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Abstract

We present a 1-D model of a junction of five thin elastic rods forming the shape of a bit brace
(hand drill), or, a crankshaft. The distinguishing feature of this junction is the existence of the so-
called movable elements, which are rods and knots requiring modifications of the classical asymptotic
ansätze. These consist of constant longitudinal displacements on the edges of the skeleton of the
junction and affect the transmission conditions at its nodes. We provide asymptotic formulas for the
displacements, stresses and elastic energy, as well as error estimates. An exact solution of the model
is given for a particular loading.

1. Motivation. The theory of thin elastic rods, including the cases of isotropic and anisotropic,
homogeneous and heterogeneous, straight and slightly curved ones, is generally considered as being com-
pleted both from the point of view of theory and applications. It is remarkable that many different
mathematical tools have been developed for this important special problem in elasticity theory. The
theoretical research relevant to the present work consists of error estimates with respect to Sobolev or
Hölder norms, which are based on anisotropic weighted Korn inequalities and constructions of boundary
layers1.

Rod elements and their junctions can be found in almost all engineering and architectural objects
as well as in our biological and abiotic environment. However, there are only few publications on the
systems of rods in comparison with the huge literature dealing with isolated rods, see the monographs
and papers [2, 3, 4, 5, 6, 7] and the references in them.

An L-shaped joint of two thin isotropic bars of relative thickness h� 1 was considered in the pioneering
paper [8]. The bars were assumed to have equal rectangular cross-sections and to be perpendicular to each
other; either clamped or free ends were allowed. The author derived a 1-D model of the circumscribed
elastic junction and justified the model by proving the so-called convergence theorem related to the
limit passage h → +0 in the rescaled variational formulation of the elasticity problem, see [8] and the
monograph [9].

Another approach, based on anisotropic Korn type inequalities of [12], was developed in [10] and
[11], see also the review paper [13]. These papers contain asymptotic analysis realized as the dimension
reduction procedure, which produces 1-D models for thin 2-D beams and 3-D rods joined into a connected
structure of an arbitrary shape. The main idea of this analysis is the classification of fixed/movable rods
and nodes. In this way one identifies what we call the movable parts of the rod junction.

The movable parts require a modification of the classical asymptotic ansätze on thin rods. It is nec-
essary to introduce additional algebraic unknowns so that the longitudinal and transversal displacements
of a movable rod Qk(h) get the same order in the small parameter h and become, respectively,

h−2ak + h−1wk3 (zk) and h−2wki (zk), i = 1, 2,

where the notation and normalization factors of Section 2 are used. For a fixed rod, the constant
ak is always null. For a movable one, there is a clear reason to introduce the term h−2ak, which is
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1As shown in [1], the investigation of the boundary layer phenomenon near the rod ends is necessary for the derivation
of pointwise error estimates for strains and stresses.
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accompanied by the second term h−1wk3 depending on the longitudinal coordinate zk and being of higher
order (because wk3 is of mean zero, see (3.3) and (3.2), (3.4)). Furthermore, this modification leads to the
new phenomenon of non-local transmission conditions, which are related to far-actions of longitudinal
forces applied at the ends of a movable rod (cf. formula (4.13) and comments to it).

The identification of the movable parts and the concomitant derivation of the transmission conditions
in the 1-D model are rather intricate, and their recursive, algorithmic description in [10, 11] is cumbersome
and difficult to present in a completely general situation. However, in the paper [5] the authors examined
in detail the simplest, V-shaped junction of two beams with an arbitrary angle between the two rods,
”legs”. It was shown that the effect of the non-local transmission conditions depends on the boundary
conditions imposed on the ”soles” of the legs. In the present paper we consider the 3-D junction of five
rods (Fig. 1) with fixed, right angles between them. One knot (G1(h)) and one rod (Q1(h)) are fixed, but
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Figure 1: A bit brace Ω(h).

the other four rods and five knots of the junction may have longitudinal shifts of high order with respect
to h. We will explain the classification procedure by means of a direct comparison of the asymptotic
ansätze on neighbouring rods. As a result we obtain the stable transmission conditions, while the intrinsic
transmission conditions will be derived by using the 1-D Green formula for the limit system of ordinary
differential equations. This approach to thin elastic junctions looks very much simpler than that in [10],
[11] and can thus be applied to more complicated configurations, like the crankshaft (see Fig. 2).

