SOLID CORES AND SOLID HULLS OF WEIGHTED BERGMAN
SPACES.

JOSE BONET, WOLFGANG LUSKY, AND JARI TASKINEN

ABSTRACT. We determine the solid hull for 2 < p < oo and the solid core for
1 < p < 2 of weighted Bergman spaces Af, 1 < p < oo, of analytic functions
functions on the disc and on the whole complex plane, for a very general class
of non-atomic positive bounded Borel measures u. New examples are presented.
Moreover we show that the space A, 1 < p < oo, is solid if and only if the
monomials are an unconditional basis of this space.

1. INTRODUCTION AND PRELIMINARIES.

Consider R =1or R=o00 and D = {z € C: |2] < 1}. We study holomorphic
functions f : R-D — C where R-D=Dif R=1and R-D=Cif R = oco. Let
f(k) be the Taylor coeffients of f, ie. f(z) = > .-, f(k)z*. We take a non-atomic
positive bounded Borel measure p on [0, R| such that u([r, R[) > 0 for every r > 0

and fOR r*du(r) < oo for all n > 0. Put, for 1 < p < oo,

R 2 1/p
= (5 [ [ 1reoragaun)

Al ={f:D— C: f holomorphic with || f||, < oo}.

Let A be a vector space of holomorphic functions on R-ID containing the polynomials.
We want to study the solid core

and let

~

s(A) ={f € A: g € A for all holomorphic g with |g(k)| < |f(k)| for all k}
and the solid hull
S(A) = {g: D — C : g holomorphic, there is f € A with |§(k)| < |f(k)]| for all k}.

A is called solid if A= S(A).

In the first four sections we consider A = AP while in section 5 we include the
case where A consists of weighted sup-norm spaces of holomorphic functions.

The solid hull and core of spaces of analytic functions has been investigated by
many authors. We refer the reader to the recent books [6] and [11] and the many
references therein. For example in [6] the characterisation of the solid hulls and
cores of AP can be found where dyu(r) = (1 —r)*dr for some a > 0 and R = 1.

Originally, our main interest was to replace the “standard weights” (1 — r)® by
weights of the form v, (1) = exp(—a/(1 — 1)) for some a > 0 and b > 0, which are
of a completely different nature and require different methods, and hence to consider
du(r) = vap(r)dr. We wanted to extend to weighted Bergman spaces the results of
[3], a paper which was entirely devoted to this class of weights v,; in connection
with weighted sup-norms. In the present article we give a characterization of solid

hulls of AP if 2 < p < oo and solid cores if 1 < p < 2 in Theorem 2.1 for much more
1
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general p which, under some mild additional assumptions (Corollary 3.2), resulted
in the explicit computation of many examples including v(r) = exp(—a/(1—1)°) for
R =1 and v(r) = exp(—r) for R = oo; see Corollaries 3.4 and 3.5.

The final sections 4 and 5 are dedicated to Bergman spaces and weighted sup-
norm spaces which themselves are solid. We give examples for this situation in
connection with holomorphic functions over the complex plane and show that this
can never happen for holomorphic functions over the unit disc.

For a holomorphic g and 0 < r we define

1 27 ‘ 1/p
My(or) = (g [ latre)ra)

and P,g(z) = >_1_, §(k)z". It is well-known that, for 1 < p < oo, there are universal
constants ¢, > 0 with M,(P,qg,7) < ¢,M,(g,r) where ¢, does not depend on g, n or
r. Moreover we have lim,,_,o M,(9 — P,g,7) = 0. Hence we obtain

[P fllp < cpll f]lp for all f € AP and all n and nhj& | f = P.fll, =0.
In particular we see that the monomials z — 2", n = 0,1,2,... form a Schauder

basis of AP if 1 < p < oco. Details can be seen in [4] and [12].
In the rest of the article [r] denotes the largest integer smaller or equal than r > 0.

