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Abstract. We determine the solid hull for 2 < p < ∞ and the solid core for
1 < p < 2 of weighted Bergman spaces Apµ, 1 < p < ∞, of analytic functions
functions on the disc and on the whole complex plane, for a very general class
of non-atomic positive bounded Borel measures µ. New examples are presented.
Moreover we show that the space Apµ, 1 < p < ∞, is solid if and only if the
monomials are an unconditional basis of this space.

1. Introduction and preliminaries.

Consider R = 1 or R = ∞ and D = {z ∈ C : |z| < 1}. We study holomorphic
functions f : R · D → C where R · D = D if R = 1 and R · D = C if R = ∞. Let
f̂(k) be the Taylor coeffients of f , i.e. f(z) =

∑∞
k=0 f̂(k)zk. We take a non-atomic

positive bounded Borel measure µ on [0, R[ such that µ([r, R[) > 0 for every r > 0

and
∫ R

0
rndµ(r) <∞ for all n > 0. Put, for 1 ≤ p <∞,

||f ||p =

(
1

2π

∫ R

0

∫ 2π

0

|f(reiϕ)|pdϕdµ(r)

)1/p

and let

Apµ = {f : D→ C : f holomorphic with ||f ||p <∞}.
Let A be a vector space of holomorphic functions on R·D containing the polynomials.
We want to study the solid core

s(A) = {f ∈ A : g ∈ A for all holomorphic g with |ĝ(k)| ≤ |f̂(k)| for all k}
and the solid hull

S(A) = {g : D→ C : g holomorphic, there is f ∈ A with |ĝ(k)| ≤ |f̂(k)| for all k}.
A is called solid if A = S(A).

In the first four sections we consider A = Apµ while in section 5 we include the
case where A consists of weighted sup-norm spaces of holomorphic functions.

The solid hull and core of spaces of analytic functions has been investigated by
many authors. We refer the reader to the recent books [6] and [11] and the many
references therein. For example in [6] the characterisation of the solid hulls and
cores of Apµ can be found where dµ(r) = (1− r)αdr for some α > 0 and R = 1.

Originally, our main interest was to replace the “standard weights” (1 − r)α by
weights of the form va,b(r) = exp(−a/(1− r)b) for some a > 0 and b > 0, which are
of a completely different nature and require different methods, and hence to consider
dµ(r) = va,b(r)dr. We wanted to extend to weighted Bergman spaces the results of
[3], a paper which was entirely devoted to this class of weights va,b in connection
with weighted sup-norms. In the present article we give a characterization of solid
hulls of Apµ if 2 < p <∞ and solid cores if 1 < p < 2 in Theorem 2.1 for much more
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general µ which, under some mild additional assumptions (Corollary 3.2), resulted
in the explicit computation of many examples including v(r) = exp(−a/(1− r)b) for
R = 1 and v(r) = exp(−r) for R =∞; see Corollaries 3.4 and 3.5.

The final sections 4 and 5 are dedicated to Bergman spaces and weighted sup-
norm spaces which themselves are solid. We give examples for this situation in
connection with holomorphic functions over the complex plane and show that this
can never happen for holomorphic functions over the unit disc.

For a holomorphic g and 0 < r we define

Mp(g, r) =

(
1

2π

∫ 2π

0

|g(reiϕ)|pdϕ
)1/p

and Png(z) =
∑n

k=0 ĝ(k)zk. It is well-known that, for 1 < p <∞, there are universal
constants cp > 0 with Mp(Png, r) ≤ cpMp(g, r) where cp does not depend on g, n or
r. Moreover we have limn→∞Mp(g − Png, r) = 0. Hence we obtain

||Pnf ||p ≤ cp||f ||p for all f ∈ Apµ and all n and lim
n→∞

||f − Pnf ||p = 0.

In particular we see that the monomials z 7→ zn, n = 0, 1, 2, . . . form a Schauder
basis of Apµ if 1 < p <∞. Details can be seen in [4] and [12].

In the rest of the article [r] denotes the largest integer smaller or equal than r > 0.

2. Main general result.

Theorem 2.1. Assume that there are constants d1, d2 > 0, and ωn > 0, n = 1, 2, . . .,
numbers 0 ≤ l1 < l2 < . . . and radii s1 < s2 < . . . such that, for every f ∈ Apµ,

(2.1) d1||f ||p ≤

(
∞∑
n=1

ωpnM
p
p

(
(P[ln+1] − P[ln])f, sn

))1/p

≤ d2||f ||p.

(a) If 2 < p <∞, then

S(Apµ) =g : R · D→ C : g holomorphic with
∞∑
n=1

ωpn

 [ln+1]∑
k=[ln]+1

|ĝ(k)|2s2k
n

p/2

<∞

 .

(b) If 1 < p < 2, then

s(Apµ) =g : R · D→ C : g holomorphic with
∞∑
n=1

ωpn

 [ln+1]∑
k=[ln]+1

|ĝ(k)|2s2k
n

p/2

<∞

 .

