have enormous impact on the population incidence of liver disease. In support of this, 105 we recently showed that 40% of cases of advanced non-viral liver disease in the general 106 population occurs in individuals with co-existent metabolic risk and regular alcohol intake, but 107 with a risk profile that does not fit either pure NAFLD or pure alcoholic liver disease (Åberg et al., 2019b). 108

109

On the other hand, light alcohol consumption has been associated with improved insulin 110 111 sensitivity and lipid profile, inhibition of platelet activation, reduction of fibrinogen level, and 112 anti-inflammatory effects (Davies et al., 2002; Sierksma et al., 2004) possibly mediated through phenol and polyphenol content in wine and beer (Gresele et al., 2011). This is substantiated by 113 114 some studies suggesting an association between low alcohol use and reduced prevalence of hepatic 115 steatosis (Gunji et al., 2009; Yamada et al., 2010; Moriya et al., 2011; Hiramine et al., 2011; 116 Hamaguchi et al., 2012; Dunn et al., 2012; Mitchell et al., 2018; Sookoian et al., 2014; Moriya et al., 2015; Kwon et al., 2014; Hagstrom et al., 2017), but the evidence is conflicting and suffers 117 118 from methodological weaknesses. The recent Global Burden of Disease study concluded that the 119 level of alcohol consumption that minimizes health loss is zero (GBD 2016 Alcohol Collaborators, 120 2018). 121

122 The purpose of this critical review is to discuss the following aspects based on recently published123 epidemiological and clinical evidence:

124 1) Does the combined effects of hazardous alcohol use and metabolic disorders increase the risk

125 for liver disease over and beyond the sum of their individual effects (supra-additive/synergistic

126 interaction) (Figure 1)?

- 127 2) Is there a safe, or even beneficial, level of alcohol use in persons with NAFLD or metabolic128 dysfunction (Figure 1)?
- 129

130 Methods

For the purpose of this review, we conducted a search of the PubMed database and applied citation 131 132 chaining. For the first part, we included studies reporting interactions between hazardous alcohol 133 use (>200g/wk) and obesity or other metabolic factors for liver outcomes. As hazardous alcohol 134 intake usually represented the highest drinking category in these studies, we used the highest 135 drinking category when evaluating interaction effects. Regarding obesity, we concentrated on 136 body-mass index (BMI) \geq 30kg/m2 if this was reported. If alternative anthropometric measures 137 were reported, we also included these. From the relative risk estimates reported in the article, we calculated attributable proportion due to interaction (Figure 1) according to Rothman, (Rothman, 138 139 2002). For the second part (low alcohol use), we focused on studies analyzing clinically 140 meaningful liver outcomes (fibrosis, steatohepatitis, or clinical endpoints) in the presence of 141 baseline hepatic steatosis or metabolic risk. We relied on the definition of NAFLD used in the 142 various studies, which usually involved consumption below 20 grams of pure alcohol per day for 143 women and below 30 grams per day for men.

144

145 Interactions between hazardous alcohol use and obesity in clinical studies

We found 15 studies analyzing interactions between obesity and alcohol use for liver outcomes; 8
were cross-sectional (1 case-control) and 7 longitudinal (Table 1). The longitudinal studies all
used cohort methods and were mostly based on various population surveys, thus considered fairly
representative of the general population.

- 150
- 151 All studies analyzed obesity by BMI (Table 1). Only one study considered waist circumference in
- addition to BMI (Åberg et al., 2018). BMI <25 kg/m2 was used as the reference group in
- 153 interaction analyses in 8 of 15 studies; 3 studies used BMI <30 kg/m2 as reference, one study used
- BMI 25-27.4 kg/m2 (Yi et al., 2016), and 2 studies did not provide sufficient data for relative risks

- compared to a reference group. Four studies explicitly stated to exclude underweight subjects from
 the reference group. In interaction analyses, obesity was most often defined by a BMI ≥30 kg/m2.
- There was wide variation among studies in categorization of alcohol intake, both with regard to
 the reference group and the highest consumption category (Table 1). Only 2 studies analyzed sexspecific limits for alcohol intake (Åberg et al., 2018; Lau et al., 2015), and only 1 study explicitly
 also analyzed binge drinking (Lau et al., 2015).
- 162
- The outcome considered was abnormal liver enzymes in 5 studies, ultrasound-diagnosed steatosis
 in 3, HCC in 3, liver mortality in 1, and a composite endpoint of liver-related hospital admission,
 mortality (and HCC) in 3.
- 166

167 Supra-additive interaction between obesity and alcohol use was seen in 4 of 5 studies analyzing 168 liver enzymes (especially for gamma-glutamyltransferase (GGT)), and in 1 of 3 studies analyzing steatosis. It should be noted that an elevated GGT may also reflect hazardous alcohol use without 169 170 liver injury (Niemelä and Alatalo, 2010). Of the 7 studies analyzing clinical liver outcomes, 5 found considerable supra-additive harmful effects between alcohol use and BMI, and additionally 171 172 1 study found such effects for waist circumference but not for BMI (Åberg et al., 2018). These studies showing interaction were from England, Scotland, Finland and Taiwan. In contrast, Yi et al 173 174 (Yi et al., 2016) reported the highest risk of death from non-neoplastic liver disease in 175 underweight hazardous drinkers, and found no supra-additive interaction between obesity and 176 alcohol use compared to subjects with a BMI 25-27.4 kg/m2 and alcohol use <9 g/wk. This South-177 Korean study was restricted to men, relied on self-reported weights, defined obesity as a BMI \geq 27.5 kg/m2, and excluded liver cancer mortality from the outcome (Yi et al., 2016). The lower 178 179 limit of alcohol intake in the highest drinking category was also relatively low (126 g/wk, based 180 on the study's definition of a standard drink).

181

In studies reporting supra-additive interaction, the fraction of risk attributable to interaction
between drinking and obesity varied between 26-88% for elevated liver enzymes, and between 2567% for clinical liver outcomes (Table 1). Lau et al (Lau et al., 2015) also reported supra-additive
interaction between obesity and binge drinking (at least 5 drinks per day at least 1 time during the
last month) for liver steatosis in men, but not in women.

187

188 Interaction between hazardous alcohol use and other metabolic factors

The association between obesity and liver disease is considered to be driven largely by associated
metabolic abnormalities, primarily insulin resistance (Gutierrez-Grobe et al., 2017; Ampuero et
al., 2018).

192

We found 5 studies (1 cross-sectional, 2 case-control and 2 longitudinal) that analyzed interactions 193 for liver-disease risk between alcohol and other metabolic factors than obesity; 3 analyzed 194 195 diabetes and 2 analyzed metabolic syndrome (Table 2). There was a profound interaction effect 196 between hazardous drinking and diabetes for the liver risk in all 3 studies, with estimates of 197 proportion attributable to interaction around 60-74% (Table 2). Park et al (Park et al., 2013) 198 reported supra-additive interaction between hazardous drinking and the metabolic syndrome for 199 GGT and aspartate aminotransferase (AST) elevation, and non-significantly so for alanine 200 aminotransferase (ALT). In our longitudinal population study (Åberg et al., 2017), we found a 201 supra-additive interaction effect between weekly binge drinking and presence of the MetS for 202 clinical liver outcomes (hospital admission, liver cancer or liver death) when adjusted for age and 203 average alcohol use (Figure 2).

204

In addition to these studies, Younossi et al (Younossi et al., 2019) reported supra-additive
interaction between hazardous alcohol use and the MetS for all-cause death in subjects with
baseline liver steatosis, based on the NHANES III survey. However, they found that the
interaction term between binge drinking and MetS was non-significant for all-cause death in these
subjects.

210

211 Low alcohol intake in the presence of NAFLD and/or metabolic risk

There are no randomized trials evaluating the effects of low alcohol intake in patients with
NAFLD. Several observational studies link light-moderate alcohol use, as compared to abstinence,
with a reduced risk for liver steatosis (Dunn et al., 2012; Mitchell et al., 2018; Sookoian et al.,
2014; Kwon et al., 2014; Hagstrom et al., 2017; Dixon et al., 2001). However, recent reviews
(Ajmera et al., 2017; Boyle et al., 2018) have raised several important methodological concerns
with these studies, including incomplete adjustment for confounders such as physical activity,
dietary factors, smoking, socioeconomic status and co-morbidity. The studies are mostly cross-

219 sectional and use surrogate endpoints such as steatosis or liver enzymes (Gunji et al., 2009; 220 Yamada et al., 2010; Moriya et al., 2011; Hiramine et al., 2011; Hamaguchi et al., 2012; Sookoian 221 et al., 2014; Moriya et al., 2015). The majority of these studies come from Japan, and ethnicity 222 may influence alcohol metabolism and thereby modify alcoholic liver toxicity (Kourkoumpetis and Sood, 2019). In fact, the findings in the Japanese studies are in sharp contrast with those in 223 224 some similar Western studies (Lau et al., 2015; Ruhl and Everhart, 2005; Suomela et al., 2015; Alatalo et al., 2008), and in contrast with longitudinal general population-based studies reporting 225 increased risk for severe liver disease at alcohol intake even lower than 2 drinks/day (Rehm et al., 226 227 2010; Askgaard et al., 2015; Hagstrom et al., 2018; Åberg et al., 2018; Simpson et al., 2019; 228 Sahlman et al., 2019). Simple liver steatosis or elevated liver enzymes may be poor outcome 229 measures in population studies due to unclear prognostic relevance. We focus this part of our 230 review on studies analyzing defined endpoints with acknowledged clinical relevance 231 (steatohepatitis, fibrosis, or symptomatic liver disease), specifically in populations with NAFLD or 232 metabolic risk. We found 17 such studies (10 cross-sectional, 7 longitudinal), summarized in 233 Table 3.

234

Of 10 cross-sectional studies, 9 were based on selected patient populations from hospital clinics
with biopsy-confirmed NAFLD or obese subjects undergoing bariatric surgery (Table 3). The
population-based studies instead defined steatosis using ultrasound or specific indices (fatty liver
index, hepatic steatosis index). The upper limit for low alcohol intake in these studies was
typically set at ~20-30 g/day depending on the study.