2. MAIN GENERAL RESULT.

Theorem 2.1. Assume that there are constants dy,dy > 0, andw,, >0,n=1,2,...,
numbers 0 < Iy <ly < ... and radii s; < so < ... such that, for every f € A/’;,

s 1/p
(2.1) di[fllp < (ZwﬁMﬁ ((Pts) = P Sn)> < daf[f]]p-

n=1

(a) If 2 < p < o0, then

S(A7) =
s 1) o/
g:R-D — C: g holomorphic with Zwﬁ Z 1G(K)|?s2F < 00
n=1 k=[ln]+1
(b) If 1 < p < 2, then
s(A}) =
oo Un+1] p/2
g: R-D— C: g holomorphic with Zwﬁ Z 1g(k)|*s2 < 0
n=1 k=[ln]+1

Theorem 2.1 is proved below. Before presenting the proof we point out that
condition (2.1) can be realized for any given p. Indeed, fix 8 > 163771 (1+2°)cb 42
and use induction to obtain 0 = <ls <l3...and 0 < 81 < $89... < R with

s R s R
n n 1
(2.2) / riPdy = 5/ r'"Pdy and / riniPdy, = B/ rln 1Py,
0 Sn 0 S
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Instead of starting with n = 1 we can as well start the induction e.g. with n = ng
for some ng > 0 (with /; = 0 and arbitrary s;) and restrict the preceding relations
to all n > ng. Moreover put

Sn lnp R ln+1p
(L) L
0 Sn Sn Sn

Then there are constants di,dy > 0 such that, for every f € AP,

1/p

o 1/p
dil|f]l, < (ZWQMZ;? ((Papsr) — Pua) J Sn)) < dol| f]l,-

n=1

This was shown in [5] for p = 1 and in [10] for 1 < p < oo and R = 1, but with
some slight modifications the proofs carry over to the case R = oc.

Example 2.2. (i) Let du(r) = dr where R = 1. Then we obtain

B
B+1

1—n

1 a
) where a =

l,=—(a""'—1)and s, = ( log(8 + 1)

log(1 + ) —log(B)

This can be easily verified using the definition (starting with n = 0) and induction.
(ii) Let du(r) = r*dr for some o > 0 and R = 1. With example (i) and l,p+ a =
(@' — 1), where a is the number in (i), we obtain

1 « B\
lp=—-(@"1'-1)—— and s,= (—)
p( ) p f+1
for n > 2 with [y =0 and s; = 8/(8+ 1).

p

1-n

Now we turn to the proof of Theorem 2.1. Let f : R-ID — C be holomorphic.

Recall that f(n)r® = & OZW f(re®)e ™?dyp for each 0 < r < R and each n =

0,1,2,.... For g(re'?) = r”(pfl)e*mw/(foR 7" dp)' =P we have

. R 1/p R p2r ' '
ol (i) =5 [T e gty < 11,

In the following we make use of the Khintchine inequality ([7], 2.b.3.), i.e. for

arbitrary by and n we have
> < B, (Z |bk\2>
k=1

" 1/2 .
2
w(me) < (%
k=1 =1
where A,, B, are universal constants not depending on n. (The summation in the
central expression runs over the 2" different possibilities of the change of signs.)

Z b0y,

k=1

Conclusion of the proof of Theorem 2.1. For a holomorphic function g put

[ee) 1/p
a(g) = (Z wh My (Psn) = P Sn)) :
n=1
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As assumed, af-) is equivalent to || - ||,. Moreover let
oo (ln+1] p/2 v
Vo) =D own [ DD lak)Ps
n=1 k=[ln]+1

and V ={g: R-D — C : g holomorphic with v(g) < co}. Recall that Parseval’s
identity implies
[Int1]
k=[ln]+1

~

Proof of (a). Let g € S(AF). Then there is f € AP with [g(k)| < [f(k)] for all
k. If 2 < p < oo then
1(9) <7(f) < alf) < dof[f]lp < oo

Hence g € V.
Now let g € V. Put A, = {+1, —1}”’”‘1}_”"}. For ©,, = (e[ln]+17 o ,H[Znﬂ]) e A,
put

[Lnt1] [ln1]
go, () = Z 0rG(k)s e and g,(p) = Z G(k)sk ek
k=[ln] +1 k=[n] +1

Let (:)n be such that

1/p
1
My (9, 5n) < (m > M;“(genasn)) :

On€A,
The Khintchine inequality yields

Mp(g(:)na Sn) S BpM2(gn7 Sn)-
Put h =3 g, . Then, by the preceding estimates,
di[|h]], < a(h) < Bpy(g) < oo
Hence h € AP. Since by definition \h(k)| = |§(k)| for all k we obtain g € S(AD).

