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ABSTRACT 

The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited 

by a large background signal originating from fluorescing compounds in the culture media. Here we 

compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and 

continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced 

Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored 

metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. 

We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate 

availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite 

analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost 

all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived 

from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman 

peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman 

provided a superior performance for the quantitative evaluation of analytes, both with and without 

SERS nanoparticles when using multivariate data analysis.  

 

Keywords: time-gated Raman (TG-Raman); surface-enhanced Raman spectroscopy (SERS); 

multivariate data analysis; metabolite quantification; Escherichia coli 
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1. Introduction 

Raman spectroscopy is a versatile technique for simultaneous concentration monitoring of various 

target compounds in the liquid phase of biotechnological processes, in particular substrate and side 

product accumulation, or recently glycolysation1. However, the broad application of Raman 

spectroscopy for the detection of compounds in the liquid phase upstream of microbial processes is 

mainly restricted to research purposes so far, although, in comparison to IR spectroscopic approaches, 

Raman bands of most analytes exhibit no interference with vibrations from water molecules2–4. This is 

due to the basic drawback of Raman spectroscopy, i.e. data treatment and confidence limits are often 

not really optimized5, and a high fluorescence background causes high threshold values for most 

analytes in biological samples6,7, and thus a low sensitivity8. In addition, the fluorescence background 

often dominates the Raman spectrum even when using common near-infrared (NIR) laser excitation 

sources9,10. 

Several approaches have been developed to overcome impacts of fluorescence background, e.g. 

shifted-excitation Raman difference spectroscopy (SERDS), coherent anti-Stokes Raman spectroscopy 

(CARS), resonance Raman spectroscopy (RR), surface-enhanced Raman spectroscopy (SERS) and 

time-gated (TG) Raman spectroscopy. SERDS is based on the difference spectrum of two identically 

recorded spectra, which are separated typically by the full-width-at-half-maximum (FWHM). When 

applying this, Raman bands are shifted by the FWHM, whereas the broad fluorescence remains 

unchanged. Fluorescence background noise is supressed when the two Raman spectra are subtracted 

from each other11,12. CARS involves the measurement of anti-Stokes shifted Raman and requires two 

pulsed laser excitation sources. It provides a non-linear stimulated Raman emission at a shorter 

wavelength than the excitation laser wavelength. This wavelength has a larger distance from the 

maximum induced fluorescence in a sample13,14. RR combined with a picosecond (ps) short-pulsed 

infrared excitation laser source is capable of separating the Raman signal from fluorescence15. SERDS, 

CARS and RR have good prospects, but are currently academic approaches. In contrary to these 

approaches, SERS and TG-Raman showed convincing signal enhancement and fluorescence 

suppression, and are thus in the focus of this work.  
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SERS uses the enhancement of the Raman-signal by a factor of 104 – 1010 near metallic roughened 

surfaces, electrodes or on colloidal metal nanoparticles. The effect is related to the excitation of 

localized surface plasmons and enables a single-molecule detection16,17. In addition, the strong 

enhancement of the Raman signal with SERS quenches the fluorescence background, which was 

confirmed earlier with the Gersten–Nitzan model and the Mie scattering theory8,9,18,19. Despite the high 

potential of SERS for signal enhancement, the practical implementation is still a challenge. Recently, 

the focus lies on the improvement of reproducibility of real-time measurements under process 

conditions20,21. Nevertheless, the increasing demand for parallel cultivations during process 

development and in the upstream part of bioprocesses, and the availability of automated liquid 

handling systems for sample treatment, allow the application of a more sophisticated sample 

treatment, if benefits of higher specificity and the utilization of one single measurement device instead 

of multiple probes compensate the common drawbacks of off-line measurements. 

While SERS reduces the fluorescence background by enhancing the Raman signal, time-gating "gates 

out" not only the fluorescence, but also other disturbing signals like cosmic rays or room light 6,22. The 

TG-Raman approach has reached the stage of a commercially available solution enabling routine 

process measurements. The set-up utilizes the synchronization of a pulsed laser excitation in a 100 ps-

time regime with a complementary metal–oxide–semiconductor (CMOS) single-photon avalanche 

diode (SPAD)-detector in a compact system, as opposed to the more common charge-coupled device 

(CCD) detectors6,23. 