240

Six studies stated explicitly how they treated former drinkers (current abstainers with previous 241 242 drinking) (Dunn et al., 2012; Kwon et al., 2014; Dixon et al., 2001; Åberg et al., 2019a; Ascha et 243 al., 2010; Ajmera et al., 2018), 6 stated how they treated binge drinkers (Dunn et al., 2012; 244 Mitchell et al., 2018; Younossi et al., 2019; Åberg et al., 2019a; Ajmera et al., 2018; Ekstedt et al., 245 2009) and 5 evaluated lifetime drinking in their analyses (Dunn et al., 2012; Mitchell et al., 2018; 246 Kwon et al., 2014; Hagstrom et al., 2017; Ajmera et al., 2018). Two studies had repeated 247 measurements of alcohol use over time (Ajmera et al., 2018; Ekstedt et al., 2009), although these findings were not explicitly reported. There was a wide variation in the factors adjusted for in 248 multivariate analyses (Table 3). 249 250

251	In cross-sectional clinical studies with liver histology, 2 (Dixon et al., 2001; Cotrim et al., 2009)
252	reported no independent effect of low alcohol intake on liver-disease severity, whereas 5 (Dunn et
253	al., 2012; Mitchell et al., 2018; Sookoian et al., 2014; Kwon et al., 2014; Hagstrom et al., 2017)
254	reported less severe liver disease with low alcohol intake compared to abstinence. Dietary factors
255	were poorly adjusted for in these studies.
256	
257	Dunn et al (Dunn et al., 2012) reported lower odds of steatohepatitis (OR 0.56) and fibrosis (OR
258	0.56) among modest drinkers compared to lifetime abstainers. This study was based on patients
259	referred to specialized clinics participating in the NASH Clinical Research Network. Mitchell et al
260	(Mitchell et al., 2018) found less liver fibrosis in exclusive light wine drinkers, but not in
261	exclusive beer drinkers, compared to lifetime abstinent subjects. The association with reduced
262	liver fibrosis was not seen in subjects reporting binge drinking.
263	
264	Furthermore, Hagström et al (Hagstrom et al., 2017) also found less liver fibrosis among those
265	reporting low alcohol consumption, but, somewhat paradoxically, they found an association
266	between elevated alcohol markers (phosphatidylethanol) and more liver fibrosis.
267	
268	Wong et al (Wong et al., 2012) evaluated a population-based cohort of 922 subjects from Hong
269	Kong for liver steatosis and fibrosis by magnetic resonance spectroscopy and transient
270	elastography, respectively, and reported a weak direct correlation between alcohol use and
271	prevalent steatosis (non-significant in multivariate analysis), but no association with liver fibrosis.
272	
273	In a recent longitudinal study with paired liver biopsies of NAFLD patients, Ajmera et al (Ajmera
274	et al., 2018) found low alcohol use ($\leq 2 \text{ drinks/day}$) associated with lower odds of NASH
275	resolution compared with abstinence (OR 0.32) on adjusted analysis, and the drinkers exhibited
276	less reduction over time in steatosis grade and AST level. The study excluded former drinkers
277	from the abstinent group. These data provide strong evidence for liver harm from low alcohol use,
278	strongly challenging the cross-sectional studies above, although partly based on the same patients
279	(Dunn et al., 2012).
280	
281	Ekstedt et al (Ekstedt et al., 2009) found binge drinking at least once monthly associated with
282	faster fibrosis progression in NAFLD.

283

A recent Mendelian randomization study categorized patients with NAFLD based on their
aldehyde dehydrogenase genotype to those prone to consume more or less alcohol (Sookoian et
al., 2016). The NAFLD patients genetically prone to drink less alcohol had less hepatic steatosis
and less features of steatohepatitis on histology compared to those prone to drink more alcohol,
which again suggests harmful effects of alcohol use in NAFLD.

289

In a large longitudinal Korean population cohort of 58 927 individuals with ultrasound-based 290 291 steatosis, Chang et al (Chang et al., 2019) found light to moderate alcohol intake associated with a 292 worsening of liver fibrosis over time based on non-invasive fibrosis markers. However, although 293 suitable for ruling out advanced fibrosis, these non-invasive fibrosis markers have a low positive 294 predictive value for fibrosis, and have not been validated for assessing change in fibrosis over 295 time. Age is a component in the scores used, and a rising score is thus, in part, a consequence of 296 aging itself. It therefore remains unclear whether the worsening in the fibrosis scores over time 297 truly reflect fibrosis progression.

298

Another longitudinal Japanese study of NAFLD patients from a specialized hepatology center
found increased HCC risk with increasing alcohol use, becoming significant at ≥40 g/day
(Kawamura et al., 2016).

302

303 We recently reported the findings from a large cohort study of 8345 individuals with hepatic 304 steatosis (fatty liver index >60) from the Finnish general population with linkage to nationwide reliable registries for hard clinical endpoints (hospital admission, cancer, or death related to 305 306 advanced liver disease), and with adjustment for multiple acknowledged confounders and with 307 exclusion of former drinkers (Åberg et al., 2019a). In this study, the presence of steatosis at 308 baseline amplified the dose-dependent risk relationship between alcohol and incident liver disease. 309 Among subjects with baseline steatosis, we found no benefits from low alcohol intake with 310 regards to the risk for incident advanced clinical liver disease (Åberg et al., 2019a). Consuming 311 more than 10 g/day of alcohol increased the risk for liver disease in a dose-dependent fashion regardless of the level of adjustment for confounders. One drink per day of non-wine beverages, or 312 313 2 drinks per day as wine, doubled the risk for advanced liver disease compared to lifetime abstinence or minimal alcohol intake. 314

315

Extending these findings, among obese men in the general population with a waist-hip ratio in the
highest tertile, 1 daily alcohol drink yielded a similar relative risk for incident liver disease as 4
daily drinks in non-obese men (Figure 3) (Sahlman et al., 2019). This means that, in the presence
of marked abdominal obesity, hepatic toxicity of alcohol increases by a number of four.

Vilar-Gomez et al (Vilar-Gomez et al., 2018) found that, in patients with NAFLD-cirrhosis, low
alcohol use (<30 g/day for men and <20g/d for women) was associated with an increased risk of
death or liver transplantation (hazards ratio 2.3), hepatic decompensation (hazards ratio 1.7), and
HCC (hazards ratio 3.2) compared to abstinence, a finding that reinforces the need for absolute
alcohol abstinence in patients with cirrhosis. Two additional studies found an increased risk for
HCC among NAFLD patients with advanced fibrosis or cirrhosis reporting any alcohol use (Ascha
et al., 2010; Kimura et al., 2018).

328

329 Extra-hepatic outcomes in NAFLD

A J-shaped cardiovascular- and mortality benefit from low alcohol use in the general population is
widely reported (Di Castelnuovo et al., 2006), but has recently been questioned by the findings
from a robust meta-analysis (Wood et al., 2018).

333

A recent study in NAFLD patients with prospectively assessed alcohol consumption over time
found no association between low alcohol use and the presence of cardiovascular risk factors or
subclinical cardiovascular disease (VanWagner et al., 2017).

337

338 There are conflicting data regarding a J-shaped relationship between low alcohol use and all-cause

death in NAFLD cohorts in recent population-based studies (Younossi et al., 2019; Åberg et al.,

2019a; Hajifathalian et al., 2019). In our longitudinal population study, such a J-shaped

341 association between low alcohol use and all-cause death was only seen among never smokers, not

among current or former smokers (Åberg et al., 2019a). Alcohol intake more than 30 g/day was

343 associated with increased mortality in all NAFLD subjects.

344

Even low alcohol intake is associated with an increased risk for several types of cancer both in the
general population (Cao et al., 2015; Bagnardi et al., 2013) and in individuals with NAFLD
(Åberg et al., 2019a).

348

349 **Discussion**

350

351 Interaction between hazardous alcohol use and metabolic risk

352 The majority of studies report significant supra-additive interaction between hazardous alcohol use 353 and obesity for various liver outcomes including clinical ones (hospital admission due to liver 354 disease, liver cancer and liver-related death). Based on longitudinal studies with clinical liver 355 endpoints, approximately 50% of the excess risk for liver disease from the combination of 356 hazardous alcohol use and obesity is due to their interaction effects, whereas the remaining 50% is due to the independent effects of alcohol and obesity. However, there was considerable variation 357 358 by study to the interaction estimate (range 0-67%), largely explained by methodological differences. Alcohol, metabolic factors and their interactions may also affect the various liver 359 360 outcomes differently.

361

The synergistic interactions observed in these epidemiological studies are well in line with mechanistic studies showing hepatotoxic effects from the combined exposure to alcohol and highfat diet above and beyond the sum of their individual effects (Minato et al., 2014; Xu et al., 2011; Duly et al., 2015).

366

A number of caveats merit consideration when interpreting the epidemiologic findings. Many
studies failed to exclude former heavy drinkers from the reference group. Former drinkers may be
enriched with more co-morbidity and other factors affecting the choice to abstain from alcohol but
simultaneously raising the risk for liver disease (sick quitter bias). This may attenuate the observed
harm from alcohol in epidemiological studies.

372

Similarly, there seems to be a U-shaped association between BMI and incident liver outcomes
(Liu et al., 2010), where underweight might reflect liver disease or other form of illness. In
addition, in case-control studies where BMI is measured when the patient is already ill may not

- 376 reflect the person's usual weight. Prospective population cohort studies have an advantage in this377 regard as BMI will generally reflect a healthy weight.
- 378

None of the longitudinal studies with clinical endpoints seems to have excluded both underweight
subjects and previous heavy drinkers from the reference group. If one were to apply these
exclusion criteria, the synergistic interaction would expectedly be even more pronounced.

382

BMI is an imperfect index for obesity when assessing risk for liver disease. Measures that better
reflect abdominal, also called visceral or central, adiposity, such as waist circumference and waisthip ratio (WHR), seem superior to BMI in predicting incident liver disease (Åberg et al., 2018;
Pang et al., 2015; Andreasson et al., 2017; Ioannou et al., 2005). The supra-additive interaction
effect also seems to become stronger when obesity is measured by the WHR (Sahlman et al.,
2019) or waist circumference (Åberg et al., 2018).

389

390 Binge drinking

Binge drinking, or heavy episodic drinking, is generally defined as drinking 60 gram alcohol or
more on one occasion at least once during the last month (WHO, 2018). Binge drinking has a
number of potentially harmful effects on the liver (Llerena et al., 2015), and has, for example,
been shown to induce insulin resistance that lasts even after blood alcohol levels become
undetectable (Lindtner et al., 2013). This contrasts to the improved insulin sensitivity associated
with low alcohol use.

397

398 Binge drinking habits may be neglected in studies assessing alcohol use through a quantity-399 frequency approach, in which the respondent reports the frequency of drinking during a specific 400 time-period and, separately, the typical amount of alcohol consumed on the days that they drank. 401 This approach may fail to capture variations in drinking around a reported typical quantity, such as 402 with irregular binge drinking. For example, a person who drinks two drinks daily and a person 403 who drinks the same amount plus ten additional drinks on Saturday might report the same typical 404 quantity of two drinks per occasion. Thus, there is a need to explicitly address the issue of binge 405 drinking.