Proof of (b). We retain the preceding notation. Let g € V and let f : R-D — C
be holomorphic with |f(k)| < |g(k)| for all k. Then

|| fllp < a(f) <A(f) < 7(g) < oo
This implies f € AP and hence g € s(A?).
Now let g € s(A%). Let O, € A, be such that

1/p
1
(2[ln+1]—[ln] Z le(g@n’ 8">> < Mp(g(i)na Sn)'

On€A,
Put h = 3" gz . Then we obtain \h(k)| = |g(k)| for all k. Hence h € AP, The
Khintchine inequality together with the choice of ©,, yields
Y(g) = v(h) < A ta(h) < d2 AL [R]], < oo
We conclude g € V. U
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3. MAIN EXAMPLES.

Quite often it is very difficult to compute the parameters [, and s, in (2.2).
Therefore it is worthwhile to consider special cases which yield an equivalent rep-
resentation of the norm || - ||, satisfying (2.1) and which are easier to compute and
cover many examples. To this end let v : [0, R[—]0, oo[ be a weight function, i.e. let
v be continuous, decreasing and satisfy

lin}{v(r) =0 and supr"v(r) <oo forall n>0.
r— r

Moreover, let v be a non-atomic positive Borel measure on [0, B[ such that v([r, R[) >
0 for every r > 0, and fOR r™v(r)dv(r) < oo for every n > 0. Put, for 1 < p < o0,

st = (| s, eyt "

Here we consider AP with du(r) = v(r)dv(r). Actually one can relax a bit the
conditions on v. It suffices to require that v be decreasing on [rg, R| for some
1o €]0, R[. This follows from the fact that, for dfii = 1p, gdp, the L,—norms with
respect to v and fi are equivalent. Actually, using the fact that M, (f,r) is increasing
with respect to r for holomorphic functions f we see that

/ MP(f,r)du(r / MP(f,r)dp(r) < (H%) /:Mﬁ(f,r)du(r)-

For any n > 0 let r, € [0, R[ be a point where the function r — r"v(r) attains its
global maximum. It is easily seen that r,, < r, if m < n. In the following we want
to assume that

(3.1) ry, is the unique global maximum of "v(r) for all n
and there are no further local maxima.

For example this is the case if v is differentiable and v’ /v is injective. The assump-
tion (3.1) implies that r"v(r) is decreasing for r > r,. Moreover we assume that v
satisfies

Condition (by): There are numbers 1 < b < K and m; < me < ... with
lim,,_,oo M, = 00 such that

< ( P )’m# U(Tmn) <7’mn+1)mn+1 U(Tmn+1> <K

Tmng1 U(Tmn+1)7 T'm U(Tmn) N

Condition (by) is exactly the same as condition (b) in [3], except that the treatment
of weighted Banach spaces of analytic functions with sup-norms requires 2 < b < K.
We refer the reader to [3] and [9] for more information and examples related to these
conditions.

We take the parameters of condition (by) and we put

n

I = v([rm,, Tmn+1])

and assume

I
(3.2) I, <oo foralln and limsup <b.

n—00 min(jn—la In—',—l)
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Theorem 3.1. Let 1 < p < oo. Assume that v satisfies (by) with (3.1), (3.2).
Then there are constants dy,dy > 0 with

oo 1/p
(3.3)  dillfll < (Z M ((Pimis /o) = Pl o)) S Tmn)v(rmn)ln> < | f|],-

n=1

Jor all f € AL,

In view of (2.1) we can apply Theorem 2.1 with the preceding l,, = m,/p, w? =
v(rm, )1, and s, = 7, .
Corollary 3.2. Let du = vdv.
(a) If2<p< oo, then

S(A) ={g9g: R-D— C:

/2
oo [mn+1/p] P
g holomorphic with Zv(rmn)fn Z \g(k)[r2r < 00}
n=1 kf:[mn/p]‘f'l
(b) If1<p<2, then
s(AP)={9:R-D—C:
o [mnt1/p] p/2
g holomorphic with Zv(rmn)ln Z g(k)|*r2r < o0}
n=1 k=l fpl+1

Before we prove Theorem 3.1 we present the following examples. They are con-
crete cases to which Corollary 3.2 applies, thus permitting us to calculate explicitly
all the parameters which appear in the solid hull and solid core.