Theorem 2.1 is proved below. Before presenting the proof we point out that
condition (2.1) can be realized for any given µ. Indeed, fix β > 16 ·3p−1(1+2p)cpp+2
and use induction to obtain 0 = l1 < l2 < l3 . . . and 0 ≤ s1 < s2 . . . < R with

(2.2)

∫ sn

0

rlnpdµ = β

∫ R

sn

rlnpdµ and

∫ sn

0

rln+1pdµ =
1

β

∫ R

sn

rln+1pdµ.
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Instead of starting with n = 1 we can as well start the induction e.g. with n = n0

for some n0 ≥ 0 (with l1 = 0 and arbitrary s1) and restrict the preceding relations
to all n ≥ n0. Moreover put

ωn =

(∫ sn

0

(
r

sn

)lnp
dµ+

∫ R

sn

(
r

sn

)ln+1p

dµ

)1/p

.

Then there are constants d1, d2 > 0 such that, for every f ∈ Apµ,

d1||f ||p ≤

(
∞∑
n=1

ωpnM
p
p

(
(P[ln+1] − P[ln])f, sn

))1/p

≤ d2||f ||p.

This was shown in [5] for p = 1 and in [10] for 1 < p < ∞ and R = 1, but with
some slight modifications the proofs carry over to the case R =∞.

Example 2.2. (i) Let dµ(r) = dr where R = 1. Then we obtain

ln =
1

p
(an−1 − 1) and sn =

(
β

β + 1

)a1−n

where a =
log(β + 1)

log(1 + β)− log(β)
.

This can be easily verified using the definition (starting with n = 0) and induction.
(ii) Let dµ(r) = rαdr for some α > 0 and R = 1. With example (i) and lnp+α =

(an−1 − 1), where a is the number in (i), we obtain

ln =
1

p
(an−1 − 1)− α

p
and sn =

(
β

β + 1

)a1−n

for n ≥ 2 with l1 = 0 and s1 = β/(β + 1).

Now we turn to the proof of Theorem 2.1. Let f : R · D → C be holomorphic.
Recall that f̂(n)rn = 1

2π

∫ 2π

0
f(reiϕ)e−inϕdϕ for each 0 < r < R and each n =

0, 1, 2, . . . . For g(reiϕ) = rn(p−1)e−inϕ/(
∫ R

0
rnpdµ)1−1/p we have

|f̂(n)|
(∫ R

0

rnpdµ

)1/p

=
1

2π
|
∫ R

0

∫ 2π

0

f(reiϕ)g(reiϕ)dϕdµ| ≤ ||f ||p.

In the following we make use of the Khintchine inequality ([7], 2.b.3.), i.e. for
arbitrary bk and n we have

Ap

(
n∑
k=1

|bk|2
)1/2

≤

(
1

2n

∑
θk=±1

∣∣∣∣∣
n∑
k=1

bkθk

∣∣∣∣∣
p)1/p

≤ Bp

(
n∑
k=1

|bk|2
)1/2

where Ap, Bp are universal constants not depending on n. (The summation in the
central expression runs over the 2n different possibilities of the change of signs.)

Conclusion of the proof of Theorem 2.1. For a holomorphic function g put

α(g) =

(
∞∑
n=1

ωpnM
p
p

(
(P[ln+1] − P[ln])f, sn

))1/p

.
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As assumed, α(·) is equivalent to || · ||p. Moreover let

γ(g) =

 ∞∑
n=1

ωpn

 [ln+1]∑
k=[ln]+1

|ĝ(k)|2s2k
n

p/2


1/p

and V = {g : R · D → C : g holomorphic with γ(g) < ∞}. Recall that Parseval’s
identity implies

M2
2

(
(P[ln+1] − P[ln])f, sn

)
=

[ln+1]∑
k=[ln]+1

|ĝ(k)|2s2k
n .

Proof of (a). Let g ∈ S(Apµ). Then there is f ∈ Apµ with |ĝ(k)| ≤ |f̂(k)| for all
k. If 2 < p <∞ then

γ(g) ≤ γ(f) ≤ α(f) ≤ d2||f ||p <∞.
Hence g ∈ V .

Now let g ∈ V . Put ∆n = {+1,−1}[ln+1]−[ln]. For Θn = (θ[ln]+1, . . . , θ[ln+1]) ∈ ∆n

put

gΘn(ϕ) =

[ln+1]∑
k=[ln]+1

θkĝ(k)skne
ikϕ and gn(ϕ) =

[ln+1]∑
k=[ln]+1

ĝ(k)skne
ikϕ.

Let Θ̃n be such that

Mp(gΘ̃n
, sn) ≤

(
1

2[ln+1]−[ln]

∑
Θn∈∆n

Mp
p (gΘn , sn)

)1/p

.

The Khintchine inequality yields

Mp(gΘ̃n
, sn) ≤ BpM2(gn, sn).

Put h =
∑

n gΘ̃n
. Then, by the preceding estimates,

d1||h||p ≤ α(h) ≤ Bpγ(g) <∞.