In Section 2 we will state the elasticity problem in detail. In order to simplify the proofs we assume
that all rods are straight circular cylinders (so that the asymptotic formulas for the distribution of the
stresses in the rods become explicit, well-known and simple). Notice that no restriction on the shape
of the knots is needed because they play a secondary role in the derivation of the model; however, it is
important to identify them as movable or fixed. We also present an example of a load which imitates the
usual working condition of a bit brace.

In Section 3 we will outline the classical asymptotic formulas for stresses and strains in isolated elastic
rods and the ordinary differential equations describing their deformations. The transmission conditions
are derived in Section 4 by a method which is a reduction and reshaping of the procedure in [11]. In
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Figure 2: A crankshaft.

Section 5 we compute the exact solution of the 1-D model and in Section 6 we present error estimates
which are based on the general results in [10], [11].

2. Formulation of the three-dimensional elasticity problem. We consider the junction Ω(h) ⊂
R3 of five thin rods Qk(h), which are straight cylinders of length 2lk, posed in right angles between them
as in Fig. 1. We set the global Cartesian coordinate system x = (x1, x2, x3) of R3 such that the origin
O coincides with the midpoint P1 (see below) of the first end of the first rod Q1(h) and the x3-axis is
directed along the axis of the rod Q1(h). Moreover, we associate to each rod Qk(h),k = 1, . . . , 5, the
(local) Cartesian coordinates xk = (xk1 , x

k
2 , x

k
3) = (yk1 , y

k
2 , z

k), which are connected to the global system
by

xk = Ok(x)− Pk
where the mappings Ok are rotations of R3 and P2 = (0, 0, 2l1), P3 = (0,−2l2, 2l1), P4 = (0,−2l1, 2(l1 +
l3)), P5 = (0, 0, 2(l1 + l3)), P6 = (0, 0, 2(l1 + l2 + l3)) in the global coordinates. For j = 1, 2, 3, we denote
by ej (respectively, ekj , k = 1, . . . , 5) the canonical basis vectors of the global (resp. kth local) coordinate
system. We assume the following relations between the directions in the local and global coordinates:

ekj = ej , k = 1, 3, 5; e2
1 = e1, e

2
2 = −e3, e

2
3 = e2; e3

1 = e1, e
2
3 = e3, e

3
3 = −e2. (2.1)

This choice of coordinate axes determines the rotations Ok, which actually differ from the identity
mapping only for k = 2, 4. In the local coordinates, the rods are directed along the zk-axes so that they
can be presented as

Qk(h) = {(yk, zk) ∈ R3 : zk ∈ Υk = (−lk, lk), ηk = h−1yk ∈ ωk}, k = 1, . . . , 5, (2.2)
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Here, yk = (yk1 , y
k
2 ) are the coordinates on the planes perpendicular to the axes and ωk = {yk ∈ R2 :

|yk| < rk} are discs of radius rk > 0, k = 1, . . . , 5, while the relative thickness h belongs to the interval
(0, h0], where h0 > 0 is small. By rescaling we reduce the minimal length min {l1, . . . , l5} to 1.

The “skeleton” S of the junction Ω(h) consists of the line segments Υk connecting the points Pk and
Pk+1, k = 1, . . . , 5, see Fig. 3. These points are also the centers of the nodes Gkh, defined by
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Figure 3: The “skeleton” S of the bit brace Ω(h).

Gkh = {x ∈ R3 : h−1(x− Pk) ∈ Gk1 }, k = 1, . . . , 6, (2.3)

where Gk1 ∈ R3 are some fixed bounded domains with piecewise smooth boundary surfaces and indepen-
dent of h.