Example 3.3. (i) R =1 and du(r) = exp(—a/(1 — r)?)dr for some a, 3 > 0. We
take v(r) = exp(—a/(1 — r)?) and dv(r) = dr. v satisfies condition (by) with

1/8 1/
1
m, = 3 <§> n* % — gn? and 1, =1 - (%) 575

and b = e' (see [3], Theorem 3.1.) Here I,, = (a/)/?(n=2/% — (n +1)72/%). Hence
li In 1
im = 1.
n—00 min([n—la ]n—i-l)

This shows that (3.2) is satisfied. (3.1) holds, too, according to [3]. So we can apply
Corollary 3.2.
(ii) R =1 and du(r) = (1 — log(1 — r))~'dr. Here we take
dr
== logi =)
rm = 1—1/(m+1) is the only zero of the derivative of v (r). Hence (3.1) is satisfied.

If we take m,, = 9" and hence r,,, = 1—1/(9"+ 1) then a simple calculation reveals
that v satisfies (by) with b = 3. We obtain

Tmg, 411 n+1
In:/ +dy:log(1+log<9 +1)>

1+ log(9" + 1)

from which we infer lim,,,, I,,/ min(Z,,_1, I,,41) = 1. This implies (3.2).

vir)y=1—r and dv(r)=

n
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(iii) R = oo and du(r) = e "dr. Here we take v(r) =e™", dv(r) =dr. r,, = mis
the unique zero of the derivative of 7™v(r). Hence (3.1) is satisfied. Put

my =1 and myp1 =my,+2ym,, n=12..., andr,, =m,.

A simple calculation yields, with

1 2
—x——( ’ ) <log(l—z)<—z if 0<z <1,

(559 ()

rmn+1 U(T’mn_H)

oo (e (1= < 23) +20i) <o (LY.

Similarly, with
2
x—%glog(l—i—x)gx for 0 <z <1,

exp (4 P %)) < exp ((m + 9vim) log (1 ; %) _ zm)

_ Tmn+1 e U<Tmn+1) < 64
This shows that condition (by) holds. Moreover we easily obtain
I,
I, =2\/m, and lim =1

n—00 min(Infla In+1>

which yields (3.2). Observe that in this case we can take m,, = n?; see Theorem 3.1
in [1]. This fact is not surprising, since one can easily prove by induction that our
selection of m,, above satisfies (n — 1)? < m,, < n? for each n.

Corollary 3.4. Let R =1 and du(r) = exp(—1/(1 —r))dr.
(a) If2 <p< oo, then

S(A7) ={g€ HD):

i , ( 1 1 [(”%/Z’] 1 2k

—n ~ 2

n=1 n (n t 1) k=[n*/p]+1 "

(b) If1<p<2, then

s(AV) ={g € H(D):
o . (1)) L\ 2 p/2

Sl (. g2 (11— = .

S () | X e (i) | <o
n=1 k=[n*/pl+1

Proof. Example 3.3 (i) in [3] shows that we can take, for v(r) = exp(—1/(1 — 1)),
m,, = n? for each n. The result follows from Example 3.3 (i) and Corollary 3.2. 0O
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Corollary 3.5. Let R = oo and du(r) = e "dr.
(a) If2 <p < oo, then

S A GO P/
S(A) ={ge H(C):Y e™2n| > |gk)n™] <oo}.
n=1 k=[n?/p]+1
(b) If1<p<2, then
SR A G P2
s(A)={g e H(C): Y e™2n| Y |3k)*n*| <oo}.
n=1 k=[n2/p]+1
Proof. 1t is a consequence of Example 3.3 (iii) and Corollary 3.2. 0

Lemma 3.6. Let 1 <p < oo, 0<r<sand f(z) =),
0<m < n. Then we have

. )
m<j<n @2 for some a; and

(0 My(f,r) < (5)" Myl )
and
(i) My(f,8) < (2) My £,

Proof. Part (i) follows from the fact that, for holomorphic f, the function M,(f,-)
is increasing in 7 while (ii) is Lemma 3.1. (i) of [8]. 0

Now consider 1 < p < oo and let m,, I, satisfy (by) and (3.1), (3.2).