406

- 407 Binge drinking has been associated with NAFLD progression in both clinical and mechanistic 408 studies (Llerena et al., 2015; Ventura-Cots et al., 2017). Binge drinking seems to counteract any 409 potential benefit from low alcohol use in NAFLD (Mitchell et al., 2018), and the risk associated 410 with binge drinking seems to arise at binge drinking episodes as infrequently as once monthly (Åberg et al., 2017; Younossi et al., 2019). Binge drinking emerged as a significant risk factor for 411 412 liver disease only among those with the MetS, but not among those without it (Åberg et al., 2017). It could be speculated that a liver affected by steatosis may lack the capacity of a normal liver to 413 414 recover after each episode of drinking during the break from alcohol intake. In support of this, 415 animal studies show that intermittent alcohol administration serves as a "second hit" by 416 aggravating hepatic oxidative stress and promoting steatohepatitis and fibrosis in mice with
- 417 obesity-induced steatosis (Minato et al., 2014; Duly et al., 2015).
- 418

419 Low alcohol use in the presence of NAFLD or metabolic risk

Although cross-sectional studies report less liver fibrosis among NAFLD subjects with low
alcohol use compared to complete abstinence, the findings are conflicting among studies, the
potential benefit seems to be restricted to wine and non-binge drinking, and, most importantly,
these findings have not been replicated in longitudinal studies. On the contrary, all longitudinal
studies that analyzed specific histological or clinical liver outcomes report a tendency towards
harm to the liver from low alcohol use, without any clear threshold effect.

426

A weakness of cross-sectional studies over longitudinal ones is that the predictor and outcome is
measured at the same time, thereby limiting the ability to establish temporal relationship or
causality. On the other hand, many longitudinal studies are unable to determine changes over time
in the level of alcohol intake, or whether subjects develop additional risk factors over time.

431

A good example of the difference between cross-sectional and longitudinal analyzes are the
studies by Dunn et al (Dunn et al., 2012) and Ajmera et al (Ajmera et al., 2018), which were in
part based on the same patient population. Although both studies evaluated lifetime drinking and
made careful efforts to exclude previous drinkers and binge drinkers and adjusted for multiple
confounders, the cross-sectional study by Dunn et al (Dunn et al., 2012) found protective effects of
low alcohol use, whereas the longitudinal study by Ajmera et al (Ajmera et al., 2018) reported
harmful effects. Similarly, although low alcohol use has been found protective from steatosis in

- 439 numerous cross-sectional Japanese studies, the only longitudinal ones reported increased HCC risk
 440 (Kawamura et al., 2016; Kimura et al., 2018).
- 441

Clinic-based studies with liver biopsies often had limited statistical power for multivariate 442 analyses, whereas many large population studies had limited availability of confounding variables, 443 444 thereby risking incomplete adjustment for relevant confounding, especially diet. It is well known that individuals with low alcohol use tend to exhibit healthier dietary habits, healthier lifestyle, 445 higher socioeconomic status, and increased physical activity compared to complete abstainers 446 (Mukamal et al., 2006; Fillmore et al., 1998). These factors are difficult to fully adjust for in 447 448 observational studies. Such incomplete adjustment may exaggerate the protective effect of low alcohol use in NAFLD. 449

450

451 Many studies adjusted the effect of alcohol for BMI. Alcohol use may cause obesity through 452 excess calories, and obesity is a risk factor for chronic liver disease. Therefore, some of the effects 453 of alcohol may be mediated through excess calories and obesity. Adjustment for BMI when 454 analyzing associations between alcohol and liver disease may hence lead to an over-adjustment 455 bias, i.e. subjects who consume more alcohol are more likely to gain weight, which in turn 456 increases their risk of liver disease. This tends to attenuate the observed risks from alcohol. 457

Failure to separate lifetime abstainers from current abstainers (previous alcohol use, currently quit drinking) in many studies also leaves the potential for a sick quitter bias. Current abstainers may be enriched with former heavy drinkers who present a more severe liver disease that actually reflect irreversible alcoholic liver disease. Those with more severe liver disease may also be the ones that choose to quit drinking as a consequence of disease, thereby entering the "non-exposed" group.

464

465 There is concern for selection bias especially in clinic-based studies (Delgado-Rodriguez and 466 Llorca, 2004). Considering that the level of alcohol intake is itself involved in the definition of 467 NAFLD, filtering from clinical decision-making has already taken place when liver disease in a 468 patient with active alcohol use is categorized as NAFLD; this may result in a distorted spectrum of 469 baseline disease. Referral criteria of patients to liver clinics, recruitment to clinical studies, and the 470 number and characteristics of similar patients refusing study participation were often not clearly 471 specified. Survey-based general population studies have an advantage in this regard, as they do not
472 suffer the same selection bias inherent to clinic-based studies.

473

Alcohol intake was usually ascertained through the use of questionnaires, or in the clinical setting,
often by physician interviews. Such physician interviews have been shown to be less accurate in
discovering underlying alcohol risk use than cognitive lifetime drinking histories (Hayashi et al.,
2004).

478

479 Both intentional and unintentional underreporting of alcohol use is of major concern. Awareness 480 of a liver condition may lead to intentional underreporting of alcohol use by the patient in clinical 481 studies due to a fear that alcohol use will have a negative impact on the care provided. Indeed, 482 several studies suggest undetected significant alcohol use in many patients with hepatic steatosis 483 labeled as NAFLD (Hagstrom et al., 2017; Hayashi et al., 2004; Staufer et al., 2019). Again, 484 prospective population-based studies have an advantage over clinic-based studies, since healthy participants are more likely to respond honestly, and study subjects are often unaware of having 485 486 steatosis when it is defined by specific laboratory indices such as the fatty liver index.

487

488 Unintentional underreporting of alcohol use is also a concern. It is difficult for anyone to 489 accurately quantify a unit of alcohol, especially as serving size and alcohol content within and 490 across beverage type may vary considerably. Quantification of alcohol intake typically relies on 491 recall of past drinking, for instance during the last year, with a significant risk for recall bias 492 (Stockwell et al., 2004). Underreporting alcohol use tends to increase as risk drinking behaviors 493 increases, but this is complex and inconsistent (Isted et al., 2015). A general underreporting of 494 alcohol intake might overestimate the level of alcohol intake needed to induce liver harm, but 495 underreporting may also be skewed rather than general, whereby the net effect becomes less 496 predictable.

497

498 Suggestions for future research

A key limitation with current longitudinal studies is that alcohol intake is usually assessed only at
one point in time. There is a need for large longitudinal population-based studies that measure
alcohol intake at several time points to assess the impact of changes over time in alcohol use
patterns.

503	
504	Given that underreporting of alcohol use generally increases together with increasing alcohol use,
505	and that hazardous alcohol use can contribute to weight gain, potentially there may be more
506	underreporting of alcohol use in the obese group than in non-obese groups. Therefore, some of the
507	interaction effect between obesity and hazardous alcohol use could actually represent the effect of
508	unmeasured alcohol intake. To overcome this uncertainty related to questionnaire-based
509	ascertainment of alcohol use, there is a need for studies quantifying alcohol intake by sensitive and
510	specific biomarkers such as phosphatidylethanol (Viel et al., 2012).
511	
512	More study is also needed on how to best incorporate the interaction effects between alcohol and
513	metabolic risk in clinically useful risk stratification strategies. More data is needed on which
514	specific obesity-related metabolic components drive these harmful interaction effects for liver
515	disease. Factors influencing individual susceptibility to alcohol toxicity, including genetics, also
516	deserve further study.
517	
518	It seems that binge drinking is associated with progression of liver disease even when average
519	alcohol consumption is within the currently allowed limits to receive a NAFLD diagnosis. Binge
520	drinking probably warrants explicit consideration when designing drug trials in NAFLD, and
521	should be incorporated in the diagnostic criteria of NAFLD.
522	
523	Conclusions
524	Although not entirely consistent, current epidemiologic and clinical evidence point to considerable
525	supra-additive interaction for the risk of liver disease between hazardous alcohol use and
526	metabolic abnormalities including obesity, diabetes and the MetS. This merits increased attention
527	in disease prevention, risk stratification, and individual counseling.
528	
529	There is no clear safe limit of alcohol intake in the presence of NAFLD or metabolic risk. The
530	presence of steatosis seems to amplify alcoholic liver toxicity. Recent studies based on unselected
531	population cohorts of subjects unaware of having steatosis with longitudinal follow-up for clinical
532	liver outcomes, and with comprehensive adjustment for confounders, report low alcohol use being
533	associated with an elevated risk for incident liver disease. However, in individuals with NAFLD

without advanced liver fibrosis, the absolute risk increase from maximum 1 daily standard glass ofwine (10g of ethanol) seems small.

536

537 Although low alcohol use might ameliorate insulin resistance and thereby possibly reduce hepatic

538 steatosis, alcohol's numerous detrimental effects extend well beyond simple fat accumulation, and

539 the net effect seems to be harmful already at low doses. There is no clinical evidence to support

540 that low alcohol would protect from symptomatic liver disease. In NAFLD with advanced liver

541 disease or particular risk for progressive liver disease, complete alcohol abstinence is advised.

- 542
- 543
- 544

545

546	References
547	Åbarg F. Halanius Histola I. Duukka D. Förkkilö M. Jula A. (2018) Interaction between alcohol
547	consumption and metabolic syndrome in predicting severe liver disease in the general
5/9	nonulation. Hepatology 67:2141-2149
545	population. Inepatology 07.2141-2149.
550	Åberg F, Helenius-Hietala J, Puukka P, Jula A (2017) Binge drinking and the risk of liver events:
551	A population-based cohort study. Liver Int 37:1373-1381.
552	Aberg F, Puukka P, Sahlman P, Nissinen M, Salomaa V, Männistö S, Lundqvist A, Valsta L,
553	Perola M, Jula A, Färkkilä M (2019) Metabolic risk factors for advanced liver disease
554	among alcohol risk users in the general population Journal of hepatology 70 Supplement
555	1:E2/3.
556	Åberg F, Puukka P, Salomaa V, Männistö S, Lundqvist A, Valsta L, Perola M, Färkkilä M, Jula A
557	(2019a) Risks of light and moderate alcohol use in fatty liver disease - follow-up of
558	population cohorts. Hepatology 2019.
559	Åberg F, Puukka P, Salomaa V, Männistö S, Lundqvist A, Valsta L, Perola M, Jula A, Färkkilä M
560	(2019b) Combined Effects of Alcohol and Metabolic Disorders in Patients With Chronic
561	Liver Disease. Clin Gastroenterol Hepatol 2019.
562	Adams I.A. Knuiman MW. Divitini ML. Olynyk JK (2008) Body mass index is a stronger
563	predictor of alanine aminotransaminase levels than alcohol consumption. J Gastroenterol
564	Hepatol 23:1089-1093.
565	Ajmera V, Belt P, Wilson LA, Gill RM, Loomba R, Kleiner DE, Neuschwander-Tetri BA,
566	Terrault N, Nonalcoholic Steatohepatitis Clinical Research Network (2018) Among Patients
567	With Nonalcoholic Fatty Liver Disease, Modest Alcohol Use Is Associated With Less
568	Improvement in Histologic Steatosis and Steatohepatitis. Clin Gastroenterol Hepatol 16:1511-
569	1520.e5.
570	Ajmera VH, Terrault NA, Harrison SA (2017) Is moderate alcohol use in nonalcoholic fatty liver
571	disease good or bad? A critical review. Hepatology 65:2090-2099.