We therefore decided to utilize TG-Raman and two continuous wave (CW) Raman approaches with 

and without SERS and compared their potential to analyse cell-free supernatant samples of an 

Escherichia coli cultivation. The conventional approaches comprise a CW laser Raman process 

spectrometer with NIR excitation at 785 nm and a confocal CW-microscopic set-up at 633 nm, which 

is considered to be the most precise instrument regarding spectral resolution with high spatial accuracy 

as a standard to perform SERS as a reference (cf. section 2.3). For SERS measurements, we used 

commercially available inexpensive silver nanoparticles (Ag NPs), which are known to be stable over 

a long time with good signal enhancement and uniformity in particle size.  
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We aimed at the quantification of glucose as main carbon source, acetate as main side metabolite, and 

selected amino acid and nucleotide concentrations with all three set-ups. These shall represent 

metabolites, which are of interest to monitor a bacterial cultivation process. The spectra were 

evaluated by both, a univariate and multivariate data analysis (MVDA). Enzymatic analysis and high-

performance liquid chromatography (HPLC) were used as reference data for calibration and validation 

of the chemometric approaches.  

The following topics were addressed: (i) which experimental set-up is best suited for a comprehensive 

analysis of the analytes of interest, (ii) to what extent does SERS offer benefits over conventional 

Raman, and (iii) which specifications have to be met for efficient bioprocess monitoring by Raman 

spectroscopy? 

 

2.  Materials and Methods 

2.1 Chemicals 

Commercial silver nanoparticles (Ag NPs) of a size of 40 nm, measured with transmission electron 

microscopy in a suspension of 0.02 mg mL–1 in aqueous buffer, containing sodium citrate as stabilizers 

(Sigma-Aldrich, St. Louis, MO) were applied for the SERS studies. Prior to measurements, the stock 

solution was centrifuged (CT15RE from VWR, Radnor, PA) at 4,000 rpm / 1,610 x g for 4 min, 

subsequently followed by a removal of the supernatant to reach a final concentration of about 2.8 g∙L–

1. The effect of different size, shape and enhancement material was tested in our earlier studies, in 

which these Ag NPs showed good performance at different wavelengths with different spectroscopic 

set-ups 24,25. The nanotoxicity of Ag NPs on E. coli cells was described elsewhere 26, which should not 

be relevant, as the assay was exclusively used during measurements. 

2.2 Microbial cultivation 

A batch and subsequent fed-batch cultivation of  wild type E. coli W3110 in a 3.7 L stirred-tank 

bioreactor with a pulse-based feeding profile was applied to achieve different concentrations of glucose 

and other metabolites, including those typically appearing under conditions of overflow metabolism. 
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The batch phase was started with 2 L mineral salt medium, containing (per L): 2 g Na2SO4, 2.468 g 

(NH4)2SO4, 0.5 g NH4Cl, 14.6 g K2HPO4, 3.6 g NaH2PO4 × 2H2O, 1 g (NH4)2-H-citrate and 1 mL of 

antifoam (Antifoam 204, Sigma Aldrich GmbH, Darmstadt, Germany). Before inoculation, the medium 

was supplemented with (per L) 2 mL of trace elements solution, 2 mL of MgSO4 solution (1.0 M), and 

with 5 g of glucose for the batch phase. The trace element solution comprised (per L): 0.5 g CaCl2 × 

2H2O, 0.18 g ZnSO4 × 7H2O, 0.1 g MnSO4 × H2O, 20.1 g Na-EDTA, 16.7g FeCl3 × 6H2O, 0.16 g CuSO4 

× 5H2O, and 0.18 g CoCl2 × 6H2O. During cultivation, the temperature was maintained at 37 °C and the 

pH was controlled at 7.0 by automatic titration with a solution of 25% NH4OH.  After 10 hours of batch 

cultivation, a sudden rise in the dissolved oxygen profile appeared while glucose depleted. An 

exponential feeding was subsequently implemented to maintain the achieve a specific growth rate of 0.3 

h-1. The feed solution contained (per L) 8 mL of trace elements solution, mineral salts (same 

concentration as in the batch phase) and 400 g of glucose. In order to achieve the heterogeneous 

environment required for the secretion of important metabolites in E. coli, the feed was supplied 

intermittently as pulses, and samples were drawn at the pulsing times. Cell-free supernatant samples 

were taken through a membrane filter (pore-size of 0.22 µm), with which the supernatant was directly 

separated from cells during sampling. The samples were frozen and stored at -80° C prior to further 

analysis. All reference measurements were conducted within a close time span to the Raman 

spectroscopy measurements. 