Lemma 3.7. Fir k, n and r,,, <r <1y, . Then we have

0 ()" (T ke

o () ) e

Proof. It k < n we have

r \"" v(r)
(Tmn) U(Tmn)_
( r >m” v(r) <rmk+l)m" V(s ) (rmn_l)mn U(rmn_1)<
Ty ) V) \Tmga ) V(Tmiyn) ™\ T v(rm,) ~
(L>m’“+1 v(r) (rmkﬂ)m’“” V(") (rmn1>m" (T, 1)
Trmgeis V(T 1) \ Ty V(Tmgrs)  \ T v(rm,)

1 n—k—1
< _
<(3)

If K >n+1 we have

(é) m:};ﬁi) - . .

and
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( r )m v(r) ( i )’”“ o(rim,) <m)m V(i) po
ka U(’I"mk) ka—l U(ka—1> Tmn+1 v(rmn)

1 k—n—1
<K|-
<5 ()

Similarly, for k = n,
i T () < (T " (P ) <K
7A'”’Ln v (Tmn ) N frmn v (rmn ) N

Now fix ky > 0 and 0 < p < b such that
I,
min(Lz—la In—i—l)

Corollary 3.8. Let f,(z) = >
k > ko we have

(3.4) <p it k> k.

]
1 < j<mmss [p OG5 % where n > ko. Then, for any

(3.5) / ;mk“ M2(f, r)o(r)du(r) < c (%’)'”_k' ME(fo 7 Y0 T

k

Here ¢ > 0 is a universal constant independent of k,n, f,.

Proof. First let k < n. Then Lemma 3.6 (i) and Lemma 3.7 (i) imply

/rmk+1 ME(fo,r)v(r)dr(r)

k

e [ ()

<ogtrmoen ([175) ()

v L

In—k]
<a (%) ME(fr T )0 (T, ) Ins

where ¢y, ¢; are universal constants. If k& > n then we use Lemma 3.6 (ii) and Lemma
3.7 (ii) to get

/kaﬂ ME(fr,r)v(r)dv(r)

k

< M;’(fn,rmn)v(rmn)/rwﬂ <L> () dv(r)

T, v(rm,)
k—1 I. . 1 [n—k|
< KOMP(fo, T )0(Tin, ) L H?—* (E)
j=n 7
P\ In—Fl
<ca(§) MpUurmn ()

where ¢y is a universal constant. O
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Conclusion of the proof of Theorem 3.1 Let f € A say f =) f, where
fn is as in Corollary 3.8. We can assume that f, = 0 for n < ky with kg as in (3.4).

To prove the right-hand inequality in Theorem 3.1 we use that M,(f,,r) <
cM,(f,r) for a universal constant independent of r, as well as that, in view of
(3.1), r™mv(r) is decreasing for r > r,, . We have

> ME(f om0 (P, )

<[ ()

<X [ () gt

n n U<Tmn+1)

< K f]15

This in particular implies that ) MP(f,, 7m, )v(rm, )L, < oo.
Now we show the left-hand inequality of Theorem 3.1. Using the Minkowski
inequality in the first estimate and Corollary 3.8 in the second one, we obtain

Hmzzfmmemmm

—_— 1/p
> Z( /Tm Mg(fn,r)v(r)dy<r))

k n k

3 (Z (&)™ ez, Tmn)v(rmnﬂn)l/p)p

n

oY (8) T M otrn ),
k n

< C3 Z Mg(fna rmnﬁ](rmn)[n-

p

IN

IN

IA

Here ¢y, ¢y, c3 are universal constants. In the second last inequality we used the
Holder inequality in the following way: Put a, = (Mg( I, rmn)v(rmn)fn) YP Then