572	Ala	talo PI, Koivisto HM, Hietala JP, Puukka KS, Bloigu R, Niemelä OJ (2008) Effect of moderate
573		alcohol consumption on liver enzymes increases with increasing body mass index. Am J Clin
574		Nutr 88:1097-1103.

Ampuero J, Aller R, Gallego-Duran R, Banales JM, Crespo J, Garcia-Monzon C, Pareja MJ,
Vilar-Gomez E, Caballeria J, Escudero-Garcia D, Gomez-Camarero J, Calleja JL, Latorre M,
Albillos A, Salmeron J, Aspichueta P, Lo Iacono O, Frances R, Benlloch S, FernandezRodriguez C, Garcia-Samaniego J, Estevez P, Andrade RJ, Turnes J, Romero-Gomez M,
HEPAmet Registry (2018) The effects of metabolic status on non-alcoholic fatty liver
disease-related outcomes, beyond the presence of obesity. Aliment Pharmacol Ther 48:12601270.

Andreasson A, Carlsson AC, Onnerhag K, Hagstrom H (2017) Waist/Hip Ratio Better Predicts
Development of Severe Liver Disease Within 20 Years Than Body Mass Index: A
Population-based Cohort Study. Clin Gastroenterol Hepatol 15:1294-1301.e2.

Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN (2010) The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51:1972-1978.

Askgaard G, Gronbaek M, Kjaer MS, Tjonneland A, Tolstrup JS (2015) Alcohol drinking pattern and risk of alcoholic liver cirrhosis: a prospective cohort study. J Hepatol 62:1061-1067.

Asrani SK, Devarbhavi H, Eaton J, Kamath PS (2019) Burden of liver diseases in the world. J
Hepatol 70:151-171.

Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, Scotti L, Jenab M, Turati F,
Pasquali E, Pelucchi C, Bellocco R, Negri E, Corrao G, Rehm J, Boffetta P, La Vecchia C
(2013) Light alcohol drinking and cancer: a meta-analysis. Ann Oncol 24:301-308.

Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F, Cristanini G, Tiribelli C
(2000) Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med
132:112-117.

598	Boyle M, Masson S, Anstee QM (2018) The bidirectional impacts of alcohol consumption and the
599	metabolic syndrome: Cofactors for progressive fatty liver disease. J Hepatol 68:251-267.
600	Caballeria L, Pera G, Arteaga I, Rodriguez L, Aluma A, Morillas RM, de la Ossa N, Diaz A,
601	Exposito C, Miranda D, Sanchez C, Prats RM, Urquizu M, Salgado A, Alemany M, Martinez
602	A, Majeed I, Fabrellas N, Graupera I, Planas R, Ojanguren I, Serra M, Toran P, Caballeria J,
603	Gines P (2018) High Prevalence of Liver Fibrosis Among European Adults With Unknown
604	Liver Disease: A Population-Based Study. Clin Gastroenterol Hepatol 16:1138-1145.e5.
605	Cao Y, Willett WC, Rimm EB, Stampfer MJ, Giovannucci EL (2015) Light to moderate intake of
606	alcohol, drinking patterns, and risk of cancer: results from two prospective US cohort studies.
607	BMJ 351:h4238.
600	
608	Chalasani N, Younossi Z, Lavine JE, Chariton M, Cusi K, Rinella M, Harrison SA, Brunt EM,
609	Sanyal AJ (2018) The diagnosis and management of nonalcoholic fatty liver disease: Practice
610	guidance from the American Association for the Study of Liver Diseases. Hepatology 67:328-
611	357.
612	Chang Y. Cho YK. Kim Y. Sung E. Ahn J. Jung HS. Yun KE. Shin H. Ryu S (2019) Nonheavy
613	Drinking and Worsening of Noninvasive Fibrosis Markers in Nonalcoholic Fatty Liver
614	Disease: A Cohort Study Hepatology 69:64-75
615	Cotrim HP, Freitas LA, Alves E, Almeida A, May DS, Caldwell S (2009) Effects of light-to-
616	moderate alcohol consumption on steatosis and steatohepatitis in severely obese patients. Eur
617	J Gastroenterol Hepatol 21:969-972.
618	Davies MJ, Baer DJ, Judd JT, Brown ED, Campbell WS, Taylor PR (2002) Effects of moderate
619	alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in
620	postmenopausal women: a randomized controlled trial. JAMA 287:2559-2562.
621	Delgado-Rodriguez M, Llorca J (2004) Bias. J Epidemiol Community Health 58:635-641.

622	Di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L, de Gaetano G (2006)
623	Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34
624	prospective studies. Arch Intern Med 166:2437-2445.
625	Diehl AM, Day C (2017) Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. N
626	Engl J Med 377:2063-2072.
627	Dixon JB, Bhathal PS, O'Brien PE (2001) Nonalcoholic fatty liver disease: predictors of
628	nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 121:91-
629	100.
630	Duly AM, Alani B, Huang EY, Yee C, Haber PS, McLennan SV, Seth D (2015) Effect of multiple
631	binge alcohol on diet-induced liver injury in a mouse model of obesity. Nutr Diabetes 5:e154.
632	Dunn W, Sanyal AJ, Brunt EM, Unalp-Arida A, Donohue M, McCullough AJ, Schwimmer JB
633	(2012) Modest alcohol consumption is associated with decreased prevalence of steatohepatitis
634	in patients with non-alcoholic fatty liver disease (NAFLD). J Hepatol 57:384-391.
635	Ekstedt M, Franzen LE, Holmqvist M, Bendtsen P, Mathiesen UL, Bodemar G, Kechagias S
636	(2009) Alcohol consumption is associated with progression of hepatic fibrosis in non-
637	alcoholic fatty liver disease. Scand J Gastroenterol 44:366-374.
638	European Association for the Study of the Liver (EASL), European Association for the Study of
639	Diabetes (EASD), European Association for the Study of Obesity (EASO) (2016) EASL-
640	EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver
641	disease. J Hepatol 64:1388-1402.
642	Fillmore KM, Golding JM, Graves KL, Kniep S, Leino EV, Romelsjo A, Shoemaker C, Ager CR,
643	Allebeck P, Ferrer HP (1998) Alcohol consumption and mortality. I. Characteristics of
644	drinking groups. Addiction 93:183-203.
645	GBD 2016 Alcohol Collaborators (2018) Alcohol use and burden for 195 countries and territories,
646	1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet
647	392:1015-1035.

648	Gresele P, Cerletti C, Guglielmini G, Pignatelli P, de Gaetano G, Violi F (2011) Effects of
649	resveratrol and other wine polyphenols on vascular function: an update. J Nutr Biochem
650	22:201-211.
651	Gunji T, Matsuhashi N, Sato H, Fujibayashi K, Okumura M, Sasabe N, Urabe A (2009) Light and
652	moderate alcohol consumption significantly reduces the prevalence of fatty liver in the
653	Japanese male population. Am J Gastroenterol 104:2189-2195.
654	Gutierrez-Grobe Y, Juarez-Hernandez E, Sanchez-Jimenez BA, Uribe-Ramos MH, Ramos-Ostos
655	MH, Uribe M, Chavez-Tapia NC (2017) Less liver fibrosis in metabolically healthy compared
656	with metabolically unhealthy obese patients with non-alcoholic fatty liver disease. Diabetes
657	Metab 43:332-337.
658	Hagström H, Hemmingsson T, Discacciati A, Andreasson A (2018) Alcohol consumption in late
659	adolescence is associated with an increased risk of severe liver disease later in life. J Hepatol
660	68:505-510.
661	Hagström H, Nasr P, Ekstedt M, Kechagias S, Onnerhag K, Nilsson E, Rorsman F, Sheikhi R,
662	Marschall HU, Hultcrantz R, Stal P (2017) Low to moderate lifetime alcohol consumption is
663	associated with less advanced stages of fibrosis in non-alcoholic fatty liver disease. Scand J
664	Gastroenterol 52:159-165.
665	Hagström H, Tynelius P, Rasmussen F (2018) High BMI in late adolescence predicts future severe
666	liver disease and hepatocellular carcinoma: a national, population-based cohort study in 1.2
667	million men. Gut 67:1536-1542.
668	Hajifathalian K. Torahi Sagyand B. McCullough AI (2019) Effect of Alcohol Consumption on
669	Survival in Nonalcoholic Fatty Liver Disease: A National Prospective Cohort Study
670	Henatology 70:511-521
070	
671	Hamaguchi M, Kojima T, Ohbora A, Takeda N, Fukui M, Kato T (2012) Protective effect of
672	alcohol consumption for fatty liver but not metabolic syndrome. World J Gastroenterol
673	18:156-167.

674	Harr	ris R, Harman DJ, Card TR, Aithal GP, Guha IN (2017) Prevalence of clinically significant
675		liver disease within the general population, as defined by non-invasive markers of liver
676		fibrosis: a systematic review. Lancet Gastroenterol Hepatol 2:288-297.

Hart CL, Morrison DS, Batty GD, Mitchell RJ, Davey Smith G (2010) Effect of body mass index
and alcohol consumption on liver disease: analysis of data from two prospective cohort
studies. BMJ 340:c1240.

Hassan MM, Hwang LY, Hatten CJ, Swaim M, Li D, Abbruzzese JL, Beasley P, Patt YZ (2002)
Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and
diabetes mellitus. Hepatology 36:1206-1213.

Hayashi PH, Harrison SA, Torgerson S, Perez TA, Nochajski T, Russell M (2004) Cognitive
lifetime drinking history in nonalcoholic fatty liver disease: some cases may be alcohol
related. Am J Gastroenterol 99:76-81.