2.3 Raman spectroscopy analysis 

2.3.1 Raman microscopy (micro-Raman) 

A confocal Raman microscope (InVia from Renishaw, Wotton-under-Edge, UK) 27 was used 

encompassing a CCD-detector, which was temperature-controlled at -70°C during measurements, and 

a CW He-Ne laser with an excitation at λexc= 633 nm, a laser power of 10 mW at lens (N Plan EPI 

from Leica, Wetzlar, Germany) with a magnification factor of 20x and numerical aperture (NA) of 0.4. 

The spectral acquisition time was set to 10 s. An average of 5 captures was considered with a manual 

cosmic ray removal. The spectral resolution of the InVia Raman microscope was 0.3 cm–1 at FWHM. 
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2.3.2 NIR Raman spectrometer (NIR-Raman) 

A commercially available process Raman spectrometer RXN1 (Kaiser Optical Systems, Ann Arbor, 

MI)28 was used, which was equipped with a temperature-controlled CCD detector at -40° C and a CW-

laser excitation at λexc= 785 nm at a laser power of 135 mW at a non-immersion Raman MR process 

probe (NA = 0.29). The spectral acquisition with NIR-Raman was performed with an integration time 

of 20 s. An average of 5 captures was considered, which reduced cosmic ray disturbances. The spectral 

resolution of the RXN1 spectrometer was 4 cm–1 (FWHM). 

 

2.3.3 Time-gated Raman (TG) 

For this study, a prototype system set-up of a time-gated Raman process-spectrometer TGM1 

(TimeGate Instruments, Oulu, Finland) equipped with a state-of-the-art non-cooled SPAD detector 

with a 100 ps pulsed Nd:YVO4 laser at λexc= 532 nm was used. A standard laboratory Raman probe 

BWTek RPB 532 (B&W Tek, Newark, DE) with an approximate average laser power of 30 mW and 

NA of 0.22 at the sample focal point was applied. No cosmic ray removal was necessary due to the 

fast gating duty cycle of the measurement principle. The time-gating principle was described 

elsewhere 6,9,23. SERS was conducted with the same spectral range, laser power, repetitions and 

temporal settings. Even though a single measurement at the temporal position of high intensity Raman 

or SERS signal was recorded in about 1.5 seconds, repetitions in temporal direction were necessary 

(15 min. of total collection time) to achieve a well-resolved overall spectrum for one sample (cf. Fig. 

S1) with sufficient signal-to-noise ratio29. However, for practical reasons, each TG-spectrometer is 

equipped with individually adjustable delay-settings, which results in a temporal off-set from t = 0 

(launch of a laser pulse), as shown in the results of the raw-data (cf. Fig. S1). The temporal window 

used in this study was set to cover the Raman and SERS signal captures between t = 1.2 – 2.1 ns. The 

spectral resolution of the TG-system was 10 cm–1 (FWHM).  

 

2.4 Sample preparation & measurement procedure 



8 
 

Prior to the analyses, a wavelength calibration was performed for all three Raman spectrometers. Laser 

and detectors were temperature-stabilized. Measurements were performed with an in-house developed 

anodized aluminum microwell plate with a cavity volume of 20 µL. At first, 3 µL of samples were 

filled into the wells. Raman spectra were recorded subsequently. In a next step, 3 µL of concentrated 

Ag NPs solution was added without mixing into the sample. Subsequent SERS measurements were 

performed after focussing beneath the liquid surface of each sample, while adjusting to the maximum 

Raman/SERS intensity at each spectrometer set-up (cf. Fig. 1 and Fig. 2). All spectra were taken 

immediately after pipetting the supernatant samples into the wells. Repeated SERS measurements 

were performed sequentially right after each Raman measurement by adding Ag NPs on top of the 

sample. Fig. 1 shows the settings used for the different measurements. 