The bit brace is defined as the set

Ω(h) =

5⋃
k=1

Qk(h) ∪
6⋃

m=1

Gmh , (2.4)

and we assume that the downward force h−1e3F (x) is applied to the subset

γh = ∂G6
h \ Q5(h)

of the surface of the uppermost node G6
h (“handle”) and the twisting force e1f(η3, z3) affects the surface

sh = {(y3, z3) : z3 ∈ Υ3, η3 = h−1y3 ∈ ∂ω3} \ (Gh3 ∪ Gh4 )

of the central rod Q3(h) (“crank”), respectively (see Fig. 1). Note that the factor h−1 of the downward
force makes these two forces affect by the same order of magnitude. Then, the deformation of the isotropic
homogeneous solid Ω(h) is described by the boundary value problem

−µ∆uh − (λ+ µ)∇∇ · uh = 0 in Ω(h), (2.5)
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σ(n)(uh) = e3h
−1F on γh ⊂ ∂G6

h, (2.6)

σ(n)(uh) = e1f on sh, (2.7)

σ(n)(uh) = 0 on Ω(h) \ (Γh ∪ sh ∪ γh) , (2.8)

uh = 0 on Γh ⊂ ∂G1
h, (2.9)

where ∇ denotes the gradient, ∇· the divergence and ∆ the Laplace operator, and

Γh = {x ∈ ∂G1
h : x3 = 0},

which is assumed to be a set of positive 2-D Lebesgue measure. Moreover, λ > 0 and µ > 0 are the Lamé
constants, uh = (uh1 , u

h
2 , u

h
3 ) is the displacement vector, and stresses are determined by

σpq(u
h) = µ

(∂uhq
∂xp

+
∂uhp
∂xq

)
+ δp,qλ

(∂uh1
∂x1

+
∂uh2
∂x2

+
∂uh3
∂x3

)
,

σ(n)(uh) = (σ
(n)
1 , σ

(n)
2 , σ

(n)
3 ), σ(n)

p = n1σp1 + n2σp2 + n3σp3,

(2.10)

where, δp,q is the Kronecker symbol and n = (n1, n2, n3) is the outward normal unit vector. Finally,
volume forces like gravity are not taken into account, since these are negligible in comparison with the
much bigger surface forces applied to the bit brace.

3. Asymptotic ansätze. The following asymptotic forms for the displacement field u on the rods
Qk(h) are suggested by the traditional dimension reduction procedure:

uh(x) ∼ h−2U−2
(k)(zk) + h−1U−1

(k)(ηk, zk) + h0U0
(k)(η, z) + h1U1

(k)(η
k, zk) + . . .. (3.1)

Here, Up(k) are vector functions on Qk(1) to be determined. The factors h−q of U−q(k) are posed so that the

stresses and strains gain the order h−1 while the elastic energy stored in the junction (2.4) becomes O(1)
as h → +0. However, even the main terms differ from the traditional form of the case of the isolated
rod. In the terminology [11] the rods Qk(h), k = 2, 3, 4, 5 are now movable and, as it was mentioned in
Section 1, the main term U−2

(k) is assumed to be of the form

U−2
(k)(zk) = wk1 (zk)ek1 + wk2 (zk)ek2 + ake

k
3 , k = 2, 3, 4, 5, (3.2)

where the coefficients wk1 and wk2 are functions and ak is a constant. Only on the clamped rod Q1(h) we
keep the conventional form of the main term

U−2
(1) (z1) = w1

1(z1)e1
1 + w1

2(z1)e1
2. (3.3)

Apparently, the difference of this and (3.2) consists of setting a1 = 0 as a consequence of the Dirichlet
condition (2.9). As was demonstrated in [10], [11] and mentioned in Section 1, the introduction of the
constant ak into the main term (3.2) requires the orthogonality condition

lk∫
−lk

wk3 (zk) dzk = 0, k = 2, 3, 4, 5 (3.4)

in the next term (3.2). For the clamped rod Q1(h) the restriction (3.4) is not posed. Since the constants
ak in (3.2) are eliminated in the differentiation, the structure of the asymptotic terms Uq(k) with q > −1

is the same for all k:

U−1
(k)(ηk, zk) =

(
wk3 (zk)−

2∑
i=1

ηkj ∂zw
k
j (zk)

)
ek3 + wk4 (zk)θ(ηk), (3.5)
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Here, ∂pz = ∂p/∂zp and z = zk with any k = 1, . . . , 5; wk3 and wk4 are unknown functions and θ(ηk) =
2−1/2(ek1η

k
2 − ek2ηk1 ) denotes the rotation around the axis of the rod.