Hiramine Y, Imamura Y, Uto H, Koriyama C, Horiuchi M, Oketani M, Hosoyamada K, Kusano
K, Ido A, Tsubouchi H (2011) Alcohol drinking patterns and the risk of fatty liver in Japanese
men. J Gastroenterol 46:519-528.

Ioannou GN, Weiss NS, Boyko EJ, Kowdley KV, Kahn SE, Carithers RL, Tsai EC, Dominitz JA
(2005) Is central obesity associated with cirrhosis-related death or hospitalization? A
population-based, cohort study. Clin Gastroenterol Hepatol 3:67-74.

692 Isted A, Fiorini F, Tillmann T (2015) Knowledge gaps and acceptability of abbreviated alcohol
693 screening in general practice: a cross-sectional survey of hazardous and non-hazardous
694 drinkers. BMC Fam Pract 16:72-015-0290-1.

Kawamura Y, Arase Y, Ikeda K, Akuta N, Kobayashi M, Saitoh S, Suzuki F, Suzuki Y, Inao M,
Mochida S, Kumada H (2016) Effects of Alcohol Consumption on Hepatocarcinogenesis in
Japanese Patients With Fatty Liver Disease. Clin Gastroenterol Hepatol 14:597-605.

Kimura T, Tanaka N, Fujimori N, Sugiura A, Yamazaki T, Joshita S, Komatsu M, Umemura T,
Matsumoto A, Tanaka E (2018) Mild drinking habit is a risk factor for hepatocarcinogenesis

700 701	in non-alcoholic fatty liver disease with advanced fibrosis. World J Gastroenterol 24:1440- 1450.
702	Kourkoumpetis T, Sood G (2019) Pathogenesis of Alcoholic Liver Disease: An Update. Clin Liver
703	Dis 23:71-80.
704	Kwon HK, Greenson JK, Conjeevaram HS (2014) Effect of lifetime alcohol consumption on the
705	histological severity of non-alcoholic fatty liver disease. Liver Int 34:129-135.
706	Lau K, Baumeister SE, Lieb W, Meffert PJ, Lerch MM, Mayerle J, Volzke H (2015) The
707	combined effects of alcohol consumption and body mass index on hepatic steatosis in a
708	general population sample of European men and women. Aliment Pharmacol Ther 41:467-
709	476.
710	Lindtner C, Scherer T, Zielinski E, Filatova N, Fasshauer M, Tonks NK, Puchowicz M, Buettner
711	C (2013) Binge drinking induces whole-body insulin resistance by impairing hypothalamic
712	insulin action. Sci Transl Med 5:170ra14.
713	Liu B, Balkwill A, Reeves G, Beral V, Million Women Study Collaborators (2010) Body mass
714	index and risk of liver cirrhosis in middle aged UK women: prospective study. BMJ
715	340:c912.
716	Llerena S, Arias-Loste MT, Puente A, Cabezas J, Crespo J, Fabrega E (2015) Binge drinking:
717	Burden of liver disease and beyond. World J Hepatol 7:2703-2715.
718	Loomba R, Bettencourt R, Barrett-Connor E (2009) Synergistic association between alcohol
719	intake and body mass index with serum alanine and aspartate aminotransferase levels in older
720	adults: the Rancho Bernardo Study. Aliment Pharmacol Ther 30:1137-1149.
721	Loomba R, Yang HI, Su J, Brenner D, Barrett-Connor E, Iloeje U, Chen CJ (2013) Synergism
722	between obesity and alcohol in increasing the risk of hepatocellular carcinoma: a prospective
723	cohort study. Am J Epidemiol 177:333-342.

724	Loomba R, Yang HI, Su J, Brenner D, Iloeje U, Chen CJ (2010) Obesity and alcohol synergize to
725	increase the risk of incident hepatocellular carcinoma in men. Clin Gastroenterol Hepatol
726	8:891-8, 898.e1-2.
727	Marrero JA, Fontana RJ, Fu S, Conjeevaram HS, Su GL, Lok AS (2005) Alcohol, tobacco and
728	obesity are synergistic risk factors for hepatocellular carcinoma. J Hepatol 42:218-224.
729	Minato T, Tsutsumi M, Tsuchishima M, Hayashi N, Saito T, Matsue Y, Toshikuni N, Arisawa T,
730	George J (2014) Binge alcohol consumption aggravates oxidative stress and promotes
731	pathogenesis of NASH from obesity-induced simple steatosis. Mol Med 20:490-502.
732	Mitchell T, Jeffrey GP, de Boer B, MacQuillan G, Garas G, Ching H, Hamdorf J, Adams LA
733	(2018) Type and Pattern of Alcohol Consumption is Associated With Liver Fibrosis in
734	Patients With Non-alcoholic Fatty Liver Disease. Am J Gastroenterol .
735	Moriya A, Iwasaki Y, Ohguchi S, Kayashima E, Mitsumune T, Taniguchi H, Ando M, Yamamoto
736	K (2015) Roles of alcohol consumption in fatty liver: a longitudinal study. J Hepatol 62:921-
737	927.
729	Moriya A, Iwasaki V, Obguchi S, Kayashima F, Mitsumuna T, Taniguchi H, Ikada F, Shiratori V
730	Vamamoto K (2011) Alcohol consumption appears to protect against non-alcoholic fatty liver
733	disease Aliment Pharmacol Ther 33:378-388
740	disease. Annen Thannacol Ther 55.578-588.
741	Mukamal KJ, Ding EL, Djousse L (2006) Alcohol consumption, physical activity, and chronic
742	disease risk factors: a population-based cross-sectional survey. BMC Public Health 6:118-
743	2458-6-118.
744	Niemelä O, Alatalo P (2010) Biomarkers of alcohol consumption and related liver disease. Scand J
745	Clin Lab Invest 70:305-312.
746	OECD Obesity Update 2017. Accessed August 1, 2019.
747	O'Neill S, O'Driscoll L (2015) Metabolic syndrome: a closer look at the growing epidemic and its
748	associated pathologies. Obes Rev 16:1-12.

749	Pang Q, Zhang JY, Song SD, Qu K, Xu XS, Liu SS, Liu C (2015) Central obesity and
750	nonalcoholic fatty liver disease risk after adjusting for body mass index. World J
751	Gastroenterol 21:1650-1662.
752	Park EY, Lim MK, Oh JK, Cho H, Bae MJ, Yun EH, Kim DI, Shin HR (2013) Independent and
753	supra-additive effects of alcohol consumption, cigarette smoking, and metabolic syndrome on
754	the elevation of serum liver enzyme levels. PLoS One 8:e63439.
755	Rehm J, Taylor B, Mohapatra S, Irving H, Baliunas D, Patra J, Roerecke M (2010) Alcohol as a
756	risk factor for liver cirrhosis: a systematic review and meta-analysis. Drug Alcohol Rev
757	29:437-445.
758	Roerecke M, Vafaei A, Hasan OSM, Chrystoja BR, Cruz M, Lee R, Neuman MG, Rehm J (2019)
759	Alcohol Consumption and Risk of Liver Cirrhosis: A Systematic Review and Meta-Analysis.
760	Am J Gastroenterol 114:1574-1586.
761	Rothman K (2002) Measuring Interactions, in Epidemiology: An Introduction, Vol. 1, (Rothman
762	K ed), pp 168-180. Oxford University Press.
763	Ruhl CE, Everhart JE (2005) Joint effects of body weight and alcohol on elevated serum alanine
764	aminotransferase in the United States population. Clin Gastroenterol Hepatol 3:1260-1268.
765	Sahlman P, Nissinen M, Puukka P, Jula A, Salomaa V, Männistö S, Lundqvist A, Valsta L, Perola
766	M, Färkkilä M, Åberg F (2019) Genetic and life-style risk factors for advanced liver disease
767	among men and women. J Gastroenterol Hepatol 2019.
768	Shen Z, Li Y, Yu C, Shen Y, Xu L, Xu C, Xu G (2010) A cohort study of the effect of alcohol
769	consumption and obesity on serum liver enzyme levels. Eur J Gastroenterol Hepatol 22:820-
770	825.
771	Sierksma A, Patel H, Ouchi N, Kihara S, Funahashi T, Heine RJ, Grobbee DE, Kluft C, Hendriks
772	HF (2004) Effect of moderate alcohol consumption on adiponectin, tumor necrosis factor-
773	alpha, and insulin sensitivity. Diabetes Care 27:184-189.

774	Simpson RF, Hermon C, Liu B, Green J, Reeves GK, Beral V, Floud S, Million Women Study
775	Collaborators (2019) Alcohol drinking patterns and liver cirrhosis risk: analysis of the
776	prospective UK Million Women Study. Lancet Public Health 4:e41-e48.
777	Sockoian S. Castano GO. Pirola CI (2014) Modest alcohol consumption decreases the risk of non-
778	alcoholic fatty liver disease: a meta-analysis of 43 175 individuals. Gut 63:530-532
110	aconone fatty fiver disease. a meta-analysis of 45 175 individuals. Gut 05.550-552.
779	Sookoian S, Flichman D, Castano GO, Pirola CJ (2016) Mendelian randomisation suggests no
780	beneficial effect of moderate alcohol consumption on the severity of nonalcoholic fatty liver
781	disease. Aliment Pharmacol Ther 44:1224-1234.
782	Staufer K, Strebinger G, Huber-Schoenauer U, et al. (2019) Ethyl glucuronide inhair uncovers a
783	high rate of harmful alcohol consumption in patients with presumed NAFLD Journal of
784	hepatology 70 Supplement 1:E784.
785	Stepanova M, Rafiq N, Younossi ZM (2010) Components of metabolic syndrome are independent
786	predictors of mortality in patients with chronic liver disease: a population-based study. Gut
787	59:1410-1415.
788	Stockwell T. Donath S. Cooper-Stanbury M. Chikritzhs T. Catalano P. Mateo C. (2004) Under-
789	reporting of alcohol consumption in household surveys: a comparison of quantity-frequency
790	graduated-frequency and recent recall. Addiction 99:1024-1033
750	graduated frequency and recent recail. Addiction 77.1024 1055.
791	Suomela E, Oikonen M, Virtanen J, Parkkola R, Jokinen E, Laitinen T, Hutri-Kahonen N,
792	Kahonen M, Lehtimäki T, Taittonen L, Tossavainen P, Jula A, Loo BM, Mikkila V, Younossi
793	Z, Viikari JS, Juonala M, Raitakari OT (2015) Prevalence and determinants of fatty liver in
794	normal-weight and overweight young adults. The Cardiovascular Risk in Young Finns Study.
795	Ann Med 47:40-46.
796	Takahashi H, Ono M, Hyogo H, Tsuji C, Kitajima Y, Ono N, Eguchi T, Fujimoto K, Chayama K,
797	Saibara T, Anzai K, Eguchi Y (2015) Biphasic effect of alcohol intake on the development of
798	fatty liver disease. J Gastroenterol 50:1114-1123.