 

2.5 Reference analysis  

The glucose concentration was enzymatically determined with the glucose hexokinase FS kit (DiaSys 

Diagnostics, Holzheim, Germany) following the supplier’s instructions. Carbohydrates, short chain 

carboxylic acids and ethanol were quantified with a refractive index detector on a HPLC-system (1200 

series system, Agilent, Waldbronn, Germany), amino acids were quantified with a fluorescence 

detector on a HPLC (1260 series system, Agilent) using pre-column derivatization with o-phthal-

dialdehyde 30. Nucleotides were quantified with a diode-array detector (1200 series system, Agilent). 

For separation, a Supelcosil TM LC-18T column (150 mm × 4.6 mm I.D., 3 µm particle size) 

connected to a guard column cartridge (particle size of 5 µm) was applied (both Supelco, Bellefonte, 

PA). Chromatographic conditions were set as described elsewhere with a flow rate of 1.0 mL∙min–1 31. 

Repeated Raman and SERS reference measurements for most media compounds were performed with 

a concentration range from close to the limit of detection up to the highest available concentration (cf. 

Fig. S3 and S4). 
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2.6 Spectral data processing 

In order to achieve time-gated Raman spectra, a post-processing was performed using the instruments’ 

post-processing software32.  

The TG-Raman raw measurement data provides a three dimensional data cube, i.e., intensity versus 

Raman signal wavenumbers versus time delay information. The latter exhibits the Raman signal as 

function of the time delay in several nanoseconds. The time region with a typical time span of 0.5 – 

5.5 ns, in which the Raman signals arises shortly before the fluorescence signal, is of great importance. 

Typical 3D raw-data cubes are depicted in the supplementary information (Figure S1).  

Further analysis was performed with OriginPro (V. 2016, OriginLab, Northampton, MA). MVDA of 

Raman and SERS in general started with principal component analysis (PCA) for initial data 

inspection followed by partial least squares regression (PLSR) of mean-centered data with the 

software The Unscrambler® X (V.10.4. CAMO Software, Oslo, Norway). Prior to regression analysis, 

TG spectra were baseline-corrected and unit vector normalized, whereas for both micro-Raman and 

NIR-Raman spectra, a Savitzky-Golay derivative over 21 spectral data points using a second order 

polynomial followed by unit vector normalization was applied. The latter allows for a quantitative 

comparison of data retrieved at different experimental periods and thus was applied as a final step for 

all spectral data. In case of unit vector normalization, each sample vector is divided by its own size. 

The normalized samples have a length (norm) of “1” and differ only with respect to their direction.  

The off-line derived data for optical density (OD), acetate, glucose, amino acid and nucleotide, i.e., 

adenosine monophosphate (AMP) and cyclic AMP (cAMP) concentrations were included as response 

variables (y) for calibration of the PLSR models, and the so-called fingerprint region of each 

spectroscopic data set after the described mathematical pre-treatment as x variables. The resulting root 

mean square errors of calibration (RMSEC) and validation (RMSECV) can be compared as figures of 

merit among various Raman measurements for the same analyte. The validation was performed as 

internal (full) cross validation for model development. The optimal rank A (number of factors, latent 

variables) is determined based on prediction of kept-out objects (samples) from the individual models 

by cross validation. Moreover, the approximate uncertainty variance of the PLS regression coefficients 
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B can be estimated by jack-knifing according to Martens and Martens33. As a rough significance test, a 

Student’s t-test is performed for each element in B relative to the square root of its estimated 

uncertainty variance, giving the significance level for each parameter.  

In addition, for both micro-Raman and NIR-Raman spectra, pseudo-external validation (RMSEP) was 

performed using repeated measurements of different aliquots from samples of the dynamic cultivation. 

To assess prediction uncertainties of unknown samples including biological variation, the investigation 

of several batch cultivations will be necessary. Such experiments would be the next step after having 

identified the optimal Raman technique for the analytes of interest, but are, however, beyond the aim 

of this study. 

 

3. Results and Discussion 

The aim of this study was to compare the potential of different suitable Raman and SERS approaches 

for both, the spectral identification and quantification of relevant compounds in cell-free supernatants, 

namely NIR-Raman at 785 nm with continuous excitation and TG-Raman at 532 nm with pulsed 

excitation. The micro-Raman was used as reference at a continuous excitation of 633 nm. 

Measurements were performed with supernatant samples of an E. coli cultivation with mineral salt 

medium. These cultivation samples are characterized by a changing matrix composition in the course 

of the dynamic cultivation progress by the accumulation of analytes and side products, and also by an 

increasing fluorescence background33.  