Hence h ∈ Apµ. Since by definition |ĥ(k)| = |ĝ(k)| for all k we obtain g ∈ S(Apµ).

Proof of (b). We retain the preceding notation. Let g ∈ V and let f : R · D→ C
be holomorphic with |f̂(k)| ≤ |ĝ(k)| for all k. Then

d1||f ||p ≤ α(f) ≤ γ(f) ≤ γ(g) <∞.
This implies f ∈ Apµ and hence g ∈ s(Apµ).

Now let g ∈ s(Apµ). Let ˜̃Θn ∈ ∆n be such that(
1

2[ln+1]−[ln]

∑
Θn∈∆n

Mp
p (gΘn , sn)

)1/p

≤Mp(g ˜̃Θn
, sn).

Put h =
∑

n g ˜̃Θn
. Then we obtain |ĥ(k)| = |ĝ(k)| for all k. Hence h ∈ Apµ. The

Khintchine inequality together with the choice of ˜̃Θn yields

γ(g) = γ(h) ≤ A−1
p α(h) ≤ d2A

−1
p ||h||p <∞.

We conclude g ∈ V . �
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3. Main examples.

Quite often it is very difficult to compute the parameters ln and sn in (2.2).
Therefore it is worthwhile to consider special cases which yield an equivalent rep-
resentation of the norm || · ||p satisfying (2.1) and which are easier to compute and
cover many examples. To this end let v : [0, R[→]0,∞[ be a weight function, i.e. let
v be continuous, decreasing and satisfy

lim
r→R

v(r) = 0 and sup
r
rnv(r) <∞ for all n > 0.

Moreover, let ν be a non-atomic positive Borel measure on [0, R[ such that ν([r, R[) >

0 for every r > 0, and
∫ R

0
rnv(r)dν(r) <∞ for every n ≥ 0. Put, for 1 ≤ p <∞,

||f ||p =

(∫ R

0

Mp
p (f, r)v(r)dν(r)

)1/p

Here we consider Apµ with dµ(r) = v(r)dν(r). Actually one can relax a bit the
conditions on v. It suffices to require that v be decreasing on [r0, R[ for some
r0 ∈]0, R[. This follows from the fact that, for dµ̃ = 1[r0,R[dµ, the Lp−norms with
respect to µ and µ̃ are equivalent. Actually, using the fact that Mp(f, r) is increasing
with respect to r for holomorphic functions f we see that∫ R

r0

Mp
p (f, r)dµ(r) ≤

∫ R

0

Mp
p (f, r)dµ(r) ≤

(
1 +

µ([r0, R[)

µ([0, R[)

)∫ R

r0

Mp
p (f, r)dµ(r).

For any n > 0 let rn ∈ [0, R[ be a point where the function r 7→ rnv(r) attains its
global maximum. It is easily seen that rm < rn if m < n. In the following we want
to assume that

(3.1) rn is the unique global maximum of rnv(r) for all n
and there are no further local maxima.

For example this is the case if v is differentiable and v′/v is injective. The assump-
tion (3.1) implies that rnv(r) is decreasing for r ≥ rn. Moreover we assume that v
satisfies

Condition (b0): There are numbers 1 < b < K and m1 < m2 < . . . with
limn→∞mn =∞ such that

b ≤
(
rmn

rmn+1

)mn v(rmn)

v(rmn+1)
,

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ K.

Condition (b0) is exactly the same as condition (b) in [3], except that the treatment
of weighted Banach spaces of analytic functions with sup-norms requires 2 < b < K.
We refer the reader to [3] and [9] for more information and examples related to these
conditions.

We take the parameters of condition (b0) and we put

In = ν([rmn , rmn+1 ])

and assume

(3.2) In <∞ for all n and lim sup
n→∞

In
min(In−1, In+1)

< b.
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Theorem 3.1. Let 1 < p < ∞. Assume that v satisfies (b0) with (3.1), (3.2).
Then there are constants d1, d2 > 0 with

(3.3) d1||f ||p ≤

(
∞∑
n=1

Mp
p ((P[mn+1/p] − P[mn/p])f, rmn)v(rmn)In

)1/p

≤ d2||f ||p.

for all f ∈ Apµ.

In view of (2.1) we can apply Theorem 2.1 with the preceding ln = mn/p, ω
p
n =

v(rmn)In and sn = rmn .

Corollary 3.2. Let dµ = vdν.
(a) If 2 < p <∞, then

S(Apµ) = {g : R · D→ C :

g holomorphic with
∞∑
n=1

v(rmn)In

 [mn+1/p]∑
k=[mn/p]+1

|ĝ(k)|2r2k
mn

p/2

<∞}.

(b) If 1 < p < 2, then

s(Apµ) = {g : R · D→ C :

g holomorphic with
∞∑
n=1

v(rmn)In

 [mn+1/p]∑
k=[mn/p]+1

|ĝ(k)|2r2k
mn

p/2

<∞}.