799	Thun MJ, Peto R, Lopez AD, Monaco JH, Henley SJ, Heath CW, Jr, Doll R (1997) Alcohol
800	consumption and mortality among middle-aged and elderly U.S. adults. N Engl J Med
801	337:1705-1714.
802	VanWagner LB, Ning H, Allen NB, Ajmera V, Lewis CE, Carr JJ, Lloyd-Jones DM, Terrault NA,
803	Siddique J (2017) Alcohol Use and Cardiovascular Disease Risk in Patients With
804	Nonalcoholic Fatty Liver Disease. Gastroenterology 153:1260-1272.e3.
805	Ventura-Cots M, Watts AE, Bataller R (2017) Binge drinking as a risk factor for advanced
806	alcoholic liver disease. Liver Int 37:1281-1283.
807	Viel G, Boscolo-Berto R, Cecchetto G, Fais P, Nalesso A, Ferrara SD (2012) Phosphatidylethanol
808	in blood as a marker of chronic alcohol use: a systematic review and meta-analysis. Int J Mol
809	Sci 13:14788-14812.
810	Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V, Castellanos M, Aller-de la Fuente R,
811	Metwally M, Eslam M, Gonzalez-Fabian L, Alvarez-Quinones Sanz M, Conde-Martin AF,
812	De Boer B, McLeod D, Hung Chan AW, Chalasani N, George J, Adams LA, Romero-Gomez
813	M (2018) Fibrosis Severity as a Determinant of Cause-Specific Mortality in Patients With
814	Advanced Nonalcoholic Fatty Liver Disease: A Multi-National Cohort Study.
815	Gastroenterology 155:443-457.e17.
816	Wong VW, Chu WC, Wong GL, Chan RS, Chim AM, Ong A, Yeung DK, Yiu KK, Chu SH, Woo
817	J, Chan FK, Chan HL (2012) Prevalence of non-alcoholic fatty liver disease and advanced
818	fibrosis in Hong Kong Chinese: a population study using proton-magnetic resonance
819	spectroscopy and transient elastography. Gut 61:409-415.
820	Wood AM, Kaptoge S, Butterworth AS, Willeit P, Warnakula S, Bolton T, Paige E, Paul DS,
821	Sweeting M, Burgess S, Bell S, Astle W, Stevens D, Koulman A, Selmer RM, Verschuren
822	WMM, Sato S, Njolstad I, Woodward M, Salomaa V, Nordestgaard BG, Yeap BB, Fletcher
823	A, Melander O, Kuller LH, Balkau B, Marmot M, Koenig W, Casiglia E, Cooper C, Arndt V,
824	Franco OH, Wennberg P, Gallacher J, de la Camara AG, Volzke H, Dahm CC, Dale CE,
825	Bergmann MM, Crespo CJ, van der Schouw YT, Kaaks R, Simons LA, Lagiou P, Schoufour
826	JD, Boer JMA, Key TJ, Rodriguez B, Moreno-Iribas C, Davidson KW, Taylor JO, Sacerdote

827	C, Wallace RB, Quiros JR, Tumino R, Blazer DG,2nd, Linneberg A, Daimon M, Panico S,
828	Howard B, Skeie G, Strandberg T, Weiderpass E, Nietert PJ, Psaty BM, Kromhout D,
829	Salamanca-Fernandez E, Kiechl S, Krumholz HM, Grioni S, Palli D, Huerta JM, Price J,
830	Sundstrom J, Arriola L, Arima H, Travis RC, Panagiotakos DB, Karakatsani A, Trichopoulou
831	A, Kuhn T, Grobbee DE, Barrett-Connor E, van Schoor N, Boeing H, Overvad K, Kauhanen
832	J, Wareham N, Langenberg C, Forouhi N, Wennberg M, Despres JP, Cushman M, Cooper
833	JA, Rodriguez CJ, Sakurai M, Shaw JE, Knuiman M, Voortman T, Meisinger C, Tjonneland
834	A, Brenner H, Palmieri L, Dallongeville J, Brunner EJ, Assmann G, Trevisan M, Gillum RF,
835	Ford I, Sattar N, Lazo M, Thompson SG, Ferrari P, Leon DA, Smith GD, Peto R, Jackson R,
836	Banks E, Di Angelantonio E, Danesh J, Emerging Risk Factors Collaboration/EPIC-CVD/UK
837	Biobank Alcohol Study Group (2018) Risk thresholds for alcohol consumption: combined
838	analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies.
839	Lancet 391:1513-1523.
840 Wo	orld Health Organization. Global Status Report on Alcohol and Health 2018. Accessed August
841	1, 2019.
842 Xu	J. Lai KKY, Verlinsky A, Lugea A, French SW, Cooper MP, Ji C, Tsukamoto H (2011)
843	Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased
844	adiponectin and p-AMPK. J Hepatol 55:673-682.
845 Ya	mada T, Fukatsu M, Suzuki S, Yoshida T, Tokudome S, Joh T (2010) Alcohol drinking may
846	not be a major risk factor for fatty liver in Japanese undergoing a health checkup. Dig Dis Sci
847	55:176-182.
949 V:	SW Hong IS Vi II Ohm II (2016) Impact of clockel consumption and hady mass index on
848 11	sw, Hong JS, 11 JJ, Onir H (2016) impact of alcohol consumption and body mass index on
849	disorders in Kersen older middle and ment Progrative schort study. Medicine (Deltimore)
85U 9E1	05:04876
851	95.04870.
852 Yo	unossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global
853	epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence,
854	incidence, and outcomes. Hepatology 64:73-84.

Younossi ZM, Stepanova M, Ong J, Yilmaz Y, Duseja A, Eguchi Y, El Kassas M, CastellanosFernandez M, George J, Jacobson IM, Bugianesi E, Wong VW, Arrese M, de Ledinghen V,
Romero-Gomez M, Mendez-Sanchez N, Ahmed A, Wong R, Papatheodoridis G, Serfaty L,
Younossi I, Nader F, Ziayee M, Afendy A, Global NASH Council (2019) Effects of Alcohol
Consumption and Metabolic Syndrome on Mortality in Patients With Nonalcoholic and
Alcohol-Related Fatty Liver Disease. Clin Gastroenterol Hepatol 17:1625-1633.e1.

Yuan JM, Govindarajan S, Arakawa K, Yu MC (2004) Synergism of alcohol, diabetes, and viral
hepatitis on the risk of hepatocellular carcinoma in blacks and whites in the U.S. Cancer
101:1009-1017.

864

Accepted

865 FIGURE LEGENDS	865	FIGURE	LEGENDS
--------------------	-----	--------	---------

866

867 Figure 1. The concept of interaction between alcohol and obesity for the risk of liver disease. Obesity and metabolic risk may modify the effects on the liver of low alcohol use (<1-3 868 869 drinks/day), with some studies reporting harm and other studies reporting benefits from low 870 alcohol use compared to abstinence. Regarding hazardous alcohol use, studies suggest supraadditive interaction effects between exposure to alcohol (Ralco) and obesity (Robe), so that the 871 combined risk effect of having both exposures (R_{combi}) is higher than the sum of their individual 872 873 risk effects ($R_{alco} + R_{obe}$). 874 Figure 2. Hazards ratios for the contribution of weekly binge drinking, the metabolic syndrome 875 876 (MetS), and their combination (interaction) to the risk for incident clinical liver disease in comparison to subjects without the MetS who reported no binge drinking or binge drinking less 877 878 often than once monthly (baseline risk) in the Finnish Health 2000 study. The attributable proportion due to interaction in this example is 29% ((4.61 - 2.26 - 2.03 + 1) / 4.61 = 0.29). 879 880 (Reprinted with permission from Åberg F et al. Binge drinking and the risk for liver events: A 881 population-based cohort study. Liver International 2017;37:1373 (Åberg et al., 2017). 882 Figure 3. Interaction between average alcohol intake (grams of ethanol per week) and waist-hip 883 884 ratio for the risk of incident clinical liver disease among men in the Finnish general population.

(Reprinted with permission from Sahlman P et al. Genetic and lifestyle risk factors for advanced
liver disease among men and women. Journal of Gastroenterology and Hepatology 2019 (Sahlman
et al., 2019).

Acce

Author, year	Country	Study design	Study subjects	Outcome measure	Categories	Findings	Adjustments	Supra- additive interaction	Attribut: proportio
Liver-function	on tests		1	I					
Ruhl, 2005	USA	Cross- sectional	13 580 men and women recruited in 1988-1994 (NHANES III)	Elevated ALT or AST	Reference: BMI <25 kg/m ² + nondrinker Drinker: ≥2 drinks/d Obese: BMI ≥30 kg/m ²	Obese OR 2.1 Drinker OR 1.6 Obese drinker OR 5.4	Age, sex, ethnicity, smoking, caffeine consumption, HbA1c	Yes	50%
Alatalo,	Finland	Cross-	2 164 apparently	Elevated	Reference: BMI 19-24.9 kg/m ² +	Relative differences (%) in	n mean levels compared	to reference grou	up
2008		sectional	women recruited in a survey to	AST or GGT	Drinker: 0-280 g/wk Obese: BMI ≥30 kg/m ²	AL1: obese +52% Drinker +5% Obese drinker +105%	-	Yes	
			establish enzyme reference intervals in the			AST: obese +18% Drinker +5% Obese drinker +41%	-	Yes	
			Nordic countries			GGT: obese +36% Drinker +18% Obese drinker +123%	-	Yes	
Adams, 2008	Australia	Cross- sectional	2 610 men and women, 20-	Elevated ALT or	-	Numbers not given for calculation	Age	No	
			80yrs, residing in Busselton recruited in 1994	GGT					

Table 1. Studies analyzing interaction between hazardous alcohol use and obesity for various liver outcomes.