The calculation of the next term in (3.1) is well-known and can be found in [3, 6, 7] and others. The
term is obtained by finding the exact solutions in the unit disc for the 2-D elasticity system and for the
Neumann Laplacian. We just reproduce these results and, consequently, define the third terms of the
asymptotic ansätze as

(U0
(k))j(η

k, zk) =
λ

4(λ+ µ)

((
(ηkj )2 − (ηk3−j)

2
)
∂2
zw

k
j (zk) + 2ηk1η

k
2∂

2
zw

k
3−j(z

k)

−2ηkj ∂zw
k
3 (zk)

)
, j = 1, 2, (U0

(k))3(ηk, zk) = 0.

(3.6)

To determine the terms U1
(k) and U2

(k) of the expansion (3.1), we pose for the functions wkp the equations

−mk
j ∂

4
zw

k
j (zk) = δ3,kδ1,jf

k(zk), j = 1, 2,

−mk
3∂

2
zw

k
3 (zk) = 0, −mk

4∂
2
zw

k
3 (zk) = 0, zk ∈ (−lk, lk), (3.7)

where fk = 0 for k = 1, 2, 4, 5,

mk
1 = mk

2 =
1

4
πr4
kE, mk

3 = π(rk)2E, mk
4 =

1

4
πr4
kµ, f3(z3) =

∫
sh

e1f(η3, z3)dsη3

and E = µ(3λ+2µ)
λ+µ is Young’s modulus. One can write system (3.7) in the form

−D(∂z)
>MkD(∂z)

−→w k(zk) = Fk(zk), zk ∈ (−lk, lk), (3.8)

where −→w k = (wk1 , w
k
2 , w

k
3 , w

k
4 ), D(∂z) = (∂2

z , ∂
2
z , ∂z, ∂z)

> and

Mk = diag(mk
1 ,m

k
2 ,m

k
3 ,m

k
4)>, Fk(zk) = (fk(z3), 0, 0, 0)>.

4. Variational formulation of the problem. By a weak solution of the problem (2.5)–(2.9) in
the Sobolev space H1(Ωh)3 (the superscript 3 indicates the number of the components) we understand
an element of the subspace H1

0 (Ωh)3 = {uh ∈ H1(Ωh)3 : uh = 0 on Γh} satisfying the integral identity

2E(uh, ϕh; Ωh)− (e1f, ϕ
h)sh − h−1(e3F,ϕ

h)γh = 0 ∀ϕh ∈ H1
0 (Ωh)3, (4.1)

where (·, ·)Ξ is the natural inner product in the Lebesque space L2(Ξ) for the given domain Ξ and

E(uh, ψh; Ωh) =
1

2

3∑
j,k=1

(σjk(uh), εjk(ψh))Ωh

=
λ

2

( 3∑
j=1

εjj(u
h),

3∑
j=1

εjj(ψ
h)
)

Ωh

+ µ

3∑
j=1

4−j∑
k=1

(εjk(uh), εjk(ψh))Ωh
,

E(uh, uh; Ωh) =

∫
Ωh

(
λ

2

( 3∑
j=1

εjj(u
h)
)2

+ µ

3∑
j=1

4−j∑
k=1

εjk(uh)2

)
dx. (4.2)

To derive an integral identity for the limit system (3.8), we replace in (4.1) the displacement field uh

by the sum of first three terms in the ansätze (3.1) and take a test vector function ϕh, which is of the
similar form

ϕh(x) = h−2Φ−2
(k)(z

k) + h−1Φ−1
(k)(η

k, zk) + h0Φ0
(k)(η, z), x ∈ Qk(h). (4.3)
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Here, the vector functions Φq(k) are defined by formulas (3.2), (3.5), (3.6), where arbitrary vector functions

ψk = (ψk1 , ψ
k
2 , ψ

k
3 , ψ

k
4 ) ∈ C∞[−lk, lk]4 and constants bk replace the functions wkj and the constants ak.