To achieve best conditions for monitoring, all measurements were conducted in aluminum microwells. 

Fig. 2A represents a sketch of the measurement set-up, and the suggested distribution of the Raman 

signal inside the aluminum microwells, when the focus beam is adjusted just below the fluid surface. 

The highest scattering intensity is achieved by focusing just beneath the liquid surface34. Fig. 2B 

illustrates the signal enhancement achieved through SERS. Backscattering of the Raman and SERS 

signal depends on the turbidity of the sample, which follows the Lambert-Beer law35. The walls and 

the bottom of the aluminum microwell are acting as a diffuse reflector for the excited laser emission, 

as shown in Fig. 2. The aluminum oxide film, which is naturally formed on every Al surface, did not 
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affect the measurement. According to Zhang et al., anodized aluminum oxide films exhibit weak 

SERS bands at about 1600 cm−1, which lies outside the spectral range that was evaluated in this study. 

Bands would occur only if the measurement was tightly focused directly on the Al surface36. In 

common plastic like polystyrene and polyethylene-terephthalate microwell plates, however, significant 

interference of a strong Raman band at around 1000 cm−1 can occur when using a small sampling 

volume. Al in contrast, if used as material and metallic sample holder, may even act as signal enhancer 

due to back-reflection37,38. Thus, Al seems to be a suitable sample enclosure for a disturbance-reduced 

Raman and SERS analysis37,39. 

Since the highly concentrated Ag NPs remain stable at the surface during the short measurement 

process in the microwell (as depicted in Fig. 2B), repeated SERS measurements can be conducted 

reliably21 in the same way for each microwell within the given measurement time of the respective 

Raman techniques used here (cf. Fig. S7). 

Fig. 3 summarizes the resulting Raman spectra from both non-SERS measurements (top-row) and 

SERS-measurements (bottom-row) of the cell-free supernatant samples. As the spectra are presented 

for the region of interest and offset separated, the impact of fluorescence on NIR- and micro-Raman is 

not obvious. The highest fluorescence backgrounds are observed with micro-Raman (Fig. 3C and Fig. 

S7B), which is due to the excitation at 633 nm close to the maximum fluorescence of biological 

samples. For easier comparison of individual spectra, only a selection is represented. All non-SERS 

Raman spectra (at the top-row of Fig. 3) show similar Raman bands, but with varying relative 

intensities with best resolution for TG-Raman. Although TG-Raman excites samples even at the 

fluorescence maximum of many biological compounds, it seems that the fluorescence is sufficiently 

reduced and the spectra are clearly distinguishable from the residual background (cf. Fig. 3B and 3E)6. 

Generally, all non-SERS measurements of the three spectroscopic set-ups demonstrate similar results. 

They appear significantly different from the respective SERS measurements of the supernatant 

samples (Fig. 3 bottom row). 

The detection of analytes with the addition of SERS reveals rather different spectra for the respective 

Raman technique. The largest differences between enhanced and non-enhanced measurements are 
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observable from the micro-Raman spectra, with strong variations of the background, spectral peaks 

and the signal intensity. Overall, the application of SERS using Ag NPs to each sample right before 

the measurements clearly leads to a better separation of signals from the background noise in the 

supernatant samples with all Raman techniques (bottom row in Fig. 3D – F). The addition of Ag NPs 

is revealing further spectral features, which originate from oligonucleotides (678, 730, 925, 1104 and 

1330 cm–1, cf. Table 1) like adenosine derivatives (cAMP and AMP), whereas without Ag NPs, 

mainly compounds of the media substrate such as magnesium sulfate (at 980 cm–1 ), trace elements 

and carbohydrates (877-883 cm–1 and 1130 cm–1 ) dominate the Raman spectra40. Table 1 shows the 

observed Raman and SERS peaks related to literature references, and a comparison of detection with 

the three different techniques.  

It is feasible to recognize most changes of substrate and product compounds in the mineral salt 

medium with all spectroscopic set-ups, but it appears that SERS, in general, provides better resolved 

spectra (Fig. 3D and 3E). A high effort for adjustment is needed in the case of the microscope set-up 

(Fig. 3F), yet no distinct peak around 980 cm–1 is detectable throughout the course of the cultivation. 