			survey						
Loomba,	USA	Cross-	2 364 men and	Elevated	Reference: BMI 18.5-24.9 kg/m ² +	Obese OR 1.4	Age, sex, total	Yes	72%
2009		sectional	women, mean	ALT	nondrinker	Drinker OR 2.1	cholesterol, serum		
			age 70 yrs,		Drinker: >210 g/wk	Obese drinker OR 8.9	triglycerides,		
			recruited in		Obese: BMI ≥30 kg/m ²		fasting plasma		
			1984-1987				glucose, systolic		
			(Rancho				blood pressure,		
			Bernardo Study)				diabetes		
				Elevated	Reference: BMI 18.5-24.9 kg/m ² +	Obese OR 1.3	Age, sex, total	Yes	88%
				AST	nondrinker	Drinker OR 2.3	cholesterol, serum		
					Drinker: >210 g/wk	Obese drinker OR 21	triglycerides,		
					Obese: BMI ≥30 kg/m ²		fasting plasma		
							glucose, systolic		
							blood pressure,		
							diabetes		
Shen, 2010	China	Longitudinal	500 men and	Elevated	Reference: BMI <25 kg/m ² +	Overweight/obese RR 1.40	-	Yes	26%
			women with	ALT or	alcohol use <280 g/wk	(0.84-2.33)			
			normal liver	GGT	Drinker: ≥280 g/wk	Drinker RR 2.20 (1.38-			
			tests and without		Overweight/obese: BMI ≥25 kg/m ²	3.50)			
			liver disease			Overweight/obese drinker			
			recruited in 1999			RR 3.49 (2.24-5.43)			
			for an						
			epidemiological						
			survey in						
			Zheijian						
			Province,						

Acremtar

Steatosis									
Bellentani,	Italy	Cross-	257 men and	Steatosis	Reference: BMI $<25 \text{ kg/m}^2 +$	Obese RR 4.6 (2.5-11.0)	-	No	
2000		sectional	women recruited	on US	alcohol use <210 g/wk and lifetime	Drinker RR 2.8 (1.4-7.1)			
			in 1997		alcohol use <100kg	Obese drinker RR 5.8 (3.2-			
			(Dionysos study)		Drinker: ≥420 g/wk or lifetime use	12.3)			
					≥100kg				
					Obese: BMI >30 kg/m ²				
Lau, 2015	Germany	Cross-	4 009 men and	Steatosis	MEN Reference: BMI <25 kg/m ² +	MEN Obese ? (data not	Age, HbA1c	Yes	
		sectional	women (The	on US	current abstainers	given)			
			Study of Health		Drinker: ≥420 g/wk	Drinker OR 21.5			
			in Pomerania)		Obese: BMI ≥30 kg/m ²	Obese drinker OR 101.6			
					WOMEN Reference: BMI <25	WOMEN Obese ? (data not			
					kg/m^2 + current abstainers	given)			
					Drinker: >140 g/wk	Drinker OR 0.15			
					Obese: BMI ≥30 kg/m ²	Obese drinker HR 3.30			
					BINGE	MEN Obese OR 8.96	Age, HbA1c,	MEN: Yes,	-
					Reference: BMI <25 kg/m ² +	Binge drinker OR 2.73	average daily		
					nonbinge drinking	Obese binge drinker OR	alcohol use	WOMEN:	
					Binge drinker: ≥ 5 drinks/d ≥ 1 time	14.10		No	
					during the last month	WOMEN Obese OR 7.31			
					Obese: BMI \geq 30 kg/m ²	Binge drinker OR 1.69			
						Obese binge drinker OR			
						7.71			
Takahashi,	Japan	Cross-	8 029 men and	Steatosis		Highest prevalence of	-	No	
		1		1	I		1		-

2015		sectional	women, mean	on US		steatosis in obese (BMI >30			
			age 50 yrs,			kg/m ²) low-drinking (<140			
			undergoing			g/wk) men and obese (BMI			
			general health			>30 kg/m ²) heavy-drinking			
			examination at 3			(>350 g/wk) women			
			health centers						
			recruited in						
			2009-2010						
Clinical out	tcomes		1	1			1	I	I
Marrero,	USA	Case-control	70 with HCC	HCC	Reference: BMI <30 kg/m ² +	Obese OR 1.2 (1.4-17.3)	-	Yes	49%
2005			and 70 with liver		alcohol use <100 drinks per lifetime	Drinker OR 2.6 (1.8-7.6)			
			cirrhosis without		Drinker: ≥100 drinks per lifetime	Obese drinker OR 5.5 (1.8-			
			HCC recruited		Obese: BMI \geq 30 kg/m ²	20)			
			in 2002-2003						
			from hospital						
			clinics						
Loomba,	Taiwan	Longitudinal	2 260 Taiwanese	НСС	Reference: BMI <30 kg/m ² +	Obese HR 0.64 (0.16-2.63)	Age, ALT, HBV-	Yes	62%
2010			hepatitis B-		nondrinker	Drinker HR 1.64 (1.12-	DNA, baseline		
			positive men		Drinker: alcohol use $\geq 4 \text{ d/wk}$ for	2.40)	cirrhosis		
			recruited in the		≥1yr	Obese drinker HR 3.40			
			REVEAL-HBV		Obese: BMI ≥30 kg/m ²	(1.24-9.34)			
			study, follow-up						
			14 yrs						
Loomba,	Taiwan	Longitudinal	23 712	НСС	Reference: BMI <30 kg/m ² +	Obese HR 1.17 (0.65-2.11)	Age, sex,	Yes	67%
2013			Taiwanese		nondrinker	Drinker HR 1.46 (1.07-	smoking, ALT,		(unadjusted
			residents		Drinker: alcohol use $\geq 4 \text{ d/wk}$ for	1.98)	HBsAg, anti-HCV		as reported

			recruited in		≥1yr	Obese drinker HR 3.82	antibodies,		by t
			1991-1992		Obese: BMI ≥30 kg/m ²	(1.94-7.52)	diabetes		auth
			(cancer						57%
			screening						(cal
			program), mean						base
			follow-up 11.6						adju
			yrs						HR
Liu, 2010	England	Longitudinal	1 230 662	Liver-	Reference: BMI 22.5-25 kg/m ² +	Obese RR 1.35 (1.15-1.59)	Age, recruitment	Yes	42%
	and		middle-aged	related	alcohol use <70 g/wk	Drinker RR 3.44 (2.70-	region, alcohol		
	Scotland		women (Million	hospital	Drinker: ≥150 g/wk	4.37)	use, smoking,		
			Women Study)	admission	Obese: BMI ≥30 kg/m ²	Obese drinker RR 6.53	socioeconomic		
			recruited in	or death		(4.98-8.55)	status, physical		
			1996-2001,				activity		
			mean follow-up						
			6.2 yrs						
Hart, 2010	Scotland	Longitudinal	9 559 men aged	Liver	Reference: BMI <25 kg/m ² +	Overweight/obese RR 1.29	Age, study, social	Yes	59%
			18-92 yrs	mortality	alcohol use <120 g/wk	(0.60-2.80)	class, smoking,		
			(Midspan and		Drinker: ≥120 g/wk	Drinker RR 3.66 (1.74-	height, bronchitis,		
			Collaborative		Overweight/obese: BMI ≥25 kg/m ²	7.71)	FEV1, angina,		
			studies)			Overweight/obese drinker	ischemia on		
			recruited in			RR 9.53 (4.98-18.2)	electrocardiogram,		
			1965-1968 and				diabetes		
			1970-1973,						
			median follow-						
			up 29 yrs						
Yi 2016	South	Longitudinal	101 735 men	Liver	Reference: BMI 25-27.4 kg/m ² +	Overweight/obese HR 2.8	Age, smoking	No	

		Korea		recruited in a	mortality	alcohol use <9 g/wk	Drinker HR 1.3	status, physical		
				postal survey	(liver	Drinker: ≥126 g/wk	Overweight/obese drinker	activity,		
				2004 (Korean	cancer	Overweight/obese: BMI ≥27.5	HR 3.6 (highest risk in	household income		
				Veterans Health	excluded)	kg/m ² *	underweight drinkers, BMI			
				Study), follow-			<21, HR 12.7) *			
				up 6 yrs						
	Åberg, 2018	Finland	Longitudinal	6 732 men and	Liver-	BMI	Obese HR 1.48	Age, sex	No	
				women, mean	related	Reference: BMI <25 kg/m ² +	Drinker HR 5.84			
				age 54 yrs,	hospital	alcohol use <210g/wk for men and	Obese drinker HR 4.06			
				recruited in	admission,	<140g/wk				
				2000-2001	cancer or	Drinker: above these sex-specific				
Y				(Health 2000	death	limits				
				Study), mean		Obese: BMI >30 kg/m ²				
				follow-up 11.4		WC	Obese HR 1.46	Age, sex	Yes	25%
				yrs		Reference: WC <102 cm + alcohol	Drinker HR 4.55			
						use <210g/wk for men and WC	Obese drinker HR 6.72			
						<88cm + alcohol use <140g/wk for				
						women				
						Drinker: above these sex-specific				
						limits				
						Obese: WC above these sex-				
						specific limits				

* Calculated from a subset of 72 152 subjects without baseline liver disease and without viral hepatitis

This article is protected by copyright. All rights reserved

Acc

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; OR, odds ratio; GGT, gamma-glutamyltransferase; BMI, body mass index; RR, risk ratio; HR, hazards ratio; US, ultrasound; HCC, hepatocellular carcinoma; WC, waist circumference

Author	, Country	Study	Study subjects	Outcome	Categories	Findings	Adjustments	Supra-	Attributable
year		design		measure				additive	proportion
								interaction	
Park,	South	Cross-	5 946 men and	Elevated	Reference: No metabolic	GGT \geq 30 U/L: Metabolic	Age, gender,	Yes	36%
2013	Korea	sectional	women recruited in	ALT,	syndrome + alcohol	syndrome OR 1.79 (1.21-2.66)	education level,		
			2003-2010 (Korean	AST or	abstainer	Drinker OR 7.81 (6.07-10.06)	smoking status		
			National Cancer	GGT	Drinker: ≥24 g/day	Metabolic syndrome + drinker			
			Center Cohort)		Metabolic syndrome: yes	OR 13.43 (8.35-21.60)			
					(Adult Treatment Panel	ALT ≥40 U/L: Metabolic	as above	Yes, but	?
					III)	syndrome OR ?		non-	
						Drinker OR 1.61 (1.00-2.60)		significant	
						Metabolic syndrome + drinker			
						OR 3.88 (2.00-7.55)			
						AST ≥40 U/L: Metabolic	as above	Yes	?
						syndrome OR ?			
						Drinker OR 3.73 (2.54-5.47)			
						Metabolic syndrome + drinker			
						OR 6.42 (3.64-11.35)			
Hassan	, USA	Case-control	115 men and women	НСС	Reference: No diabetes +	Diabetes OR 2.4 (1.3-4.5)	HBsAg, anti-	Yes	60%
2002			with hepatocellular		alcohol use <439 g/wk	Drinker OR 2.6 (1.4-4.9)	HCV		
			carcinoma and 230		Drinker: >439 g/wk	Diabetes + drinker OR 9.9 (2.5-	antibodies,		
			matched controls		Diabetes: yes	39.3)	smoking status		
			with other						
			malignancies						
			recruited in 1994-						