However, the fields Φq(k) are properly defined on the rods (2.2) only, and in order to match and glue them

on the nodes (2.3) it is necessary to impose boundary and transmission conditions at the skeleton nodes,
according to the general procedure in [11].

First, we associate the Dirichlet conditions

w1
j (−l1) = 0, ∂zw

1
j (−l1) = 0, w1

2+j(−l1) = 0, j = 1, 2, (4.4)

to the clamped knot G1
h at the end of the rod Q1(h). Next, we set the four triples of relations

∂zw
k
1 (−lk) + αk−1w

k−1
4 (lk−1) = 0, ∂zw

k
2 (−lk)− ∂zwk−1

2 (lk−1) = 0,

wk4 (−lk)− αk−1∂zw
k−1
1 (lk−1) = 0,

(4.5)

where α1 = α4 = 1 and α2 = α3 = −1, which describe the continuity of rotation fields in the knots
Gmh ,m = 2, 3, 4, 5. Finally, in the same way, the continuity of the translations in these knots require the
following relations:

w2
2(−l2) = 0; wp1(lp) = wp+1

1 (−lp+1), p = 1, 2, 3, 4; (4.6)

wp2(lp) = (−1)p+1ap+1, p = 1, 2, 3, 4; wq2(−lq) = (−1)q+1aq−1, q = 3, 4, 5. (4.7)

The equalities (4.5)–(4.7) are obtained by comparing the main terms (3.2), (3.3) of the different ansätze
(3.1) with k = m and k = m+ 1 on the rod Qm(h). We mention that in [11] the corresponding equations
were derived by analysing the boundary layer phenomenon.

In the terminology of [14], the conditions (4.5)–(4.7) are called stable because they are inherited by
the variational formulation of the limit problem, as explained after (4.1). Hence, the vector functions ψk

and the constants bk must be subject to (4.5)–(4.7) and the orthogonality condition (3.4) as well.
Computing the strains and stresses generated by the displacement field (4.3) yields

εii = h−1 λ
2(λ+µ) (η1∂

2
zψ

k
1 (z) + η2∂

2
zψ

k
2 (z)− ∂zψk3 (z)) + . . . , σii = σ12 = σ21 = 0 + . . . ,

εi3 = ε3i = h−1(−1)i+1
√

2
2 ηi∂zψ

k
4 (z) + . . . , σi3 = σ3i = h−1(−1)i+1

√
2µηi∂zψ

k
4 (z) + . . . ,

ε12 = ε21 = 0 + . . . , ε33 = h−1(∂zψ
k
3 (z)− η1∂

2
zψ

k
1 (z)− η2∂

2
zψ

k
2 (z)) . . . ,

σ33 = Eh−1(∂zψ
k
3 (z)− η1∂

2
zψ

k
1 (z)− η2∂

2
zψ

k
2 (z)) . . . ,

(4.8)

where i = 1, 2 and dots stand for terms of order hm with m > 0. We insert the expressions (4.8) into
the formula (4.1) and pass to the limit h → +0: according to [11], the contribution of the knots Gmh is
negligible, because the vector functions Φq(k) have now been glued appropriately using (4.5)–(4.7) As a

result we obtain the 1-D integral identity

5∑
k=1

( 4∑
j=3

mk
j

lk∫
−lk

∂zw
k
j (zk)∂zψ

k
j (zk) dzk −

2∑
j=1

mk
j

lk∫
−lk

∂2
zw

k
j (zk)∂2

zψ
k
j (zk) dzk

)

+

lk∫
−lk

f(z3)ψ3
1 dz

k + Fb5mes2γ1 = 0

(4.9)

which is our 1-D model for the elastic junction (2.4); here, mes2 denotes the 2-D Lebesgue measure.
We search for a solution of the variational problem (4.9) in the space H(S) of the vectors

−→
ψ = (ψ1;ψ2, b2; . . . , ; ψ5, b5)

∈ H2(−l1, l1)2 ×H1(−l1, l1)2 ×
5∏
k=2

(
H2(−lk, lk)2 ×H1(−lk, lk)2 × R1

) (4.10)
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satisfying the Dirichlet conditions (4.4), the transmission conditions (4.5), (4.6), (4.7) and the orthog-
onality conditions (3.4). A weak solution of the limit problem is an element −→w of the space H(S) for

which the identity (4.9) holds for all test vector functions
−→
ψ ∈ H(S). The solvability of the limit problem

has been proved in [10, Lemma 3.2], according to which the problem (4.9) indeed has a unique solution
−→w ∈ H(S).