Before we prove Theorem 3.1 we present the following examples. They are con-
crete cases to which Corollary 3.2 applies, thus permitting us to calculate explicitly
all the parameters which appear in the solid hull and solid core.

Example 3.3. (i) R = 1 and dµ(r) = exp(−α/(1− r)β)dr for some α, β > 0. We
take v(r) = exp(−α/(1− r)β) and dν(r) = dr. v satisfies condition (b0) with

mn = β

(
β

α

)1/β

n2+2/β − βn2 and rmn = 1−
(
α

β

)1/β
1

n2/β

and b = e1 (see [3], Theorem 3.1.) Here In = (α/β)1/β(n−2/β − (n+ 1)−2/β). Hence

lim
n→∞

In
min(In−1, In+1)

= 1.

This shows that (3.2) is satisfied. (3.1) holds, too, according to [3]. So we can apply
Corollary 3.2.

(ii) R = 1 and dµ(r) = (1− log(1− r))−1dr. Here we take

v(r) = 1− r and dν(r) =
dr

(1− r)(1− log(1− r))
.

rm = 1−1/(m+1) is the only zero of the derivative of rmv(r). Hence (3.1) is satisfied.
If we take mn = 9n and hence rmn = 1−1/(9n+ 1) then a simple calculation reveals
that v satisfies (b0) with b = 3. We obtain

In =

∫ rmn+1

rmn

dν = log

(
1 + log(9n+1 + 1)

1 + log(9n + 1)

)
from which we infer limn→∞ In/min(In−1, In+1) = 1. This implies (3.2).
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(iii) R =∞ and dµ(r) = e−rdr. Here we take v(r) = e−r, dν(r) = dr. rm = m is
the unique zero of the derivative of rmv(r). Hence (3.1) is satisfied. Put

m1 = 1 and mn+1 = mn + 2
√
mn, n = 1, 2 . . . , and rmn = mn.

A simple calculation yields, with

−x− 1

2

(
x

1− x

)2

≤ log(1− x) ≤ −x if 0 < x < 1,

exp

(
4
√
m√

m+ 2
− 2

)
≤
(
rmn

rmn+1

)mn v(rmn)

v(rmn+1)
=

exp

(
m log

(
1− 2√

m+ 2

)
+ 2
√
m

)
≤ exp

(
4
√
m√

m+ 2

)
.

Similarly, with

x− x2

2
≤ log(1 + x) ≤ x for 0 < x < 1,

exp

(
4− 2(1 +

2√
m

)

)
≤ exp

(
(m+ 2

√
m) log

(
1 +

2√
m

)
− 2
√
m

)
=

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ e4.

This shows that condition (b0) holds. Moreover we easily obtain

In = 2
√
mn and lim

n→∞

In
min(In−1, In+1)

= 1

which yields (3.2). Observe that in this case we can take mn = n2; see Theorem 3.1
in [1]. This fact is not surprising, since one can easily prove by induction that our
selection of mn above satisfies (n− 1)2 ≤ mn ≤ n2 for each n.

Corollary 3.4. Let R = 1 and dµ(r) = exp(−1/(1− r))dr.
(a) If 2 < p <∞, then

S(Apµ) = {g ∈ H(D) :

∞∑
n=1

e−n
2

(
1

n2
− 1

(n+ 1)2

) [(n+1)4/p]∑
k=[n4/p]+1

|ĝ(k)|2
(

1− 1

n2

)2k
p/2

<∞}.

(b) If 1 < p < 2, then

s(Apµ) = {g ∈ H(D) :

∞∑
n=1

e−n
2

(
1

n2
− 1

(n+ 1)2

) [(n+1)4/p]∑
k=[n4/p]+1

|ĝ(k)|2
(

1− 1

n2

)2k
p/2

<∞}.

Proof. Example 3.3 (i) in [3] shows that we can take, for v(r) = exp(−1/(1 − r)),
mn = n4 for each n. The result follows from Example 3.3 (i) and Corollary 3.2. �
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Corollary 3.5. Let R =∞ and dµ(r) = e−rdr.
(a) If 2 < p <∞, then

S(Apµ) = {g ∈ H(C) :
∞∑
n=1

e−n
2

2n

 [(n+1)2/p]∑
k=[n2/p]+1

|ĝ(k)|2n2k

p/2

<∞}.

(b) If 1 < p < 2, then

s(Apµ) = {g ∈ H(C) :
∞∑
n=1

e−n
2

2n

 [(n+1)2/p]∑
k=[n2/p]+1

|ĝ(k)|2n2k

p/2

<∞}.

Proof. It is a consequence of Example 3.3 (iii) and Corollary 3.2. �

Lemma 3.6. Let 1 ≤ p <∞, 0 < r < s and f(z) =
∑

m≤j≤n αjz
j for some αj and

0 ≤ m < n. Then we have

(i) Mp(f, r) ≤
(r
s

)m
Mp(f, s)

and

(ii) Mp(f, s) ≤
(s
r

)n
Mp(f, r).