Table 2. Studies analyzing interaction between hazardous alcohol use and metabolic factors other than obesity for various liver outcomes.

			center						
Yuan,	USA	Case-control	295 men and women	НСС	Reference: No diabetes +	Diabetes OR 2.5 (1.5-4.0)	Age, sex, race,	Yes	72%
2004			with hepatocellular		alcohol use ≤4 drinks/d	Drinker OR 3.4 (2.2-5.4)	education level,		
			carcinoma recruited		Drinker: >4 drinks/d	Diabetes + drinker OR 17.3	smoking status		
			in 1984-2002 from a		Diabetes: yes	(3.9-77.6)			
			population-based						
			cancer registry and						
			435 matched healthy						
			neighboorhood						
			control subjects						
Åberg,	Finland	Longitudinal	6 732 men and	Liver-	Reference: No diabetes +	Diabetes HR 2.58	Age, sex	Yes	749
2018			women, mean age	related	alcohol use <210g/wk for	Drinker HR 3.56			
			54 yrs, recruited in	hospital	men and <140g/wk for	Diabetes + drinker HR 19.5			
			2000-2001 (Health	admission,	women				
			2000 Study), mean	cancer or	Drinker: above these sex-				
			follow-up 11.4 yrs	death	specific limits				
					Diabetes: yes				
Åberg,	Finland	Longitudinal	6 366 men and	Liver-	Reference: No metabolic	Metabolic syndrome HR 2.03	Age, average	Yes	299
2017			women, mean age	related	syndrome + no binge	(1.18-3.47)	alcohol use		
			54 yrs, recruited in	hospital	drinking or less than once	Weekly binge drinking HR 2.26			
			2000-2001 (Health	admission,	monthly	(0.76-6.71)			
			2000 Study), mean	cancer or	Binge drinking: ≥60	Metabolic syndrome + weekly			
			follow-up 11.4 yrs	death	g/occasion at least weekly	binge drinking HR 4.61 (2.04-			
					Metabolic syndrome: yes	10.4)			
					(Joint Interim Statement				

					criteria)				
Younossi,	USA	Longitudinal	4 264 men and	All-cause	Reference: No metabolic	Metabolic syndrome HR 1.32	?	Yes	?
2019			women with fatty	death	syndrome + alcohol use	(1.04-1.68)			
			liver disease		\leq 3 drinks/day for men or	Drinker HR ?			
			(ultrasound)		\leq 1.5 drinks/day for	Metabolic syndrome + drinker			
			recruited in 1988-		women	3.35 (2.02-5.55)			
			1994 (NHANES III)		Drinker: above these sex-				
					specific limits				
					Metabolic syndrome: yes				
					(Adult Treatment Panel				
					III)				

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; OR, odds ratio; GGT, gamma-glutamyltransferase; HR, hazards ratio; HCC, hepatocellular carcinoma

Table 3. Studies analyzing the effects of light-moderate alcohol consumption on steatohepatitis, liver fibrosis, liver cancer or other symptomatic advanced liver disease in subjects with baseline fatty liver disease or metabolic risk.

Author, year, design	Country	Study subjects	Recruitment	Exclusions	NAFLD definition	Assesment of lifetime drinking	Former drinkers	Outcome measure	Adjustments	Effects of light-mod
Dixon 2001, Cross- sectional	Australia	105 bariatric surgery patients	Hospital clinic	History of alcoholism, alcohol > 200 g/wk, hepatotoxic medication, other liver disease	Histology	No	Excluded	Histology	DM, IR	↓ NASH (non-signifi after adjusting for dia or IR index)
Cotrim 2009, Cross- sectional	Brazil	132 bariatric surgery patients	Hospital clinic	Alcohol use > 280 g/week, other liver disease	Histology	No	n.r.	Histology	-	↑ insulin sensitivity No impact on histole
Ekstedt 2009, Longitudinal	Sweden	71 NAFLD subjects	Hospital clinic	Absent follow-up biopsy (n=20)	Histology	No	n.r.	Histology	Age, sex, BMI, DM, weight gain, HOMA-IR, fibrosis stage at baseline	Binge drinking → ↑ fibrosis progression
Ascha 2010, Cross- sectional	USA	510 cirrhotic patients (195 with NASH)	Hospital clinic	Other liver disease	Histology or radiology	No	Included	НСС	Age, sex, race, BMI, smoking, DM	Any alcohol use: ↑ I risk
Dunn 2012, Cross- sectional	USA	582 NAFLD patients (NASH Clinical Research Network)	Hospital clinic	Alcohol use >20 g/day, monthly binge drinking, former drinkers (current abstainers)	Histology	Yes	Excluded	Histology	Age, sex, race, income, education, BMI, exercise, smoking, total calorie intake	↓ NASH (OR 0.56) ↓ ballooning (OR 0. ↓ fibrosis (OR 0.56)
Wong 2012, Cross- sectional	Hong Kong	922 adults (264 with fatty liver)	General population	Alcohol consumption ≥ 140 g/week, other liver disease, decompensated liver disease, contraindication for MRI	MRS + US elastography	No	n.r.	MRS + US elastography	Age, sex, MetS	Weak correlation with fat content (r=0.11, significant) No association with fibrosis.

Sookoian	Argentin	414 NAFLD	Hospital	n.r.	Histology	No	n.r.	Histology	n.r.	\downarrow NAFLD and 1
2014, Cross-	a	patients	clinic							↓ liver enzyme
sectional										inflammatory n
Kwon 2014,	USA	77 NAFLD	Hospital	History of long-term	Histology	Yes	Excluded	Histology	Age, sex, BMI, % body fat,	Alcohol use ≥2
Cross-		patients	clinic	alcohol abuse or					HOMA-IR, liver enzymes,	years: less seve
sectional				dependence, or >40					selected histological	(OR 0.26)
				g/week, other liver					features	
				disease, steatogenic						
				medications						
Kawamura	Japan	9 959 NAFLD	Hospital	Other liver disease,	US	No	n.r.	НСС	Age,, albumin, AST, GGT,	Alcohol use ≥4
2016,		patients	clinic	underlying systemic					platelets, DM,	HCC
Longitudinal				disease, follow-up <48					triglycerides, HDL	
				weeks					cholesterol	
Hagström	Sweden	120 NAFLD	Hospital	Alcohol use > 14	Histology	Yes	n.r.	Histology	Age, DM, hypertension,	Lifetime alcoh
2017, Cross-		patients	clinic	units/week					BMI, smoking	13 units/week:
sectional										
Kimura 2018,	Japan	301 NAFLD	Hospital	n.r.	Histology	No	n.r.	HCC	Fibrosis, diabetes,	↑ HCC (RR 4.4
Cross-		patients	clinic						triglycerides	
sectional										
Mitchell	USA	187 NAFLD	Hospital	Alcohol use	Histology	Yes	n.r.	Histology	Age, sex, DM, BMI,	Alcohol use 1-
2018, Cross-		patients	clinic	\geq 210 g/week (male) or					HOMA-IR	advanced fibro
sectional				\geq 140 g/week (female),						0.33), but only
				other liver diseases,						and non-binge
				steatogenic medications						
Chang 2019,	South	58 927 adults	Hospital	Alcohol use ≥30 g/day	US	No	n.r.	Non-invasive	Age, sex, center, screening	Worsening ove
Longitudinal	Korea		clinic	for men or ≥ 20 g/day for				fibrosis	year, smoking, exercise,	fibrosis marker
				women, other liver				markers	education, BMI, DM,	
				disease, steatogenic				(NFS, FIB-4)	hypertension, dyslipidemia,	
				drugs					HOMA-IR, hs-CRP	

Hajifathalian	USA	4 568 adults	General	Alcohol use >3	Hepatic	No	n.r.	All-cause	Age, sex, smoking ,	0.5-1.5 drinks/day:
2018,		with NAFLD	population	drinks/day (men) or >2	steatosis			death	ethnicity, exercise,	↓mortality (HR 0.64)
Longitudinal		(NHANES)		drinks/day (women),	index				education, DM, intake of	≥1.5 drinks/day: ↑
				viral hepatitis, increased					fiber/polyunsaturated fatty	mortality (HR 1.45)
				transferrin saturation					acids	
Younossi	USA	4 264 adults	General	Other liver disease,	US	No	n.r.	All-cause	Age, sex, ethnicity,	Alcohol use ≤3 drinks/day
2019,		with hepatic	population	steatogenic drugs				death	smoking, MetS,	(men) or ≤1.5 drinks/day
Longitudinal		steatosis								(women): no effect on
		(NHANES)								mortality
Ajmera 2018,	Internatio	285 NAFLD	Hospital	Alcohol use during 2	Histology	Yes	Excluded	Histology	Age, sex, ethnicity,	Less reduction over time in
Longitudinal	nal	patients (NASH	clinic	years preceding study of					smoking	steatosis grade
	multicent	Clinical		>20 g/day (men) or >10						↓ NASH resolution (OR
	er	Research		g/day (women), or ≥6						0.32)
		Network)		drinks/occasion, other						
				liver disease						
Åberg 2019,	Finland	8 345 adults	General	Alcohol use >50g/day,	Fatty liver	No	Excluded	- Hospital	Age, sex, BMI, smoking,	↑ liver-related morbidity
Longitudinal		with hepatic	population	past drinkers (current	index			admission,	exercise, DM, marital	and mortality, no threshold
		steatosis		abstainers), baseline				liver death,	status, education,	effect
		(Health 2000		clinical liver disease,				liver cancer	employment	↑ cancer
		and FINRISK		viral hepatitis				- All-cause		$(\downarrow \text{CVD})$
		population						death		J-shaped association with
		surveys)						- Cancer		all-cause death among
								- CVD		never smokers

Abbreviations: DM, diabetes mellitus; IR, insulin resistance; NASH, non-alcoholic steatohepatitis; NAFLD, non-alcoholic fatty liver disease; BMI, body mass index; HOMA-IR, homeostatic model assessment for insulin resistance; HCC, hepatocellular carcinoma; MRS, magnetic resonance

spectroscopy; US, ultrasound; MetS, metabolic syndrome; AST, aspartate aminotransferase; GGT, gamma-glutamyltransferase; NFS, NAFLD fibrosis score; FIB-4, fibrosis-4 index; CVD, cardiovascular disease

acer_14271_f2.pdf

Alcohol use (g/day)

Hazards Ratio