S0 s (20 ) (20

with 1/p 4+ 1/¢ = 1. In the last inequality we interchanged the summation over k
and n and utilized sup, Y, (p/b)"H/P = sup, 3, (p/b)" /P < 0. O

4. SOLID BERGMAN SPACES.

Recall, a Bergman space AP is solid if S(AF) = AP,
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Theorem 4.1. Let 1 < p < 0o,p # 2. Then the following are equivalent
(i) AL is solid
(ii) s(Ab) = AP
(ii1) The monomials (2");%, are an unconditional basis of AP,
(tv) The normalized monomials (2" /||2"|],)eey are equivalent to the unit
vector basis of [P
(v) sup,,(lp41 — 1) < oo for the numbers 1, in (2.1)

Remark 4.2. If p = 2 then the normalized monomials are an orthonormal basis
for A2 and all conditions (i)-(iv) are satisfied.

The following example is relevant in connection with Theorem 4.1.

Example. Consider R = oo and v(r) = exp(—log?(r)), dv(r) = dr. (This is
included in Example 2.2 of [9].) v is decreasing on [1, co[ which suffices in view of
the remarks in the beginning of section 3. We easily see that r,, = exp(m/2) is the
only zero of the derivative of 7™wv(r). Hence (3.1) is satisfied. We get for any n > 0

im0 ™ (1) " ofra) (n = m)?
() S = () s = (M),

So, if we take m,, = 4n then condition (by) is satisfied with b = e*. Moreover we
have I,, = exp(2n+2) —exp(2n). An easy calculation shows that (3.2) holds. Hence
we can consider (2.1) with I, = m,/p. Therefore sup,,(l,+1 — l,) = 4/p < oco. This
means, for dju(r) = v(r)dr, the Bergman space A?, is solid.

For the preceding example it is essential that R = oo. Indeed, we have

C;);Oll&t‘y 4.3. Let 1 <p < oo, p# 2, and R =1. Then no Bergman space A?, is
solid.

We prove Corollary 4.3 at the end of this section. For the proof of Theorem 4.1
we need the following

Lemma 4.4. Let (e,) be a Schauder basis of a Banach space X with basis projec-
tions P,. For M C N, let Ty be the linear (not necessarily continuous) operator
defined in the linear span of (e,) by Tarer, = ex if k € M and Tyer = 0 otherwise.

If the basis (ey,) is not unconditional, then there is N C N such that, for any n,
there exists m,, and 0 # y € P, X with ||y|| < n||Tny||.

Proof. 1f (e,) is a conditional basis then there exists an operator of the form Ty

which is unbounded on X. Hence there is a sequence z,, € X with ||zx|| = 1 and
limy o0 ||Tnzk|| = oo. For suitable m, we find k, such that 0 < ||P,, || <
| T P, xy, || Here we use P, Ty = TyPp,,. d

In the following we retain the definition of Ty with respect to the monomials (z").

Lemma 4.5. Let 1 < p < oo, p # 2 and assume that there are constants ¢, > 0,
d,, > 0 with sup,, d,/c, < 00, integers 0 < an < b, < ani1 and radit s, such that,
for-any f, € AL with f,(2) = >, i<y, @7’ we have

CnMp(fnaSn) < anHp S anp<fn73n)-

If sup,,(b, — an) = oo then the monomials are not unconditional in AP



12 JOSE BONET, WOLFGANG LUSKY, AND JARI TASKINEN

Proof. 1t is well known that the monomials are a conditional basis sequence with
respect to the norm M,(-,1). So we find N C N and y,, € Y,, := span {2/ : 0 <
J < my,} with 1 = M,(y,,1) =1 < nMy(Tny,). Find k,, with by, — ay, > m,, put
Y, =A{2 :ap, <j <by,} C A and define S, : X,, = Y, by

(Snf)(z) = 2% f(2/sn).
Then, according to our assumptions we have ||S,|| - [|S; | < d,./c, < ¢ for some
universal constant c¢. Put M, = {a, +j : j € N,j < m,}. Then S, TyS;! =
T, |x, - If we consider M = U, M, then the preceding shows that T); is unbounded
on A?. This proves that the system of monomials is conditional in AL. O