The weak formulation (4.9) of the 1-D model involves the so-called intrinsic transmission conditions
as well, see [14]. To derive them we start by the Green formula

6∑
k=1

( lk∫
−lk

(
MkD(∂z)

−→w k(zk)D(∂z)ψ
k(zk) + ψ3

1(z3)f(z3)
)
dzk +

2∑
j=1

(
mk
j ∂

3
zw

k
j (lk)ψkj (lk)

−(1− δk,6)mk
j ∂

3
zw

k
j (−lk)ψkj (−lk)−mk

j ∂
2
zw

k
j (lk)∂zψ

k
j (lk) + (1− δk,6)mk

j ∂
2
zw

k
j (−lk)∂zψ

k
j (−lk)

)
−

4∑
j=3

(
mk
j ∂zw

k
j (lk)ψkj (lk)− (1− δk,6)mk

j ∂zw
k
j (−lk)ψkj (−lk)

)
+ b5Fmes2γ = 0.

(4.11)

Because of the ODE-system (3.8), the integral term is cancelled in (4.11). We next consider the other
sums on each knot Gqh, q = 1, . . . , 6, of the junction and use the stable conditions in order to find relations
which annul these terms for any test vector (4.10).

First of all, the terms with k = 1 vanish because ψ1
j meets the Dirichlet conditions (4.4). Then, let

us consider the node G6
h. The term

m5
1ψ

5
1(l5)∂3

zw
5
1(l5) + m5

2ψ
5
2(l5)∂3

zw
5
2(l5)−m5

4ψ
5
4(l5)∂zw

5
4(l5)

−m5
1∂zψ

5
1(l5)∂2

zw
5
1(l5)−m5

2∂zψ
5
2(l5)∂2

zw
5
2(l5)

is annulled, if and only if

m5
1∂

3
zw

5
1(l5) = m5

2∂
3
zw

5
2(l5) = 0, m5

4∂zw
5
4(l5) = 0, m5

1∂
2
zw

5
1(l5) = m5

2∂
2
zw

5
2(l5) = 0. (4.12)

These equalities imply he cancellation of the transversal forces m5
j∂

3
zw

5
2(l5), j = 1, 2, the bending moments

m5
j∂

2
zw

5
2(l5), j = 1, 2, and the torque moment m5

4∂zw
5
4(l5). According to (4.7) for

−→
ψ (see (4.10)) we have

b5 = ψ4
2(l4) and, therefore, removing the corresponding terms in (4.11) yields

m4
2∂

3
zw

4
2(l4) + Fmes2γ = 0. (4.13)

We observe that the introduction of the algebraic unknowns in the model transfers the longitudinal force
acting at the node G6

h along the rod Q5(h) and converts it into a transversal force applied to Q4(h). A
reason for such a transformation is that the order h−1 of the surface force loading in (2.6) is too large
to be compensated by the term w5

3 in (3.5). Similar effects occur for the other couples of the knots, see
below.

Consider the knot G5
h. The equilibrium of the forces acting in directions ej , j = 1, 3 implies the

equalities

m5
1∂

3
zw

5
1(−l5)−m4

1∂
3
zw

4
1(l4) = 0, for j = 1; m5

3∂zw
5
3(−l5) = 0 for j = 3. (4.14)

Furthermore, the equilibrium of the moments leads to

m5
1∂

2
zw

5
1(−l5)−m4

2∂
2
zw

4
2(l4) = 0, m5

2∂
2
zw

5
2(−l5)−m4

4∂zw
4
4(l4) = 0,

m5
4∂zw

5
4(−l5) + m4

1∂
2
zw

4
1(l4) = 0.