One reason for this effect may be the smaller focal spot in the sample liquid. Nanoparticles for SERS 

need to be captured within this tiny spot. The focal spot with the probes used for NIR- and TG-Raman 

is 10 – 20 fold larger, which likely reduces thresholds, and further results in increased reproducibility 

of the SERS measurements41. 

Figure 4 shows the development of the concentrations of glucose, acetate, cAMP and AMP during the 

course of the cultivation measured with the corresponding SERS respectively Raman bands 

(normalized peak intensities) in comparison to concentrations determined by HPLC. In all cases, a 

similar development is observed; values of the corresponding quantitative regression analysis are 

shown in Table 2.  

As pulses were applied after a certain time under nutrient-limited fed-batch cultivation conditions, 

glucose and the concentration of overflow metabolites like acetate varies. This dynamic course is well-

captured for glucose and AMP, and at most time points also for cAMP. In case of acetate, which was 
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only analyzed at samples of non-SERS measurements with NIR-Raman and TG-Raman, general 

trends were also reflected well, however, with reduced conformity.  

Depending on the quality of the spectral data, which were obtained from the three Raman techniques 

and SERS, different pre-treatments were applied to obtain PLSR models (cf. section 2.6). They appear 

plausible with respect to the explained variance of calibration and validation, scores, loadings and 

regression coefficients (Fig. S2, S5 and S6). The spectra obtained from micro-Raman exhibited a high 

spectral resolution over a wide spectral range, but strong variations of intensities and background, 

especially for the SERS measurements (cf. Fig. 3C – F), whereas those obtained from NIR-Raman 

were less resolved with a varying offset. In contrast, TG spectra had only small offsets, well 

discernable peaks, but a stronger signal to noise ratio. Furthermore, the spectral region was limited to 

1000 cm–1 in maximum with a poor spectral resolution of the prototype system set-up used here. 

In Table 2, a summary of the resulting RMSE for the analytes glucose, acetate, cAMP and AMP is 

provided for both SERS and non-SERS Raman spectra. The “best” results for each analyte are 

highlighted in bold, meaning the approach with the smallest RMSE and the least variation among 

RMSEC-RMSECV and/or the RMSEP. In case of glucose, acetate and cAMP concentrations, indeed 

non-SERS Raman spectra obtained from the NIR-Raman led to the lowest RMSE. The general ability 

of non-SERS Raman to monitor glucose and lactate concentration accurately, if compared with 2-D 

fluorescence and NIR spectroscopy, was recently observed in samples of a cell culture process42. A 

RMSEP of up to 0.31 g∙L-1 was reported recently43. AMP, however, SERS spectra were slightly 

superior to Raman spectra obtained with the NIR-Raman. To our surprise, for no analyte tested here, 

the well-resolved microscopic spectra yielded to superior results in quantitative evaluation, but for one 

analyte, i.e. AMP, quantification even failed. Although nominal low RMSE were obtained for SERS 

measurements of acetate by micro-Raman, this model fails in cross-validation (cf. supplementary data, 

Fig. S6A). Moreover, as we observed a nonlinear trend at the upper range of acetate concentrations 

also in the PLSR model from NIR-Raman spectra (cf. supplementary data, Fig. S6B), we concluded 

that acetate was not suited for quantitation in the samples used here, since it resulted in high 

uncertainties for all approaches.  
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In comparison, for glucose, AMP and cAMP concentrations, low RMSE were achieved, which 

correspond to relative uncertainties of 8, 5 and 10% in the studied concentration ranges (cf. Fig. S5A-

B). From a physiological point of view, the cAMP concentration in E. coli increases under limited 

substrate supply42,43. cAMP is an important molecule to indicate the energetic state of a culture and the 

degree of starvation under typically applied fed-batch conditions, in which the main nutrient is 

limiting30. Due to the oscillating feed rate and various phases of starvation, its concentration increased 

during the cultivation. The highest peak of cAMP is reached when the ratio of the glucose fed to the 

residual biomass is at its minimum at 21 h, which is in agreement to observations of Notley-McRobb 

et al. 42. While TG-Raman can follow the development of cAMP, NIR-Raman was performing best 

regarding the quantitative analysis of cAMP (cf. Fig. 4 and Table 2). 