Conclusion of the proof of Theorem 4.1. (i) < (ii) follows from the defini-
tion of solid hull while (ii) < (i) follows from the definition of solid core. (Recall,
in any case the monomials are a basis of A?.) Now (iii) and Lemma 4.5 imply (v).
Finally, (v) and (2.1) imply (iv) while (iv) trivially implies (iii). O

Proof of Corollary 4.3. Proposition 3.5 of [8] shows that, for R = 1, the assump-
tions of Lemma 4.5 are always satisfied. Hence the system of monomials can never
be unconditional. In view of Theorem 4.1 the Bergman space A” can never be solid.
O

5. SOLID WEIGHTED SPACES OF ENTIRE FUNCTIONS WITH SUP-NORMS.

In this section we consider weighted Banach spaces of analytic functions with sup-
norms. The main result Theorem 5.2. of this section complements Theorem 4.1.
This result was announced in Remark 5.6 of [3]. Here, as in section 3, a continuous
weight v : C —]0, oo[ is a function satisfying

v(z) =v(|z|),z€C, wv(r)>v(s)if0<r<s

and lim r"v(r) = 0 for all n > 0.

r—00

We deal with the weighted space H° over C, i.e.
H>* ={f:C — C: f holomorphic , || f||, := sup|f(2)|v(z) < oo}.
zeC

Let H? be the closure of the polynomials in HZ°.

Similarly to the weighted L,—norms in section 3 and 4 one sees that it suffices
to require only v(r) > w(s) for ro < r < s and some ry > 0 since ||f]|, and
SUD,<||<oo |.f (2)[0(2) are equivalent for holomorphic f.

Again, for n > 0 let r,, € [0, 00 be a point where the function r — r™v(r) attains
its global maximum. The next lemma can be easily proved with induction (which
was done in [9], Lemma 5.1.). The indices m,, are needed in the following.

Lemma 5.1. For any b > 2 there are numbers 0 < my < mo < ... with
lim,, oo My, = 00 and

b— mm( ( Tmn )mn U(Tmn) : (Tmn,+1>mn+1 U(Tmn-u) ) '
rm'n+1 /U<7amn+1 ) 7/.WLTL v(rmn )

Actually, one can show that Lemma 5.1. works for all b > 1 but we need b > 2 in
the following proof.

There are examples of weights on C such that the monomials ("), are a
Schauder basis in the Banach space H?. This is the same as saying that the Taylor
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series of each element in H converges with respect to the weighted sup-norm || - ||,..
In the known examples, in this case, (2"/||2"|],)22, is equivalent to the unit vector
basis of ¢y. Moreover, here H;* is solid. We show that this is always true provided
that (2™)22, is a Schauder basis of H). We also characterize this situation by a
property for the indices m,, of Lemma 5.1. Our arguments are similar to those of

[8].

Let h(z) = > 2, bez". As before let P, be the partial sum operators, i.e.

(Pah)(2) = 2"

If the monomials are a basis of H) then sup,, ||Py,|pol|| = sup,, || Pu|me|| < oo.
For any k we have

1 2w ) )
(5.1 |bk|-||zk||v=|bk|r',:v<m>=\g | ey | vl < Al
0

Moreover take the numbers m,, of Lemma 5.1. and put

Mn—1

Finally put Mo (h,r) = supy,_, [h(2)].

Theorem 5.2. The following are equivalent

(1) sup,,(mp11 — my) < 0o where my, are the indices of Lemma 5.1.

(ii) (2™)22, is a Schauder basis of HC.

(117) (2" /]|2™]]0)5, s equivalent to the unit vector basis of co.

(iv) H® is solid.

(v) HY is solid.
Proof. Put V,, = R, — R,,_1. According to Proposition 5.2 in [9], since we assumed
b > 2 in Lemma 5.1., the norms |[[h||, and sup, sup,, Mo (Vb r)o(r)

are equivalent. Since Lemma 3.3 in [9] implies that the operators V,, are uniformly
bounded on H;°, we obtain constants ¢; > 0 and ¢ > 0 with

(5.2) cysup ||Vohllo < ||hlle < ol |Vih||,  for all h € H°.