Proof. Part (i) follows from the fact that, for holomorphic f , the function Mp(f, ·)
is increasing in r while (ii) is Lemma 3.1. (i) of [8]. �

Now consider 1 < p <∞ and let mn, In satisfy (b0) and (3.1), (3.2).

Lemma 3.7. Fix k, n and rmk
≤ r ≤ rmk+1

. Then we have

(i)

(
r

rmn

)mn v(r)

v(rmn)
≤
(

1

b

)n−k−1

if k < n

and

(ii)

(
r

rmn

)mn+1 v(r)

v(rmn)
≤ K

(
1

b

)k−n−1

if k ≥ n.

Proof. If k < n we have(
r

rmn

)mn v(r)

v(rmn)
=(

r

rmk+1

)mn v(r)

v(rmk+1
)

(
rmk+1

rmk+2

)mn v(rmk+1
)

v(rmk+2
)
. . .

(
rmn−1

rmn

)mn v(rmn−1)

v(rmn)
≤(

r

rmk+1

)mk+1 v(r)

v(rmk+1
)

(
rmk+1

rmk+2

)mk+2 v(rmk+1
)

v(rmk+2
)
. . .

(
rmn−1

rmn

)mn v(rmn−1)

v(rmn)

≤
(

1

b

)n−k−1

If k ≥ n+ 1 we have(
r

rmn

)mn+1 v(r)

v(rmn)
=(

r

rmk

)mn+1 v(r)

v(rmk
)

(
rmk

rmk−1

)mn+1 v(rmk
)

v(rmk−1
)
. . .

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤
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r

rmk

)mk v(r)

v(rmk
)

(
rmk

rmk−1

)mk−1 v(rmk
)

v(rmk−1
)
. . .

(
rmn+2

rmn+1

)mn+1 v(rmn−1)

v(rmn)
K

≤ K

(
1

b

)k−n−1

Similarly, for k = n,(
r

rmn

)mn+1 v(r)

v(rmn)
≤
(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ K.

�

Now fix k0 > 0 and 0 < ρ < b such that

(3.4)
In

min(In−1, In+1)
≤ ρ if k ≥ k0.

Corollary 3.8. Let fn(z) =
∑

mn/p≤j<mn+1/p
αjz

j where n ≥ k0. Then, for any
k ≥ k0 we have

(3.5)

∫ rmk+1

rmk

Mp
p (fn, r)v(r)dν(r) ≤ c

(ρ
b

)|n−k|
Mp

p (fn, rmn)v(rmn)In.

Here c > 0 is a universal constant independent of k, n, fn.

Proof. First let k < n. Then Lemma 3.6 (i) and Lemma 3.7 (i) imply∫ rmk+1

rmk

Mp
p (fn, r)v(r)dν(r)

≤Mp
p (fn, rmn)v(rmn)

∫ rmk+1

rmk

(
r

rmn

)mn v(r)

v(rmn)
dν(r)

≤ c0M
p
p (fn, rmn)v(rmn)In

(
n−1∏
j=k

Ij
Ij+1

)(
1

b

)|n−k|
≤ c1

(ρ
b

)|n−k|
Mp

p (fn, rmn)v(rmn)In,

where c0, c1 are universal constants. If k ≥ n then we use Lemma 3.6 (ii) and Lemma
3.7 (ii) to get ∫ rmk+1

rmk

Mp
p (fn, r)v(r)dν(r)

≤Mp
p (fn, rmn)v(rmn)

∫ rmk+1

rmk

(
r

rmn

)mn+1 v(r)

v(rmn)
dν(r)

≤ KbMp
p (fn, rmn)v(rmn)In

(
k−1∏
j=n

Ij+1

Ij

)(
1

b

)|n−k|
≤ c2

(ρ
b

)|n−k|
Mp

p (fn, rmn)v(rmn)In,

where c2 is a universal constant. �
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Conclusion of the proof of Theorem 3.1 Let f ∈ Apµ, say f =
∑

n fn where
fn is as in Corollary 3.8. We can assume that fn = 0 for n ≤ k0 with k0 as in (3.4).

To prove the right-hand inequality in Theorem 3.1 we use that Mp(fn, r) ≤
cMp(f, r) for a universal constant independent of r, as well as that, in view of
(3.1), rmnv(r) is decreasing for r ≥ rmn . We have∑

n

Mp
p (fn, rmn)v(rmn)In

≤
∑
n

∫ rmn+1

rmn

(rmn

r

)mn v(rmn)

v(r)
Mp

p (fn, r)v(r)dν(r)

≤
∑
n

∫ rmn+1

rmn

(
rmn

rmn+1

)mn v(rmn)

v(rmn+1)
Mp

p (fn, r)v(r)dν(r)

≤ K
∑
n

∫ rmn+1

rmn

Mp
p (fn, r)v(r)dν(r)

≤ cpK
∑
n

∫ rmn+1

rmn

Mp
p (f, r)v(r)dν(r)

≤ cpK||f ||pp.