(4.15)

The equalities ψ3
2(l3) = b4, b4 = ψ5

2(−l5), contained in (4.7)) for
−→
ψ ], lead to the nonlocal relation

ψ3
2(l3) = ψ5

2(−l5), which gives the following nonlocal transmission condition for longitudinal forces:

m5
2∂

3
zw

5
2(−l5) = m3

2∂
3
zw

3
2(l3). (4.16)
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Analogously to the above, the equilibrium of the forces and moments acting at Gkh, k = 2, 3, 4, yield the
following transmission conditions:

mk+1
1 ∂3

zw
k+1
1 (−lk+1)−mk

1∂
3
zw

k
1 (lk) = 0, k = 2, 3; mk

3∂zw
k
3 (±lk) = 0, k = 2, 3, 4;

mk+1
2 ∂zw

k+1
2 (−lk+1) = αkm

k−1
2 ∂3

zw
k−1
2 (lk−1), k = 2, 3, m2

2∂zw
2
2(−l2) = 0

(4.17)

and

mk+1
1 ∂2

zw
k+1
1 (−lk+1)− αkmk

4∂zw
k
4 (lk) = 0, mk+1

2 ∂2
zw

k+1
2 (−lk+1)−mk

2∂
2
zw

k
2 (l2) = 0,

mk+1
4 ∂zw

k+1
4 (−lk+1) + αkm

k
1∂

2
zw

k
1 (lk) = 0, k = 2, 3, 4.

(4.18)

The formulas (4.12) – (4.18) form the intrinsic transmission conditions for the system (3.8).
It has been proved in [11] that the 1-D model is uniquely solvable, because of the Dirichlet conditions

(4.4). The variational formulation of the model consists of the integral identity (4.9) posed in the space
H(S), while the differential formulation involves the system (3.8) of ordinary differential equations at
the edges of the skeleton S, the boundary conditions (4.4) and the stable and intrinsic transmission
conditions (4.4)–(4.7) and (4.12)–(4.18), respectively, at the nodes of S.

5. An exact solution to the 1D model. We finally consider the special case where the data f
does not depend on z and derive the corresponding simplified formulas. We search for the components
of the solution −→w of the problem (4.9) as the polynomial

wkj (zk) = −δj,1δk,3(zk)4(m3
1)−1f/12 +

3∑
p=0

Ckjp(z
k)p, wk3 = 0, wk4 = Ck41z

k + Ck40, (5.1)

We substitute (5.1) into the differential statement of the model and obtain a system with 54 linear
equations for the 54 constants Ckpq and ak. However, the number of the equations and unknowns is
reduced to 50 by excluding the coefficients a2, a3, a4, a5, converting the relations (4.7) into

w1
2(l1) = w3

2(−l1), w2
2(l2) = w4

2(−l1), w3
2(l2) = w5

2(−l1), (5.2)

a2 = w3
2(−l1), a3 = −w4

2(−l1), a4 = w3
2(l2), a5 = −w4

2(l2), (5.3)

from which the constants ak can be reconstructed.
To simplify the final formulas, we assume that rods are made of the same material and have the same

radii, therefore mk
p = mp, k = 1, 2, 3, 4, 5 and rk = r, k = 1, 2, 3, 4, 5. Let l1 = l5 = H, l2 = l4 = l, l3 = L.

We get

w1
1(z) = 8fL(z3 + 3(H + L)z2 + 3H(2H + 3L)z + c1), w1

2(z) = 0, w1
4(z) = 96fLl(z +H)p;

w2
1(z) = −8fL(z3 + 3lz2 + 3l(3l − 8Hp)z + c2),

w2
2(z) = qF(z3 + 3lz2 + l2z + l3)/6, w2

4(z) = −48fL(Lpz + lLp− 2HL− 2H2);

w3
1(z) = −2fL(2z3 − 3Lz2 + 2(24lLp− 7L2 − 24HL− 24H2)z + c3,

w3
2(z) = lqF(z2 + 2(L+ l)z + L(L+ 2l)), w3

4(z) = 96lqF(2Hp− l);

w4
1(z) = 96lLf(2Hp− l)z + c4, w

4
2(z) = −qF(z3 − 3lz2 − 3l(8L+ 7l)z − 3l2(8L+ 3l)/6,

(5.4)

w4
4(z) = 32f(3lL2 − L3 − 3HL2 − 3H2L);w5

1(z) = 32f(L3 + 3HL2 + 3H2L− 3lL2)z + c5,

w5
2(z) = 4lqF(l + L), w5

4(z) = 96f lL(2H − l),
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where