The application of SERS had various effects on the spectra. Dominant substrate bands like thiamine 

(756 cm–1), phosphates (1160 cm–1) and carbohydrates (1130 cm–1) were reduced, while product bands 

such as lactate (920 cm–1), proteins (around 1220 cm–1), and lipids (1460 cm–1) appear enhanced (cf. 

Table 1). These results suggest to consider surface-enhanced Raman spectroscopy a reliable approach 

for the monitoring of metabolites in bioprocesses and make it a promising technology for the refined 

detection of low-concentrated analytes such as AMP. The combination of such a technology with 

automated data treatment under the consideration of generic calibration model development46 can 

support the suitability of Raman spectroscopy as a valuable process analytical technology for 

compounds so far difficult to measure in bioprocesses. 

 

 

4. Conclusion 

The motivation for this study was a comparison of different Raman spectroscopic techniques 

regarding their suitability for the analysis of essential compounds in a bacterial cultivation, namely 

glucose, acetate, cAMP, and AMP as an indicator of the process status. The comparison was 
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performed with respect to parallel and/or on-line measurement combined with high sensitivity and 

robustness. Furthermore, the benefit of a combined SERS approach with each technique was assessed.  

In general, both the SERS and the non-SERS spectra of the three set-ups closely resembled each other. 

Addition of Ag NPs led to an increase of information of Raman active species, at the same time 

reducing intensities and identifiability of other compounds present in the non-SERS measurements. 

Surprisingly, the spectra derived from the most precise instrument, a high-resolution Raman 

microscope, yielded no superior results for quantitative analysis of any of the observed analytes. Even 

though producing the best-resolved spectra regarding the number of analytes, SERS added no further 

benefit for quantitative analysis in this particular study. In contrast, best results in quantitative analysis 

were obtained from the instrument operating with CW-NIR excitation at 785 nm. Although the signal-

to-noise ratio of the Raman peaks seemed poor due to a high fluorescence background, good results 

were obtained in combination with suitable data transformation and chemometric (PLSR) evaluation. 

It should be noted that for the quantitative evaluation of the NIR-Raman data MVDA is essential44. In 

case of cAMP, addition of Ag NPs further improved the prediction results from PLSR, however, for 

glucose, acetate and AMP, no comparable effect was observed with SERS although the spectra 

exhibited more spectral lines and details45. Remarkably, the application of complex media might lead 

to different conclusions about the benefits of SERS pretreatment and Raman spectroscopy evaluation. 

Despite the advantages of SERS nanostructures to drastically enhance the Raman signal and quench 

fluorescence, a careful planned set-up is necessary to carry out reproducible measurement results and 

neglect effects of signal variations due to aggregation46,47. The combination of TG-Raman with SERS 

is beneficial for a qualitative analysis48. In this study, spectra derived from the TG-Raman with and 

without SERS resulted in well-discernable spectral peaks, which allow the identification of a much 

higher number of peaks compared to NIR-Raman. Especially this feature makes TG-Raman 

spectroscopy an important tool for the screening of complex mixtures as they occur in bioprocesses. 

For the quantitative analysis, however, only the combination with SERS achieved an acceptable 

accuracy of glucose and acetate concentration measurement.  
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Figures 

 

Figure 1 

Various spectroscopic set-ups: TG-Raman (TGM1) with pulsed green λ = 532 nm laser, NIR-Raman 

(RXN1) with red  λ = 785 nm laser and confocal setting of micro-Raman (InVia) with orange λ = 633 

nm laser used in this work; each measurement without and with injection of Ag NPs into each 

microwell. 

 

Figure 2 

Microwell with supernatant sample - symbolical representation of scattering (A) Raman set-up and (B) 

SERS set-up during measurements in a single aluminum well.  
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Figure 3 

Raman spectra as obtained with NIR-, TG- and micro-Raman (A–C) and spectra from same techniques 

using SERS (D-F). 
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Figure 4 

Normalized (0-1) concentrations of A) glucose (1130 cm–1), B) acetate (877–891 cm–1), C) cAMP 

(731–736 cm–1), and D) AMP (1320–1340 cm–1), corresponding max. peak height measured by NIR-

Raman (red triangles) and TG-Raman (green dots) in SERS mode except for acetate (Raman max. 