This in particular implies that
∑

nM
p
p (fn, rmn)v(rmn)In <∞.

Now we show the left-hand inequality of Theorem 3.1. Using the Minkowski
inequality in the first estimate and Corollary 3.8 in the second one, we obtain

||f ||pp =
∑
k

∫ rmk+1

rmk

Mp
p (f, r)v(r)dν(r)

≤
∑
k

∑
n

(∫ rmk+1

rmk

Mp
p (fn, r)v(r)dν(r)

)1/p
p

≤ c1

∑
k

(∑
n

(ρ
b

)|n−k|/p (
Mp

p (fn, rmn)v(rmn)In
)1/p

)p

≤ c2

∑
k

∑
n

(ρ
b

)|n−k|/p
Mp

p (fn, rmn)v(rmn)In

≤ c3

∑
n

Mp
p (fn, rmn)v(rmn)In.

Here c1, c2, c3 are universal constants. In the second last inequality we used the

Hölder inequality in the following way: Put an =
(
Mp

p (fn, rmn)v(rmn)In
)1/p

. Then

∑
n

(ρ
b

)|n−k|/p
an ≤

(∑
n

(ρ
b

)|n−k|/p
apn

)1/p

·

(∑
n

(ρ
b

)|n−k|/p)1/q

,

with 1/p + 1/q = 1. In the last inequality we interchanged the summation over k
and n and utilized supk

∑
n(ρ/b)|n−k|/p = supn

∑
k(ρ/b)

|n−k|/p <∞. �

4. Solid Bergman spaces.

Recall, a Bergman space Apµ is solid if S(Apµ) = Apµ.
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Theorem 4.1. Let 1 < p <∞, p 6= 2. Then the following are equivalent
(i) Apµ is solid
(ii) s(Apµ) = Apµ
(iii) The monomials (zn)∞n=0 are an unconditional basis of Apµ
(iv) The normalized monomials (zn/||zn||p)∞n=0 are equivalent to the unit

vector basis of lp

(v) supn(ln+1 − ln) <∞ for the numbers ln in (2.1)

Remark 4.2. If p = 2 then the normalized monomials are an orthonormal basis
for A2

µ and all conditions (i)-(iv) are satisfied.

The following example is relevant in connection with Theorem 4.1.

Example. Consider R = ∞ and v(r) = exp(− log2(r)), dν(r) = dr. (This is
included in Example 2.2 of [9].) v is decreasing on [1,∞[ which suffices in view of
the remarks in the beginning of section 3. We easily see that rm = exp(m/2) is the
only zero of the derivative of rmv(r). Hence (3.1) is satisfied. We get for any n > 0
and m > 0 (

rm
rn

)m
v(rm)

v(rn)
=

(
rn
rm

)n
v(rn)

v(rm)
= exp

(
(n−m)2

4

)
.

So, if we take mn = 4n then condition (b0) is satisfied with b = e4. Moreover we
have In = exp(2n+2)− exp(2n). An easy calculation shows that (3.2) holds. Hence
we can consider (2.1) with ln = mn/p. Therefore supn(ln+1 − ln) = 4/p < ∞. This
means, for dµ(r) = v(r)dr, the Bergman space Apµ is solid.

For the preceding example it is essential that R =∞. Indeed, we have

Corollary 4.3. Let 1 < p <∞, p 6= 2, and R = 1. Then no Bergman space Apµ is
solid.

We prove Corollary 4.3 at the end of this section. For the proof of Theorem 4.1
we need the following

Lemma 4.4. Let (en) be a Schauder basis of a Banach space X with basis projec-
tions Pn. For M ⊂ N, let TM be the linear (not necessarily continuous) operator
defined in the linear span of (en) by TMek = ek if k ∈M and TMek = 0 otherwise.

If the basis (en) is not unconditional, then there is N ⊂ N such that, for any n,
there exists mn and 0 6= y ∈ PmnX with ||y|| ≤ n||TNy||.

Proof. If (en) is a conditional basis then there exists an operator of the form TN
which is unbounded on X. Hence there is a sequence xn ∈ X with ||xk|| = 1 and
limk→∞ ||TNxk|| = ∞. For suitable mn we find kn such that 0 < ||Pmnxkn|| ≤
||TNPmnxkn||. Here we use PmnTN = TNPmn . �

In the following we retain the definition of TN with respect to the monomials (zn).

Lemma 4.5. Let 1 < p < ∞, p 6= 2 and assume that there are constants cn > 0,
dn > 0 with supn dn/cn < ∞, integers 0 < an < bn < an+1 and radii sn such that,
for any fn ∈ Apµ with fn(z) =

∑
an≤j≤bn αjz

j we have

cnMp(fn, sn) ≤ ||fn||p ≤ dnMp(fn, sn).