1STSTmy

(i) = (ii): Observe that, by definition of V,,, dim V;,(H?) = [m,1] — [mn_1]. By
(i) we obtain sup,dim V,,(H?) < oco. With the definition of P; and (5.1) we see
that sup,, || Pj|v, o) || < sup, ([mni1] — [mn_1]) < co. With (5.2) and P}V, =V, P;
for all j and n we conclude that the projections P; are uniformly bounded. Hence
(2™)22, is a Schauder basis of HY.

(i) = (i): Assume that (ii) holds. By definition, V,(P,,., — Pn,_,) = Va. In
view of the uniform boundedness of the V}, and (5.2) we obtain constants ¢} > 0 and
¢y > 0 with

(5.3) Ay sup ||(Pr,yy = Py )Rl o < IAllo < cysup [[(P, = P )bl

for all h € Hy°. Here the first inequality follows from the uniform boundedness of
the P, in view of (ii) while the second inequality follows from (5.2). Let ¢, € [0, R|
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t —r if b _ Tmn+1 i U<Tmn+1)
" " v(rmn)

by =1, if b= ( ) O(rm,)
rmn+1 7/.Wln-kl)

in Lemma 5.1. Then Corollary 3.2.(b) of [9] implies
Py = Pras )bl < QbMOO((Pmn+1 = P, )R t)v(tn).-
With (5.3) we obtain
(5.4) dy sup Mo ((P,

Mn+1

be such that

and

— P )b t)v(tn) < Al <
dy sup Moo (P, .y — P, )R, to)vu(ts,)

for some contants d; > 0, dy > 0 and all h € HS.
It is well-known that there are bounded holomorphic functions whose Taylor series
do not converge with respect to M (+,1). By going over to suitable Cesaro means

if necessary, we see that, for each n € N, there is a polynomial f of degree N and
an index M < N such that

Myo(f,1)=1 but n<M(Puf,1).

Proceeding by contradiction, assume that (i) does not hold, that is sup,,(m,+1 —
m,) = 0o. Then we find k with dim (P,,, ., — P, )H? > N. Put h(z) = 2™ f(2) /v(ts).

ME+1 k
Then, in view of (5.4), we obtain

n
h< bl <d and <[Py bl
2

This implies that the projections P; are not uniformly bounded contradicting the
assumption (ii). This contradiction implies sup,,(m,+1 — m,) < oo, and we have
checked that (ii) = (i).

Moreover, if sup,,(my,+1 —m,) < oo then (5.4) easily implies that the normalized
monomials are equivalent to the unit vector basis of ¢y. Hence we have (ii) = (iii).
(iii) = (ii) is trivial.

(iii) = (iv): By the preceding we know already that (iii) implies (ii) and hence
(5.4). If o, is the n’th Cesaro mean and h € H° then o,h € H?. We have
0,P; = Pjo, for all n and j. Moreover ||o,h||, < Hh|| and sup,, Hanth = ||A||o-
This implies that (5.4) remains valid for all h € Hg°. This together with the fact
that sup,,(mn+1 — m,) < oo shows that H)° is solid.

(iv) = (iii) follows from Theorem 5.2 in [3].

(iv) = (v): If g € S(H?) then, by definition and (iii),

lim g(n)||z"||, =0
n—oo

which implies by (iii) that g € H?.
(v) = (iv): If g € S(H) then by definition 0,9 € S(H?) = H? for all n. This
implies g € H.°. U

In [9] it was shown that v(r) = exp(—log?(r)), R = oo, satisfies (iv) (and hence
all assertions) of Theorem 5.2.

Observe that nowhere in the preceding proof the fact that our functions are defined
on C is used. The arguments work as well for weighted spaces of holomorphic
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functions over the unit disc D. However in this case lim,,_,o 7, = 1 and this fact

together with
4 << Tmnsa T
=\

(by Lemma 5.1.) implies sup,,(m,+; — m,) = oo. This means that in the case
of holomorphic functions over ID the preceding theorem is empty. Compare with

Corollary 5.3 in [3].
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