peaks). The yellow curve with squares refers to the actual HPLC concentration in mM per sample 

during the cultivation.  
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Table 1 

Tentative Raman/SERS band assignments with different spectroscopic settings 

 

 

 

 

 

 

 

 

 

 

 

 

Detected 
Bands 
Peak/cm-1                                        

Tentative band 
assignment 
 

Origin/category 
 

Raman 
NIR-

Raman 

Raman 
Micro-
Raman 

Raman 
TG-Raman 

SERS 
NIR-

Raman 

SERS 
Micro-
Raman 

SERS 
TG-Raman 

Reference 
 

562-580 Ring and CH-
deformation                        

Carbohydrate in 
medium 
 

- - - + + ND 49 
 

655 Ring breathing of 
Guanine (oligo G) 

DNA - - - + + + 50 

674-680 Ring breathing of 
Guanine (oligo G) 

DNA - - - + + + 51 

732-736 Glycosidic ring mode 
of D-glucosamine 
(NAG), Adenine or 
CH2, cAMP 

DNA, 
Nucleotide 

- - - + + + 52 
53 

756 Thiamine Substrate from 
medium 

- - - + + + 54 

800-810 Acetate (weak peak 
TG-Raman w. SERS) 

Product + - - - + + this work 

877-891 Acetate (weak peak in 
NIR-Raman) 

Product + + + - - - this work 

920 C-C stretch of proline 
ring-glucose or lactic  
acid 

Product - - - + + + 55,56,4 

957-964 C=C deformation, 
guanine 

DNA - - - + + + 57 

1025 C−H bending  Lipid - - - - + + 58 
1080 Potassium di-hydrogen 

phosphate 
Phosphates in 
medium 

+ + + - + + 59 

1130 C–N and C–C stretch  Carbohydrate in 
medium 

- - - + + + 60 

1160 C−O−C or P=O stretch Phosphates in 
medium 

+ - + - - - 61,62 

1170  Tryptophan (Trp) or 
phenylalanine (Phe) 

Aromatic amino 
acids 

- - - + + + 63 

 
1320-1340 
 

 
Adenine (AMP) 
 

 
DNA, 
Nucleotide 

 
- 
 

 
- 
 

 
- 
 

 
+ 
 

 
+ 
 

 
+ 
 

 
50 
64 
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Table 2 

Prediction of analyte concentrations based on Raman and SERS measurements (numbers in brackets 

refer to factors in PLSR as obtained by cross validation) 

 

 

 

 

 

 

 

 

 

 

 

Raman technique micro-Raman (Renishaw inVia) NIR-process Raman (RXN1) TG-Raman (TGM1) 
  

Data pre-treatment 
for PLSR 
 

1st derivative, S-G smoothing, 2
nd

 order 
polynomial, 21 wavenumbers, unit vector 
normalization 

1st derivative, S-G smoothing, 2
nd

 order 
polynomial, 31 wavenumbers, unit 
vector normalization 

Baseline correction, 
unit vector normalization 

Analyte / conc. Range   Sample RMSEC RMSECV RMSEP RMSEC RMSECV RMSEP1 RMSEC RMSECV 

Glucose / g L
-1
 Raman 0.69 0.78 (1) 1.03 (1) 0.42 0.52 (3) 0.39 (3) 0.75 1.42 (2) 

Range: 0.065 – 5.00 SERS 0.57 0.68 (2) 0.57 (4) 0.54 0.61 (1) 0.91 0.70 1.01 (2) 

Acetate / g L
-1

 Raman 0.07 0.09 (3) n.d. 0.07 0.09 (2) 0.08 (4) n.d. n.d. 

Range: 0– 0.56 SERS 0.06 0.08 (4) 0.14 (3) n.d. n.d. n.d. 0.12 0.19 (2) 

AMP / mM Raman n.d. n.d. n.d. 0.005 0.01 0.02 n.d. n.d. 

Range: 0– 0.19  SERS n.d. n.d. n.d. 0.003 0.01 (4) 0.01 (4) n.d. n.d. 

cAMP / mM Raman 0.02 0.05 (3) 0.06 (3) 0.01 0.02 (4) 0.05 (3) n.d. n.d. 

Range: 0– 0.51  SERS 0.04 0.06 (3) 0.07 (3) 0.04 0.05 (1) 0.07 (4) n.d. n.d. 