If supn(bn − an) =∞ then the monomials are not unconditional in Apµ.
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Proof. It is well known that the monomials are a conditional basis sequence with
respect to the norm Mp(·, 1). So we find N ⊂ N and yn ∈ Yn := span {zj : 0 ≤
j ≤ mn} with 1 = Mp(yn, 1) = 1 ≤ nMp(TNyn). Find kn with bkn − akn > mn, put
Yn = {zj : akn ≤ j ≤ bkn} ⊂ Apµ and define Sn : Xn → Yn by

(Snf)(z) = zaknf(z/sn).

Then, according to our assumptions we have ||Sn|| · ||S−1
n || ≤ dn/cn < c for some

universal constant c. Put Mn = {akn + j : j ∈ N, j ≤ mn}. Then SnTNS
−1
n =

TMn|Xn . If we consider M = ∪nMn then the preceding shows that TM is unbounded
on Apµ. This proves that the system of monomials is conditional in Apµ. �

Conclusion of the proof of Theorem 4.1. (i)⇔ (ii) follows from the defini-
tion of solid hull while (ii)⇔ (iii) follows from the definition of solid core. (Recall,
in any case the monomials are a basis of Apµ.) Now (iii) and Lemma 4.5 imply (v).
Finally, (v) and (2.1) imply (iv) while (iv) trivially implies (iii). �

Proof of Corollary 4.3. Proposition 3.5 of [8] shows that, for R = 1, the assump-
tions of Lemma 4.5 are always satisfied. Hence the system of monomials can never
be unconditional. In view of Theorem 4.1 the Bergman space Apµ can never be solid.
�

5. Solid weighted spaces of entire functions with sup-norms.

In this section we consider weighted Banach spaces of analytic functions with sup-
norms. The main result Theorem 5.2. of this section complements Theorem 4.1.
This result was announced in Remark 5.6 of [3]. Here, as in section 3, a continuous
weight v : C→]0,∞[ is a function satisfying

v(z) = v(|z|), z ∈ C, v(r) ≥ v(s) if 0 ≤ r < s

and lim
r→∞

rnv(r) = 0 for all n ≥ 0.

We deal with the weighted space H∞v over C, i.e.

H∞v = {f : C→ C : f holomorphic , ||f ||v := sup
z∈C
|f(z)|v(z) <∞}.

Let H0
v be the closure of the polynomials in H∞v .

Similarly to the weighted Lp−norms in section 3 and 4 one sees that it suffices
to require only v(r) ≥ v(s) for r0 ≤ r < s and some r0 > 0 since ||f ||v and
supr0≤|z|<∞ |f(z)|v(z) are equivalent for holomorphic f .

Again, for n > 0 let rn ∈ [0,∞[ be a point where the function r 7→ rnv(r) attains
its global maximum. The next lemma can be easily proved with induction (which
was done in [9], Lemma 5.1.). The indices mn are needed in the following.

Lemma 5.1. For any b > 2 there are numbers 0 < m1 < m2 < . . . with
limn→∞mn =∞ and

b = min

( (
rmn

rmn+1

)mn v(rmn)

v(rmn+1)
,

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

)
.

Actually, one can show that Lemma 5.1. works for all b > 1 but we need b > 2 in
the following proof.

There are examples of weights on C such that the monomials (zn)∞n=0 are a
Schauder basis in the Banach space H0

v . This is the same as saying that the Taylor
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series of each element in H0
v converges with respect to the weighted sup-norm || · ||v.

In the known examples, in this case, (zn/||zn||v)∞n=0 is equivalent to the unit vector
basis of c0. Moreover, here H∞v is solid. We show that this is always true provided
that (zn)∞n=0 is a Schauder basis of H0

v . We also characterize this situation by a
property for the indices mn of Lemma 5.1. Our arguments are similar to those of
[8].

Let h(z) =
∑∞

k=0 bkz
k. As before let Pn be the partial sum operators, i.e.

(Pnh)(z) =
n∑
k=0

bkz
k.

If the monomials are a basis of H0
v then supn ||Pn|H0

v
|| = supn ||Pn|H∞v || <∞.

For any k we have

(5.1) |bk| · ||zk||v = |bk|rkkv(rk) =

∣∣∣∣ 1

2π

∫ 2π

0

h(rke
iϕ)e−ikϕdϕ

∣∣∣∣ v(rk) ≤ ||h||v.

Moreover take the numbers mn of Lemma 5.1. and put

(Rnh)(z) =

mn−1∑
k=0

bkz
k +

∑
mn−1<k≤mn

[mn]− k
[mn]− [mn−1]

bkz
k.

Finally put M∞(h, r) = sup|z|=r |h(z)|.

Theorem 5.2. The following are equivalent
(i) supn(mn+1 −mn) <∞ where mn are the indices of Lemma 5.1.
(ii) (zn)∞n=0 is a Schauder basis of H0

v .
(iii) (zn/||zn||v)∞n=0 is equivalent to the unit vector basis of c0.
(iv) H∞v is solid.
(v) H0

v is solid.