F :=
1

m5
3

∫
γ1

e3Fds, p =
m1

m4
=

3λ+ 2µ

λ+ µ
, q =

m2

m3
=
r2

4
.

The constants ck in (5.4) are defined by

c1 = H2(5H + 3L), c2 = 5l3 + 16H3 + 12H2L− 14l2Hp,

c3 = Lf(17L3 + 24(4HL2 − 16Hl2p− 4lL2p + 8H2L) + 128(H3 + l3)),

c4 = Lf(48L3 + 32(6HL2 − 6Hl2p− 6lL2p + 9H2L+ 6l3 + 4H3)),

c5 = 8Lf(6L3 + 28HL2 − 12HlLp− 24lL2p + 48H2L+ 28H3 − 8l3).

According to (5.3) the constants ak in the ansätze (3.2) on the movable rods are

a2 = 0, a3 = −qFl3, a4 = −a5 = 4qFl(l + L). (5.5)

6. Concluding remarks. Formula (5.5) shows that even a modest loading of the bit brace (2.4)
causes large longitudinal shifts of the rods Q3(h),Q4(h) and Q5(h). Although they do not influence on
the stresses directly, they affect the whole solutions −→w through the transmission conditions which lead
to the non-local stable conditions (5.2).

The introduction of the movable elements of the junctions also changes the error estimates for the
1-D models. Without going into the proofs, which are cumbersome and require the construction of the
boundary layers (cf. [1]), we mention that

‖uhi − h−2(U−2
(1) )i;L

2(Q1(h))‖ 6 ch−1/2, i = 1, 2,

‖uh3 − h−1(U−2
(1) )3;L2(Q1(h))‖ 6 ch1/2,

(6.1)

where U−2
(1) and U−1

(1) are taken from formulas (3.3) and (3.5) for the clamped rod Q1(h), whereas for the

movable rods Qk(h), k = 2, . . . , 5, there holds the modified estimates

‖uhj − h−2(U−2
(k))j ;L

2(Qk(h))‖ 6 ch−1/2, j = 1, 2, 3,

‖(uh3 )⊥ − h−1(U−1
(k))3;L2(Qk(h))‖ 6 ch1/2,

where U−2
(k) , U

−1
(k) are taken from (3.2), (3.5) and ⊥ denotes the projection onto the subspace of functions

of zero mean in the Lebesgue space L2(Qk(h)) . Note that (U−1
(k))3 belongs to this subspace, due to our

assumption on the symmetry and the orthogonality condition (3.4).
The error estimates for the stresses and strains and, therefore, for the elastic energy (4.2) look the

same as for isolated rods, namely

‖σpq(uh)− h−1Skpq(w
k);L2(Qk(h))‖ 6 ch1/2,

where Skpq(w
k) are the coefficients of h−1 in formulas (4.8) for the stresses with the change ψk 7→ wk.

Furthermore,∣∣∣∣E(uh, uh; Ω(h))− π
5∑
k=1

∫ l/2

−l/2

(
A
(
r4
k

(
(∂2
zw

k
1 )2 + (∂2

zw
k
2 )2
)

+ 4r2
k(∂zw

k
3 )2
)

+ µ
r4
k

4
(∂zw

k
4 )2

)
dz

∣∣∣∣ 6 ch1/2,

where

A =
(λ+ µ)(3λ2 + 4λµ+ 2µ2)

16(λ+ µ)2
.

Finally, all of the above presented estimates involve integral norms. According to [1], in order to
derive pointwise estimates for elastic fields in junctions of thin elastic structures it is necessary to take
into account the boundary layer phenomenon, which is not considered in the present paper.
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