Proof. Put Vn = Rn − Rn−1. According to Proposition 5.2 in [9], since we assumed
b > 2 in Lemma 5.1., the norms ||h||v and supn suprmn−1≤r≤rmn+1

M∞(Vnh, r)v(r)

are equivalent. Since Lemma 3.3 in [9] implies that the operators Vn are uniformly
bounded on H∞v , we obtain constants c1 > 0 and c2 > 0 with

(5.2) c1 sup
n
||Vnh||v ≤ ||h||v ≤ c2||Vnh||v for all h ∈ H∞v .

(i) ⇒ (ii): Observe that, by definition of Vn, dim Vn(H0
v ) = [mn+1] − [mn−1]. By

(i) we obtain supndim Vn(H0
v ) < ∞. With the definition of Pj and (5.1) we see

that supj,n ||Pj|Vn(H0
v )|| ≤ supn([mn+1]− [mn−1]) <∞. With (5.2) and PjVn = VnPj

for all j and n we conclude that the projections Pj are uniformly bounded. Hence
(zn)∞n=0 is a Schauder basis of H0

v .
(ii) ⇒ (i): Assume that (ii) holds. By definition, Vn(Pmn+1 − Pmn−1) = Vn. In

view of the uniform boundedness of the Vn and (5.2) we obtain constants c′1 > 0 and
c′2 > 0 with

(5.3) c′1 sup
n
||(Pmn+1 − Pmn)h||v ≤ ||h||v ≤ c′2 sup

n
||(Pmn+1 − Pmn)h||v

for all h ∈ H∞v . Here the first inequality follows from the uniform boundedness of
the Pn in view of (ii) while the second inequality follows from (5.2). Let tn ∈ [0, R[
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be such that

tn = rmn if b =

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

and

tn = rmn+1 if b =

(
rmn

rmn+1

)mn v(rmn)

v(rmn+1)

in Lemma 5.1. Then Corollary 3.2.(b) of [9] implies

||(Pmn+1 − Pmn)h||v ≤ 2bM∞((Pmn+1 − Pmn)h, tn)v(tn).

With (5.3) we obtain

(5.4) d1 sup
n
M∞((Pmn+1 − Pmn)h, tn)v(tn) ≤ ||h||v ≤

d2 sup
n
M∞((Pmn+1 − Pmn)h, tn)v(tn)

for some contants d1 > 0, d2 > 0 and all h ∈ H0
v .

It is well-known that there are bounded holomorphic functions whose Taylor series
do not converge with respect to M∞(·, 1). By going over to suitable Cesaro means
if necessary, we see that, for each n ∈ N, there is a polynomial f of degree N and
an index M ≤ N such that

M∞(f, 1) = 1 but n ≤M∞(PMf, 1).

Proceeding by contradiction, assume that (i) does not hold, that is supn(mn+1 −
mn) =∞. Then we find k with dim (Pmk+1

−Pmk
)H0

v > N . Put h(z) = zmkf(z)/v(tk).
Then, in view of (5.4), we obtain

d1 ≤ ||h||v ≤ d2 and
n

d2

≤ ||PM+mk
h||v.

This implies that the projections Pj are not uniformly bounded contradicting the
assumption (ii). This contradiction implies supn(mn+1 − mn) < ∞, and we have
checked that (ii) ⇒ (i).

Moreover, if supn(mn+1 −mn) <∞ then (5.4) easily implies that the normalized
monomials are equivalent to the unit vector basis of c0. Hence we have (ii) ⇒ (iii).
(iii) ⇒ (ii) is trivial.

(iii) ⇒ (iv): By the preceding we know already that (iii) implies (ii) and hence
(5.4). If σn is the n’th Cesaro mean and h ∈ H∞v then σnh ∈ H0

v . We have
σnPj = Pjσn for all n and j. Moreover ||σnh||v ≤ ||h||v and supn ||σnh||v = ||h||v.
This implies that (5.4) remains valid for all h ∈ H∞v . This together with the fact
that supn(mn+1 −mn) <∞ shows that H∞v is solid.

(iv) ⇒ (iii) follows from Theorem 5.2 in [3].
(iv) ⇒ (v): If g ∈ S(H0

v ) then, by definition and (iii),

lim
n→∞

ĝ(n)||zn||v = 0

which implies by (iii) that g ∈ H0
v .

(v) ⇒ (iv): If g ∈ S(H∞v ) then by definition σng ∈ S(H0
v ) = H0

v for all n. This
implies g ∈ H∞v . �

In [9] it was shown that v(r) = exp(− log2(r)), R = ∞, satisfies (iv) (and hence
all assertions) of Theorem 5.2.

Observe that nowhere in the preceding proof the fact that our functions are defined
on C is used. The arguments work as well for weighted spaces of holomorphic
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functions over the unit disc D. However in this case limn→∞ rn = 1 and this fact
together with

4 < b2 ≤
(
rmn+1

rmn

)mn+1−mn

(by Lemma 5.1.) implies supn(mn+1 − mn) = ∞. This means that in the case
of holomorphic functions over D the preceding theorem is empty. Compare with
Corollary 5.3 in [3].
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